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Abstract
In this work we introduce a simple mathematical model, based on master equations, to describe the time evolution of the 
popularity of hashtags on the Twitter social network. Specifically, we model the total number of times a certain hashtag 
appears on user’s timelines as a function of time. Our model considers two kinds of components: those that are internal to 
the network (degree distribution) as well as external factors, such as the external popularity of the hashtag. From the master 
equation, we are able to obtain explicit solutions for the mean and variance and construct confidence regions. We propose a 
gamma kernel function to model the hashtag popularity, which is quite simple and yields reasonable results. We validate the 
plausibility of the model by contrasting it with actual Twitter data obtained through the public API. Our findings confirm 
that relatively simple semi-deterministic models are able to capture the essentials of this very complex phenomenon for 
a wide variety of cases. The model we present distinguishes from other existing models in its focus on the time evolution 
of the total number of times a particular hashtag has been seen by Twitter users and the consideration of both internal and 
external components.

Keywords Social network modeling · Hashtag propagation · Master equations

1 Introduction

The emergence and popularization of social networking ser-
vices constitutes an unprecedented social phenomenon that 
has transformed the way people communicate, get access to 
different kinds of information, establish communities and 
many other things. These novel communication channels 
allow for the fast and massive diffusion of both information 
and disinformation, a feature that has been well exploited by 
marketing agencies, social movements, political parties and 
government agencies, among others. It is, therefore, relevant 
to understand the process of information diffusion over this 
kind of networks.

Among the most popular social networking services, such 
as Facebook, YouTube or Instagram, the microblogging site 
Twitter stands as particularly effective for information diffu-
sion purposes. According to 2016 data (about.twitter.com), 
Twitter has approximately 320 million active users (accounts 

that show activity at least once a month), which represent 
approximately 9% of total Internet users worldwide (www. 
itu. int). According to these same sources, approximately 500 
million messages are sent over this network everyday.

The growing interest in modeling and understanding dif-
ferent dynamical processes that occur on this social network 
is manifested in the large number of studies on this matter 
in recent years. Kawamoto et al. have proposed a multipli-
cative process model for information spread (Kawamoto 
2013; Kawamoto and Hatano 2014). Kwon et al. (2012) 
and (2013) have proposed models for the evolution of the 
number of messages, the propensity to send or resend mes-
sages and have categorized messages according to predict-
ability and sustainability (Kwon et al. 2012, 2013; Ko et al. 
2014). Weng et al. (2012) and (2013) have elaborated an 
agent-based model for information overflow and have dis-
covered similarities between images diffusion over Twitter 
and epidemic spreads (Weng et al. 2012, 2013). Mathiesen 
et al. (2013) have studied scaling laws of big brands tweet-
rates, which have been modeled through classic stochastic 
equations (Mathiesen et al. 2013; Mollgaard and Mathiesen 
2015). Sutton et al. have made statistical analysis for the 
diffusion of official warnings during disasters and have iden-
tified some factors that contribute to information diffusion 
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(Jeannette Sutton et al. 2015). There are also some works 
that model topic popularity and information spread with 
SIR or SIRI-like equations (Xiong et al. 2012; Jin et al. 
2013; Skaza and Blais 2017). Bao et al. (2019) have studied 
the predictability of the number of times a message will 
be shared or resent (Bao et al. 2019). Bauman et al. have 
modeled community polarization on social networks and 
specifically analyzed this with Twitter data (Fabian et al. 
2020). Yook et al. (2020) have developed models to account 
for the observed probability distributions and scaling laws of 
images and topics popularity (Yook and Kim 2020). There 
are as well many other studies for different kinds of phenom-
ena that occur on this social network, other than dynamical 
process, see for example (Gonçalves et al. 2011; Alexandre 
et al. 2018; Alexandre and Makse Hernán 2019; Zhang et al. 
2018). Finally, there are many other studies for this kind 
of phenomena on other social networks, see for example 
(Crane and Sornette 2008; Hogg and Lerman 2009; Fang 
and Huberman 2007; Miotto and Altmann 2014; Miotto 
et al. 2017; Wang et al. 2018).

In this work, we propose and validate a model, based 
on semi-deterministic master equations, for the temporal 
evolution of the number of times a certain label appears 
on the Twitter network (these labels are called hashtags, as 
we explain in the next section). Notice this is not a model 
for the number of times a message is sent or shared, but for 
the number of times it can be seen on the network, which 
depends on the number of links the nodes that are sending 
this message have (the degree distribution of the network). 

Clearly, a label being shared by nodes with just a few links 
will behave differently, on a global scale, than a label being 
shared by nodes with many links. We use this as measure of 
popularity for the label or hashtag and construct our model 
under the hypotheses that this popularity is influenced by 
the degree distribution (a feature that is intrinsic to the net-
work) and also by the extrinsic popularity of the topic (see 
Bandari et al. (2012) for a discussion on this subject). Data 
obtained through the Twitter API show that our model is 
indeed plausible. As far as we know, this is the first attempt 
to model this quantity with semi-deterministic equations. 
Even though information diffusion and hashtag propagation 
is a very complex phenomenon and the model we propose is 
relatively simple, we see that it is consistent with observed 
data for an ample diversity of hashtags.

1.1  Relation with other models

Modeling and prediction for popularity of tweets, retweets, 
trends and hashtags in Twitter is a topic that has received a 
lot of attention in recent years, and there are several mod-
els for this phenomena. We show in Table 1 a selection of 
some of the most relevant models that have been developed 
in the last ten years. Broadly speaking, we can group these 
models according to their methodology or according to their 
main task. For example, works of Ma et al. (2012), (2013), 
Kupavskii et al. (2012), Kong et al. (2014), Doong (2016), 
Nadia et al. (2019), Zhang et al. (2016), Hai et al. (2020) 
are all based on supervised machine learning, deep learning 

Table 1  Schematic view of some relevant models in the last ten years for tweet, retweet, trend and hashtag prediction in Twitter

References Methodology Main purpose

Ma (2012) and (2013) Supervised Machine Learning Prediction of hashtag popularity
Kupavski (2012) Supervised Machine Learning Retweet prediction
Kong (2014) Supervised Machine Learning Hashtag bursting prediction
Doong (2016) Supervised Machine Learning Prediction of hashtag popularity
Firdaus (2019) Supervised Machine Learning Retweet prediction
Zhang (2016) Deep Learning and Neural networks Retweet prediction
Yu (2020) Deep Learning Prediction of peak time for hashtag popularity
Pervin (2015) Statistical analysis Analysis of hashtag co-occurrence
Pancer and Poole (2016) Hierarchical regression analysis Prediction of links and retweets
Zhang (2013) Non-linear auto-regression models Trend prediction
Xiong (2012) Epidemiological models Modeling of information propagation
Jin et al. (2013) Epidemiological models Modeling of information cascades
Skaza and Blais (2017) Epidemiological models Modeling of hashtag dynamics
Kawamoto (2013) Stochastic models and random processes Modeling the dynamics of retweet activities
Ko et al. (2014) Mathematical modeling Modeling the propensity to tweet and retweet
Mollgaard (2015) Stochastic and mathematical modeling Modeling of tweet rates
Zhao (2015) Mathematical and statistical modeling Prediction of tweet popularity
Rizoiu et al. (2017) Stochastic and mathematical modeling Prediction of popularity for tweeted videos
Bao et al. (2019) Mathematical modeling and supervised ML Prediction of tweet popularity and retweets
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and neural networks; models of Pervin et al. (2015), Pancer 
and Poole (2016), Zhang et al. (2013) are based on statisti-
cal analysis and regression techniques; works of Xiong et al. 
(2012), Jin et al. (2013, Skaza and Blais (2017) propose 
different variations of epidemiological models for informa-
tion spread; finally, models of Kawamoto (2013), Ko et al. 
(2014), Mollgaard and Mathiesen (2015), Qingyuan et al. 
(2015), Rizoiu et al. (2017), Bao et al. (2019) are either 
mathematical or stochastic models. Our present work is in 
line with this last group.

However, none of the models from this last group 
addresses the topic of hashtag popularity evolution. Works 
that have addressed this particular phenomenon, such as Ma 
et al. (2012), (2013), Kong et al. (2014), Doong (2016) are 
not mathematical-dynamical models but machine learning 
models. Perhaps the model of Skaza and Blais (2017) is 
closest to ours, in the sense that it is a mathematical model 
for hashtag dynamics, but it does not consider stochastic 
elements. As far as we know, the model that we present in 
this work is the first mathematical semi-deterministic (sto-
chastic) model for the popularity evolution of hashtags on 
Twitter.

Our model also integrates internal and external factors 
that contribute to the propagation of the hashtag. Other 
models that integrate these two kinds of factors are those 
of Rizoiu et al. (2017), Ko et al. (2014), but they are not 
addressing the phenomenon of hashtag propagation. In 
short, we present here a simple semi-deterministic math-
ematical model, based on master equations, for hashtag 
popularity evolution on Twitter that integrates both internal 
and external factors.

This paper is organized as follows: in Sect. 2 we describe 
the phenomenon we want to study on Twitter in terms of 
network theory; in Sect. 3 we develop the model, based on 
semi-deterministic master equations; we show in Sect. 4 how 
to obtain solutions for the mean number of messages and its 
variance; in Sect. 5, we explain how we modeled the extrin-
sic topic-popularity function; in Sect. 6, we show how we 
calibrated the model parameters with data and demonstrate 
that the model is consistent with empirical data from Twit-
ter; finally, Sects. 7 and 8 discuss implications and limita-
tions of the model, as well as future research paths.

2  Twitter as a directed network

From a network perspective, Twitter is a directed network 
where nodes are Twitter users and links represent a follower/
friend relationship between them. Users interact on the net-
work by sending messages called tweets. Not every user on 
the network receives all messages. A follower of user i is a 
user that receives all messages sent by i. If j is a follower of 
i, then j receives messages sent by i but not the other way 

around. If j is a follower of i, then we say that i is a friend 
of j. In this way, there is a directed link in the network from 
node i to node j, through which a message can flow. Every 
time i sends a message, all of its friends receive it. If a user 
receives a message and decides to resend it to his of her fol-
lowers, we say that this user retweets the message. We say 
that the original message is a tweet and the resent message 
is a retweet. Similarly, a user can like a message from its 
friends, in which case its followers will also see this mes-
sage. In this way, a specific message can propagate through 
the network via retweets and likes.

A hashtag is a keyword or phrase used to describe a cer-
tain topic or theme. Hashtags are preceded by the hash sign 
(#) and they are widely used because they categorize tweets 
in a way that is easy for other users to find. Many different 
messages can be categorized by a common hashtag; if this 
is the case, all these messages usually speak about a com-
mon topic or theme. A certain hashtag propagates through 
the network if users retweet messages that contain it or if 
they send new messages categorized by the same hashtag. 
A hashtag propagates and popularizes when many users are 
sending messages about a topic of current interest.

A word, phrase, topic or hashtag that is mentioned at a 
greater rate than others is said to be a trending topic. Trend-
ing topics become popular either through a concerted effort 
by users or because of an event that prompts people to talk 
about a specific topic. We recall that the purpose of this 
work is to model, by way of master equations, the popular-
ity evolution of hashtags. We develop this model in the next 
section.

3  The model

There are three ways in which messages arrive to a user’s 
timeline (leaving promoted content aside): when a friend 
of the user tweets, retweets or likes a post with the desired 
hashtag. We will call a read of a hashtag to the event where 
this hashtag appears on a user’s timeline because a friend of 
this user has tweeted, retweeted or liked a message which 
includes this hashtag (actually these reads are potential 
reads, considering that users may never read their entire 
timelines). Therefore, if a user with n followers sends, re-
sends or likes a message with a certain hashtag, we say that 
this message has n new reads, indicating that n users have 
received it (consequently, the hashtag also has n new reads). 
We want to model the time evolution for the number of reads 
of all messages categorized by a specific hashtag.

We denote by X(t) the total number of times a certain 
hashtag have appeared on user’s timelines at time t. We are 
not looking at a specific tweet or message, but at all messages 
categorized by the hashtag. This quantity X(t) does not include 
the number of times the hashtag has been seen as a result of a 
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specific search, but only the number of times it has been seen 
(or potentially seen) because users have tweeted, retweeted or 
liked a message categorized by the hashtag. In this work, we 
propose a model for this quantity X(t).

We see that X(t) is a measure of the popularity of a certain 
topic, phrase or news on the network at time t. At any fixed 
time, we consider X(t) to be a random variable; our goal is to 
find an equation for the probability of having exactly x reads of 
a certain hashtag at time t, which we denote P(X = x, t) . In this 
way, X(t) is the total number of potential reads at time t of all 
messages labeled by a specific hashtag and not the number of 
reads of one particular tweet or message. We intend to model 
the spread of the hashtag, not the spread of a specific message.

We say that a user shoots every time he or she sends or 
re-sends a message with the hashtag of interest. Users may 
shoot a message with the desired hashtag because they saw 
the hashtag on their timeline or because this hashtag has some 
external popularity (for example, they saw the hashtag on tel-
evision, other media or on the trending topic list). Let N be 
the total number of users in the community and let w(t) be the 
average rate at which users shoot (messages with the desired 
hashtag). This means that the average probability density for 
every user to shoot in the time interval (t, t + dt) is w(t)dt. 
Finally, let f(y) be the out-degree distribution of the network, 
so the probability of a randomly picked user to have y follow-
ers is f(y). The contributions to P(X = x, t) are the following:

• There were x reads at time t and nobody shot (which hap-
pens with probability 1 − Nw(t)dt),

• there were x − 1 reads at time t and exactly one user with 
y = 1 follower shot (which happens with probability 
Nw(t)dtf(1)), 

• there were 0 messages at time t and exactly one user with 
y = x followers shot (which happens with probability 
Nw(t)dtf(x)).

Since we will consider the limit of very short time intervals, 
dt → 0 , other possible contributions, such as more than one 
user shooting during the interval (t, t + dt) , do not need to be 
included, as their contribution will be of higher order in dt. 
Summing up all contributions, we get the equation, from the 
law of total probability,

Rearranging terms and taking the continuous-time limit 
dt → 0 , we obtain the partial differential equation for P(x, t),

⋮

P(x, t + dt) = P(x, t)[1 − Nw(t)dt]+

Nw(t)dt

x∑

i=1

P(x − i, t)f (i) + O(dt2).

We can further approximate the out-degree distribution f(y) 
to be a continuous distribution with support [m,∞) so there 
is a minimum of (possibly zero) m followers per user. With 
this approximation, we get the equation

After a change of variable and rearranging terms, we finally 
get the equation

This equation, along with the initial condition of zero reads 
at time t = 0,

constitutes a master equation for the evolution of the number 
of reads containing a certain hashtag in the network. In a 
mean-field framework, w(t)dt is the probability density of 
an average user in the network to send o resend a hashtag 
in the time interval (t, t + dt) ; therefore, this function repre-
sents a measure of the popularity of the hashtag at time t. 
If the hashtag under consideration is very popular, then it 
has a high probability of being mentioned in new messages 
and the messages that contain it have a high probability of 
being resent. We will refer to this probability rate w(t) as the 
hashtag-popularity function.

4  Solutions for the mean and variance

Explicit solutions for Eq.(1) will depend on the forms of the 
popularity function w(t) and the out-degree or followers dis-
tribution f(y) and will be generally not available. However, 
we can get an equivalent equation for the moment generating 
function (mgf) of X(t), which we will denote MX(s, t) and we 
will be able to utilize it to derive equations for the mean and 
variance of X(t).

Consider the Laplace transform with respect to x,

Direct integration shows that the Laplace transform of the 
integral on the right-size of Eq. (1) is

�P(x, t)

�t
= −Nw(t)

[
P(x, t) −

x∑

i=1

P(x − i, t)f (i)

]
.

�P(x, t)

�t
= −Nw(t)

[
P(x, t) − ∫

x

m

P(x − y, t)f (y)dy

]
.

(1)

�P(x, t)

�t
= − Nw(t)P(x, t)+

Nw(t)∫
x−m

0

P(y, t)f (x − y)dy.

(2)P(x, 0) = �(x)

L(x)
s
[g(x)] = ∫

∞

0

e−sxg(x)dx.
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From the relationship between the moment generating func-
tion and the Laplace transform L(x)

−s
[P(x, t)] = MX(s, t) we can 

derive an equation for MX(s, t) by taking the Laplace trans-
form of Eq. (1),

Here, Mf (s) is the mgf of the out-degree or followers dis-
tribution f(y). Taking the Laplace transform of the initial 
condition Eq. (2) we get

Because of the popularity function w(t), Eq. (3) will be in 
general a non-linear differential equation for MX(s, t) and we 
cannot give a general explicit solution. We can, however, 
utilize the fact that the n-th moment of a distribution, if it 
exists, is given by the n-th derivative of the mgf evaluated 
at zero,

For n = 1 , we obtain a very simple equation for the expecta-
tion of X(t),

where ⟨f ⟩ is the first moment of the out-degree distribution, 
i.e. the mean number of followers of users in the community. 
This equation has the solution

In a similar way, we can get an initial value problem for the 
second moment,

where ⟨f 2⟩ is the second moment of the followers distribu-
tion. Thus,

Finally, we can have an expression for the variance of X(t),

L(x)
s

[

∫
x−m

0

P(y, t)f (x − y)dy

]
=

∫
∞

0

e−syP(y, t)dt ∫
∞

m

e−syf (y)dy =

L(x)
s
[P(x, t)]Ef [e

−sx].

(3)
�MX(s, t)

�t
= N(Mf (s) − 1)w(t)MX(s, t).

(4)MX(s, 0) = 1.

E[X(t)n] =
�nMX(s, t)

�sn

||||s=0
.

dE[X(t)]

dt
= Nw(t)⟨f ⟩, E[X(0)] = 0,

(5)E[X(t)] = N⟨f ⟩∫
t

0

w(s)ds.

dE[X2(t)]

dt
= Nw(t)[2⟨f ⟩E[X(t)] + ⟨f 2⟩], E[X2(0)] = 0,

E[X2(t)] = N ∫
t

0

w(s)[2⟨f ⟩E[X(s)] + ⟨f 2⟩]ds.

Integrating by parts the first term of the variance, rearrang-
ing terms and simplifying, we get

5  Modeling the popularity function

Consider the simplest possible case, where the interest a 
hashtag produces remains constant over time, thus the prob-
ability rate w(t) is a constant function. By using w(t) = c where 
c is a constant, we obtain from Eqs. (5) and (6)

A more realistic consideration is that the interest grows until 
it reaches a peak, then decays and vanishes for very large 
times. This behavior can be represented in several ways. 
Here we will examine one simple possibility, which is a 
function proportional to a gamma distribution kernel,

where a, b > 0 are parameters that control the shape of the 
interest function and c is the value of w(t) at its peak. Notice 
that w(t) reaches its maximum value wmax = c at tmax = a ⋅ b 
and has an inflection point at tinf = a ⋅ b + b

√
a . With this 

popularity function, we get from Eqs.(5) and (6)

Here, �(x, s) is the lower incomplete gamma function, 
�(x, s) = ∫ x

0
e−tts−1ds . By utilizing the Stirling approxima-

tion for the gamma function

we can approximate the limits for the expectation and vari-
ance for very large times,

Var[X(t)] = N ∫
t

0

w(s)
�
2E[X(s)]⟨f ⟩ + ⟨f 2⟩

�
ds − (E[X(t)])2.

(6)Var[X(t)] = N⟨f 2⟩∫
t

0

w(s)ds =
⟨f 2⟩
⟨f ⟩ E[X(t)].

E[X(t)] = Nc⟨f ⟩t, Var[X(t)] = Nc⟨f 2⟩t.

(7)w(t) = c
ea

(ab)a
tae−t∕b,

(8)

E[X(t)] =
Ncbea⟨f ⟩

aa
�(t∕b, a + 1),

Var[X(t)] =
Ncbea⟨f 2⟩

aa
�(t∕b, a + 1).

Γ(z) =

√
2�

z

(
z

e

)z
(
1 + O

(
1

z

))
,
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for large values of the parameter a.
Notice that this is not the only way in which we can model 

the popularity function, but it constitutes a relatively simple 
function that yields acceptable fits, as we will see in the fol-
lowing section.

6  Model calibration and validation

In order to corroborate the validity of the model, we ana-
lyzed the time evolution of popular hashtags on Twitter dur-
ing a two-month period, between May and June 2021. We 
obtained data through the public Twitter API with the rtweet 
library for the statistical software R (Kearney 2019). We 
looked for worldwide trends (top 3 trending topics) includ-
ing hashtags and downloaded statuses with these hashtags 
at the maximum rate allowed by the public API (18,000 
tweets every 15 min), thus collecting an approximate of 100 
million statuses (tweets, retweets and replies). After deletion 
of duplicates, we ended with a dataset of approximately 4 
million statuses sent by 1.6 million different users.

E[X(t)] ⟶
Ncbea⟨f ⟩

aa
Γ(a + 1)

≃ Nbc⟨f ⟩
√
2�(a + 1),

Var[X(t)] ⟶
Ncbea⟨f 2⟩

aa
Γ(a + 1)

≃ Nbc⟨f 2⟩
√
2�(a + 1)

We implemented the following pipeline to contrast empir-
ical observations with model predictions: 

1. From the sample of tweets, directly compute number 
of different users N, mean number of followers ⟨f ⟩ and 
mean square number of followers ⟨f 2⟩.

2. Divide time interval of the sample into n equal length 
sub-intervals, then compute fraction of different users 
that sent a message within each sub-interval. This gives 
us the empirical popularity function w(t).

3. Empirical w(t) is usually very noisy, so we smooth this 
time series with a simple k− point moving average filter. 
This gives us a smoothed empirical popularity function.

4. Fit parameters for theoretical w(t) with Levenberg-Mar-
quardt non-linear least squares.

5. Utilize the cumulative sum of followers as an empirical 
approximation for the time evolution of X(t).

6. With fitted w(t) parameters, and knowing theoretical 
E[X(t)] and Var[X(t)], construct 95% approximate con-
fidence regions for X(t) and contrast with empiric obser-
vations. This requires that the variance of the followers 
distribution is finite.

Model constraints are a, b, c > 0 for the popularity function 
and ⟨f 2⟩ < ∞ for the followers distribution (the latter so we 
can construct finite confidence regions for X(t)). We illus-
trate this procedure in detail in Fig. 1. In this example, we 
analyzed messages that included #MasterChef, which was 
the world leading trend on Twitter on June 1st, 2021 (this 
hashtag was utilized to promote and comment a popular 
TV show in Argentina). This particular sample of tweets 
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Fig. 1  Time activity analysis for #MasterChef. On panel (A), we see the procedure for getting the empirical w(t) and fitting the theoretical one. 
On panel (B), we compare the observed X(t) with the model’s predictions
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spanned a time interval of 272 minutes, from 2021-06-01 
20:23 CDT (central daylight time) to 2021-06-02 00:55 
CDT. On panel A, we see the empirical w(t) (normalized 
number of messages per time interval) which, as we men-
tioned, is very noisy; we see in red a smoothed w(t) (with a 
k− point moving average) and in blue the best fit to the red 
one. We can see in this plot with some clarity the moment 
in which people started using this hashtag, the moment of 
maximum popularity and the moment in which this activ-
ity ceased. On panel B, we show in red time vs cumulative 
sum of followers (the observed X(t)); the black dotted line 
indicates the predicted E[X(t)] (according to our model) and 
the blue region is the 95% approximate confidence regions 
for X(t). Finally, the blue dotted line shows the theoretical 
maximum (limit when t ⟶ ∞ ) according to the model. 
Panels where we do not show this theoretical maximum 
occur because it falls outside our plotting region (recall this 
is the limit for very large times).

We repeated this analysis for several hashtags that were 
world trends between May and June 2021. We show in Fig. 2 
a variety of examples.

As an additional test to asses the accuracy of our model, 
we divided each dataset into a training set and a test set. 
We show an example of this procedure in Fig. 3. For the 
#TeacherAppreciationWeek (49,985 statuses), we took a 
random sample of 30% of the data and utilized this set (this 
is called the train set) to fit the parameters of the popularity 
function w(t). In a machine learning approach, this would 
be the equivalent of the model training stage. With this fit-
ted parameters, we constructed the solution of our model 
(Eq. 8) and compared this predictions with the remaining 
70% of observations (the test set); the latter step would be 
the equivalent of the model testing stage. In this way, we 
test the accuracy of our model on previously unseen data, 
thus getting an idea of how well the model would perform in 
other situations. For the testing stage, we count the fraction 
of times the observed X(t) fell inside the predicted confi-
dence region. Since we are constructing approximate 95% 
confidence regions, this should be a number close to 0.95. 
We call thus the quantity the “precision” of the model on 
the test set, which was equal to 0.9452, for the example, we 
showed in Fig. 3. We got very similar results for all other 
hashtags we show on this work.

6.1  Counterexamples

The model that we introduce in this work is very simple, 
yet very general and flexible, depending on the form we 
propose for the popularity function w(t). We have seen that 
even with a simple form for this function, the model accu-
rately captures the behavior for several different hashtags 
and trends. It is also important to notice that the spread of 
a hashtag on Twitter is a very complex phenomenon, and 

that it is possible to find examples where even the best fit 
of our model may not be accurate enough. For illustration 
purposes, we showed in Fig. 4 three such examples, each one 
with a different behavior.

See the case of #GreysAnatomy (sample of 63 thou-
sand messages). The time series for this hashtag (empirical 
w(t)) has a very pronounced peak at the very beginning, 
then abruptly falls. Even though we can fit an empirical 
popularity function that does not look so bad, the model 
underestimates the actual spread, as we see on the panel 
below. This kind of underestimation arises frequently when 
there are very narrow activity peaks. For a second example, 
consider the #LetsGoPens. Here we see two activity peaks, 
which the theoretical popularity function we propose fails 
to capture. This is reflected on the approximate confidence 
regions, which does not entirely contain the observed X(t). 
Another interesting example is that of #RealMadrid. Here 
we observe that the activity did not start slowly, but rap-
idly grew from zero to its peak, then slowly fell down. This 
happened because this particular activity started when an 
account with disproportionately many followers (that of 
the Real Madrid Soccer Team) started the hashtag, then it 
was continued by not-so-popular users. This very popular 
account enlarges the follower-distribution variance and we 
see the consequence on the lower panel, where the confi-
dence region is very (perhaps defectively) large.

7  Discussion

The mathematical model that we constructed (Eq. 1) for the 
time evolution of a hashtag popularity is very general and 
flexible. Depending on the specific forms of the popularity 
function w(t) and the followers distribution f(y) this equa-
tion can represent a large diversity of situations. It is in part 
because of this generality that we are not able to provide a 
closed-form solution to this equation; in spite of this, we can 
find solutions for the mean and variance, therefore, we can 
construct approximate confidence regions for the quantity 
of interest X(t).

The particular popularity function that we utilized in this 
paper is one of the simplest functions that starts at the origin, 
has a peak, then decays to zero, thus reflecting the grow and 
decay of the interest in a certain topic or hashtag. In spite 
of this simplicity, we see with the data we analyzed that the 
model accurate captures the evolution of X(t) for a wide 
variety of hashtags, from which some examples are shown 
in this paper. There are of course some situations where the 
behavior is more complex and this particular form of w(t) 
fails to give accurate, quantitative predictions. We showed 
three examples of this, which represent three archetypal 
behaviors we observed during our study. It may be that the 
same model is able to describe these kinds of situations by 
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Fig. 2  Observed time evolution of X(t) (red) and model predictions for a variety of hasthags that were trending topics between May and June 2021



Social Network Analysis and Mining (2022) 12:29 

1 3

Page 9 of 12 29

0 200 400 600 800 1000 1200 1400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

time (minutes)

w
(t)

empiric
smoothed
fitted

Train (fit w(t) parameters) with 30% of observations

0 200 400 600 800 1000 1200 1400

0.
0e

+0
0

1.
0e

+0
8

2.
0e

+0
8

3.
0e

+0
8

time (minutes)
X(

t)

observed
predicted expectation
confidence limits
long−term expectation

Test predictions with the remaining 70% of observations

a=2.98
b=182.39

#TeacherAppreciationWeek

precision = 0.9452

Fig. 3  In the first stage, we took a train set with 30% of observations 
to fit parameters, and in a second stage, we compared the model pre-
dictions against a test set with the remaining 70% of data. Precision 

refers to the fraction of times the predicted confidence region con-
tained the actual observation

0 200 400 600 800 1000 1200 1400

0.
00

0.
01

0.
02

0.
03

0.
04

time (minutes)

w
(t)

empiric
smoothed
fitted

0 200 400 600 800 1000 1200 1400

0.
0e

+0
0

1.
0e

+0
8

2.
0e

+0
8

3.
0e

+0
8

time (minutes)

X(
t)

observed
predicted expectation
confidence limits
long−term expectation

0 2000 4000 6000 8000 10000

0.
00

0.
02

0.
04

0.
06

0.
08

time (minutes)

w
(t)

empiric
smoothed
fitted

0 2000 4000 6000 8000 10000

0e
+0

0
2e

+0
7

4e
+0

7
6e

+0
7

8e
+0

7

time (minutes)

X(
t)

observed
predicted expectation
confidence limits
long−term expectation

0 100 200 300 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

time (minutes)

w
(t)

empiric
smoothed
fitted

0 100 200 300 400

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

time (minutes)

X(
t)

observed
predicted expectation
confidence limits
long−term expectation

#GreysAnatomy #LetsGoPens #RealMadrid

Fig. 4  Three examples where our model does not entirely capture 
the popularity evolution of the hashtag, either because a very narrow 
popularity function (#GreysAnatomy), a popularity function with two 

local maxima (#LetsGoPens) or a followers distribution with very 
large variance (#RealMadrid)



 Social Network Analysis and Mining (2022) 12:29

1 3

29 Page 10 of 12

modifying the popularity function w(t), which is a matter 
of future study. Notice that the parameters of the popularity 
function are fixed, ignoring the possibility that the shape 
of the popularity function varies with time, for example 
through a back-feeding process (a popular hashtag gets more 
and more popular over time). The possibility of a popularity 
function that updates and that is itself an unknown function 
is also a matter of future study.

Regarding this popularity function, notice that it may 
be quantitatively and qualitatively different in different 
places and situations, therefore requiring a careful tuning 
and estimation process for each case. The model in Eq. 1 
does not say anything about this function w(t) and in this 
sense, we say that the model is general and flexible, however, 
we would need to know as much as possible about w(t) for 
modeling and predicting in specific situations. For exam-
ple, our entire study was performed during the COVID-19 
pandemic (May and June 2021), when Twitter users were 
likely to behave differently than during normal situations 
(for example, some studies report a significant increase in 
social media consumption during lockdowns, see for exam-
ple (Lemenager et al. 2021; Cellini et al. 2020)).

The measure we utilize for the popularity of a hashtag 
is the total number of times it appears on user’s timelines, 
which depends on how many users have posted it and how 
many followers these users have. There are other measures 
as well, such as the number of likes, retweets and the number 
of impressions (total number of times a tweet has been seen). 
The quantity that we studied in this work is very closely 
related to the number of impressions, except that it does not 
take into account the number of times a message has been 
seen because of a direct search. How to extend our model 
to some other metrics, which are indeed more common and 
well-known, is an interesting matter. We believe that the 
consistency between our model and the data is encouraging 
to study these possible extensions.

The model that we constructed is a model with no com-
partments, in the sense that nodes (users) are not distin-
guished between those that have seen the hashtag at time 
t and those who have not. There are some very interesting 
and useful models that utilize this approach (Jin et al. 2013; 
Skaza and Blais 2017; Xiong et al. 2012). However, in this 
model, we are considering the propagation of a hashtag, not 
of a particular message. A Twitter user may utilize a particu-
lar hashtag because its friends utilized it, hence the user saw 
it on its timeline (intrinsic factor), or because the hashtag 
appeared on other media outside Twitter (for example, the 
#MasterChef that was promoted from a very popular TV 
show). See (Kwon et al. 2013) for a discussion on how the 
unpredictability of Twitter is caused by the exposure of users 
to external environments). Here we decided to model this 
external exposure to the hashtag via the popularity function 
w(t) in a way that users may utilize the hashtag even if they 

have not seen it inside the network. The agreement between 
our model predictions and the data we analyzed suggests 
that our approach is also plausible and capable of yielding 
satisfactory quantitative results. The approach we utilized is 
in line with and extends the results in the works of Hogg and 
Lerman (2009), Kawamoto (2013), Kawamoto and Hatano 
(2014), Mollgaard and Mathiesen (2015) in the sense that we 
propose a stochastic one-compartment model for informa-
tion diffusion over a network. Our approach is distinguished 
from these other approaches in the quantity that we model 
(popularity of a hashtag), the consideration of intrinsic and 
extrinsic factors, the construction of approximate confidence 
regions and the validation with several different hashtags.

The data that we analyzed to calibrate and validate our 
model was obtained through the public Twitter API. This 
data collection tool has some limitations: we can only make 
18 thousand requests every 15 minutes and we can only 
access tweets that are 10 days old or newer. We believe 
that a more comprehensive data base would be helpful and 
illustrating to see the performance of our model on a more 
global scale. In spite of these limitations, we observed that 
our model is consistent with the observations.

Although there are several other models for describing 
and predicting hashtag propagation, this is, to the best of our 
knowledge, the first mathematical-dynamical model for this 
phenomenon. Being a dynamical model, we are in position 
not only of telling whether a certain hashtag will go viral 
or not, but also to give some description about the speed 
at which it spreads over the network. This is a feature that 
machine learning models do not have, since they are not 
dynamical models.

This work contributes to the application of stochastic 
and semi-deterministic equations for the modeling of infor-
mation diffusion on digital social networks. We extend the 
above-mentioned lines of work, and we show that even sim-
ple models like ours, because of their flexibility and general-
ity, are capable of achieving quantitatively correct predic-
tions for a large number and variety of situations. Future 
sophistication of this kind of models may prove useful not 
only for our understating of information propagation but also 
for early prediction of trends.

8  Conclusions

We have presented a mathematical model, based on master 
equations, for the temporal evolution of the popularity of 
a certain hashtag or topic on the Twitter network. Unlike 
other existing approaches, this model focuses on the poten-
tial total number of times a certain hashtag has been seen by 
Twitter users as a function of time. For the construction of 
this model, we considered two main components that influ-
ence this dynamics: on one side, characteristics intrinsic to 
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the community and the network such as number of nodes 
and mean and variance of the degree distribution; these are 
underlying components of the network. On the other hand, 
we have the time evolution of the interest users have on the 
hashtag we are modeling, which we quantify as the probabil-
ity rate for each user in the community of sending a message 
as a function of time. This popularity function is an extrinsic 
component influencing this dynamics.

The mathematical model that we present in this paper 
supposes indeed a great simplification of the problem of 
message and hashtag propagation on social networks, yet it 
shows consistency and agreement with the data we observed 
and analyzed. We believe these findings are encouraging for 
the further development of more sophisticated semi-deter-
ministic models for complex diffusion processes on digital 
social networks.

Accurately predicting the evolution and impact a cer-
tain tweet or hashtag will have on the network is a difficult 
task, and it is currently a matter of great interest. With this 
model, we hope to contribute to the understanding of this 
phenomenon and to the argumentation for the adequacy and 
applicability of stochastic and semi-deterministic mathemat-
ical models in the study of diffusion processes on social 
networks. Finally, in this work, we analyzed only the Twit-
ter social network, but this activity may not be completely 
different from dynamics on other social networks, online 
or offline; we believe that the present model, though very 
simple, can give interesting insights into the behavior of 
other networks.
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