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Abstract
Recent studies in network science and control have shown a meaningful relationship between the epidemic processes (e.g., 
COVID-19 spread) and some network properties. This paper studies how such network properties, namely clustering coef-
ficient and centrality measures (or node influence metrics), affect the spread of viruses and the growth of epidemics over 
scale-free networks. The results can be used to target individuals (the nodes in the network) to flatten the infection curve. 
This so-called flattening of the infection curve is to reduce the health service costs and burden to the authorities/govern-
ments. Our Monte-Carlo simulation results show that clustered networks are, in general, easier to flatten the infection curve, 
i.e., with the same connectivity and the same number of isolated individuals they result in more flattened curves. Moreover, 
distance-based centrality measures, which target the nodes based on their average network distance to other nodes (and not 
the node degrees), are better choices for targeting individuals for isolation/vaccination.

Keywords  Epidemic · Infection curve · Network clustering · Centrality

1  Introduction

Social distancing and individual isolation as the main (non-
pharmaceutical) strategy reduce the spread of epidemics in 
human interaction networks (Block et al. 2020). On the other 
hand, vaccination is known to be the key pharmaceutical 
intervention method to mitigate such pandemics (Block et al. 
2020). These strategies are proven to be effective in control-
ling the recent COVID-19 pandemic. Lockdowns and quar-
antines are adopted in many countries to reduce the spread 
of COVID-19, while, more recently, targeted vaccination has 
significantly lowered the number of infections and severe 

cases in some countries. One objective of such prevention 
methods is to reduce the burden on the healthcare system 
by decreasing the number of COVID-19 cases needed to be 
hospitalized. This helps to maintain the functioning of the 
healthcare systems via the so-called flattening the infection 
curve of COVID-19 (Block et al. 2020).

Recently, graph-based strategies have been widely used to 
control spread of information (or rumor), Cha et al. (2012) 
and contagious disease (Doostmohammadian et al. 2020) 
over social networks. Although for different purposes, the 
spreading procedure seems to be similar over the social net-
work, since both spread processes are closely tied to the 
structure of the network topology. On the other hand, some 
compartmental models formulate the epidemic processes 
based on Markov chain (Nowzari et al. 2016; Doostmoham-
madian et al. 2020; Ogura and Preciado 2017; Chen et al. 
2017), for example, SIS, SIR, SEIS, SEIR models among 
others. In this work, we are focused on the first case, i.e., 
the network structure, to prevent the disease spread over the 
network. This is typically done by either node removal (iso-
lation) or link removal (Pirani and Sundaram 2016). In this 
work, we use centrality measures and node influence metrics 
to find and isolate the key nodes in the social network for 
flattening the infection curve. Such isolation of a node in 
the network implies either (i) quarantine or (ii) vaccination 
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of that individual in the real-world, where in the latter case 
we assume that the vaccinated individual may not get re-
infected and/or silently transmit the disease as a carrier. In 
this direction, the outcomes of this work are two-fold: How 
targeted (i) vaccination, and/or (ii) social distancing may 
flatten the infection curve. In this direction, some topologi-
cal properties of the underlying network of individuals may 
affect the targeted isolation process and spread of epidemics.

Many graph properties of the social network, e.g., clus-
tering, are known to affect even its control features. For 
example, the (structural) controllability and observability of 
complex networks (Doostmohammadian and Rabiee 2020; 
Doostmohammadian and Khan 2020) and control of SIS epi-
demic process over the network (Doostmohammadian et al. 
2020) can be managed by the clustering and centrality coef-
ficients among other network characteristics. In this work, 
we investigate how these structural control measures can 
be used to flatten the infection curve and prevent the spread 
of the epidemic via simulation over some synthetic scale-
free networks. These graph topology attributes can help to 
understand the spreading pattern over the social network 
and, more importantly, to target the individuals for vaccina-
tion (and/or isolation). This is the main idea in this work 
and our results show meaningful relations between such 
network properties and the infection curve flattening below 
some thresholds, where the threshold represents the health-
care system capacity.

2 � Preliminaries and problem setup

2.1 � Social network models, clustering, and gamma 
distribution

Consider a human interaction network (or the social net-
work) as a graph in which nodes are individuals and links 
represent acquaintance relationships between those indi-
viduals. The most common network model capturing the 
structure of social networks is the scale-free (SF) network, 
addressing specific empirical social features such as (i) 
power-law degree distribution, and (ii) preferential-attach-
ment (PA). The first feature implies that in a social network 
few nodes (individuals), called network hubs, have consid-
erably more connections than others. Therefore, the node 
degrees, as the number of friends/neighbours/acquaintances, 
follow a heavy-tailed (or power-law) distribution, hence the 
name “scale-free” Barabási and Bonabeau (2003). This sim-
ply implies that the vast majority of individuals in a scale-
free social network have very few social connections, while 
a few important individuals (e.g., celebrities) have plenty 
of social connections. The latter PA feature in SF networks 
implies that an individual prefers to socially connect (or 
attach) to the network hubs more than others.

The two most famous algorithms to generate such SF 
networks are (i) Barabási-Albert (BA) (Barabási and 
Albert 1999), and (ii) Holme-Kim (HK) (Holme and Kim 
2002) model. The iterative growing procedure in both 
models are similar in terms of PA rule while differing in 
terms of clustering; a new node j is added to an existent 
network and makes m new links to the previous set of 
nodes, where the probability that node j links (attaches) 
to node i is proportional to its degree ki . The HK algo-
rithm follows a subtle difference; the new node j links 
to m0 < m existent nodes i and m1 = m − m0 direct neigh-
bours of nodes i, denoted by Ni , to make triads or clus-
ters. Therefore, the latter is also referred to as clustered 
scale-free (CSF) network (Toivonen et al. 2006). This triad 
formation is motivated by higher clustering in real social 
networks; in other words, based on the triad formation two 
neighboring (friend) nodes most probably have common 
neighbors (common friends) to represent highly clustered 
social networks.

The motivation behind CSF networks is to better capture 
the communities (Mishra et al. 2007) and high clustering 
(Toivonen et al. 2006) in social networks. Intuitively, clus-
ters or communities represent groups of individuals which 
are highly connected internally and sparsely connected 
externally. In this direction, the CSF model is more clustered 
than the SF model, implying that it is more probable that 
two connected individuals (or friends) share more common 
friends in the CSF model than the SF model. In fact, this 
shared friendship represents a triad formation in the network 
and the overall number of such triads directly affects the 
so-called clustering coefficient of the network. In general, 
the HK network has a larger clustering coefficient than the 
BA network with the same number of links (i.e., with equal 
m in the growing procedure). Recall that it is claimed that 
the generation of SF networks and the so-called preferential 
attachment mimics the generation of real social networks. 
For example, in CSF networks it is more probable that two 
neighbors (friends) have another common neighbor (a com-
mon friend).

Note that other features of the SF and CSF networks are 
similar and only their clustering coefficient differs. This 
is the main justification behind using synthetic networks 
instead of real networks. The existing real datasets and net-
works in general have different features (e.g., number of 
nodes, number of links, distribution of the node degrees) 
other than their clustering. This makes the analysis on real 
networks less meaningful as we only need to focus on the 
clustering feature of the networks while keeping the other 
main features similar.

Recall that there are two definitions for the global cluster-
ing coefficient (GCC). The first one ( GCC1 ) is defined as the 
average of the local clustering coefficient (denoted by Ci ) at 
all nodes. The local clustering at node i is,
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where the |Ni|(|Ni| − 1) is equal to the total number of pos-
sible links among neighbouring nodes in Ni (with | ⋅ | as the 
set cardinality). Then,

and the other one is defined as the probability that two 
adjacent links make a triad/triangle by adding a third link 
(denoted by GCC2 ) Wasserman and Faust (1994),

For the sake of comparison both coefficients can be used, 
i.e., if GCC2 is greater for a sample network G1 as compared 
with the network G2 , then GCC1 is also greater. In this work, 
as it is common in the literature, we use GCC2 for comparison 
and GCC1 gives the same comparison perspective.

It is known that the distance distribution (also known as 
the distribution of shortest path lengths) for an SF network 
follows a semi-Gamma distribution. Steinbock et al. (2017); 
Doostmohammadian et al. (2014); Nitzan et al. (2016).

The pdf of Gamma distribution is defined as,

where k > 0 is the shape parameter and 𝜃 > 0 is the scale 
parameter. Examples of Gamma distributions for different 
k, � are shown in Fig. 1.As it is clear from the figure, larger 
values of k, � imply flatter distribution over the range of pos-
sible values.

2.2 � Infection curve and network distance

Define the shortest path length between two nodes i and j 
as the minimum number of links to reach from node i to 
node j. This is also called the distance of the two nodes 
and, loosely speaking, it takes d steps on the network to 
connect node i to node j and vice versa. In this direction, 

(1)Ci = 2
Number of links among nodes in Ni

|Ni|(|Ni| − 1)

(2)GCC1 =

∑n

i=1
Ci

n

(3)GCC2 = 3
Number of triads

Number of triplets

(4)f (x) =
1

Γ(k)�k
xk−1 exp(−

x

�
)

node j is sometimes referred to as the d-hop neighbour (or 
distant neighbour) of node i, implying the distance d > 1 
of the two nodes. In the perspective of epidemics (e.g. 
the SI model or SIS model with high rate of infection), 
the distance d in a social network defines the number of 
infection steps to transfer the disease from the node (indi-
vidual) i to the node (individual) j and vice versa (Block 
et al. 2020). This simply means that a chain of contacts 
(represented as links) of at least d infected (or carrier) 
individuals may transmit the disease between two d-hop 
neighbours. Therefore, the number of d-hop neighbours 
represents the number of new infections caused by the 
source node i, and the distribution of network distances 
directly describes the so-called infection curve of social 
networks. This is better illustrated in Fig. 2(Right), where 
the nodes with the same color represent the nodes at the 
same distance to the infected (black) node. The infec-
tion curve is simply defined by the number of same color 
nodes. Foe example, 9 green nodes at the distance d = 4 
get infected after 3 individuals in between every green 
node and the black node are infected. Counting the number 
of individuals at distance d = 1, 2, 3,… to the infected node 
makes the infection curve as illustrated in Fig. 2.0 5 10 15
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Fig. 1   Gamma distributions (pdf) for different values of k and �
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Fig. 2   (Left) An example SF network modelling a social network 
with 50 nodes as individuals and links as their interactions. The 
black node represents a hypothetically unknown infected individual 
(source-node) and at each iteration (a certain amount of time) the 
disease spreads from infected nodes to their direct neighbours. The 
nodes of the same colour are at the same distance to the source node, 
implying that the virus reaches these nodes after the same number 
of iterations. In simple words, each bar of the infection curve his-
togram counts the number of infected nodes at the same distance to 
the source node. The distribution of the distances to the source-node, 
thus, represents the infection curve over the network which, as shown 
in the histogram, exceeds the hypothetical capacity of the healthcare 
system (dashed line). (Right) Isolating specific highly central nodes 
shown in red colour makes the distances (path lengths) to the (black) 
source node longer on average. This flattens the infection curve such 
that it falls below the healthcare capacity



	 Social Network Analysis and Mining (2023) 13:60

1 3

60  Page 4 of 8

2.3 � Node influence metrics and centrality measures

Recall that centrality measures and node influence metrics 
are quantities that rank the influence of different nodes 
or indicate their centrality in the network. Most common 
such quantities are described here.

2.3.1 � Degree

The most well-known centrality measure is the node 
degree, which represents the number of neighbours 
(friends) of a node (individual) in the (social) network.

2.3.2 � Betweenness

This centrality defines the influence of a node on the flow 
of entities based on the shortest paths in the network. For 
every node i its betweenness is defined as the number of 
shortest paths between different nodes that go through 
node i. A highly-central node, therefore, bridges the paths 
between many other nodes.

2.3.3 � Closeness

This is another distance-based centrality which defines 
how close a node i is to the rest of the nodes and is 
inversely proportional to the average of distances from 
node i to every other node j.

2.3.4 � Katz

As a generalization of node degrees, this centrality fur-
ther counts the number of distant neighbours by a factor 
� . Recall that a distant or d-hop neighbour is a node in 
distance d > 1 to node i. Intuitively, a highly-central node, 
not only has a high degree itself but is connected to high-
degree neighbours which also have their own high-degree 
neighbours and so on.

2.3.5 � PageRank

Similar to Katz centrality, this measure also relates to node 
degrees. However, it also evaluates the uniqueness of the 
links from the neighbours. In other words, a node i has 
high PageRank if its neighbours j are of high centrality, 
and further, node i is one of the few neighbours of the 
nodes j.

2.3.6 � Expected force

This entropy-based epidemiological measure counts the 
expected number of infection force after two influence 
transmissions with respect to node degrees.

In general, finding the centrality of the nodes requires 
global or local knowledge of the network. Some of these 
centrality measures can be defined locally (Liu et al. 2013; 
Doostmohammadian et al. 2014), while others need informa-
tion of the entire network topology.

2.4 � Problem statement

During a pandemic, the healthcare system can break down 
when the number of severely infected cases exceeds its 
serving capability. Therefore, epidemiologists propose pre-
ventive solutions and mitigation techniques to reduce the 
infection rate by flattening the infection curve, which refers 
to the strategies to slow down the spread of the epidemic. 
This helps to keep the peak number of infected individuals 
in the capacity range of the healthcare systems. This work 
aims to flatten the curve via targeted isolation strategies by 
cutting all the links of the isolated node (individual) to its 
neighbours. This either implies that the targeted individual is 
in quarantine (with no interaction with others) or vaccinated 
(is not a carrier node to transmit the virus).

Recall that for two networks with the same number of 
links, the network with a longer path length has a flatter 
infection curve. This means that the nodes (individuals) 
in one network are more distant due to its particular graph 
topology while having the same contact prevalence (number 
of links in the network). In this direction, we first compare 
the distance distribution in two key social network struc-
tures, the SF and CSF models via Monte-Carlo (MC) simu-
lations. This helps to understand the effect of clustering on 
the infection curve. Second, we study flattening the infection 
curve via targeted isolation to increase the nodes’ distances 
in the social network (see Fig. 2) via MC simulations. We 
particularly, choose the target nodes (individuals) based on 
their centrality or influence in the network, and compare the 
results for both SF and CSF models. In this direction, we 
study the parameters of the semi-Gamma function associated 
with the infection curve after isolating (removing) central 
nodes in both SF and CSF networks. This helps to under-
stand the role of different key central nodes for the epidemic 
spread over the network.

After target node removal/isolation the network may 
become islanded and partitioned into components. In our 
simulation we take care of this and avoid such situations. 
This is done by considering highly connected networks 
and isolating fewer nodes to avoid network disconnectiv-
ity. If the network changes into many components, one may 
consider the average distance in each component. In all our 
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simulations in this paper the network remains one connected 
component while we isolate the central nodes.

3 � Centrality‑based infection curve 
flattening

3.1 � Infection curve versus clustering coefficient

In this section, we first study how network clustering affects 
the infection curve (distance distributions) in SF networks 
via empirical MC simulation. We generate different CSF 
networks by changing the triad formation factor. Following 
the HK model, we generate networks for different values of 
m0 (where m0 = 0 represents the BA model). The empiri-
cal results are averaged over 100 MC trials and are shown 
in Fig. 3. The values of Gamma parameters and network 
diameter are shown for different network sizes. By increas-
ing m0 (and clustering coefficient) the network diameter is 
increased, with increasing K parameter and decreasing � 
parameter (in average).

Figure 3 shows how the change in clustering coefficient 
affects the distance distribution curves. For a larger change 
in the clustering coefficient, the Gamma parameters may 
change sharply. Following the examples given in Fig. 1 
and from the illustrations in Fig. 3, the infection curves for 
highly clustered networks are taller and narrower as com-
pared to the networks with lower clustering. Recall that in 
Fig. 3, each graph is given for the same number of links and 
the same number of nodes, which implies the same connec-
tivity and linking over the social network. Both definitions of 
the clustering coefficient can be used for the comparison in 
this section and the next section. It might be thought that it 

is more challenging to flatten the distance curves associated 
with highly clustered networks (due to their taller curves). 
However, as we will see in the coming sections, such net-
works give flatter outcome curves after isolating the same 
number of nodes.

3.2 � Monte–Carlo simulations for node isolation

In this section, we consider two scenarios to flatten the infec-
tion curve by removing some target nodes from the network. 
The nodes are ranked based on their influence metrics and 
centralities discussed in Sect. 2.3. The nodes with higher 
centralities are chosen as the target nodes.

Scenario 1: we isolate/remove 5% of the community 
based on their centrality ranking; in other words, top 5% 
nodes with high centrality measures are chosen as the target 
nodes. This simulation is done over the SF networks with 
a different number of triads (and clustering coefficients) of 
1000 nodes. 50 highly-central nodes are isolated and the 
distance distributions of the modified networks (after node 
isolation) are provided. We repeat this for 20 Monte-Carlo 
trials using the centrality measures in Sect. 2.3, and normal-
ize (take the average of) the distance distribution accord-
ingly. Figure 4 shows the change in the gamma distribution 
associated with the distances after (target) node isolation. As 
it is clear from the figures, the gamma distribution are flat-
tened for all networks while the change in highly-clustered 
networks is more significant. This implies that the targeted 
node isolation strategy more flattens the highly clustered 
CSF networks as compared to low-clustered SF networks.

Scenario 2: in this simulation, we consider a certain 
hypothetical capacity for the health-care system (or the 
threshold). We isolate/remove the highly central nodes 
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(based on different centrality measures) and the number 
of these target nodes are increased up to the point that the 
infection curve (distance distribution) goes below the given 
threshold of 0.5. We generating different SF and CSF net-
works of 1000 nodes with tuned clustering (as in the previ-
ous simulation) for 20 MC simulation trials, and isolate the 
same number of target nodes at all (highly-clustered and 
low-clustered) networks. The results are compared based on 
different centrality measures and clustering coefficient of the 
networks. As in the previous scenario, the infection curves 
before and after simulations are shown in Fig. 5 and clearly 
the infection curve flattening is more significant for highly 
clustered networks as compared to low clustered networks. 
For example the purple tall gamma distribution associated 
with high GCC CSF network is drastically flattened after 

isolating the same number of nodes (as compared to other 
three low-clustered networks).

3.3 � Simulations over real networks

A real social network of Sampson’s Monastery Data of 18 
individuals (nodes) and 26 social contacts (links) is con-
sidered (Network Data 2022). The network represents the 
social relations among a group of men (novices) who were 
preparing to join a monastic order. Infection starts from 
a randomly-chosen node and 4 central target nodes based 
on different centrality measures are isolated/removed. The 
infection curves before and after node isolation are shown in 
Fig. 6. For this example the clustering coefficient is 0.464. 
Note that the reason behind using synthetic networks is 
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Fig. 4   The infection curve (distance distribution) of 3 HK networks (with high GCC) and 1 BA network (with low GCC) before and after isola-
tion of 5% highly central nodes. The simulation is repeated using different centrality measures
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Fig. 5   The infection curve of the BA and HK (or CSF) networks 
before and after isolation to flatten the infection curves below some 
given threshold. This threshold represents healthcare system capacity. 

The title of the figure represents the measure chosen for the isolation 
of highly central nodes/individuals
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to tune this clustering coefficient while keeping the same 
number of nodes and links (and similar power-law degree 
distribution). This is not an option for real networks because 
for two different real networks many features other than the 
GCC change which may affect the infection curve flattening.

3.4 � Some discussions

One can observe based on the MC simulations that, for all 
centrality-based node isolation cases, the blue curve related 
to the BA model is over the other three curves related to 
the HK model. This implies that, in general, the centrality-
based node isolation strategy works (slightly) better on the 
highly-clustered networks in terms of flattening the infection 
curve. This is more clear from isolation based on the close-
ness centrality, which shows much better performance in 
flattening the highly clustered HK networks (in both Figs. 4 
and 5). Recall that closeness is a distance-based centrality, 
i.e., it relates to the average of the minimum shortest path 
length to the other nodes, while other centrality measures 
are mostly degree-based.

4 � Concluding remarks

Network pruning (with either node or link removal) Doost-
mohammadian and Rabiee (2020); Nomikos et al. (2017) 
can be used to tune properties of the network, e.g., the clus-
tering. In this work, we adopted the idea of network pruning 
to flatten the node distance distribution of the Scale-Free 
networks, resembling the idea of flattening the infection 
curve in social networks. Our comparative simulation results 
on both CSF and SF networks (resp. HK and BA models) 
show that the highly clustered CSF networks, although have 

narrow and tall infection curves, they become flatter after 
isolating the same number of nodes. For the simulations, 
we considered the same number of linking and connectiv-
ity in both HK and BA models. This implies that clustered 
social networks, although may show more positive cases in 
a shorter time period (i.e., narrower infection curves) before 
preventive measures, they end up with fewer cases over a 
longer period (flatter infection curves) after isolating few 
highly central individuals. Our results also show that these 
preventive measures even work better on CSF networks if 
the central nodes for isolation are chosen based on their net-
work distance to other nodes rather than their node degrees. 
These results may help the idea of flattening the curve to 
spreading the number of new cases over a longer period so 
that more people have better access to healthcare services

As future research simulating similar strategies over 
Small-World (SW) networks (Watts and Strogatz 1998) is 
a promising research direction. New strategies should be 
developed to tune the clustering coefficient while keeping 
the same number of links and network connectivity.
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