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ABSTRACT

Current network inference algorithms fail to generate graphs with edges that can explain whole sequences of node interactions in a
given dataset or trace. To quantify how well an inferred graph can explain a trace, we introduce feasibility, a novel quality criterion,
and suggest that it is linked to the result’s accuracy. In addition, we propose CEM-*, a network inference method that guarantees 100%
feasibility given online social media traces, which is a non-trivial extension of the Expectation-Maximization algorithm developed by
Newman (2018). We propose a set of linear optimization updates that incorporate a set of auxiliary variables and a set of feasibility
constraints; the latter takes into consideration all the hidden paths that are possible between users based on their timestamps of
interaction and guides the inference toward feasibility. We provide two CEM-* variations, that assume either an Erdős–Rényi (ER) or
a Stochastic Block Model (SBM) prior for the underlying graph’s unknown distribution. Extensive experiments on one synthetic and
one real-world Twitter dataset show that for both priors CEM-* can generate a posterior distribution of graphs that explains the whole
trace while being closer to the ground truth. As an additional benefit, the use of the SBM prior infers and clusters users simultaneously
during optimization. CEM-* outperforms baseline and state-of-the-art methods in terms of feasibility, run-time, and precision of the
inferred graph and communities. Finally, we propose a heuristic to adapt the inference to lower feasibility requirements and show how
it can affect the precision of the result.

Key words. online social networks – network inference – network reconstruction – stochastic block model– expectation maximiza-
tion

1. Introduction

Given a set of observed data, network inference, or reconstruc-
tion is the task of determining whether an edge exists or not be-
tween any pair of nodes that have interacted at some point in
time. Network inference was first used in computational biology,
where it was invented as a tool to recreate and explain complex
interactions between important nodes, such as proteins or genes
(Friedman et al. 2000). Network inference methods have since
been applied in a variety of fields besides biology. Examples in-
clude epidemiology (Zhang et al. 2021; Firestone et al. 2020),
finance (Giesecket et al. 2020), and telecommunications (Wu et
al. 2022). The main goal of this paper is network inference in
the domain of Online Social Networks (OSNs). Their enormous
growth in the last decade has resulted in huge amounts of infor-
mation circulating online from user to user. As a result, research
has turned to inference algorithms to derive diverse types of net-
works which can be useful in various fields such as marketing,
advertising, and politics. In advertising, for example, inference
algorithms have been employed to derive the probabilities of in-
fluence between users, or the way that a specific news piece has
diffused on the platform (Gomez-Rodriguez et al. 2012).

The reason why non-trivial methods such as network infer-
ence are needed to infer these types of networks is lying in the
structure of the online datasets themselves. Regarding the dif-
fusion of information through an online platform, the data we
can find is limited and does not directly depict how it propa-
gates from user to user. On Twitter, for example, given a tweet
by an author and the users that retweeted it, we can get infor-

mation such as the timestamps of each retweet, but we can-
not know where they really retweeted it from1. This suggests
that inferring the true propagation of a tweet when the friend-
ship graph is unknown is not trivial. Network inference algo-
rithms are thus brought into play and make it possible to infer the
real way that information propagates on OSNs by exploiting the
available interactions between users (the trace). Regarding the
learning method itself, different methods have been employed,
including maximum likelihood (Harris et al. 1998), expectation-
maximization (EM) (Dempster et al. 1977), and other models of
influence computation, such as Discrete-Time and Continuous-
Time Models (Goyal et al. 2010).

When looking at the result of an inference method, one can
check whether the input trace is what we call, feasible, given the
generated network. We can do this by verifying that the inferred
graph of connections includes a path from the author of every
original post (e.g., tweet) to all other users that shared the post
(e.g., via retweets) in the trace. For feasibility, this path should
respect the chronological order of the respective interactions in
the trace. However, as we will show later experimentally, exist-
ing works have disregarded feasibility as a quality criterion that
the inferred graph must meet. Therefore, in this paper, we pro-
pose trace feasibility as an imperative requirement that must be
met by an inference framework applied to OSNs.

1 According to the Twitter API documentation of a Tweet
Object, the "retweets of retweets do not show representa-
tions of the intermediary retweet, but only the original Tweet."
https://developer.twitter.com/en/docs/twitter-api/v1/

data-dictionary/object-model/tweet
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2 RELATED LITERATURE

Our intuition behind this proposal is that a feasible graph
that can explain all the interactions and their chronological or-
der inside the trace is closer to the real one. This could become
more obvious if we think of what non-feasibility entails: suppose
that there is an interaction by a user in the trace (e.g., reshare
of a post) that cannot be explained by the inferred graph. This
means that there is no path (with one or more hops) in the in-
ferred graph from the user author to the user who reshared the
post, or that the path is temporally not feasible. Then, either the
latter user found this post from some other source (e.g., platform
recommendation), or there is an error in the inference because
the two users appear disconnected or connected in the wrong
(temporally non-feasible) direction. By enforcing feasibility dur-
ing graph inference, we guarantee that the graph can reproduce
and explain all events and interactions observed in the available
trace. Of course, in reality, a percentage of the observed interac-
tions can come from indirect diffusion (e.g., recommendations);
as we will show later, it is possible to take this into account by
assuming some fixed percentage of direct diffusion during the
inference process.

Given the above motivation, we can examine whether current
methods in the literature infer graphs that guarantee feasibility.
By looking into the seminal work of Saito et al. (2008), we see
that the results suffer from the fact that it is not possible to iden-
tify the source of influence for a large number of retweets, and
therefore their existence in the trace cannot be explained. There-
fore, trace feasibility given the inferred network of influence is
not achieved. In another fundamental work, Gomez-Rodriguez et
al. (2012) proposed the NetInf method to infer the optimal net-
work that most accurately explains a sequencing of interactions.
However, they only give approximate solutions that, when ap-
plied to real-world data, are neither feasible nor accurate. More
recently, Newman (2018) introduced an EM algorithm that is
designed for network inference using unreliable data. As the al-
gorithm does not consider that there are hidden paths between
the users, the feasibility of the trace given the inferred network
is not guaranteed. Building on Newman’s work, Peixoto (2019)
was the first to propose a method that performs network recon-
struction together with community detection. However, as we
will validate experimentally, despite being more precise than the
methods above, the results suffer from slow convergence times
and again, do not always guarantee feasibility which has an im-
pact on precision. Therefore, as we can see, the inference meth-
ods that are currently available in the literature suffer from the
fact that they do not explicitly guarantee the feasibility of the
results. This is extremely critical since the resulting graphs in-
fer edges that cannot confirm the trace itself. Additionally, as we
will show later, each method presents other smaller issues that
could have been avoided by enforcing the feasibility guarantees
that we propose.

As a solution to the above, we introduce a fresh approach to
network inference, which we call CEM-* (Constrained Expecta-
tion Maximization). It infers a posterior distribution of feasible
underlying graphs that explain the provided social trace while
respecting the chronological order of the interactions observed.
Since the structure of the underlying graph is not known, the
definition of a prior that enforces a structure to the posterior in-
ferred graph is necessary. In this work, we will introduce two
special cases of CEM-*: (i) CEM-er, which uses an Erdős–Rényi
(ER) prior, and (ii), CEM-sbm, which uses the Stochastic Block
Model (SBM). Besides, CEM-* can be adjusted accordingly to
include other priors as well. All in all, we enrich the literature
with the following contributions:

– We define social trace feasibility, and discuss its importance
for network inference in the domain of OSNs. To guarantee
feasibility, we devise a set of inequalities (constraints) to ac-
count for all the possible hidden paths given the timestamps
of interaction between the nodes in the social trace (users).

– We propose CEM-*, a non-trivial extension of the
Expectation-Maximization algorithm originally pro-
posed by Newman (2018) that further incorporates the
above set of feasibility constraints. Its main advantage is
that it formulates inference as a linear optimization problem,
making the task easier to compute. For the graph’s unknown
distribution, we start with an ER prior, following Newman’s
(2018) formulation, and call the method CEM-er (see also
our conference version (Papanastasiou & Giovanidis 2021)).

– We introduce CEM-sbm, a variation of CEM-er that uses
an SBM instead of an ER prior that is more realistic to
the underlying structure of social graphs. On top of graph
inference, CEM-sbm allows us to infer and assign users in
communities simultaneously during optimization. Its main
benefit against Peixoto (2019), except for guaranteeing
feasibility, is that it is more scalable and easier to compute.

– We apply CEM-* on a synthetic social trace and compare
the inferred graph against the ground truth. We also apply
it on a real-world Twitter trace with almost 300,000 tweets
and more than 1,600,00 retweets and compare the result
against the real friendship graph that we have available.
Extensive numerical evaluations of CEM-* against other
baseline and state-of-the-art inference methods demonstrate
the algorithm’s ability to run on large graphs and trace sizes,
which is not always guaranteed by the alternatives.

– We show that real-world traces are not always 100% feasible
given the real graph that underlies them and we propose a
technique with which we can tune CEM-* to adapt to lower
feasibility requirements. We evaluate to what extent tuning
the inferred graph’s feasibility can infer edges with better
accuracy.

The rest of this paper is organized as follows: in Section 2 we
present related literature. In Section 3 we introduce the formula-
tion of the problem. Section 4 presents the modeling of the prob-
lem and the learning method that we follow. Section 5 describes
the datasets that we use and the methodology of the experiments.
Sections 6, 7 and 8 show the results of the experiments and the
comparison with other methods for the synthetic and the real-
world traces respectively. Section 9 presents conclusions and fu-
ture work. The code for both CEM-er and CEM-sbm is publicly
available on GitHub2.

2. Related literature

Graph inference. Numerous studies have proposed graph infer-
ence methods by simultaneously recovering influence probabili-
ties between users. This is usually possible by observing users’
infection timestamps from the available cascades of interactions.
For example, Goyal et al. (2010) compute probabilities from
a real social graph and a log of actions on Flickr using Con-
tinuous and Discrete Time Models with incremental equations.

2 https://github.com/effrosyni-papanastasiou/

constrained-em
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3 PROBLEM FORMULATION

He and Liu (2017) presented an approach that recovers a graph
from a small number of cascade samples by utilizing the simi-
larities between strongly linked diffusion graphs. A different line
of work focuses on learning embeddings to perform the same in-
ference task: for instance, Wang et al. (2019) suggested predict-
ing information diffusion by learning user embeddings that cap-
ture unique characteristics both of the diffusion and the network.
Later, Bourigault et al. (2016) presented an embedded version of
the IC model on OSNs that learns information diffusion proba-
bilities along with the representation of users in the latent space.
(Zhang et al. 2018) proposed a probabilistic generative model to
learn information cascade embeddings that predict the temporal
dynamics of social influence.

Graph inference with incomplete data. Additionally, many
works consider that the observed cascades are incomplete or par-
tially observed, which is frequently the case in real-world set-
tings. This is why a diffusion model must be chosen along with
the learning method to represent how we believe that information
has been passed through the cascades. Wu et al. (2013) for in-
stance, created an EM method that can tolerate missing observa-
tions in a diffusion process that follows the continuous indepen-
dent cascade (CIC) model. Daneshmand et al. (2014) proposed
an L1-regularized maximum likelihood inference method for a
well-known Continuous-Time diffusion model. Lokhov (2016)
introduced an approximate gradient descent approach that esti-
mates the influence parameters using gradients of the likelihood
calculated via mean-field approximation and dynamic message
passing. Their formulation makes the computation tractable, but
the complexity of the gradients causes slow convergence.

Selecting a prior when the ground truth is unknown. Sev-
eral link prediction methods extract future or missing links in
datasets in which the underlying graph connecting the users is
known (Saito et al. 2008, Bourigault et al. 2016, Lagnier et al.
2013, Jin et al. 2020, Peel et al. 2022). However, our goal differs
from these types of problems since we have to infer links in a
setting where the neighborhoods of the nodes are unknown. We
must therefore select a prior structure that is close to the under-
lying network. For example, Le et al. (2018) selected the SBM
as the underlying network structure, because of its simplicity
and its ability to approximate real networks. Similarly, Peixoto
(2019), used the degree-corrected SBM as a prior, motivated by
its ability to inform link prediction when dealing with incom-
plete or erroneous data. In another example, Newman (2018) ex-
perimented with different kinds of priors, such as the random
graph, the Poisson edge model, and the SBM.

Neural networks. In a more recent line of work, recurrent
neural networks have been used to predict edges given proba-
bility distributions conditioned on temporal sequences of past
knowledge graphs (Jin et al. 2020). Neural networks usually re-
quire the graph of nodes as input. However, in most social media
network settings the friendship graph of user nodes is either not
known or has not been published by the creators of the datasets.
This makes the use of neural networks for inferring hidden edges
more challenging. We leave the use of such methods for network
inference when the underlying graph is unknown or incomplete
as a future interesting task.

3. Problem formulation

3.1. Input data trace

As mentioned above, to infer an unknown network we must pro-
vide as input a trace of interactions between the nodes of interest.
In this paper, as we focus on traces from OSNs, our goal is to in-

uid rid

(P1, 09:20, U1, -1)

(P2, 09:30, U2, P1)

(P4, 09:40, U3, P1)

(P3, 09:35, U2, -1)

(P5, 09:45, U3, P3)

(P6, 09:50, U1, P3)

original post

repost

repost

repost

repost

pid t

Trace T 1

original post

Fig. 1: Example of information available on an OSN trace.

fer friendship graphs by looking into the online interactions be-
tween users, and more specifically into the posts and the reposts
that they generate. On Twitter, for example, this corresponds to
the tweets and retweets that the users exchange.

Throughout the paper, we will use the following notation: the
input interaction log with the posts and reposts is denoted by T
and it includes T posts/reposts in total. For each instance in the
trace, we keep only four types of information: its unique post id
(pid), the time that the user posted it (t), the unique user id (uid),
and the repost id (rid) that equals −1 if the post is original, or,
if it is a repost, it is equal to some pid ∈ T which points to the
original post instance in the trace. If a user is the author of a pid
we mark them as authorpid. The set that includes all the users that
participate in the trace is denoted by U and is of size |U| = N.
Figure 1 shows an example of a trace T1 like the one described
above. It includes T = 6 posts/reposts instances and N = 3 users
in total. The first instance in T1 is an original post with pid =
P1, and is posted at t = 09:20 by author U1; the second instance
with pid = P2, tells us that user U2 reposted at t = 09:30 the post
with pid = P1 (mapped to the author U1), and so on.

3.2. Problem formulation

Given an available trace T of the activity of a set of usersU, we
assume that there is an underlying friendship graph G connecting
all users in U that is unknown and is what we are trying to in-
fer. More formally, it is a directed friendship graph G where the
nodes are the N users inU and each edge (i, j) translates to user
j following user i. The graph G is represented by an adjacency
matrix A, of dimensions N ×N, where an element Ai j equals 1 if
user j follows user i. The current paper aims to infer the hidden
adjacency matrix A.

Hidden information. Generally, a social media platform
provides a Newsfeed and a Wall for each user. The Wall in-
cludes the posts and reposts of the users, whereas the Newsfeed
includes the posts and reposts created by their respective fol-
lowees. Newsfeeds are formed based on the friendships in the
network. Accordingly, Fig. 2 shows the possible Newsfeeds and
Walls of the users inU1 that created the trace T1. As we notice,
the Newsfeeds are a result of the way that users are connected,
i.e., their friendship graph G1, which is what we are seeking to
infer. Walls are filled with individual posts from users and their
interaction with Newsfeeds. If we assume that we have access to
the unknown Newsfeeds and the corresponding friendship graph

3
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U1 U2

U3

hidden

hidden

Friendship graph G

Newsfeed of U3 Wall of U3

(P4, 09:40, U3, P1)

(P5, 09:45, U3, P3)

(P2, 09:30, U2, P1)

(P3, 09:35, U2, -1)

Newsfeed of U2 Wall of U2

(P2, 09:30, U2, P1)

(P3, 09:35, U2, -1)

(P1, 09:20, U1, -1)

Newsfeed of U1 Wall of U1

(P1, 09:20, U1, -1)

(P6, 09:50, U1, P3)(P3, 09:35, U2, -1)

Trace 
T 1

1

(P2, 09:30, U2, P1)

(P6, 09:50, U1, P3)

Fig. 2: The hidden way that information diffuses through the
ground truth network of users G1 that produces the trace T1. Our
goal is to infer G1 (or equivalently its adjacency matrix A from
T1.

of Fig. 2, we can infer directly how the post P1 observed in T1
is diffused:

1. It is initially posted by author U1 at t0=09:20.
2. At timestamp t0 post P1 appears on the Newsfeed of U1’s

followers, in this case user U2.
3. At a later timestamp, t1=09:30, U2 reposts P1 on their Wall.

Their repost takes the pid=P2.
4. At the same timestamp t1, P2 appears on the Newsfeed of

U2’s followers, U1 and U3.
5. Later, at t2=09:40, U3 reposts P2. Their repost takes the

pid=P4.
As a result, we inferred that P1 diffused from user U1 to U2 and
then to U3 (assuming that users only retweet the users that they
follow). Inferring this path was trivial since we assumed that we
had access to the Newsfeeds which show the intermediary pids
of the reposts. However, until today, social media platforms keep
Newsfeeds private to each user. Therefore, in the final trace T1
this information is hidden. Instead, we only have access to the
timestamps of the reposts of P1 and the author it is mapped to
(user U1). For user U2 it is trivial to infer that they reposted P1
directly from U1 (and thus follow them) since they are the first
in the trace to repost it. However, it is non-trivial to infer through
whom U3 reposted P1; it could be through any of the users U1
or U2.

Of course, the above example is quite simplistic; we can still
come up with some trivial guesses about how the three users are
connected that are not very far from the ground truth. In real-
ity, though, we will have to deal with traces that include mil-
lions of entries, which makes our task much more challenging.
Since social media traces hide the Newsfeeds and the interme-
diary retweet ids, we do not know the real paths through which
posts diffuse: a repost made by each user uid points only to the
author of the initial post and not to the real user that uid reposted.
Therefore, due to the trace being only a (partial) view of each
user’s Wall and their interactions with their (hidden) Newsfeed,
we cannot infer the friendship connections between the users di-
rectly.

Our intuition is that it is more likely that user j is follow-
ing user i (Ai j = 1) if a post reaches often user j through user
i (via the edge (i, j)). With this information not being directly
available, we aim to infer the intermediary diffusion paths that
are hidden in the trace. This will generate the unknown friend-
ship graph G in question. To achieve this, we introduce a set of

constraints that guides the graph’s inference toward a feasible
result.

3.3. Assumptions on the diffusion of posts

To generate the hidden diffusion paths, we first need to decide
on a diffusion model. In this case, we opt for a simple model, the
SI diffusion model, which has been extensively used in epidemi-
ological models (Daley and Gani, 1999) and apply it to social
media users: when a new post arrives on a user’s Newsfeed, they
are Susceptible to infection. If they choose to repost it they be-
come Infected given the specific post and remain so for the rest
of the diffusion. Most existing works using the SI model con-
sider that infection can happen only one time step ahead, after
a user becomes Susceptible. We assume, however, that when a
user posts a message, they can diffuse it to their still uninfected
followers (those in the Susceptible state) during any consecutive
timestamp. Furthermore, we make some additional assumptions
as follows:

1. The author of every original post that has been reposted is
included in the trace T .

2. Users repost only from their followees, i.e., the users they
follow. We assume that the latter are always present in the
available trace.

3. A post can diffuse from user i to user j only if user i has
shared the post chronologically earlier in T than user j.

Although the second assumption does not always hold in prac-
tice, it simplifies our task. As we will see later, our approach
can be expanded accordingly to take into account instances in
which people repost content from followees who are not inside
the trace or even from users outside their list of followees (e.g.,
when Twitter users repost something from the trending hashtags
or via the search function, etc). We should also note that we can
only obtain friendships between users who have interacted with
one another at least once in the available trace T .

3.4. Episodes

We collect the set of all original posts (the ones that have rid =
−1 in T ) that we call S. Each original post s ∈ S along with its
reposts is called an episode and is defined as follows:

Definition 1 (Episode). For each original post s ∈ S we define
an episode as a set of users Es = authors ∪ {u ∈ U | ∃ (pid, t) :
(pid, t, u, s) ∈ T }. In other words, each episode Es includes the
author of s, denoted by authors, followed by the users who re-
posted it, in chronological order. The whole set of episodes is
denoted by E and includes S episodes in total.

To indicate that user i appears in Es before j we use the no-
tation i <s j. We call this pair a temporally ordered pair (i, j)s.
Out of the S total episodes in T , we count Mi j where it holds
that i <s j. If Mi j > 0, it is probable that j has reposted content
from i. In this case, the pair is referred to as an active pair. Our
intuition is that we become more certain about the existence of
a diffusion path from i to j as Mi j becomes larger. As a result,
Mi j is a quantity that can determine the hidden post-propagation
paths and we will use it extensively in the sections that follow.
Every piece of information that can be directly derived from a
trace T can be found in Table 1.

4



3 PROBLEM FORMULATION 3.5 Feasibility of a trace given an inferred graph

Table 1: Information that is directly available from the data.

Symbol Definition

T Set of T post instances of the type (pid, t, uid, rid).
U Set of users that are included in T (|U| = N).
S Set of original posts in T (|S| = S ).
E Set of episodes in T (|E| = S ).
Es ∈ E Episode of original post s, 1 ≤ s ≤ S .
authors The uid of the author of s.
i <s j User i reposted or posted s before user j.
Mi j # episodes where it holds true that i <s j.

3.5. Feasibility of a trace given an inferred graph

For every episode Es in the trace T and every user i that reposted
s before j in time, we define the binary variable Xi j(s) ∈ {0, 1}
that is equal to 1 if the post s passed from i to j (i.e., j follows
i) and 0 otherwise. As underlined in the previous section, the
real value of Xi j(s) is unknown. Therefore, given the chronolog-
ical order of reposts in Es, we may imagine many feasible routes
through which the post s might have spread to those who re-
posted it. These paths create a propagation graph Gs = {Vs, Es}

per episode, with the users in each episode Es as nodes (Vs = Es),
and the edges set Es containing the (unknown) edges that we
infer for the given post. Every edge that we infer follows the
propagation’s direction; for instance, an edge (i, j) inferred in Gs

indicates that Xi j(s) = 1. Given the above and our problem def-
inition, for each episode s in T , our goal is to infer a directed
acyclic graph (DAG) Gs that is feasible and explains the whole
Es sequence.

Definition 2 (Feasible propagation DAG Gs per episode
Es). Given an episode Es from T , we say that a propagation
DAG Gs is feasible, or, equivalently, that it explains Es, if (i)
there exists (at least) one directed path from the author authors

to every other user j ∈ Es\authors and (ii), for each edge (i, j)
of the path it holds that i <s j, i.e., all of its edges follow the
time-ordering of the reposts. If we take the union of every feasi-
ble propagation graph Gs inferred per episode Es, we get the full
friendship graph G and we can build its adjacency matrix A as
follows: we set Ai j = 1 if there exists at least one Gs where the
edge (i, j) exists, and 0 otherwise.

Definition 3 (Feasible friendship graph G). An inferred graph
G is called feasible, if, for every episode Es in T , there exists a
subgraph which is a feasible propagation DAG Gs as we defined
it above. Keep in mind that the full graph G is not a DAG.

To make the concept of feasibility more clear, we show in
Fig. 3 some examples of possible friendship graphs that could
have been inferred, given the example trace T1. It contains two
episodes E = {ES1,ES2}, where S1 = P1 and S2 = P3. Graph
GA explains episode ES2 by inferring that the post S1 diffused
directly from author U2 to users U3 and U1. However, for post
S1, there is no feasible path from the author U1, to users U2 and
U3 that reposted it. Thus, the episode ES1 is non-feasible given
GA and the final friendship graph GA is only 50% feasible, since
it only explains half the trace. Similarly, graph GB is only 50%
feasible since it does not explain episode ES2: it does not give a
feasible propagation path to explain how S2 arrived to U1 from
author U2. In contrast, graphs GC and GD are both 100% fea-
sible because we can find a feasible propagation graph for each
episode in the trace. Therefore, either of the two graphs could be
considered a feasible solution to our graph inference problem.

We should note here that there are more combinations of feasi-
ble connections that we could think of; these figures demonstrate
only two representative feasible examples.

3.6. Inference of post diffusion

3.6.1. Feasibility constraints on reposting behavior

The main challenge of network inference in OSNs arises from
the fact that the binary value Xi j(s) defined in Section 3.5 for
the different user pairs is unknown. However, we can restrict the
number of solutions by imposing a set of constraints on all the
values. These constraints should ensure that all the episodes in
the trace are feasible given the inferred graph according to Def-
inition 1. Specifically, they should guarantee that if a user j ap-
pears in an episode Es (after the author authors) they should be
connected with at least one user i that appears in Es before them,
including the author of s (i.e., it should hold that i <s j). As a
result, the constraints have the following format:

∑

i∈Es s.t. i<s j

Xi j(s) ≥ 1,∀ j ∈ Es\{authors}, (1)

Xi j(s) ∈ {0, 1}, ∀i, j ∈ U, ∀s ∈ S. (2)

Fig. 3 shows the constraints on Xi j(s), given the set of episodes
E = {ES1,ES2}. The role of these constraints is to guide the
process toward solutions that belong to the feasible group of
graphs. To do so, the constraints should be defined for each
episode Es ∈ E, and each user that reposted s, according to
Eq. 1. For example, as we see in Fig. 3, given the first con-
straint for episode ES1, we can derive easily that the user U2
reposted post S1 directly from its author U1 (X12(S1) = 1). The
second constraint tells us that user U3 has reposted S1 either
from U1, or from U2 (or, from both). If we look closer, the pos-
sible graphs that we marked as non-feasible earlier violate these
constraints. For example, GA violates the first constraint for ES1,
since X12(S1) = 0. Likewise, GB violates the last constraint for
ES1, since X21(S2) + X31(S2) = 0. As we saw in the figure and
the equations above, the Xi j value of a pair (i, j) is different for
each episode that it appears in. For example, X23 appeared two
times, one time for S 1 and another one for S2.

With all the possible combinations that each Xi j value can
take for all active pairs and episodes observed, we soon realize
that the problem is intractable when dealing with large traces.
The only direct knowledge we have for each pair is the constant
value Mi j, i.e., the total number of times that a user i appears
before j in every episode Es ∈ T . What we are interested in, is
the number of times that a post diffused through the edge (i, j),
out of the Mi j times that it could be possible. We model this with
the unknown quantity Yi j which is equal to the total number of
times that j reposts from i. More formally:

Yi j =

S
∑

s∈S, s.t. i<s j

Xi j(s). (3)

As we can see above, to find Yi j, we sum over all episodes where
it holds that i <s j. This happens Mi j times in total.

Diffusion probabilities. To solve the problem we make the
following important assumption: for every active pair (i, j) in
any episode Es ∈ E, a user j reposts an s from i indepen-
dently from other episodes with an unknown diffusion proba-
bility σi j ∈ [0, 1]. Therefore, Xi j(s) is an independent Bernoulli
random variable with a mean parameter σi j which does not de-
pend on s. In other words, the diffusion probability σi j of a user
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Fig. 3: Feasibility check of different inferred graphs given a trace E = {ES1,ES2} .

pair is the same across all episodes, which means that there is no
preference in terms of content when someone chooses to repost.
Of course, this does not accurately reflect reality but it serves as
a useful simplification. Therefore, for an ordered user pair (i, j)s,
σi j equals:

σi j = E
[

Xi j(s)
]

. (4)

We can now transfer our problem from searching over the binary
domain of Xi j(s) to solving over the real domain of the σi j val-
ues. By taking the expectation in (1) and given Eq. 4, we get the
following set of constraints:

∑

i∈Es s.t. i<s j

σi j ≥ 1,∀ j ∈ Es\{authors}, (5)

σi j ∈ [0, 1], ∀i, j ∈ U. (6)

From Eq. 3 and Eq. 4, Yi j is the sum of Mi j independent
Bernoulli random variables that have a mean value σi j. In other
words, Yi j is an independent Binomial random variable with
mean value Mi jσi j:

E[Yi j] =
S

∑

s∈S, s.t. i<s j

E[Xi j(s)] =
S

∑

s∈S, s.t. i<s j

σi j = Mi jσi j. (7)

4. Problem Modeling and Learning Method

We introduce a feasible inference method, called CEM-*, with
two special cases, depending on the assumed distribution of the
underlying graph. The first case assumes an Erdős–Rényi (ER)
prior and is called CEM-er. According to this prior, the under-
lying graph that we are trying to infer has been created under a
uniform probability ρ that is the same for all edges. However, this
does not accurately reflect the structure of social media graphs,
which are less random and have some important properties, such
as the existence of hubs. After this section, we propose an addi-
tional case that incorporates a more realistic model for the un-
derlying graph, the stochastic block model (SBM). We call this
extended method CEM-sbm.

4.1. Erdős–Rényi prior (CEM-er)

As mentioned above, the prior structure of the network A is
not known, and therefore a uniform prior ρ is assumed for all
edges. Hence, the prior takes the form of a probability distri-
bution P(A | θ), where θ is a set of hidden parameters that give
us more details on the underlying network. Given a trace T of
posts and reposts, P(A, θ | T ) is the probability that the inferred
graph is A and the parameters get the value θ. The parameters
θ should account for a wider range of potential graph types and
data generation methods. Therefore, they are chosen as follows:

– The probability that a user j shares content through a user
i, represented by the set of σi j values that we presented in
Section 3.6.1.

– To model the uncertainty about the structure of the graph’s
adjacency matrix A, we assumed that there is a prior prob-
ability ρ of an edge drawn independently between any two
nodes i, j (Erdős–Rényi prior).

– The true positive utilization rate α: the probability of a post
propagating through an edge that we inferred to exist in the
underlying graph G. Given the (hidden) number of interac-
tions between users Yi j, we consider that when an edge ex-
ists in G (Ai j = 1) the Yi j out of the Mi j experiments are
successful (we get Yi j true positive edges in total), each with
probability α.

– The false positive utilization rate β: the probability of infer-
ring that a post propagated through edges that do not exist
in G. Likewise to above, when Ai j = 0, we consider that the
Yi j out of Mi j experiments are successful (we get Yi j false
positive edges), each with probability β.

We can see that the global parameters α and β depend on whether
an edge exists in the ground truth graph G. To find the most
probable value of the parameters θ given the observed data and
infer A with maximum likelihood, we will employ an Expec-
tation–Maximization (EM) algorithm which is a standard in-
ference tool when some data is unknown or hidden. As sug-
gested by its name, an EM iteration involves two consecutive
steps: an expectation (E) step, which computes the expected log-
likelihood under the most recent estimation of the parameters in
θ; then, a maximization (M) step, which determines the parame-
ters that maximize the expectation. Then, the computed parame-
ters are used in the following iteration, and so on, until we satisfy
a convergence criterion.
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4 PROBLEM MODELING AND LEARNING METHOD 4.2 Stochastic block model prior (CEM-sbm)

We start constructing the EM iterations, following the
method proposed by Newman (2018) and employ the Bayes’
theorem:

P(A, θ | T ) =
P(T | A, θ)P(A | θ)P(θ)

P(T )
. (8)

The probability that we get the specific set of posts and repostsT
given A and the parameters θ ={α, β, ρ,σ}, found in the numer-
ator of the above expression, will differ here from Newman since
we have introduced the hidden number of interactions between
users, Yi j. Given the ordered nodes of an episode, each repost
path is chosen independently per episode. We also assumed as
prior knowledge that between any two nodes in A an edge has
been drawn with probability ρ. Therefore we get:

P(T | A, θ)P(A | θ) =
∏

i, j

[

αYi j (1 − α)Mi j−Yi jρ
]Ai j

[

βYi j (1 − β)Mi j−Yi j (1 − ρ)
]1−Ai j

. (9)

Given this type of model, when Ai j = 1, the Yi j out of the Mi j ex-
periments are successful, each with probability α. When Ai j = 0,
the Yi j out of Mi j experiments are successful, each with proba-
bility β. For the whole set of parameters θ, we assume a uniform
prior probability P(θ). If we sum (8) over all possible networks
A, we find that P(θ | T ) =

∑

A P(A, θ | T ). Then, as suggested
by Newman (2018), we can apply the well-known Jensen’s in-
equality on the log of P(θ | T ):

log P(θ | T ) = log
∑

A

P(A, θ | T ) ≥
∑

A

q(A) log
P(A, θ | T )

q(A)
,

(10)

where q(A) is any probability distribution over networks A sat-
isfying

∑

A q(A) = 1. We also define the posterior probability of
an edge existing between i and j by Qi j = P(Ai j = 1|T , θ) =
∑

A q(A)Ai j. If we take the expectation of Eq. (10) we find that:

E[log P(θ | T )] ≥
∑

A

q(A) log
Di j

q(A)
, (11)

where Di j = Γ
∏

i, j

[

ραMi jσi j (1 − α)Mi j(1−σi j)
]Ai j

[

(1 − ρ)βMi jσi j (1 − β)Mi j(1−σi j)
]1−Ai j

. (12)

We find that the choice of q that achieves equality of (11) and
hence, maximizes the right-hand side with respect to q is:

q(A) =
∏

i, j

Q
Ai j

i j
(1 − Qi j)

1−Ai j , (13)

where, Qi j is the posterior probability that the edge (i, j) exists,
and we find that it equals:

Qi j =
ραMi jσi j (1 − α)Mi j(1−σi j)

ραMi jσi j (1 − α)Mi j(1−σi j) + (1 − ρ)βMi jσi j (1 − β)Mi j(1−σi j)
. (14)

The details of the above derivation are shown in Appendix A.
Hence, to find the maximizing posterior distribution q(A) it suf-
fices to find the individual maximizing posterior probabilities Qi j

according to Eq. (14). Given these values, if we further maxi-
mize with respect to the parameters θ ={α, β, ρ,σ} we can get

the maximum-likelihood value we seek. The updates for the first
three parameters are thus calculated to be the following:

α =

∑

i, j Mi jσi jQi j
∑

i, j Mi jQi j

, β =

∑

i, j Mi jσi j(1 − Qi j)
∑

i, j Mi j(1 − Qi j)
, (15)

ρ =
1

N(N − 1)

∑

i, j

Qi j, (16)

where N is the number of users in the trace. Finally, to find the
whole vector σ that includes all the σi j unknown diffusion pa-
rameters, we must solve a linear optimization problem as follows
(for derivation refer to Appendix A):

max
σ

∑

i, j

σi j(Wi j − λc) (17)

s.t. σ ∈ Fσ,

where Wi j = Mi j

(

Qi j log
α

1 − α
+ (1 − Qi j) log

β

1 − β

)

,

λ > 0 some given penalty for regularisation, and c = max
(i, j)∈W

Wi j.

We added the value λ into the optimization objective as a penalty
per iteration, since our initial goal is to infer a graph that is fea-
sible with the minimum possible number of edges. Without it,
all (i, j) pairs with Wi j > 0 would immediately get their σi j = 1,
leading to the inference of more edges than we initially wanted.
As λmoves closer to 1, it forces the optimization goal to be neg-
ative and thus, to be guided only by the provided constraints. It
is equivalent to penalizing the total expected number of inferred
edges. As λ approaches 0, the optimization infers the largest
number of edges possible. We will explore in detail the effect
of the hyperparameter λ with values that vary from 0 to 1 in the
Experiments section. The final CEM-er algorithm is shown in
Algorithm 1.

4.2. Stochastic block model prior (CEM-sbm)

Since we are working with social media data, where there is usu-
ally a strong presence of communities, we believe it is more re-
alistic to assume that the network is derived from a stochastic
block model (SBM), a generative model of community structure
that was first proposed in the 1980s by Holland et al. (1983). In
the standard SBM, each node i participates in a different block
(community) which we indicate by gi, where i may take values
in [1,G] where G is the number of hidden communities. The
number of edges between nodes i and j follows a Bernoulli dis-
tribution with mean ωgi,g j

, that is the relative probability of intra-
community (if gi = g j) or inter-community (if gi , g j) connec-
tion.

As we can see, in the case of CEM-er, the prior structure of
the network A was the only kind of unobserved data, but in this
case, we have two unknowns: the network A and the vector of
the group assignments of the users g. Hence, the prior takes the
form of a probability distribution P(A, g | θ), where θ denotes
the unknown parameters of the distribution, which gives addi-
tionally the details of the community structure. This approach,
therefore, allows us to infer both the unknown network structure
and the community structure simultaneously. Given a trace T ,
P(A, g, θ | T ) is the probability that we get A, the users’ commu-
nity participation vector g and a set of chosen parameters θ. The
parameters set θ that we select here includes two newly added
parameters that replace the prior ρ that we had in the CEM-er
case:
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5 METHODOLOGY

– Following the SBM for A and the users’ community partic-
ipation vector g, we suppose that there is a prior probability
p of an edge existing between any two nodes i, j that belong
in the same community, i.e., gi = g j.

– The nodes that belong in different communities are con-
nected with a probability q.

We construct the EM iterations as we did before, following
Bayes’ theorem:

P(A, g, θ | T ) =
P(T | A, g, θ)P(A, g | θ)P(θ)

P(T )
. (18)

Taking into consideration the definition of the parameters above,
the probability that we get the specific trace T , given A, g and
θ ={α, β, p, q,σ} is driven by the probabilities α and β, whereas
the probability that we get A and g given θ depends on the prob-
abilities p and q. Therefore, assuming that each user reposts in-
dependently from others:

P(T | A, g, θ)P(A, g | θ) =
∏

i, j
gi=g j

[

αYi j (1 − α)Mi j−Yi j p
]Ai j

[

βYi j (1 − β)Mi j−Yi j (1 − p)
]1−Ai j

∏

i, j
gi,g j

[

αYi j (1 − α)Mi j−Yi j q
]Ai j

[

βYi j (1 − β)Mi j−Yi j (1 − q)
]1−Ai j

. (19)

For the whole set of parameters θ, we assume again a uniform
prior probability P(θ). We sum (18) over all possible networks
A and we find that P(θ | T ) =

∑

A P(A, g, θ | T ). Then, we can
apply the well-known Jensen’s inequality on the log of P(θ | T ):

log P(θ | T ) = log
∑

A

P(A, g, θ | T ) ≥
∑

A

q(A, g) log
P(A, g, θ | T )

q(A, g)
,

(20)

where q(A, g) is any joint probability distribution over networks
A and group assignments g satisfying

∑

A q(A, g) = 1. We also
define the posterior probability of an edge existing between i
and j that belong to communities gi, g j by Qi j(gi, g j) = P(Ai j =

1 | T , θ) =
∑

A q(A, g)Ai j.
For the E-step of the EM algorithm, following the same

derivation logic as in the CEM-er variation (in detail in Appendix
B), we find that Qi j(gi, g j) is the posterior probability that the
edge (i, j) exists and is different depending on whether users i, j
belong in the same community(gi = g j = r) or not (gi = r, g j = s,
r , s) with r, s ∈ g:

Qi j(r, r) =
pαMi jσi j (1 − α)Mi j(1−σi j)

pαMi jσi j (1 − α)Mi j(1−σi j) + (1 − p)βMi jσi j (1 − β)Mi j(1−σi j)
,

(21)

Qi j(r, s) =
qαMi jσi j (1 − α)Mi j(1−σi j)

qαMi jσi j (1 − α)Mi j(1−σi j) + (1 − q)βMi jσi j (1 − β)Mi j(1−σi j)
. (22)

Notice that for Mi j = 0, Qi j(gi, g j) becomes equal to the prior
probability p if gi = g j and equal to q if gi , g j. Next, to maxi-
mize the likelihood in terms of the parameters we find:

α =

∑

i, j Mi jσi jQi j(gi, g j)
∑

i, j Mi jQi j(gi, g j)
, (23)

β =

∑

i, j Mi jσi j(1 − Qi j(gi, g j))
∑

i, j Mi j(1 − Qi j(gi, g j))
, (24)

p =
1

∑

i, j 1(gi = g j)

∑

i, j,gi=g j

Qi j(gi, g j), (25)

q =
1

∑

i, j 1(gi , g j)

∑

i, j,gi,g j

Qi j(gi, g j). (26)

To find the diffusion probabilities σi j we must solve the follow-
ing linear optimization problem:

max
σ

∑

i, j

σi j(Wi j − λc) (27)

s.t. σ ∈ Fσ,

where Wi j = Mi j

(

Qi j(gi, g j) log
α

1 − α
+ (1 − Qi j(gi, g j)) log

β

1 − β

)

,

λ > 0 some given penalty for regularisation, and c = max
(i, j)∈W

Wi j.

The final CEM-* algorithm, when we choose the SBM prior is shown
in Algorithm 1. It iterates between finding an optimal value for q,
via the Qi j values, and then holding it constant to maximize the like-
lihood (the right-hand side of (B.3) in Appendix B) with respect to
θ ={α, β, p, q,σ} (M-step). We underline that the updates of the Qi j

values that are essential for the E-step require the knowledge of the
communities participation vector g. It is updated in each iteration as
follows: we generate first a graph from the current Qi j estimations, by
drawing an edge whenever Qi j > 0.5. To get the updated vector g, we
apply to the generated graph the Louvain method, which returns a single
community label for each user node (Blondel et al. 2008). Our algorithm
converges when the L2 norm of improvement ||Qnew −Qold || falls under
some threshold ϵ that we choose in advance, where Q is the matrix with
the Qi j values.

5. Methodology

5.1. Datasets

The general framework of CEM-* for both priors is shown in Fig. 4.
To evaluate our two methods CEM-er and CEM-sbm against the ground
truth and compare them with existing methods, we will use two different
datasets: a synthetic and a real-world one. The synthetic dataset that we
create aims to illustrate our method’s efficiency when the trace includes
sufficient information about the interactions between users. As we will
show later, this is not always the case with real-world traces coming
from OSNs, which can make the inference task even more challenging.

5.1.1. Synthetic dataset

For the generation of synthetic social media data, we follow the code
found in Giovanidis et al. (2021). We first create a set of 100 users each
of which has two random activity (posting and reposting) rates. Then,
we create an SBM graph between the users, with 7 different partitions
of varying sizes, that represents the friendship graph of the network.
Users in the same group are connected with probability p = 0.06 and
users of different groups are connected with probability q = 0.007. Each
subgraph corresponding to a group is a random Erdős–Rényi with con-
nection probability p. For each user, we generate a set of random times-
tamps, that increase according to an exponential distribution that de-
pends on their activity rates. These timestamps represent the times they
posted or reposted something. We generate a set of 100,000 timestamp-
user-activity instances in total that we call the Events set.

Additionally, we assume that each user has a Newsfeed that can
hold up to 10 posts and reposts from their followees. Based on the
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Count Mij ∀ (i,j) ∈ U
Trace Graph inference

Define constraints

Choose prior

CEM-*

Fig. 4: Framework of Constrained-EM

Table 2: Trace and ground truth statistics for the synthetic and real-world data.

Trace statistics Synthetic #Élysée2017fr

Time-span 17,459 time-steps 6 months
# tweets 1,709 293,405
# retweets 24,347 1,605,059
# users 100 11,521
% users with # tweets > 0 27.00 70.74
% users with # retweets > 0 87.00 96.45
% user pairs with Mi j > 0 78.10 5.21

Ground-truth graph Synthetic #Élysée2017fr

# edges 158 1,555,718
% intra-edges(labeled) 63.92 (101) 84.29 (1,311,463)
% inter-edges(labeled) 36.08 (57) 15.71 (244,255)

% edges with Mi j > 0 99.36 (155) 45.23 (703,682)
% intra-edges with Mi j > 0 100.00 (101) 50.13 (657,389)
% inter-edges with Mi j > 0 98.25 (56) 18.95 (46,293)

Algorithm 1 CEM-*

Input: $PRIOR, C,U, Mi j ∀(i, j) ∈ U
Output: Q, α, β, ρ,σ
t = 0
Random Initialisation: αt, βt, ρt,σt

1: if $PRIOR = ER then
2: repeat
3: t += 1
4: Qt = update Q(αt−1, βt−1, ρt−1,σt−1) using (14)
5: αt = update α(Qt,σt−1) using (15)
6: βt = update β(Qt,σt−1) using (15)
7: ρt = update ρ(Qt) using (16)
8: σt = update σ(Qt, αt−1, βt−1) using (17)
9: until convergence

10: else if $PRIOR = SBM then
11: Random Initialisation: gt

12: repeat
13: t += 1
14: Qt = update Q(αt−1, βt−1, pt−1, qt−1,σt−1,gt−1) using (21), (22)
15: αt = update α(Qt,σt−1) using (23)
16: βt = update β(Qt,σt−1) using (24)
17: pt = update ρ(Qt) using (25)
18: qt = update ρ(Qt) using (26)
19: σt = update σ(Qt, αt−1, βt−1) using (27)
20: gt = LOUVAIN(Qt)
21: until convergence
22: end if

friendship graph and the Events set, we simulate a set of interactions
between the users according to the following scheme: when a user i vis-
its their Newsfeed, they repost randomly one of the 10 entries made by
their followees. A new entry on the Newsfeed list will push out an older
entry of a random position. The Newsfeeds of the users that follow user i
will then be updated accordingly. Of course, in reality, users on a social
media platform may show a preference towards a specific account or
topic, or even repost something outside of the scope of their followees.
The random uniform selection, however, makes the simulation collect
sufficient information for all the edges in the friendship graph.

The simulation generates a social media trace from which we can
extract all the quantities that are necessary for our method, as presented
in Section 3. The detailed statistics of the synthetic dataset can be found

FN

PS

EM

LR

FI

(a) Friendship network (b) Retweet network

Fig. 5: Networks of the 5 political parties provided by the
#Élysée2017fr dataset.

in Table 2. The table on the left shows the statistics of the trace, whereas
the table on the right shows the statistics of the ground truth graph.
This is the graph that we will be trying to infer. The intra-edges refer
to the edges inside a community, whereas inter-edges refer to the edges
between different communities.

5.1.2. Real-world data: the #Élysée2017fr dataset

For the evaluation of our method on real-world data, we choose
#Élysée2017fr, a publicly available dataset related to the 2017 French
presidential campaign on Twitter (Fraisier et al. 2018). It features
2,414,584 tweets and 7,763,931 retweets from 22,853 Twitter profiles
discussing the election. Users have been manually annotated by experts
with political affiliations expressing support for one of the 5 main com-
peting parties in France:

– FI: France Insoumise, far-left (Jean-Luc Mélenchon)
– PS: Parti Socialiste, left-wing (Benoît Hamon)
– EM: En Marche, center (Emmanuel Macron)
– LR: Les Républicains, right-wing (François Fillon)
– FN: Front National, far-right (Marine Le Pen)

The exact timestamps of interactions between users had not been pub-
lished by the creators of the dataset, therefore we had to crawl them us-
ing the Twitter API. On top of that, we collected the follower-followee
connections, i.e., the friendship graph of the observed user ids, which
had not been provided by the authors. A visual representation of the
friendship network that we scraped along with the community partic-
ipation of each node is shown in Fig. 5a. The network of retweets is
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shown in Fig. 5b. From these figures, we can see that even though users
follow people from other communities (e.g., there are many friendships
between the two extreme groups FI and FN), they mostly retweet posts
from authors that belong inside their community and they do not inter-
act much with users outside.

From this trace, we keep only the tweets that have been retweeted
by at least one user. Additionally, we remove retweets for which we
do not know the author and retweets that have been made more than
once by the same user. The statistics of the trace after the above pre-
processing along with the statistics of the ground truth graph are shown
in Table 2.

Insufficient information in a real-world trace. From Table 2 and
Fig. 5a and 5b, we notice the main challenge in working with this
dataset against the synthetic one: out of the 1,555,718 edges in the un-
derlying friendship graph, only 45.23% of them have a non-zero Mi j

value. On the other hand, the synthetic trace includes information for
more than 99% of the 158 existing edges. This can be partly because,
in reality, users may repost their followees with some preference, in-
stead of randomly selecting posts from their Newsfeed as is the case in
the synthetic dataset. Therefore, many users may not appear to inter-
act with retweets even if there is a connection between them in reality.
However, given that the absolute numbers of the real-world trace are
quite high, we believe that there is sufficient information to work with.

5.2. Comparison

5.2.1. Compared models

We compare the graphs inferred by our two models, CEM-er and CEM-
sbm, with those generated by the following baseline and state-of-the-art
methods:

– Star: a heuristic graph inference method that draws a directed edge
from the author of every tweet s in the trace to every user that ap-
pears in the corresponding episode Es after them. The graph in-
ferred by Star implies that all the users that have retweeted a tweet
are following its author.

– Chain: another heuristic method that generates a single long path
between the users in each episode Es, according to the timestamps
of their interactions with tweet s: each path first connects the author
of s to the user i that retweeted it first in time. Then, it connects i
to the user j who retweeted it second in time, j to the user who
retweeted it third, and so on.

– Saito et al. (2008): a baseline EM-based algorithm that infers the
influence probabilities ki j by assuming an Independent Cascade
model of diffusion between the users. For comparison, we produce
the final graph by drawing an edge (i, j) whenever ki j > 0.5.

– Netinf (2012): in a similar way to our work, Gomez-Rodriguez et
al. identify the graph that most accurately explains the observed
infection times of nodes. However, their formulation of the prob-
lem is combinatorial and thus NP-hard to solve exactly. Therefore,
they suggest finding near-optimal networks using approximation
algorithms, by exploiting the submodularity properties of the ob-
jective, which, as we will show in the next sections, introduces
computation-time and precision issues. In contrast, we devise a con-
tinuous linear expression based on the trace, which allows us to find
efficiently the exact solution to an LP optimization problem.
As explained by the authors, when the activity rates are not the same
for all users, the performance of the model worsens. Therefore, we
expect Netinf to perform worse than CEM-* in more realistic set-
tings such as these of the synthetic dataset, in which users have
different activity rates. It should be noted that Netinf requires that
we set in advance the parameter k, which is the number of edges
that we want to infer. For comparison, we set k equal to the number
of edges of the corresponding ground truth graph.

– Newman (2018): a more recent EM-based algorithm that we in-
troduced in Section 1. As mentioned before, our algorithm is an
extension of the EM formulation provided in Newman’s work. The
algorithm is not designed to consider hidden paths between users,
thus it is not guaranteed that the inferred networks will be feasible.

For evaluation, we derive a graph by drawing an edge (i, j) when-
ever the friendship probability Qi j for a user pair (i, j) estimated by
this method is greater than 0.5.

– Peixoto (2019): a state-of-the-art non-parametric Bayesian method
that infers posterior distributions from trace observations using a
stochastic block model as a prior. As is the case with our CEM-sbm
model, it performs community detection together with network re-
construction. Unlike us, however, during the inference process, the
model performs sampling using a Markov Chain Monte Carlo pro-
cedure and accepts a solution with a Metropolis-Hastings probabil-
ity. As demonstrated next, this negatively impacts the computation
time of the optimization.

5.2.2. Comparison metrics

The directed edges inferred by each inference method translate to the
existence of follower-followee relationships between the respective user
nodes. To evaluate and compare them against the ground truth, we will
look at the following aspects:

1. Results of CEM-* given different trace sizes and values of hy-
perparameter λ. Firstly, we check how different trace sizes change
the corresponding results of our method. For example, by choos-
ing only the first 10,000 lines of the synthetic trace, we obtain in-
formation for around 65% out of the N (̇N − 1) = 9, 900 possible
user pairs, whereas the whole trace (= 100,000 lines) informs us on
about 78% of the pairs. We see therefore that as we choose more
trace lines from the input, we get more information between users
in terms of tweets and retweets (with diminishing returns). In gen-
eral, we expect the performance of our model to improve with the
increasing size of the trace.

2. Feasibility of the trace. We evaluate each method presented in Sec-
tion 5.2.1 in terms of feasibility. Given the ground truth graph, we
check how many episodes are feasible, according to our definition
of feasibility provided in Section 3.5.

3. Prediction performance. When the ground truth is available, we
can treat the output of the inference as a binary classification task
between existing and non-existing edges. We, therefore, choose
Precision, Recall, and AUC scores as metrics for evaluation and
comparison. These metrics are used frequently to measure predic-
tion success in similar classification tasks. Precision refers to the
percentage of true positive friendships inferred out of all the pre-
dicted ones, and Recall quantifies the percentage of true positive
friendship edges inferred out of all the edges that are positive in
the ground truth. The AUC score is the area under the ROC curve
that represents the tradeoff between Recall (true positive rate) and
Specificity (false positive rate), not to be mixed with the true and
false positive utilization rates α and β in the parameters set θ of
CEM-*. It is a measure of separability and quantifies how well the
model can distinguish between classes.

4. Inferred network metrics. Additionally, we look into different net-
work measures of the inferred graph (e.g., average degree, diame-
ter, connected components, etc), and compare them to these of the
ground truth graph. These measures can be indicative of how much
the inferred graph resembles the properties of a general real-world
graph (in cases when the ground truth is not available).

5. Detection of communities. A useful by-product of our CEM-sbm
network reconstruction method is the community detection task.
Therefore, we check to what extent the inferred communities re-
semble the real ones presented in the ground truth. Since a node
can only belong to one community, we wish to verify whether the
different pairs of users belonging to the same or different commu-
nities are the same in the ground truth. The method for the eval-
uation and comparison is the following: we first generate a graph
for each model as described in Section 5.2.1 and then apply on it
the Louvain method for community detection (Blondel et al. 2008).
The detected clusters are then used to calculate the F1-score as fol-
lows: we look at each possible user pair and if the users belong
to the same community we label the edge with 1 (positive class),
otherwise with 0 (negative class). We do the same for the ground
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6 EXPERIMENTS ON SYNTHETIC DATA 5.3 Experimental settings

truth (with the Louvain labels). From the true/false positive, and
true/false negative rates we measure the F1-score, which combines
Precision and Recall. In addition, we estimate the values of p and q
between the communities in the inferred graph and compare them
to the real ones.

5.3. Experimental settings

We run the experiments on a virtual machine with 40 vCPUs and 256
GB RAM. For the solution to the optimization problem, we configure
a Gurobi solver through PuLP3, an open-source linear programming li-
brary for Python, using the dual simplex optimization method. The pa-
rameters set θ1 = {α, β, r,σ} and θ2 = {α, β, p, q,σ} for CEM-er and
CEM-sbm respectively are initialized uniformly at random in the range
[0, 1]. As a convergence criterion for the optimization we choose the L2
norm of the difference between the values of Q, i.e., ||Qnew −Qold || < ϵ,
where the threshold ϵ is set equal to 0.001. Finally, to generate the un-
known friendship graph G, we round up all edges with Qi j > 0.5 to 1,
and the rest are set to 0. We run the experiments 10 times and report the
average results.

6. Experiments on synthetic data

Table 3: Converged parameters for |Tsynth| = 50,000 lines.

CEM-* parameters 1-α∗ β∗

CEM-er (λ = 0) 1-(7e-11) 1.74e-12
CEM-er (λ = 1) 1-(2e-10) 1.54e-13
CEM-sbm (λ = 0) 1-(7e-11) 1.65e-12
CEM-sbm (λ = 1) 1-(9e-11) 3.95e-15

6.1. Results of our method (CEM)

Values of parameters. The converged parameters of both our methods,
CEM-er and CEM-sbm are shown in Table 3. In the first column, we
show (1 − α∗) to be precise about how small the distance is from the
maximum value of α∗ that is equal to 1. We observe that in every case
α is close to 1. This means that there is an almost 100% probability that
a post propagated through an edge present in the network we inferred.
On the other hand, the small values of β suggest that the number of false
positive utilized edges is close to zero. This suggests that a post from
the trace always propagates through an edge that has been inferred.

Different sizes of input. Figure 6a shows the relation of Precision
and Recall given trace sizes that range from 10,000 to 100,000 lines.
As we observe, the larger the trace, the higher the value of Recall. This
was expected since bigger traces give more information which helps us
derive more underlying edges. Precision presents relatively stable be-
havior and is higher (=0.869) when λ = 1. Overall, we see that CEM-
sbm has higher performance than CEM-er in terms of Precision which
reaches up to 0.869 when λ = 1, and a slightly worse, but still compet-
itive performance in terms of Recall (reaching up to 0.944 for λ = 1
whereas CEM-er can reach up to 0.954 for λ = 0). We conclude there-
fore that CEM-sbm is much more precise than CEM-er in the case of
the synthetic dataset and can also retrieve most of the underlying edges.

Different values of the hyperparameter λ. In Fig. 6b we can see
more clearly how the choice of the hyperparameter λ inside the opti-
mization objective (Eq. 17 and Eq. 27) affects the precision of infer-
ence: for λ = 0 we get very low Precision (= 0.024) regardless of the
prior since we infer the largest number of edges possible according to
the objective, which in turn results to more false positive edges. How-
ever, in this case, the Recall value is at its highest (for example 0.954 in
the case of CEM-er). In contrast, for λ = 1, we infer a graph with the
smallest number of edges possible given the constraints and thus we get
a considerably better Precision (= 0.869, CEM-sbm). The Recall value,

3 https://pypi.org/project/PuLP/

in this case, is still high (= 0.944). This can be linked to the rich infor-
mation that is provided in the synthetic trace but can also be indicative
of the good prediction probabilities of our method: we manage, with
the help of the constraints, to infer the smallest set of edges possible (by
setting λ = 1), that is precise and at the same time retrieves almost the
entire ground truth graph.

Difference between priors. Choosing λ = 1 we can tell the differ-
ence between the ER and SBM priors - the latter is more efficient in the
task of inferring more true positive and less false positive connections
between the users, achieving a Precision close to 0.9. This suggests that,
in CEM-sbm, the use of the priors p and q in Eq. 25 and Eq. 26 depend-
ing on whether an (i, j) user pair belongs in the same community or not,
instead of the use of a global parameter r (as in Eq. 16) that is unaware
of any community structure, can greatly improve the prediction perfor-
mance of the optimization when there are communities in the real graph.
Additionally, as shown in Table 6 and as we will show later in more de-
tail, CEM-sbm can detect the underlying communities much better than
CEM-er: the estimated p, q values of the graph derived by CEM-sbm
for λ = 1 are much closer to reality (p = 0.063 and q = 0.006), with
small relative errors (ϵp = 0.05 and ϵq = 0.143), while the F1-score is
almost optimal (= 0.961). This is a substantial improvement over the
F1-score provided by CEM-er (= 0.419).

6.2. Comparison between methods

6.2.1. Propagation subgraph inferred by each model

For a first understanding of the inner workings of each method that we
compare with, we can zoom into the propagation graph inferred for a
random episode Es = {22, 17, 18, 81} from the synthetic trace (Fig. 7).
Each method receives as an input the first 50,000 lines of the original
trace that after preprocessing contains 859 tweets and 12,236 retweets.
The ground truth tells us that users 18 and 81 have reposted user 17,
who had previously reposted directly the author user 22. As we see in
Fig. 7, our method CEM-sbm (λ = 1) and Peixoto (2019) have inferred
the propagation graph of the episode correctly. CEM-er (λ = 1) has
inferred one more false positive edge from 22 to 18 whereas Star and
Chain have inferred two false positive edges. Netinf (2012) has inferred
only one false positive edge from 18 to 81 whereas the methods by
Newman (2018) and Saito et al. (2008) have inferred no edge at all. Of
course, this is only one example of a subgraph inferred by each method.
We are going to see next the performance and statistics of the entire
friendships graphs inferred.

6.2.2. Performance comparison

Precision, Recall, AUC, and graph statistics. Firstly, we are compar-
ing CEM-* with the other methods by looking into the graphs and the
performance of each model as described in Section 5.2.2. More specif-
ically, we will compare the performance of each method in terms of
Precision, Recall, and AUC. The results are shown in Table 4 and are
combined with observations from each graph’s statistics, found in Table
54.

From there we observe that the two heuristics, Star and Chain,
give 100% feasible solutions. However, both methods infer graphs with
thousands of edges (1,072 and 4,545 edges respectively) and high av-
erage out-degrees (10.72 and 46.86) which is very far from reality: the
ground truth features only 164 connections with an average out-degree
of 1.64. This may result in high Recall and AUC scores but comes at the
cost of a very low Precision rate (0.141 and 0.033 respectively, as seen
in Table 4). Additionally, both methods infer graphs with very small
average shortest paths (< 1.5). In contrast, the ground truth has an av-
erage shortest path of 2.57 which is closer to the value that we would
expect from a real-world Twitter graph to have. Moreover, Chain infers
graphs that are too dense, as seen from its maximum strongly connected
component (last column, Table 5: it includes 87% of the users, whereas

4 The highest value is marked with boldface and the second highest
value is underlined. max scc: maximum strongly connected component.
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Fig. 6: Precision given Recall of CEM-er and CEM-sbm applied on the synthetic dataset.
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Fig. 7: Comparison of the propagation graph inferred by each method for an episode Es = {22, 17, 18, 81} from the synthetic trace
when |Tsynth| = 50,000 lines. Each graph shows the real propagation of the tweet s from its author (user 22) to every other user that
retweeted it. Blue arrows stand for true positive edges and red arrows stand for false positive ones.

Table 4: Performance of different methods on a synthetic dataset with |Tsynth| = 50,000 lines as input.

Performance Precision Recall AUC runtime (secs)

Star 0.141 0.956 0.931 1.0
Chain 0.033 0.955 0.752 1.0
Saito et al. (2008) 1.0 0.051 0.525 3.0
Netinf (2012) 0.159 0.165 0.575 2,199.0
Newman (2018) 0.522 0.450 0.724 2.0
Peixoto (2019) 0.643 0.924 0.958 3,481.0

CEM-er (λ = 0) 0.024 0.954 0.668 8.0
CEM-er (λ = 1) 0.430 0.944 0.962 9.0
CEM-sbm (λ = 0) 0.024 0.916 0.650 1.4
CEM-sbm (λ = 1) 0.869 0.944 0.970 1.5

the actual value is only 11%). The above suggests that, given the syn-
thetic dataset as input, Star and Chain infer graphs that are feasible but
demonstrate properties that are far from these of the actual graph, and
also, from these of a real-world graph in general.

The method of Saito et al. (2008) is 100% precise but produces
only 8 edges, a very low number for it to be considered a sufficient
solution to our problem. Consequently, it presents a very low feasibility
rate: it can only explain 2.33% of the episodes presented in the trace.
As a result, its graph properties are far from those of the real graph. For
example, the maximum out and in-degrees of the graph are equal to 1,
along with the diameter and the average shortest path. Furthermore, the

graph inferred by Saito has no strongly connected component and has a
very low average out-degree of 0.5.

For the Netinf (2012) model, we set in advance k = 164 as the
number of edges that we want to infer, which is equal to the number of
edges of the real graph (however such information will not be available
in practice and the authors suggest trying different values of k depend-
ing on the desired outcome). As we see, the inferred graph has low
feasibility of 34.8% and performs poorly on Precision (= 0.159), Re-
call (= 0.165), and AUC (=0.575). This is accompanied by weak graph
statistics: it has a relatively low maximum out-degree (= 9 whereas the
real value is 39), the largest diameter out of all the methods (= 12), and

12
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Table 5: Network statistics of the graph inferred by each method compared to the ground truth for |Tsynth| = 50,000.

Inferred network metrics feasibility(%) #edges avg out-degree max out-degree max in-degree diameter avg shortest path max scc (%users)

Synthetic graph 100.00 164 1.64 39 15 5 2.57 11

Star 100.00 1,072 10.72 78 24 3 1.35 10
Chain 100.00 4,545 46.86 75 71 3 1.48 87
Saito et al. (2008) 2.33 8 0.50 1 1 1 1 0
Netinf (2012) 34.80 164∗ 2.49 9 12 12 4.76 24
Newman (2018) 72.29 138 1.55 77 3 1 1 0
Peixoto (2019) 98.02 227 2.34 36 11 10 3.42 19

CEM-er (λ = 0) 100.00 6,175 ± 89 63.66 ± 0.92 94.5 ± 0.17 96 2 1.34 97
CEM-er (λ = 1) 100.00 349 ± 8 3.59 ± 0.09 45.9 ± 2.03 15.2 ± 0.2 5 2.23 10
CEM-sbm (λ = 0) 100.00 6,141 ± 244 63.31 ± 2.52 91.5 ± 2.95 92.6 ± 3.4 2.1 1.34 97
CEM-sbm (λ = 1) 100.00 177 ± 11 1.83 ± 0.12 41.3 ± 1.65 11.3 ± 0.15 5.2 ± 0.2 2.61 11.9 ± 0.6
*chosen a priori

Table 6: Performance of community detection for the synthetic graph with |Tsynth| = 50,000 lines.

Label prediction F1-score

Star 0.350
Chain 0.421
Saito et al. (2008) –
Netinf (2012) 0.251
Newman (2018) 0.526
Peixoto (2019) 0.731

CEM-er (λ = 1) 0.419
CEM-sbm (λ = 1) 0.961

Community parameters pGsynth
|ϵp| qGsynth

|ϵq|

Synthetic graph 0.060 – 0.007 –

Star 0.148 1.467 0.091 12
Chain 0.682 10.366 0.351 49.142
Saito et al. (2008) 0.500 7.333 – –
Netinf (2012) 0.285 3.750 0.002 0.714
Newman (2018) 0.043 0.283 0.007 0
Peixoto (2019) 0.112 0.866 0.006 0.143

CEM-er(λ = 1) 0.085 0.416 0.021 2.000
CEM-sbm(λ = 1) 0.063 0.050 0.006 0.143
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Fig. 8: True Positive related to the False Positive rates of each
inference model when applied to the synthetic dataset.

its maximum strongly connected component is more than two times
bigger than the real one (it covers 24% of the users).

The method by Newman (2018) returns a Precision= 0.522 and
Recall= 0.450 which are values close to the output of a random classi-
fier. However, it infers a graph with 138 edges and an average degree of
1.55 which is close to the real numbers. Still, the diameter, maximum
in-degree, and average shortest path values are really small compared to
the ground truth. Additionally, it presents no strongly connected com-
ponent. All in all, the graph is neither feasible (feasibility = 72.29%),
nor competitive in terms of any performance or statistical metric, which
could be due to the fact that it does not consider the hidden paths that ex-
ist between users and thus, loses a lot of information that is (indirectly)
available in the trace.

The method by Peixoto (2019) is the most competitive out of all
the above methods, with 98% feasibility, Precision = 0.643 and Recall=
0.924. Additionally, the graph presents some properties that are similar
to the ground truth. For example, as we see in Table 5, the derived graph
has a maximum out-degree (= 36) whose value is the second closest to
the real one (= 39). However, it generates almost 40% more edges and

therefore the diameter and the maximum strongly connected component
of the graph is almost two times larger than the true one.

To compare with the above, both our methods, CEM-er and CEM-
sbm achieve 100% feasibility across all λ values. In addition, CEM-sbm
(λ = 1) achieves the highest performance out of all the methods in terms
of Precision, Recall, and AUC (=0.869, 0.944, 0.970 respectively). Fur-
thermore, we see that the graph inferred by CEM-sbm for λ = 1 has
network properties almost identical to the ground truth, followed by the
one inferred by CEM-er (λ = 1).

Optimization runtime. On top of the good prediction and graph
statistics results, our algorithm is scalable and achieves running times
that are close to the times of the heuristics and far lower than other al-
ternatives (last column, Table 4). CEM-sbm for example runs in less
than 1.5 seconds, which is close to the runtimes of Star and Chain. The
methods by Newman (2018) and Saito et al. (2008) may have simi-
lar runtime, but they lose in accuracy. In contrast, Netinf (2018) and
Peixoto (2019) need more than half an hour to converge and still, as
we saw above, their results are not as competitive. This makes our op-
timization method powerful not only in terms of the accuracy of the
prediction but also in terms of the time that is needed to reach a result.

ROC curve points of each method. The Precision and Recall point
shown in Table 4 for all methods are also visually illustrated on a 2-
dimensional True Positive vs False Positive Rate scale (Fig. 8). The
upper left corner points correspond to the ideal classifier with AUC= 1;
close to that point we find CEM-sbm (λ = 1), CEM-er (λ = 1), and
Peixoto (2019). Star is close, while the other methods are further away.

Detection of communities. As shown in Table 6, our method CEM-
sbm (λ = 1) achieves the highest F1-score (= 0.961) out of all the
methods, followed by the method by Peixoto (= 0.731). Interestingly,
the p, q parameters of CEM-sbm (λ = 1) are close to these of the ground
truth (pGsynth

= 0.063 with relative error |ϵp| = 0.05 and qGsynth
= 0.006

with relative error |ϵq| = 0.143). Among the other methods, regarding p
and q, we see that the method by Newman (2018) presents the lowest
relative errors regarding the real values (0.283 and 0 respectively).
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7. Experiments on the #Élysée2017fr dataset

Next, we will work with real-world data that, as seen in Section 5.1.2,
have different properties from the synthetic dataset, making the infer-
ence process more challenging.

Table 7: Converged values for parameters α, β given |Telysee| =

5,000,000 lines as input.

CEM-* parameters (1 − α∗) β∗

CEM-er (λ = 0) 0 1.19e-10
CEM-er (λ = 1) 1.32e-11 2.46e-12
CEM-sbm (λ = 0) 5.55e-16 1.07e-10
CEM-sbm (λ = 1) 0.004 0.001

7.1. Results of our method

Values of parameters. The converged α, β parameters of CEM-er and
CEM-sbm can be seen in Table 7. Since all of the α values are close
to 1, there is an almost 100% probability that a post spread through an
edge that we predicted to exist in the inferred networks. For CEM-er,
the smaller value of β, which is almost equal to zero, suggests that there
are zero false positive utilized edges. However, in the case of CEM-sbm
(λ = 1), the slightly higher value of β∗ = 0.001 suggests that there
is a low, but existing probability, that a tweet passes via an edge that
does not appear in the inferred ground truth. As we will see later, this
may mean that we have missed some edges and therefore the overall
feasibility rate may be (slightly) affected. Likewise, in the same case,
the fact that 1 − a∗ = 0.004 means that there is a small probability of
false negative utilized edges existing.

Different sizes of input. Figure 9a shows the relation of Precision
and Recall given trace sizes that range from 1 to 5 million lines. Again,
as was the case with the synthetic data, the more information we have
available, the higher the value of Recall will be. These values, however,
will still stay at relatively low levels, under 0.1. As seen in Table 2, this
is largely due to the fact that only 45.23% of the positive (i, j) edges in
the ground truth appear in the trace (i.e., they have Mi j > 0). The rest of
them do not appear in the measurements, therefore it is not possible to
infer them given the specific trace we have at hand. Still, we manage to
predict thousands of edges that are mostly true positive (as seen from the
Precision value). More specifically about Precision, we notice a slight
drop as the size of the trace increases. This makes sense, since we infer
more edges the more data we get, and therefore we are more likely to
make errors. The drop is milder when λ = 1 and more noticeable when
λ = 0.

Different values of the hyperparameter λ. From Fig. 9b we no-
tice that high values of λ given a constant trace size (= 5 million lines)
correspond to higher values of Precision. Here, we observe a trade-off
between Precision and Recall, which was not evident in the synthetic
dataset: in CEM-sbm for example, the lowest Precision(= 0.213) corre-
sponds to the highest Recall value(= 0.185) when λ = 0 and a lower
Recall value (= 0.074) corresponds to a higher Precision (= 0.478)
when λ is set to 1. Therefore, we see that depending on our goal, we
can choose to prioritize Precision over Recall and vice-versa. This can
be controlled by the correct selection of the hyperparameter λ.

Difference between priors. In contrast to the synthetic dataset
case, from the above figures we notice that CEM-er and CEM-sbm
present more similar behavior. This is largely due to the properties of the
trace itself: we have relatively sparse information on the edges between
users that belong to different communities (we observe only 18.95% of
the existing inter-edges as seen in Table 2, in contrast to the 98.25% of
the positive inter-edges in the case of the synthetic dataset). This makes
sense since, in reality, users between different communities interact less
often, so it is less likely that they will appear in a trace when we col-
lect it. Therefore, the benefit of using the SBM instead of the ER prior
cannot be easily made obvious given the specific trace that we have at
hand. Still, the use of the SBM prior provides the highest Recall value
(= 0.185, for λ = 0) and AUC value, (= 0.589, for λ = 0), which, as we
will show later are also the largest values among all compared methods.

7.2. Comparison between methods

We compare the graphs inferred by our two models with the same meth-
ods presented before, this time when real-world data is given as input.
Given our computational resources, we were not able to run the method
by Peixoto (2019) and Netinf (2012) within reasonable timeframes (in
< 48 hours), therefore they are left out of the comparison. Table 8 shows
the Precision, Recall, and AUC performance of each method, and Table
9 shows the properties of each corresponding graph5.

7.2.1. Performance comparison

From Tables 8 and 9 we observe that Star and Chain give 100% feasible
solutions with Precision equal to 0.446 and 0.262 respectively and Re-
call values equal to 0.133 and 0.130. However, their graph statistics re-
semble less these of the real graph: Star infers 463,290 edges, with max
out-degree equal to 2, 524 and max in-degree equal to 1, 069. We con-
sider these values quite high, given the number of edges inferred (they
are comparable to the ground truth which has three times the number of
edges of Star) and that’s why we consider it less trustworthy. This result
is expected due to the heuristic method of inferring the edges, which
connects directly the author of a post to its reposters.

The graph by Chain, as seen in the last column of Table 9, has the
highest maximum strongly connected component (it includes 95.34% of
all users), which is bigger than the corresponding size in the real graph
(= 93.28%). Given that the inferred graph by Chain is half the size
of the real graph, this high percentage suggests that it is more densely
connected than we would expect from a real graph. What is more, in a
real-world graph, most nodes have a relatively small degree, but some
of them will have a noticeably larger degree, being connected to many
other nodes. However, in Chain, we do not notice this phenomenon.

As was the case in the synthetic dataset evaluation, the method of
Saito et al. (2008) generates only a few edges (= 768) and is therefore
not feasible. The method of Saito et al. (2008) may be again relatively
precise, but presents no strongly connected component, has a very low
average out-degree (= 0.5) and an abnormally high diameter (= 8),
given the size of the graph. The above shows that the graph inferred by
this method is very sparse and does not resemble the real-world graph
in question.

Likewise, the model by Newman (2018) is not feasible, but in
this case, seems more competitive in terms of the Precision metric
(= 0.464). However, its large diameter (= 12.7) given the size of the
inferred graph (5 times smaller than the real graph which has a diame-
ter = 11) prevents us from selecting it as a realistic option.

Compared with the above methods, our algorithm CEM-*, presents
the highest values in terms of every metric: Precision, Recall, or AUC.
This can be regulated either by choosing a value close to λ = 0, that re-
turns the highest number of nodes (>1,100,000) and therefore a high
Recall (=0.178), for CEM-sbm (λ = 0)) but lower Precision, or by
choosing a value closer to λ = 1 that returns less than 340,000 nodes (for
both priors) and therefore a lower Recall but a high Precision (=0.489,
CEM-er (λ = 1)). When it comes to the statistics of the graph, its di-
ameter stays close to the real value (= 11). The same is true for the
average shortest path. This illustrates that the two best values from each
category are in favor of our CEM-* method.

Optimization runtime. We verify from the runtime column of Ta-
ble 8 that our model is scalable since we manage to solve an optimiza-
tion problem with 6, 922, 990 unknowns and 1, 605, 059 constraints in
only a couple of hours. We achieve this not only by formulating the in-
ference as a linear optimization problem but also by taking advantage
of powerful optimization solvers that are publicly available (in our case,
the Gurobi solver). On the other hand, the methods by Saito et al. and
Newman present fast computation times (342 and 25 seconds) but, as
we have shown, they present less competitive results in terms of feasi-
bility or performance.

ROC curve points of each method. Again, on the upper left corner
of the True Positive vs False Positive Rate figure (Figure 10), we find
our methods CEM-sbm (λ = 0) and CEM-er (λ = 0). Star and Chain

5 N/A in the Tables refers to results not being available after 48 hours.
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7 EXPERIMENTS ON THE #ÉLYSÉE2017FR DATASET 7.3 Controlling feasibility through β
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Fig. 9: Precision given Recall of CEM-er and CEM-sbm applied on #Élysée2017fr.

Table 8: Performance of each method for the #Élysée2017fr dataset.

Performance Precision Recall AUC runtime(secs)

Star 0.446 0.133 0.565 1
Chain 0.262 0.130 0.563 1
Saito et al. (2008) 0.199 0.0001 0.500 342.00
Netinf (2012) N/A N/A N/A N/A
Newman (2018) 0.464 ± 0.031 0.066 ± 0.001 0.533 ± 0.001 25.00
Peixoto (2019) N/A N/A N/A N/A

CEM-er (λ = 0) 0.251 0.179 0.586 37,721.00
CEM-er (λ = 1) 0.489 0.105 0.552 35,552.00
CEM-sbm (λ = 0) 0.213 0.185 0.589 44,016.00
CEM-sbm (λ = 1) 0.478 0.074 0.537 88,504.00

Table 9: Network statistics of the graphs inferred by each method compared to the ground truth graph for |Telysee| = 5,000,000 lines.

Inferred network metrics feasibility(%) #edges avg out-degree max out-degree max in-degree diameter avg shortest path max scc (% users)

Ground-truth 49.00 1,555,718 136.42 5,004 1,853 11 2.82 93.28 (10,747)

Star 100.00 463,290 40.25 2,524 1,069 12 3.70 66.05 (7,610)
Chain 100.00 768,122 66.73 1,122 1,256 8 3.04 95.34 (10,984)
Saito et al. (2008) 0.55 786 0.54 2 10 8 1.11 0
Netinf (2012) N/A N/A N/A N/A N/A N/A N/A N/A
Newman (2018) 37.24 237,063 22.43 1,206 ± 127 558 12.7 4.32 52.57 (6,057)
Peixoto (2019) N/A N/A N/A N/A N/A N/A N/A N/A

CEM-er (λ = 0) 100.00 1,108,079 96.26 2,336 1,262 9 3.06 80.31 (9,252)
CEM-er (λ = 1) 100.00 335,289 29.13 2,291 790 12 3.82 66.07 (7,612)
CEM-sbm (λ = 0) 100.00 1,353,432 117.58 1,364 1,609 8 2.95 82.50 (9,505)
CEM-sbm (λ = 1) 99.37 240,893 20.97 955 775 11 3.58 72.81 (8,388)
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Fig. 10: True Positive related to the False Positive rates of each
inference model when applied on #Élysée2017fr.

are a bit lower, and the other methods are further away. This suggests
that our model has the highest capacity to differentiate between the two
classes (existing and non-existing edges) among all the other methods
(and is also why we have the highest AUC values, as seen in Table 8).

Detection of communities. As shown in Table 10, our methods
CEM-er (λ = 0) and CEM-er (λ = 1) achieve a high F1-score
(= 0.888 and 0.887), similarly to Newman’s method (= 0.888) and
Chain (= 0.889). Chain’s high performance does not surprise us in this
case since Chain favors the creation of communities all while inferring a
very high number of edges compared to other methods. Despite this, all
the p parameters estimated on the graphs by each method are far from
the real ground truth value. This was expected since we are missing
substantial information on how edges interact between different com-
munities and we may therefore be overestimating the value of p while
underestimating q. Still, our method for λ = 1 has the lowest relative er-
ror on the p parameter (7.58 for CEM-er and 5.17 for CEM-sbm) along
with Newman that has an ϵp = 6.75.

7.3. Controlling feasibility through β

As expected, since 2017 (the year that the dataset was created), some
Twitter profiles have been deleted or set to private. In addition, users
may have retweeted a tweet/episode outside the scope of their fol-
lowees (e.g., through Twitter search, recommendation algorithms, Twit-
ter trends, etc.). As a result, the #Élysée2017fr trace is not 100% feasible
given the ground truth friendship graph. In other words, the current view
of the friendship graph does not explain all the episodes in the selected
trace; in fact, it can only explain 49% of them.
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9 CONCLUSIONS

Table 10: Performance of community detection for the real-world graph with |Telysee| = 5,000,000 lines.

Label prediction F1-score

Star 0.858
Chain 0.889
Saito et al. (2008) 0.447
Netinf (2012) N/A
Newman (2018) 0.888
Peixoto (2019) N/A

CEM-er (λ = 0) 0.888
CEM-sbm (λ = 0) 0.880
CEM-er (λ = 1) 0.887
CEM-sbm (λ = 1) 0.878

Community parameters pG |ϵp| qG |ϵq|

Ground-truth 0.0012 N/A 0.0445 N/A

Star 0.0143 10.92 0.0003 0.99
Chain 0.0236 18.67 0.0004 0.99
Saito et al. (2008) 0.3834 318.5 N/A N/A
Netinf (2012 N/A N/A N/A N/A
Newman (2018 0.0093 6.75 5e-05 1
Peixoto (2019 N/A N/A N/A N/A

CEM-er (λ = 0) 0.0346 27.83 0.0005 0.99
CEM-sbm (λ = 0) 0.0425 34.42 0.0006 0.99
CEM-er (λ = 1) 0.0103 7.58 0.0002 1
CEM-sbm (λ = 1) 0.0074 5.17 0.0001 1

Table 11: Performance of CEM-* given constant values of parameter β for #Élysée2017fr.

Performance given β Precision Recall AUC feasibility(%)

CEM-er (λ = 1) 0.489 0.105 0.552 100.0
CEM-er (λ = 1) (β = 0.5) 0.592 0.060 0.530 66.96
CEM-er (λ = 1) (β = 0.6) 0.604 0.052 0.526 61.21
CEM-er (λ = 1) (β = 0.7) 0.619 0.040 0.520 52.78
CEM-sbm (λ = 1) 0.478 0.074 0.537 99.37
CEM-sbm (λ = 1) (β = 0.5) 0.552 0.054 0.527 71.86
CEM-sbm (λ = 1) (β = 0.6) 0.558 0.048 0.524 65.65
CEM-sbm (λ = 1) (β = 0.7) 0.566 0.041 0.520 58.00

We can therefore control the feasibility of our result to match the
feasibility of the trace given the ground truth through the parameter β:
for an inferred graph to be feasible, we want the false positive utilization
rate β, i.e. the average number of inferred edges that pass through an
edge that does not exist in the inferred graph, to be as close to 0 as
possible. If β is close to a non-zero value, it means that there is a β > 0
probability that influence has happened through a nonexistent edge in
the inferred graph and therefore some episodes may be left unexplained.
Consequently, we can set β equal to a constant - instead of updating it
through Eq. 15 or 24 - whose value depends on the feasibility that we
wish the outcome to have. Hence, we will examine the relation of the
inferred graph to the ground truth given different constant values of β.
In general, we expect the inferred graph to be more precise when the
feasibility rate is close to this of the ground truth graph (= 49%).

First of all, as we show in Table 11 when β increases feasibility de-
creases. For example, when β = 0.7 the feasibility of the trace given
the inferred graph is 52.78% and 58% for CEM-er and CEM-sbm re-
spectively. We note that the value of β changes only the overall number
of edges inferred, which indirectly affects the number of episodes that
are explained in the trace. Furthermore, as β increases, and hence fea-
sibility decreases, we get closer to the actual 50% feasibility and preci-
sion improves. We should underline that when the feasibility rate falls
lower than 50% (for β > 0.7), Precision falls dramatically since the al-
gorithm starts inferring edges randomly, without really respecting the
constraints.

8. Evaluation with no ground truth

Overall, we notice that feasibility is proved beneficial and can increase
the quality of the inferred graph. For example, the methods with the
lowest feasibility rates (Saito et al., Netinf, Newman) infer graphs with
low predictive quality and present statistics that are far from those of
the real-world graph. The benefit of CEM-* over other methods is espe-
cially apparent when we have collected sufficient data between edges,
as was the case in the synthetic dataset case. Consequently, when the
underlying friendship graph is not available, which is often the case in
graph reconstruction problems, the feasibility rate of the inferred graph
could be an effective indicator of a method’s performance.

However, feasibility is not a sufficient condition for better predic-
tion results. As we see in the case of Star, Chain, and CEM-* for λ = 0,
a 100% feasibility rate cannot guarantee a precise result. Moreover, as
we showed, we can use empirical values about how much feasibility to
require in the inferred graph based, for example, on how old the trace
is, or how often users retweet outside of their connections, e.g., using
recommendations. On top of feasibility, we could look into the inferred
graph’s statistics and evaluate to what extent they are similar to these of
a general, real-world graph. Usual indicators of such real-world proper-
ties are the average degree, the diameter, the average shortest path, and
the strongly connected components of the graph.

9. Conclusions

As we observed above, CEM-* successfully produces feasible graphs
that are closer to reality when compared to heuristic and state-of-the-
art methods. We validated the results both on synthetic and real-world
traces, using two different graph priors, Erdős-Rényi (ER) and Stochas-
tic Block Model (SBM), and noticed that CEM-* produces results that
in most cases return the two most accurate values among all chosen
compared metrics, and does so significantly faster than the state-of-the-
art. Moreover, by selecting values between 0 and 1 for the hyperparam-
eter λ, we can control the trade-off between the Precision and Recall of
the result.

When comparing the effect of the two graph priors, we notice that
the use of SBM can improve inference accuracy and community detec-
tion. The contribution of SBM is more apparent when we have sufficient
information on how nodes interact between different communities.

Furthermore, we observe that feasible graphs are usually closer
to the underlying graph compared to non-feasible graphs. When the
trace is 100% feasible given the ground truth, as is the case in the
synthetic dataset, we find that feasibility is a necessary condition for
the inferred graph to be as close to reality as possible. In the case of
the #Élysée2017fr graph, where the trace is only 50% feasible, we ob-
served that Precision improves as we force the feasibility of the inferred
graph to be closer to the real percentage (through the parameter β). We
conclude therefore that, for higher Precision, the feasibility of the trace
given the inferred graph should match the feasibility of the trace given
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the true graph. However, if we cannot be sure about the ground truth’s
feasibility, we still suggest starting working with β = 0, since, as we
saw, it still returns better, and more realistic networks than other infer-
ence methods. Keep in mind, that as we saw in the case of Star and
Chain, feasibility is not a sufficient condition for the accuracy of the re-
sult: the graphs inferred by both these methods are 100% feasible but
present some extreme properties (e.g., large diameter, low maximum
degree) that make the results less trustworthy.

We should note here that our method works with a specific trace
structure that is based on the data that most social media platforms cur-
rently offer. In future work, we plan to apply our method and constraints
to other types of data and graph inference cases to adapt to a wider range
of domains (such as biology, epidemics, etc).
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B CEM-SBM

Appendix A: CEM-er

For the E-step, we modify the Newman algorithm by taking the expec-
tation over the set of random variables Yi j at both sides of (10):

E[log P(θ | T )] ≥ E[
∑

A

q(A) log
P(A, θ | T )

q(A
]

=
∑

A

q(A)
(

E[log P(A, θ | T )] − log q(A
)

). (A.1)

To find E[log P(A, θ | T )], we replace (9) into (8). Setting Γ =
P(θ)/P(T ), the expectation of the log of (8) becomes:

E[log P(A, θ | T )] = logΓ +
∑

i, j

[

Ai j

(

log ρ + E[Yi j] logα+

+(Mi j − E[Yi j]) log (1 − α)
)

+ (1 − Ai j

(

log(1 − ρ)+

+E[Yi j] log β + (Mi j − E[Yi j]) log (1 − β)
)]

. (A.2)

Then, by replacing (7) into (A.2), and then (A.2) into (A.1), we get:

E[log P(θ | T )] ≥
∑

A

q(A) log
Di j

q(A)
(A.3)

where, Di j = Γ
∏

i, j

[

ραMi jσi j (1 − α)Mi j(1−σi j)
]Ai j

×
[

(1 − ρ)βMi jσi j (1 − β)Mi j(1−σi j)
]1−Ai j

. (A.4)

For the M-step of the EM algorithm, the function that we want to
maximize is E[log P(θ | T )]. To do so, we need to find the unknown
values, q(A) and θ ={α, β, ρ,σ}, that maximize the expectation on the
left-hand side of (11), under the feasibility constraints on the parameters
set θ. From these, only theσi j have an important constraint set, specified
in (5) and (6).

Solution with respect to q(A). We notice that the choice of q(A)
that achieves equality (i.e. maximizes the right-hand side) in (11) is:

q(A) =
Di j

∑

A Di j

, (A.5)

which leads us to Eq. (13).
Solution with respect to α,β, ρ. To maximize the right-hand side

of (11) in terms of parameter α we differentiate it with respect to α and
then setting it equal to zero (while holding σi j, q constant):

∑

i, j

Qi j Mi j

(

σi j

α
−

1 − σi j

1 − α

)

= 0. (A.6)

After rearranging, we get the updates shown in Eq. (15), and we repeat
likewise for β and ρ.

Solution with respect to σi j. If we take into account that Qi j =
∑

A q(A)Ai j and also that
∑

A q(A) = 1, by rearranging the right-hand
side of (11), the problem becomes equivalent to maximizing:

∑

A

q(A)
∑

i, j

σi j Mi j

(

Ai j log
α

1 − α
+ (1 − Ai j) log

β

1 − β

)

=
∑

i, j

σi j Mi j

(

Qi j log
α

1 − α
+ (1 − Qi j) log

β

1 − β

)

. (A.7)

This leads us to the constrained optimization problem of Eq. (17).

Appendix B: CEM-sbm

For the E-step of the EM algorithm, we modify the Newman algorithm
by taking the expectation over the set of random variables Yi j at both

sides of (20):

E[log P(θ | T )] ≥ E[
∑

A

q(A, g) log
P(A, g, θ | T )

q(A, g)
]

=
∑

A

q(A, g)
(

E[log P(A, g, θ | T )] − log q(A, g
)

). (B.1)

To find E[log P(A, g, θ | T )], we replace (19) into (18). Setting Γ =
P(θ)/P(T ), the expectation of the log of (18) becomes:

E[log P(A, g, θ | T )] = logΓ +
∑

i, j
gi=g j

[

Ai j

(

log p + E[Yi j] logα +

+(Mi j − E[Yi j]) log (1 − α)
)

+ (1 − Ai j)
(

log(1 − p) +

+E[Yi j] log β + (Mi j − E[Yi j]) log (1 − β)
)]

+
∑

i, j
gi,g j

[

Ai j

(

log q +

+E[Yi j] logα + (Mi j − E[Yi j]) log (1 − α)
)

+ (1 − Ai j)
(

log(1 − q)+

+E[Yi j] log β + (Mi j − E[Yi j]) log (1 − β)
)]

. (B.2)

By replacing (7) into (B.2), and then (B.2) into (B.1), we get:

E[log P(θ | T )] ≥
∑

A

q(A, g) log
D(A, g)
q(A, g)

, (B.3)

where,

D(A, g) = Γ
∏

i, j
gi=g j

[

pαMi jσi j (1 − α)Mi j(1−σi j)
]Ai j

[

(1 − p)βMi jσi j (1 − β)Mi j(1−σi j)
]1−Ai j

∏

i, j
gi,g j

[

qαMi jσi j (1 − α)Mi j(1−σi j)
]Ai j

[

(1 − q)βMi jσi j (1 − β)Mi j(1−σi j)
]1−Ai j

. (B.4)

For the M-step of EM, we maximize the expectation
E[log P(θ | T )] as we did in the CEM-er prior.

Solution with respect to q(A, g). We notice that the choice
of q(A, g) that achieves equality (i.e. maximizes the right-hand
side) in (B.3) is:

q(A, g) =
D(A, g)

∑

A D(A, g)
. (B.5)

From (B.5), in a similar fashion to Newman’s method [Eq. (13),
20], and because Γ cancels out, we get:

q(A, g) =
∏

i, j,(gi=g j)

Qi j(gi, g j)
Ai j (1 − Qi j(gi, g j))

1−Ai j

∏

i, j,(gi,g j)

Qi j(gi, g j)
Ai j (1 − Qi j(gi, g j))

1−Ai j . (B.6)

Hence, given Eq. (B.4), the values of Qi j are found to be the ones
in Eq. (21) and (22).

Our goal is to find the unknown parameters θ ={α, β, p, q,σ}
that maximize the right-hand size of (B.3), given the maximis-
ing distribution for q(A, g) in (B.5), hence given the values of
Qi j(gi, g j) in (B.6).

Solution with respect to α,β, p, q. To maximize the right-
hand side of (B.3) in terms of parameter α, we differentiate the
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equation with respect to α and we set it equal to zero (while
holding the rest of the parameters θ constant):

∑

i, j

Qi j(gi, g j)Mi j

(

σi j

α
−

1 − σi j

1 − α

)

= 0. (B.7)

After rearranging, we get the value in Eq. (23). By repeating the
same procedure for β, we get Eq. (24). Likewise, differentiating
the r.h.s. of (B.3) with respect to p and then setting it equal to
zero we get:

∑

A

q(A, g)
∑

i, j
gi=g j

(
Ai j

p
−

1 − Ai j

1 − p
) = 0. (B.8)

This is how we get the updates for p in Eq. (25), and, likewise,
for q in Eq. (26).

Solution with respect to σi j. If we take into account that
Qi j(gi, g j) =

∑

A q(A, g)Ai j and also that
∑

A q(A, g) = 1, by
rearranging the right-hand side of (B.3), the problem becomes
equivalent to maximizing:

∑

A

q(A, g)
∑

i, j

σi jMi j

(

Ai j log
α

1 − α
+ (1 − Ai j) log

β

1 − β

)

=
∑

i, j

σi jMi j

(

Qi j(gi, g j) log
α

1 − α
+ (1 − Qi j(gi, g j)) log

β

1 − β

)

.

(B.9)

This leads us to the optimization problem of Eq. (27) through
which we can find the σi j values.
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