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Abstract
Social networks play a fundamental role in the diffusion of innovation through peers’ influence on adoption. Thus, network 
position including a wide range of network centrality measures has been used to describe individuals’ affinity to adopt 
an innovation and their ability to propagate diffusion. Yet, social networks are assortative in terms of susceptibility and 
influence and in terms of network centralities as well. This makes the identification of influencers difficult especially since 
susceptibility and centrality do not always go hand in hand. Here, we propose the Top Candidate algorithm, an expert recom-
mendation method, to rank individuals based on their perceived expertise, which resonates well with the assortative mixing 
of innovators and early adopters in networks. Leveraging adoption data from two online social networks that are assortative 
in terms of adoption but represent different levels of assortativity of network centralities, we demonstrate that the Top Can-
didate ranking is more efficient in capturing innovators and early adopters than other widely used indices. Top Candidate 
nodes adopt earlier and have higher reach among innovators, early adopters and early majority than nodes highlighted by 
other methods. These results suggest that the Top Candidate method can identify good seeds for influence maximization 
campaigns on social networks.

Keywords Online social networks · Innovation adoption · Network centrality measures · Top Candidate ranking · 
Homophily

1 Introduction

Most individuals adopt an innovation by imitating their 
influential peers (Rogers 1962; Bass 1969) that underlines 
the role of social networks in the diffusion of new products, 
technologies or ideas (Granovetter 1978; Valente 1996). Net-
work scientists argue that the structure of social networks 
can explain the underlying mechanisms of social influence 
and adoption: highly connected nodes have more influence 
than others (Pastor-Satorras et al. 2015), while diffusion is 

more likely in tightly connected cliques and less likely across 
them (Centola and Macy 2007). Wang et al. (2019) paint a 
more nuanced picture as they found that network hubs are 
effective in spreading simple messages, less connected nodes 
gain importance in the diffusion of complex stories.

A central part of this discussion has led to the “influence 
maximization” problem (IM) (Kempe et al. 2003), which 
aims to identify the ideal seed nodes that a marketing cam-
paign should target to achieve maximum impact, given pre-
defined diffusion models. The IM is NP-hard; thus, many 
use heuristics to find the seed nodes and start optimization 
by assuming that nodes with high network centrality (e.g., 
degree) are influential spreaders (Kitsak et al. 2010; De 
Arruda et al. 2014) and run diffusion simulations, most nota-
bly using the linear threshold and the independent cascade 
models. However, these models fail to capture an important 
feature that is observed in real-life networks: homophily, 
the tendency that similar individuals are more likely to be 
connected than dissimilar ones.

Homophily, also referred to as assortativity in relation 
to social networks (Newman 2002), is a general phenom-
enon (McPherson et al. 2001; Cho et al. 2012) that has a 
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fundamental role in innovation spreading (Anwar et  al. 
2021). Ignoring this effect poses a major problem for seed 
identification in influence maximization when the sole 
source of information is the network structure (Aral and 
Dhillon 2018).

Although there are papers that address the role of homo-
phily in network diffusion and papers that consider innova-
tors and early adopters in influence spreading (see Sect. 2 
for an overview), none focus on both problems simultane-
ously. In particular, our paper is the first that aims to identify 
innovators and early adopters, while taking their assortative 
mixing into account, with the aim to provide heuristics for 
seed selection in influence maximization.

This research niche is important since social influence 
and centrality are difficult to disentangle without knowing 
at least some of the early adopters of the specific innovation 
(Banerjee et al. 2013) or assuming homophily in terms of 
adoption in the network (Toole et al. 2012). Furthermore, 
central individuals may be reluctant to participate in a 
campaign or may not be susceptible to the marketing mes-
sage due to risk-averseness. Subscribing to a new trend or 
technology needs commitment and entails social risk—not 
everyone is willing to do that—yet, homophily in terms of 
risk-taking behavior is a prerequisite of diffusion cascades 
(Watts 2002). Central agents with many friends may particu-
larly feel the social pressure to be conformist and to avoid 
eccentric behavior. Innovators and early adopters, on the 
other hand, are known to possess psychological traits that 
make them perfect subject for the early market of an innova-
tion (Rogers 2003).

In this paper, we aim to contribute to the above discus-
sion in two ways. First, empirical data on adoption dynamics 
from two online social networks enable us to investigate how 
network structure can be useful to identify innovators and 
early adopters in innovation diffusion. Second, we propose 
a ranking of the users based on the so-called Top Candidate 
method (Sziklai 2018)—an expert selection algorithm that 
exhibits features resembling assortativity.

We compare the Top Candidate ranking with seven well-
known centrality measures on two online social networks: 
iWiW from Hungary and Pokec from Slovakia. Registration 
days of users are known in both networks, both are assorta-
tive in terms of adoption time but represent different lev-
els of assortativity in network centralities. We look at the 
top 1000 nodes of the Top Candidate ranking and the other 
seven alternative measures and plot how the date of registra-
tion is distributed over time.

We find that the Top Candidate ranking is more efficient 
in capturing innovators and early adopters than other widely 
used indicators. Top Candidate nodes adopt earlier and have 
higher reach among innovators, early adopters and early 
majority than nodes highlighted by other methods. These 
results suggest that the Top Candidate method can identify 

good seeds for influence maximization campaigns on social 
networks.

2  Literature overview

2.1  Early adopters as opinion leaders

The identification of innovators and early adopters is 
key for marketing campaigns and their characterization 
received considerable attention. The literature converges 
toward the conclusion that innovators and early adopters 
stand out from their peers.

Rogers (2003) describes innovators as venturesome indi-
viduals who can cope with a high degree of uncertainty, and 
early adopters as a group with high socioeconomic status. 
Moore (2014) depicts innovators as technology enthusiasts, 
or geeks and early adopters as visionaries who are willing to 
take high risk. In the literature, innovators and early adop-
ters are often grouped together under the term early market 
(Muller and Yogev 2006; Moore 2014). Although we do not 
follow this convention here, we do assume that both groups 
are susceptible to marketing messages, hence they are good 
candidates as seeds for influence maximization.

A field study by Brancheau and Wetherbe (1990) supports 
hypotheses that early adopters were more highly educated, 
more attuned to mass media, more involved in interpersonal 
communication, and more likely to be opinion leaders. 
Eastlick and Lotz (1999) reports that social risk negatively 
relates to the tendency to be a potential innovator and poten-
tial innovators possessed significantly stronger opinion lead-
ership. A dutch survey shows that early adopters are likely 
to be highly mobile, have a high socioeconomic status, high 
levels of education and high personal incomes (Zijlstra et al. 
2020). Gender imbalance can be also observable for certain 
products. Plötz et al. (2014) report that early adopters for 
electric vehicles are predominantly middle-age men. Finally, 
Muller and Yogev (2006) provides empirical evidence that 
the average time at which the main market outnumbers the 
early market is indeed when 16% of the market has already 
adopted the product—giving support Rogers (1962)’s  divi-
sion of adopter sets.

Another important concept is market mavenness (Feick 
and Price 1987). Market mavens are consumers who are 
highly involved in a market. They have information about 
many kinds of products and shops, and they enjoy sharing 
their knowledge. Peers often seek out their opinion and rely 
on their expertise. Goldsmith et al. (2003) finds that con-
sumer innovativeness and market mavenism positively cor-
relate, although they argue that market mavens and innova-
tors are distinct groups. Nevertheless, market mavens can 
convince their community and thus their social interaction 
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is decisive for innovation diffusion, as it was demonstrated 
in the case of electric vehicles (Seebauer 2015).

Directly related to the context of this study, Lynn 
et al. (2011) explores the relationship between personal-
ity traits of early adopters of social network sites. They 
report that extraversion, openness and conscientiousness 
impact positively and significantly on information sharing, 
and negatively on rumor sharing. On the other hand both, 
information sharing and rumor sharing impact positively 
and significantly on the centrality of early adopters. The 
seemingly contradictory observations can be explained 
away by separating the social status of opinion leadership 
and the influencing capacity of the agent which relates 
more to network centrality.

To sum up, innovators and early adopters stand out in 
their personal characteristics. Thus, marketing campaigns 
have usually targeted and labeled them as opinion leaders 
to convince society. However, both Lynn et al. (2011) and 
Dedehayir et al. (2017) argue that a distinction has to be 
made between opinion leadership and innovativeness. Even 
Rogers (2003) affirms that opinion leaders are not necessar-
ily innovators.

2.2  Early adoption and homophily in network 
diffusion

In the Influence Maximization framework (Kempe et al. 
2003), few papers addressed other node characteristics con-
centrating in network communities that can help to predict 
the future popularity of novelty. For example, influential 
individuals can form clusters that can help the early propa-
gation of an idea (Aral and Walker 2012). Weng et al. (2014) 
build a predictive model for meme popularity using three 
classes of features: network topology, community diversity, 
and growth rate. They found that community related features 
are the most powerful predictors of future success. Hajdu 
et al. (2020) study the community structure of public trans-
portation networks and find that transmission probabilities 
depend on the community structure. Calió and Tagarelli 
(2021) study attribute-based seed diversification. They argue 
that a seed set with different characteristics (age, gender, 
etc.) might be more successful in information-propagation. 
Rahimkhani et al. (2015) identifies the community structures 
of the input graph then chooses a number of representative 
nodes to form the final output of the proposed algorithm.

However, this literature has largely overlooked a phe-
nomenon inherent is social networks and diffusion dynam-
ics alike: the role of homophily (McPherson et al. 2001). 
It has long been recognized that a behavior can spread in 
society only when those most prone to it are surrounded 
by peers who are somewhat less but almost equally open to 
its adoption (Granovetter 1978). In other words, innovators 
must be connected to early adopters such that adoption can 

penetrate in their communities and later influence the rest 
of the market too, otherwise the innovation will not spread 
(Watts 2002). Adoption dynamics can be predicted at small 
scales only by assuming homophily of adoption (Toole et al. 
2012). Despite the importance of adoption homophily in net-
works, it has been largely ignored in influence maximization 
modeling (Aral and Dhillon 2018).

Instead, a usual assumption to find the seed nodes for 
Influence Maximization is that network structure alone can 
quantify influence. For example, nodes with high network 
centrality (e.g., degree) are usually considered as influential 
spreaders (Kitsak et al. 2010; De Arruda et al. 2014).

Finally, the presence of assortativity implies that not 
every connection is equally important in the diffusion. 
However, the literature also ignored the problem of deter-
mining where the probabilities of influence between users 
come from (Goyal et al. 2010). Recently, Qiang et al. (2019) 
proposed two learning models that are aimed at understand-
ing person-to-person influence in information diffusion from 
historical cascades, while Bóta et al. (2015) and Bóta et al. 
(2016) considered the Inverse Infection Problem as a way to 
estimate the hidden edge infection probabilities.

3  Data and methodology

In this paper, we propose the Top Candidate method that 
can identify innovators and early adopters in social networks 
more efficiently than other widely used network centrality 
measures, by using network structure as the only source of 
information. We compare the ranking induced by the Top 
Candidate method with seven other centrality measures by 
using data from two online social networks.

3.1  Data

Our empirical analysis leverages data retrieved from two 
social media platforms. The first platform is called iWiW 
(international who is who) that was an early Hungarian ver-
sion of online social networks aiming to link pre-existing 
friends and an outstanding online innovation of its time. The 
iWiW platform existed between 2002 and 2014. It was the 
most visited website in the country in the mid 2000s, but 
failed the competition with Facebook that started in Hungary 
from 2008. Pokec is a still functioning Slovakian dating and 
chatting website with a purpose of meeting new people.

These data sources provide unique opportunity to under-
stand how network structure can help us identifying early 
adopters of an innovation. Both data sources contain the 
date of individual registration to the websites that is used 
as a proxy of adoption. We define innovators as the first 
2.5% and early adopters as the following 13.5% of adopters 
(Rogers 2003). Data also include the identifiers of friends 
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that enables us to generate social networks. The iWiW data-
set has been used in previous work to describe and model 
the innovation diffusion process (Török and Kertész 2017; 
Lengyel et al. 2020; Bokányi et al. 2022).

Here, we use a 10% sample of the iWiW data that contain 
271 913 nodes 2 712 587 edges. The Pokec network contains 
277 695 nodes and 2 122 778 edges. Access to iWiW data 
was provided to us by a non-disclosure agreement with the 
data owner company. Pokec data are open access at https:// 
snap. stanf ord. edu/ data/ soc- pokec. html.

3.2  The Top Candidate method

Top Candidate (TC) algorithm is a group identification 
method designed to find experts on recommendation net-
works (Sziklai 2018, 2021). The algorithm takes a network 
as an input and outputs a list of experts. With a parameter, 
� ∈ [0, 1], we can adjust how exclusive our list should be. 
Each agent nominates � fraction of their most popular neigh-
bors as experts, where popularity is based on (weighted) 
in-degree. In the beginning, every agent is labeled as an 
expert, then in successive rounds, we remove the nomina-
tions of agents who were not nominated by anyone until we 
obtain a stable set. The underlying idea resembles homoph-
ily: Experts identify other experts much more effectively 
than amateurs. Thus, in the set of experts (i) each expert 
should be nominated by another expert and (ii) each nomi-
nee of an expert should be also included in the set—this 
property is called stability. In this paper, we apply this algo-
rithm to identify innovators and early adopters based on the 
assumption that opinion leaders can be similarly identified 
in networks like experts.

One advantage of the Top Candidate algorithm is its axi-
omatic characterization. It is the unique method1 that satis-
fies stability, exhaustiveness and decisiveness. Exhaustive-
ness ensures that all possible experts are recognized on the 
network, not just a subset, and decisiveness guarantees that 
at least one expert is selected if reasonable choices are pre-
sented. There are other centralities that feature  characteri-
zations, most notably PageRank (Wąs and Skibski 2018), 
Generalized Degree (Csató 2017) and the Shapley value 
(Shapley 1953; Young 1985), but it is less clear how these 
relate to socio-demographic properties of the nodes.

3.3  Network centralities

We compute seven other measures on the data to asses their 
ability in finding innovators and early adopters.

Degree represents the number of connections that a 
user has. It is a natural benchmark for the user’s centrality. 
Another classical measure is Harmonic centrality. It is a 
distance-based measure proposed by Marchiori and Latora 
(2000). Harmonic centrality of a node, u, is the sum the 
reciprocal of distances between u and every other node in 
the network. Disconnected node pairs have infinite distance, 
thus the reciprocal is defined as zero. Peripheral agents, who 
are many handshakes away from most of the other users, 
thus have a small Harmonic centrality.

PageRank (PR), introduced by Page et al. (1999), is a 
close relative of Eigenvector centrality (Bonacich 1972). The 
latter assigns centrality scores to nodes based on the eigen-
vector of the adjacency matrix of the underlying graph. The 
method breaks down if the graph is not strongly connected. 
PageRank rectifies this by (i) Connecting sink nodes (i.e., 
nodes with no leaving arc) with every other node through 
a link and (ii) Redistributing some value uniformly among 
the nodes. Redistribution is parameterised by the so-called 
damping factor, � ∈ (0, 1) . PageRank was designed to model 
a random walk on the World Wide Web. We start from an 
arbitrary webpage. On any subsequent step, we leave the 
current webpage with equal probability on one of the depart-
ing links. After each step, we have a (1 − �) probability to 
restart the walk at a random node. The probability that we 
occupy node u as the number of steps tends to infinity is the 
PageRank value of node u . PageRank composes the core of 
Google’s search engine, but the algorithm is used in a wide 
variety of applications. The damping value is usually chosen 
from the interval (0.7, 0.9), here we opted for � = 0.8.

Generalized degree discount (GDD) introduced by Wang 
et al. (2016) was developed specifically for the independent 
cascade network diffusion model. In this model, each active 
node has a single chance to infect its neighbors, transmission 
occurring with the probability specified by the arc weights. 
GDD is a suggested improvement on Degree Discount (Chen 
et al. 2009) which constructs a seed group of size q starting 
from the empty set and adding nodes one by one using a sim-
ple heuristic. It primarily looks at the degree of the nodes but 
also considers how many of their neighbors are already in 
the seed set. GDD improves this by also taking into account 
how many of the neighbors’ neighbors are spreaders. The 
spreading parameter of the algorithm was chosen to be 0.05.

k-core, also referred to as k-shell, categorizes nodes into 
layers (Seidman 1983; Kitsak et al. 2010). First, it succes-
sively delete nodes with only one neighbors. These are 
assigned a k-core value of 1. Then, it deletes nodes with 
two or less neighbors and labels them with a k-core value of 
2. The process is continued until every node is classified. For 

1 In the Social Choice literature a group identification method, that 
takes a recommendation network as input and outputs a list of nodes, 
is called a collective identity function CIFs are special kinds of cen-
trality measures that map the node set into {0, 1}n instead of the usual 
ℝ

n.

https://snap.stanford.edu/data/soc-pokec.html
https://snap.stanford.edu/data/soc-pokec.html
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instance, every node of a path or a star graph is assigned a 
k-core value of 1, while nodes of a cycle will have a k-core 
value of 2.

Linear threshold centrality (LTC), as the name suggests, 
was developed for the linear threshold diffusion model 
(Riquelme et  al. 2018). Given a network, G with node 
thresholds and arc weights, LTC of a node u represents the 
fraction of nodes that u and its neighbors would manage to 
activate as a seed set in the linear threshold model. Since 
the social networks we used in our analysis had no data on 
friendship intensity, we decided to assign a uniform unit 
weight to each connection. Node thresholds was defined as 
0.7 times the node degree. That is, a user became activated 
if 70% of its friends had been active.

Suri and Narahari (2008) define a cooperative game on the 
network and derive node centrality by computing the Shapley 
value. In this setting, the Shapley value of a node is the aver-
age marginal contribution that a node generates when the 
seed set is composed by adding nodes one by one and any 
order of the nodes is equally likely. Every node set is assigned 
a (characteristic function) value. Marginal contribution of a 
node u is just the difference between the value of the node set 
with and without u . There is more than one way how this can 
be done. We use the G1 game variant proposed by Michalak 
et al. (2013) who also gave an efficient algorithm to compute 
the corresponding Shapley(G1)-value. In G1, the character-
istic function value of a node set C is the number of nodes in 
C plus the number of neighbors of C. Under this setting, the 
Shapley value of a node u is calculated as the sum of recip-
rocals, 1

1+deg(v)
 , for each v belonging to the extended reach of 

u (the neighbors of u plus u itself).

4  Results

4.1  Homophily of adoption

Before we delve into the performances of centrality 
measures, let us take a look at the networks themselves. 
Tables 1 and 2 explore the interconnectedness of adopter 
groups. iWiW and Pokec paint a similar picture: Typically, 
there are more connections between subsequent groups in 
the adoption timeline than between other groups. Innova-
tors are mainly befriended with early adopters, who in turn 
are mainly connected to early majority and so on.

A number of interesting observations can be made. 
Firstly, the result reinforces Rogers’ classification. It is 
much more obvious why cascade happens the way it does. 
Innovators have the biggest impact on early adopters 
because early adopters are the innovators closest—or at 
least the most numerous—friends.

Secondly, psychological traits do affect the network 
structure. Rogers’ categorization correlates with risk atti-
tudes, extraversion, openness and a number of other traits. 
It seems that risk-seeking (extrovert, open-minded, etc.) 
users prefer the company of other risk-seekers, while risk-
averse users are more comfortable with other risk-averse 
individuals. The results are in line with the findings of 
Selfhout et al. (2010).

Thirdly, identifying innovators and early adopters does 
not seem to be a hopeless task anymore. Clearly, these 
groups form clusters on the network. Thus, there can be cen-
tralities that are systematically better in recognizing them.

These observations have a rather remarkable implica-
tion. Researchers of influence maximization frequently 

Table 1  Group 
interconnectedness in iWiW. 
An entry of the matrix shows 
the portion of links that 
connects the column group 
to the row group with respect 
to the column group’s total 
connections

Innovators Early adopters Early majority Late majority Laggards

Innovators 23.4 7.7 2.5 1.3 1.1
Early adopters 39.8 36.4 18.6 11.7 10.5
Early majority 26.8 38.6 48.4 42.5 37.4
Late majority 8.4 14.3 25.2 36.3 35.2
Laggards 1.6 3.0 5.2 8.3 15.9

Total 100.0 100.0 100.0 100.0 100.0

Table 2  Group 
interconnectedness in Pokec. 
An entry of the matrix shows 
the portion of links that 
connects the column group 
to the row group with respect 
to the column group’s total 
connections

Innovators Early adopters Early majority Late majority Laggards

Innovators 12.7 4.5 1.6 0.8 0.7
Early adopters 36.0 32.7 16.2 7.3 3.5
Early majority 34.5 45.2 51.7 35.7 15.9
Late majority 13.9 15.6 27.4 45.7 40.9
Laggards 2.9 1.9 3.1 10.5 39.1

Total 100.0 100.0 100.0 100.0 100.0
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validate their algorithms using simulations with either 
the linear threshold or the independent cascade diffusion 
models—these are the most commonly used configurations 
by far. A basic flaw in these simulations is that thresholds 
and diffusion probability are chosen at random either inde-
pendently of the network structure or only having a crude 
relationship with it. For instance, in the linear threshold 
model in every simulation, the node thresholds (which 
signify the tendency for the nodes to adopt an innovation) 
are generated uniformly at random for each node (Kempe 
et al. 2003). In the independent cascade model, the two 
most common propagation setup is the weighted cascade 
and the trivalency models (Jung et al. 2012). In the first, 
the propagation probability on each edge equals to the 
reciprocal of the degree of the source node, while in the 
latter, it is chosen randomly from the set {0.1, 0.01, 0.001}.

In light of Tables 1 and 2, these assumptions lead to a 
highly unrealistic threshold/propagation probability dis-
tributions. In order to obtain a realistic network configu-
ration, the distribution should take into consideration the 
clustering of the adopter sets. For instance, thresholds of 

nodes that belong to innovators or early adopters should be 
lower in general than thresholds of other nodes. This could 
be achieved by choosing the thresholds from an interval. 
Disregarding the underlying structure introduces a systemic 
bias that may be favorable for some influence maximization 
algorithms while detrimental to others.

Although the two online social networks are similar in 
terms of adoption homophily, the assortativity of these net-
works is different in terms of the network centrality meas-
ures described in Sect. 3.3. Both networks are assortative in 
terms of Harmonic centrality and k-shell measures (Table 3). 
However, Pokec is disassortative in terms of Degree, Gen-
eralized Degree Discount, and PageRank. This means that 
the identification of innovators and early adopters is carried 
out on networks in which individuals of similar levels of 

assumed influence are mixed differently.

4.2  Identification of innovators and early adopters

Now we turn to the network centrality indicators and their 
performances in finding innovators and early adopters. We 
computed the top 1000 nodes according to eight centrality 
measures on both iWiW and Pokec. If the 1000th and 1001st 
node tied under some measure, we discarded nodes of the 
same centrality value randomly until there were only 1000 
nodes in the set.

Tables 4 and  5 show the overlap between the top 1000 
nodes of the centralities that we employed in this paper on 
the iWiW and Pokec networks. Each centrality genuinely 
differs from the others, although LTC, GDD and PageRank 
somewhat overlap with Degree on both networks. In general, 
k-core, TC and Harmonic centrality contain more nodes that 
are uniquely represented by those centralities.

Table 6 compiles the average and median date of registra-
tion for the top 1000 nodes. Centralities are ordered by the 

Table 3  Assortativity of the iWiW and Pokec networks in terms of 
network centralities. The assortativity index ranges from −1 to +1. 
Negative values mean that nodes of similar centrality values are not 
connected, while positive values mean that nodes of similar centrality 
values are connected

Network centralities iWiW Pokec

Degree 0.04 −0.158
Harmonic centrality 0.306 0.137
Page rank 0.02 −0.13
Generalized degree discount 0.02 −0.151
k-shell 0.27 0.227
Linear threshold centrality 0.05 −0.06
Shapley value −0.004 −0.095
Top Candidate 0.09 −0.083

Table 4  Overlap in the top 1000 
nodes of different centralities on 
the iWiW network. Measures 
are ordered according to their 
distance to degree

k-core Harm. TC Shapley(G1) GDD(0.05) PR LTC(0.7) Deg.
k-core 1000 13 39 39 54 49 84 75
Harm. 1000 241 295 290 373 392 374
TC 1000 394 485 477 470 482
Shapley (G1) 1000 652 753 621 629
GDD(0.05) 1000 813 788 828
PR 1000 840 845
LTC(0.7) 1000 935
Deg. 1000

Table 5  Overlap in the top 1000 
nodes of different centralities on 
the Pokec network. Measures 
are ordered according to their 
distance to degree

k-core Harm. TC Shapley(G1) LTC(0.7) PR GDD(0.05) Deg.
k-core 1000 42 47 31 80 63 66 127
Harm. 1000 224 397 603 468 348 422
TC 1000 281 295 373 460 453
Shapley (G1) 1000 516 723 477 456
LTC(0.7) 1000 676 485 601
PR 1000 664 701
GDD(0.05) 1000 761
Deg. 1000
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median, last row shows the average and the median for all 
nodes in the network.

In case of iWiW all measures performed well, that is, all 
averages/medians are below the network average/median. 
The Top Candidate (TC) method proved to be the best, with 
an average date of registration 7% lower than that of the 
next best centrality, Degree, and almost 20% lower than the 
network average.

TC retains its first place on Pokec as well, though with 
smaller margins. It performs 4.3% better than the next best, 
GDD, and 7.5% better than the network average. Note that, 

the centralities showed much more volatility: Five out of the 
eight performed worse than the network average.

The results seem to be consistent. TC, GDD and Degree 
are among the first four, while Harmonic centrality, PageR-
ank and Shapley (G1) lag behind on both networks. Only 
LTC and k-core showed varying results.

The average and median date of registration are, in them-
selves, imperfect indicators of performance. Due to their 
extreme risk-aversion, laggards would almost surely refuse 
to participate in a campaign, while individuals belonging 
to the early majority might be persuaded with, e.g., a small 
financial reward. Hence, we need to take a look at the whole 
distribution to evaluate the measures.

In case of iWiW, the field is mostly even (Fig. 1). TC is 
the only centrality that sticks out of the crowd, consistently 
outperforming the other measures in innovator and early 
adopter category, while also having the fewest laggards and 
late majority.

Although the performances are more nuanced in Pokec, 

TC is still the best (Fig. 2). In case of innovators, its perfor-
mance is on par with the other measures. This is perhaps due 
to the fact that very few individuals fell into this category. 
It has more early adopters and early majority and less late 
majority than any other centrality, while in laggards cat-
egory, it is the second best. GDD also shows some very 
promising results.

Assuming that (i) A marketing message or a product 
sample will only incite innovators or early adopters, and 
that (ii) These two groups have their greatest influence on 

Table 6  Average and median date of registration of the top 1000 
nodes of various centrality measures on the social networks iWiW 
and Pokec. Registration date is measured in number of days from the 
kickoff of the network. Last row shows the average/median on the 
whole network

iWiW Pokec

Centrality Average Median Centrality Average Median

TC 1554.402 1584 TC 2928.189 2891.5
Degree 1657.128 1645 GDD(0.05) 3057.238 3038
GDD(0.05) 1648.546 1646.5 k-core 3145.988 3160.5
LTC(0.7) 1673.296 1661 Degree 3169.621 3169
Harmonic 1670.558 1662.5 PageRank 3274.957 3320
PageRank 1695.087 1669 Harmonic 3300.377 3356
k-core 1753.594 1704 Shapley 

(G1)
3357.282 3386.5

Shapley 
(G1)

1759.33 1707 LTC (0.7) 3418.432 3435

Whole graph 1911.242 1813 Whole graph 3163.550 3192

Fig. 1  iWiW dates of registra-
tion of top 1000 users of various 
network centralities. Measures 
are ordered by the median day 
of registration
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like-minded groups and on early majority, it is worth to 
restrict our attention to these two groups and their interac-
tions with their neighbors. Figures 3 and 4 show the net 
reach of innovators and early adopters among the top 1000. 
The bar graph on the left depicts how many innovators, early 
adopters and early majority they reach not counting them-
selves. This illustrates the indirect impact of the campaign. 

The bar graphs on the right hand side show the composition 
of their reach.

Note that, TC only comes out as a winner if these two 
assumptions hold—the bulk reach of, e.g., PageRank, that 
includes late majority and laggards as well, is much larger 
than that of TC. Thus, on a conventional linear threshold 
or independent cascade simulation, PageRank would out-
perform TC. However, by omitting these two assumptions, 

Fig. 2  Pokec dates of registra-
tion of top 1000 users of various 
network centralities. Measures 
are ordered by the median day 
of registration

Fig. 3  Reach of innovators and early adopters among the top 1000 nodes of different centralities on iWiW
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we oversimplify the diffusion model and assign inaccurate 
prediction power to the tested algorithms.

5  Conclusion

Innovators and early adopters are not abstract theoretical 
constructions, but groups that can be found on social net-
works as node clusters with distinct connection preferences. 
Consequently, they can be identified by observing the net-
work structure. The top choices of some network centrali-
ties include more innovators and early adopters than others. 
Since these two groups play an essential role in innovation 
spreading, such network centralities might be more effective 
in real marketing campaigns.

Influence maximization aims to find the most influential 
nodes on the network. In the past two decades, myriads of 
clever heuristics were invented to optimize this computation-
ally difficult task. Usually, these algorithms are validated 
via computer simulations with little care about what a real 
diffusion would look like. In real life, targeted agents often 
refuse to participate in the campaign. The underlying rea-
sons are manyfold, but most prominently agents differ in 
their risk attitudes. No matter how central a node is if it is 
risk-averse, unwilling to try the advertised product or com-
mit to it openly.

Simulations also commonly ignore network homophily 
which can have serious impact on how a cascade unfolds. 
Both social networks presented here show strong patterns of 
homophily (Tables 1 and 2).

We tested eight different network centralities on two 
social networks where data about the date of registration 
were available. This allowed us to rank the centralities 
by their ability to identify innovators and early adopters. 
A novel expert selection algorithm, the Top Candidate 
method (TC), consistently outperformed every other method. 
To a smaller extent, Generalized Degree Discount and 
Degree were also effective.

A possible explanation of the success of the Top Candi-
date ranking is that individuals with high socioeconomic sta-
tus and opinion leadership qualities—two traits that are asso-
ciated with innovators and early adopters—are perceived 
as experts in society. Since the Top Candidate method is 
specifically designed to identify experts, it is a small wonder, 
that it finds more innovators and early adopters than other 
measures. The Top Candidate ranking is derived by the dif-
ferent parametrizations of the Top Candidate method. For 
a fixed parameter, the Top Candidate method outputs a list 
of individuals that form a stable set—the underlying idea 
is that experts are much more efficient in recognizing each 
other than amateurs, thus the selected individuals must sup-
port each other. This property resembles to assortativity and 
might be the reason why the method is successful in iden-
tifying such highly assortative sets as innovators and early 
adopters. Another possible explanation is that TC identifies 
more market mavens, who are also crucial in innovation 
spreading and widely acknowledged as experts.

The results may be interesting for practitioners of 
various fields. Computer scientists often test their heu-
ristics with simulations on either the linear threshold or 

Fig. 4  Reach of innovators and early adopters among the top 1000 nodes of different centralities on Pokec
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the independent cascade models. In light of the results, 
the accuracy of these experiments can be improved by 
redesigning the threshold and propagation probability 
distributions. There are already a few papers that study 
how to obtain sensible propagation probabilities for the 
independent cascade model but less attention was given to 
node thresholds, and no papers take into account Roger’s 
adopter classification when calibrating diffusion variables.

For marketing specialists, the practical lessons of this 
paper are that aiming for experts in a campaign might be 
a rewarding strategy, and that the Top Candidate method 
is an excellent tool for finding them.

6  Limitations and future research

In our study, we implicitly assumed that date of registration 
is a good proxy for innovativeness. Users that are keen to 
connect to the social network at an early stage can be rea-
sonably categorized as innovators or early adopters at least 
regarding products and services related to social media. 
However, it is unclear how general the area is where this 
innovativeness applies. Opinion leaders tend to be mono-
morphic in nature, meaning they exercise their influence in 
a domain specific manner (Flynn et al. 1996; Doumit et al. 
2011). The further we are from the initial product, the less 
certain we can be about their behavior. The same users 
might be innovative in information technology, but we can-
not meaningfully say anything about their attitudes toward 
unrelated subjects like food and fashion. Thus, researchers 
of innovation diffusion should always look for additional 
characteristics beside network position.

The high level of assortativity that is observable in 
social networks calls for the revision of diffusion mod-
els. It would be expedient to test variants of the linear 
threshold and independent cascade models that account 
for homophily.

The good performance of Top Candidate method sug-
gests that at least some fraction of the innovators and early 
adopters are considered experts in society. However, the 
rich characterization of innovators and early adopters does 
not traditionally include the ’expert’ label. An interesting 
sociometric line of research would be to explore the rela-
tionship between early adoption (or in general innovative-
ness) and perceived expertise.
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