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Abstract

In social networks, a phenomenon termed the refutation mechanism
arises when certain users spontaneously counter negative information
based on their knowledge and experience. To the best of our knowl-
edge, this paper focuses on the influence blocking maximization under
the refutation mechanism for the first time. Specifically, incorporating
the refutation mechanism with the Competitive Independent Cascade
(CIC) model, we introduce the Refutation Competitive Independent Cas-
cade (RCIC) model, while also considering real-time delay. Under the
proposed model, we study the Joint Influence Blocking Maximization
(JIBM) problem. The objective of JIBM is to maximize the expected
number of nonnegatives by finding a set of positive seeds in a net-
work. We show that the problem is NP-hard. We present a scalable
approximation algorithm, named RR-JIBM, by making a non-trivial
adaptation of the generation process of reverse reachable sets. We prove
that the given algorithms achieve (1 − 1/e − ε)-approximation for
any ε > 0 for JIBM problem. An improved algorithm named RR-
JIBM+ is also proposed to improve the efficiency of RR-JIBM in reality.
Experiments on real-world social networks show that our algorithms
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outperform other intuitive baselines in reducing the number of nodes
influenced by negative seed nodes. Meanwhile, the RR-JIBM+ algorithm
has a higher efficiency advantage than RR-JIBM on different datasets.

Keywords: Influence blocking maximization, refutation mechanism,
competitive independent cascade model, reverse reachable set

1 Introduction

Online Social Networks (OSNs) such as Twitter, TikTok, Facebook, and Weibo
have become essential tools for individuals to express opinions and dissemi-
nate information. While OSNs facilitate the wide dissemination of trustworthy
information, they also promote the spread of rumors and other types of misin-
formation or negative information that can cause adverse social effects [1–7].
It is very necessary to find effective ways to block the spread of negative infor-
mation, such as rumors and crises, to ensure the credibility and stability of
online social networks.

Influence maximization is an important topic in social network research
and could provide practical implications to promote the spread of positive
behaviors and mitigate the circulation of rumors [8–17]. At present, existing
studies have discussed the problem of rumor blocking from different perspec-
tives: by removing a specific set of nodes from the network, the number of
nodes to which negative information can be propagated is minimized [18–22],
or removing some specific edges in the network to reduce the negative impact
of the negative information on other normal nodes in the network [23–27], or
selecting a specific seed set in the network to disseminate positive information
to other nodes to reduce the number of nodes affected by negative informa-
tion (which is called as influence blocking maximization problem) [28–31]. In
this paper, we primarily concentrate on the Influence Blocking Maximization
(IBM) problem. This problem involves the selection of a positive seed set,
which propagates beneficial information to counteract the dissemination of
negative information, ultimately minimizing the number of nodes affected by
the activation of negative information.

However, almost all previous work on IBM focuses on the positive infor-
mation propagation process from the selected positive seed nodes. In reality,
blocking misinformation may not only come from the initial selection of
positive seed users, but other users on the social network may also sponta-
neously refute misinformation and spread positive information to other users
based on their knowledge background and experience. This phenomenon is
called the refutation mechanism. For example, during the COVID-19 epi-
demic, a large amount of unconfirmed information was widely disseminated
on social networks, but some users confirmed and refuted the misinformation
and disseminated their positive views instead based on their knowledge and
experience. Together with professional organizations that publish fact-checked
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Fig. 1 An example of information spreading with refutation. N0 is a negative seed node,
P0 is a positive seed node, and R0 is the refuter. When R0 is negatively activated by a
negative node, it becomes a refuter and spread positive information to its neighbors.

information, these users act as a deterrent to the spread of misinformation.
These users who refute rumors play a vital role in the early blocking of mis-
information. However, this commonly seen phenomenon in OSNs is not well
studied in the literature related to influence blocking maximization. In this
paper, we incorporate the refutation mechanism into the competitive indepen-
dent cascade model for the first time and study the impact of the refutation
mechanism on the IBM problem.

We first combine the refutation mechanism with the Campaign-Oblivious
Independent Cascade Model (COICM), which is a competitive independent
cascade (CIC) model proposed in [28], to propose the Refutation Competitive
Independent Cascade (RCIC) model. Taking Fig. 1 as an example: when R0

is negatively activated by node N3, R0 becomes a refuter and propagates pos-
itive information to R1 and R2, which avoids R1 and R2 being influenced by
negative information. Then, we consider the Joint Influence Blocking Maxi-
mization (JIBM) problem, which is an extension of the IBM problem on the
RCIC model. The goal of the JIBM problem is choosing a positive seed set
with a size of at most k to maximize the joint influence blocking degree, which
is the number of nodes that are not activated by negative seed nodes (That is,
the non-red nodes in Fig. 1). We show that the JIBM problem is NP-hard and
the joint influence blocking degree is monotone and submodular, which makes
it possible to implement efficient approximation algorithms using the reverse
reachable (RR) set techniques [32, 33]. However, the complexity of our model
makes the process of generating the RR set different from previous work sig-
nificantly. The challenge of the JIBM problem is that we need to know which
nodes have become refutation nodes when generating the RR set. To solve the
problem, we make nontrivial adaptions to the generation of RR set, named
RRGen, by using a two-phase generation algorithm. The first phase is the for-
warding labeling phase for determining the refutation nodes, and the second
one is the reverse sampling phase to generate a RR set from a random root
node. Then, we design the approximation algorithm named RR-JIBM for the
JIBM problem based on RRGen algorithm. We show that our algorithms solve
the JIBM problem with an approximation ratio of (1− 1/e− ε) for any ε > 0.
To further improve the efficiency of RR-JIBM, we propose the RR-JIBM+
algorithm by adding a reverse BFS phase to the generation process of the RR
set, where a judgment is made on whether a reverse reachable set needs to be
generated for a certain random root node. Finally, we compare RR-JIBM with
the relevant baseline on real-world datasets. The experiments show that our
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RR-JIBM algorithms can effectively minimize the number of nodes influenced
by negative nodes. The RR-JIBM algorithm and the RR-JIBM+ algorithm
on different datasets show that RR-JIBM+ has a higher efficiency advantage.
The contributions of this paper are summarized as follows:

1. We combine the refutation mechanism with the CIC model for the first time
and propose the RCIC model. On the basis of this model, we study the JIBM
problem, whose goal is to maximize the expected number of nodes that are
not activated by negative seed nodes by finding positive seed nodes with a
size of at most k. We show that the JIBM problem is a NP-hard problem,
and the joint influence blocking degree is monotone and submodular.

2. We design a two-phase generation algorithm, named RRGen, to generate
the RR set in the RCIC model and propose the scalable approximation
algorithm named RR-JIBM for the JIBM problem with an (1 − 1/e − ε)-
approximation ratio for any ε > 0 respectively. The RR-JIBM+ algorithm is
proposed to further improve the efficiency of the generation of RR set. Then,
we compare them with other intuitive baselines on real-world social net-
works. The experiments show that our proposed algorithms can effectively
reduce the number of nodes activated by negative seed nodes compared to
the intuitive baselines and that RR-JIBM+ algorithm is more efficient than
the RR-JIBM.

The rest of the paper consists of the following sections. In Section 2, we
introduce the concept of the RCIC model and present the JIBM problem. In
section 3, we analyze the properties of the joint influence blocking degree and
design scalable algorithms for the JIBM problem. The experiment results are
analyzed in Section 4. Finally, we summarize this paper and discuss further
work in Section 5.

2 Diffusion Model and Problem Definition

In this section, we present the diffusion model used in this paper and propose
the problems we study.

An online social network is usually modeled using a directed graph, named
G = (V,E), where V represents the users in the social network and E rep-
resents the relationship between users. For each node v ∈ V , let N in(v) and
Nout(v) denote v’s in-neighbors and out-neighbors respectively. Moreover, we
also use n and m to represent V and E, respectively.

2.1 Diffusion Model

Budak et al. [28] proposed the COICM, which address the competitive infor-
mation propagation problem in a social network. In the COICM, a directed
graph G = (V,E) is used to represent social networks, where V is users in the
social network and E is relationship between users. The COICM contains both
positive and negative information cascade propagation processes from SP and
SN , respectively. The positive and negative propagation probability of the edge
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(u, v) ∈ E are equal, denoted as p(u, v). If a node is activated by positive infor-
mation, its state is positively active, while its state is positively active if the
node is activated by negative information, Otherwise, the state of the node is
inactive. A node does not change its state after it has been activated. At time
0, the nodes in SP are positively active while the nodes in SN are negatively
active. All other nodes are inactive. If a node u is activated by its neighbors
positively (negatively) at exactly time t, then for each inaction out-neighbor
node v it has one chance to activate a neighbor node with probability p(u, v)
at time t+ 1, In COICM, the positively active neighbors have higher priority,
that means when positively active and negatively active in-neighbors of v try
to activate v at a given time, v always activated by positive information. The
information propagation process terminates when no new nodes are activated
positively or negatively.

We now extend the COICM to incorporate the refutation mechanism. The
idea is that we allow every inactive node to have a single chance to refute the
negative information and spread positive information when it is first activated
by one of its negatively active neighbors. In detail, in our model, when a
node is activated by one of its negatively active neighbors at time t, it has
a single chance to determine whether it becomes a refuter. If it determines
to become a refuter, that means it will become a positively active node after
a random delay and spread positive information to its neighbors. In reality,
whether a node refutes the negative information is based on differences in the
nodes’ personality, knowledge background, and experience. Here, we simplify
the problem, the following set of parameters governs the refutation probability
of a node.

Definition 1. In graph G = (V,E), every node u ∈ V can be a refuter with
refutation probability q(u) when it is activated by one of its negatively active
neighbors. If so, it becomes positively active after a random delay δ(u) sampled
from a refutation delay distribution ∆ and spread the positive information to
its neighbors.

We further consider the real-time delay on edges based on the refutation
mechanism and obtain the refutation competitive independent cascade (RCIC)
model. That means that for each edge (u, v) ∈ E, there is a propagation delay
distribution D(u, v) corresponding to it. We also assume that the distributions
in both ∆ and D are continuous. Thus, at any time t, for any node u ∈ V , at
most one neighbor tries to activate it. Based on the above assumptions, the
information dissemination process in the RCIC model is as follows.

1. For nodes that do not belong in SN ∪ SP , if it is activated by one of its
positively active neighbors at time t, it becomes a positively active node at
time t.

2. For a node u that is not belong in SN ∪ SP , if it is activated by one of its
negatively active neighbors at time t, it becomes a negatively active node at
time t with probability 1− q(u). Otherwise, it becomes a positively active
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node after a random delay δ(u) ∼ ∆(u) and spread positive information to
its neighbors, unless it is activated by other positive active neighbors before
time t+ δ(u).

3. For a node u ∈ V that is activated at time t, for each of its inactive outgoing
neighbors v it has one chance to activate v with probability p(u, v) after a
delay d(u, v) ∼ D(u, v), unless v is activated by other neighbors before time
t+ d(u, v).

Compared with the classical competitive independent cascade model, our
RCIC model considers the refutation mechanism and the real-time delay in the
negative and positive information propagation process. The refutation mech-
anism models realistic scenarios where some users may refute the negative
information and spread positive information to others based on their knowl-
edge, experience, and personality. The refutation delay parameters model the
time difference between a user decides to refute negative information and dis-
seminates positive information to other nodes. Note that when the refutation
probabilities and refutation delays of all nodes are 0, and propagation delays
of all edges are 1, the RCIC model falls back to the classical COICM [28].

To derandomize the influence propagation process and facilitate a better
understanding of the RCIC model, we use possible world model similar with [34]
to describe the RCIC model. We say that a direct edge (u, v) ∈ E is live if u can
activate v through (u, v) when u is active. In the RCIC model, the randomness
of the influence propagation process comes from the following aspects: 1) the
states of the nodes, where each node u can be a refuter with probability q(u);
2) the refutation propagation delays of the refuters, which are drawn from the
refutation delay distribution ∆; 3) the states of the edges, where each edge
(u, v) ∈ E can be live with probability p(u, v); and 4) the propagation delays
of the edges, which are drawn from propagation delay distribution D. We use
W(p, q,D,∆) to denote the set of all possible worlds. To generate a possible
world W , we first sample every edge in (u, v) ∈ E with probability p(u, v) and
its corresponding propagation delay d(u, v) ∼ D(u, v) to generate a live graph
GW = (V,EW ). For each node u ∈ V , we sample a probability α(u) ∈ [0, 1] and
its corresponding refutation delay δ(u) ∼ ∆(u). If α(u) ≤ q(u), u is called a
candidate refutation node. A possible world W = (LW , CW , dW , δW ) sampled
from W with probability P [W |W] can be seen as a tuple where LW is the
set of live edges EW , CW is the set of candidate refutation nodes, dW is the
propagation delays of edges in LW , and δW is the refutation delays of the
candidate refutation nodes in AW .

We use F to represent that the source of the information a node receive
is from SN and that the information received is negative information, while T
to represent that the source of the information a node receive is from SN and
that the information is positive information. In possible world W , for a node
u, let TW (SN , u, F ) (TW (SP , u)) present the length of the shortest path from
any negative (positive) seed to u consisting of entirely negatively (positively)
active nodes, and TW (SN , u, T ) represent the length of the shortest path from
any negative seed to u consisting of at least one positively active node. At
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time 0, propagation starts from SN and SP and follows the direction of the
live edges. For each step t > 0, an inactive node u is reachable by negative
information if TW (SN , u, F ) = t. The node u then becomes a positively active
node at time t+ δ(u) if u is a candidate refutation node and if not, u becomes
a negatively active node at time t. Similarly, an inactive node u is reachable
by positive information if min(TW (SP , u), TW (SN , u, T )) = t, and u becomes
positively active at time t.

2.2 Joint Influence Blocking Maximization Problem

Next, we propose Joint Influence Blocking Maximization (JIBM) problem,
which is an extrapolation of the IBM problem on the RCIC model. The objec-
tive function of the problem is to choose a specific set of positive seeds in the
RCIC model to propagate positive information so that the number of nodes
that are not activated by negative seed nodes is maximized.

Given the negative seed set SN , for a specific possible world W , let
σW (SP , SN ) represent the number of nodes are not negatively active when SP

is the positive seed set in W . Let σW (SP , SN , u) = 1 if u is not negatively
active in W , σW (SP , SN ) can be further expressed as

∑
u∈V σW (SP , SN , u).

We call σ(SP , SN ) = EW∼W [σW (SP , SN )] the joint influence blocking degree,
which is the expected number of nodes are not negatively active when SP is
the positive seed set under the RCIC model. Because we always use SN to rep-
resent the negative seed set, so SN will be omitted from σ(SP , SN ). Finally,
σ(SP ) can be calculated using the following formula:

σ(SP ) =
∑

u∈V

∑

W∼W

P [W |W]σW (SP , u) (1)

The objective function of the JIBM problem is to choose a positive seed
set SP of size at most k such that σ(SP ) is maximized.

Definition 1 (Joint Influence Blocking Maximization Problem). Given a
directed graph G = (V,E), the negative seed set SN , the refutation probability
q of nodes, the refutation delay distribution ∆ of nodes, the propagation prob-
ability p of edges, the propagation delay distribution D of edges, and the size
of positive seeds to be selected k, the Joint Influence Blocking Maximization
(JIBM) problem aims to find an optimal positive seed set S∗

P of size at most
k, such that σ(S∗

P ) is maximized, i.e., S∗
P = argmaxS P≤k

σ(SP ).

The difference between the classical IBM problem [29] and our JIBM
problem is that the JIBM problem considers the refutation nodes’ role when
selecting positive seed nodes. Because the nodes activated by refutation nodes
do not need to be activated by positive seed nodes again. In this problem,
in a fixed possible world, refutation nodes can make some nodes unaffected
by negative information. Therefore, we use the term ”joint” to specify that
the refutation nodes and the selected positive seed nodes play a joint role in
blocking the spread of negative information.
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As mentioned above, when setting both the refutation probability and the
refutation delay of each node to 0 and setting both the propagation delay on
the edges to 1, the RCIC model falls back to the COICM. In this case, the
JIBM problem and the IBM problem are equivalent, so the JIBM problem is
NP-hard, as the IBM problem is NP-hard under the COICM.

3 Scalable Algorithm Design

In this section, we first show that the joint influence blocking degree satisfies
the properties of monotone and submodular, which are crucial for the design
of our algorithm. Then, we develop scalable algorithms for the JIBM problem.

Lemma 1. σ(SP ) is monotone submodular for SP under the RCIC model.

Proof For a set function f : 2V → R, given any subset V1 and V2 of V and satisfying
V1 ⊆ V2 ⊆ V , for any v ∈ V \V2, if f(V1∪{v})−f(V1) ≥ f(V2∪{v})−f(V2), we say
that f is submodular. While f is monotone if f(V1) ≤ f(V2) for any V1 ⊆ V2 ⊆ V .
According to the above definition, given a positive seed set SP and a possible world
W , because TW (SP , u) represent the shortest distance between SP and u, when
we select more nodes to add to SP , TW (SP , u) does not increase. So when more
nodes are selected to join SP , σW (SP ) does not increase. So σ(SP ) is monotone.
Now we prove the submodularity. For any two positive seed set S1 and S2 selected
from V and satisfying S1 ⊆ S2 ⊆ V , for any v ∈ V \ S2, we need to prove
σW (S1 ∪ {v}, u) − σW (S1, u) = 1 when σW (S2 ∪ {v}, u) − σW (S2, u) = 1. When
σW (S2, u) = 0, u is negatively activated by SN , which means TW (SN , u, F ) <

min(TW (S2, u), TW (SN , u, T )). Meanwhile, σW (S2 ∪ {v}, u) = 1 means that when
we add v to S2, TW (S2 ∪ {v}, u) < TW (SN , u, F ). Therefore, TW ({v}, u) <

TW (SN , u, F ) and consequently σW (S1 ∪ {v}, u) = 1. Furthermore, σW (S1, u) = 0
because S1 ⊆ S2 and σW (S2, u) = 0. So σW (S1 ∪ {v}, u)− σW (S1, u) = 1 is proved.
So σW (S1, u) is monotone submodular. According to 1, σ(SP ) also monotone sub-
modular. □

3.1 RR-JIBM

Based on the monotone submodular property and the reverse reachable set
technique, we can design efficient approximation algorithms for the JIBM
problem.

Definition 2 (Reverse Reachable Set). A reverse reachable (RR) set [33] R(u)
is the set of nodes that can be reached by reverse sampling from the root node
u. Given a possible world W , the reverse reachable set rooted at RW (u) is the
set of nodes that can reach u in W . We use R (RW ) to represent a random
RR set if the root node of R (RW ) is selected at random from V .

For a node set S ⊆ V and a random RR set R, let x(S,R) be a indicator
function and x(S,R) = 1 iff the root node of R is not negatively active. We can
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Algorithm 1 Forward labeling phase

1: Input: G = (V,E), q, ∆, p, D, SN , root node r
2: Output: The state of root node r
3: Q← SN ;
4: for v ∈ V do

5: delay[v]← +∞;
6: state[v]← inactive;
7: end for

8: for v ∈ SN do

9: delay[v]← 0; state[v]← negative;
10: end for

11: while Q ̸= ∅ do
12: w ← argminw′∈Qdelay[w

′];
13: if state[w] = shadow then

14: state[w]← positive; ▷ label w as a refuter
15: end if

16: if state[w] = negative ∧ w /∈ SN ∧ w is refuted with probability q(w)
then

17: state[w]← shadow;
18: delay[w]← delay[w] + δ(w);
19: continue;
20: end if

21: delete w from Q;
22: for v ∈ Nout[w] do
23: if state[w] = negative ∧ state[v] = shadow then

24: continue;
25: end if

26: if (w, v) is none then

27: label (w, v) as live in probability p(w, v), otherwise blocked;
28: end if

29: if (w, v) is live then

30: insert v into Q if delay[v] = +∞;
31: if d(w, v) + delay[w] < delay[v] then
32: delay[v]← delay[w] + d(w, v);
33: state[v]← state[w];
34: end if

35: end if

36: end for

37: end while

38: return state[r];

obtain the following connection between the joint influence blocking degree
σ(SP ) and the random RR set R.

Lemma 2. σ(SP ) = n ∗ EW∈W [x(S,RW )].
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Proof Let g(S,RW , u) be a indicator function and g(S,RW , u) = 1 if u is the root
node of RW and x(S,RW ) = 1. It is clear that g(S,RW , u) = 1 iff σW (S, u) = 1, so,
we have the following formula:

EW∈W [x(S,RW )] =
1

n

∑

u∈V

EW [g(S,RW , u)]

=
1

n

∑

u∈V

EW [σW (S, u))]

=
1

n
σ(S)

(2)

□

To generate the RR set, we design a novel sampling process that conceptu-
ally organized in three phases. The first phase samples a possible worldW from
W. The second phase is a forward labeling phase starting from the negative
seed nodes, which determines refutation nodes from candidate refutation nodes
by running a Dijkstra algorithm following the outgoing edges. The last phase
is a reverse sampling phase starting from a random root node r, which gener-
ates an RR set from a random root node r by running the backward Dijkstra
algorithm following the incoming edges. However, sampling the entire possible
world is not necessary because the propagation of positive and negative infor-
mation is unlikely to reach the entire graph. In light of this observation, we
do not need to generate the entire possible world in the first phase. Instead,
we only need to reveal the state of an edge or node when that edge or node
is visited for the first time during the forward labeling phase and the reverse
sampling phase.

Forward labeling phase

Algorithm 1 shows that the forward labeling phase. The main idea is that
we introduce the novel shadow state for all nodes u ∈ V to represent the
intermediate state after a node decides to refute negative information and
before the node propagates positive information to other neighbors. We use
state[u] represent the state of u and delay[u] is represented as the shortest
delay from negative seed nodes to node u. During forward labeling procedure,
we use the Dijkstra algorithm to always select the node w with the shortest
delay in the current set of candidate nodesQ (line 12). At this point, if the state
of w is shadow, w will become positively active (line 14). If w is a negatively
active node, and it determines to refute negative information (line 16) with
probability q(w), we first update state[w] to shadow. Then, we sample the
refutation delay δ(w), update delay[w] and select the next candidate node.
Otherwise, we visit all live outgoing edge (w, v) with edge delay d(w, v), and
do updates for delay[v] and state[v].

Reverse sampling phase

Algorithm 2 shows that the generation of RR set. After the forward labeling
phase, we first check the state of the root node r. We do not need to generate
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RR set for the root node if its state is not negatively active. This includes two
cases, one that the refuters positively activate the root node, or that the root
node is inactive. In both cases, we do not need to select a seed node to cover it.
In this situation, we return ∅ as the RR set of r. If the state of r is negatively
active, we apply the Dijkstra algorithm for incoming edges and generate a RR
set. In this algorithm, we use delay[u] to represent the delay from the random
root node r to node u. In the process of generating the RR set, we always select
the node w with the shortest delay from the candidate node set Q. We insert
node w into R if w is not a negative seed node. For each incoming edge (v, w)
of w, if the edge is not determined to be live or blocked, we first determine
the state of the edge. If the edge is live, we update delay[v] with edge delay
d(v, w). The procedure ends when a negative seed node is reached, and the set
R is the RR set for the root node r.

The IMM algorithm [33] is a classical and effective algorithm to solve the
influence maximization problem. In this paper, We adjust the IMM algorithm
to solve the JIBM problem and get Algorithm 3. In Phase 1, we first calculate
the lower bound and calculate the number of RR sets according to the lower
bound to ensure high probability approximation. We generate random RR
sets R according to the algorithm introduced above. In Phase 2, the greedy
algorithm NodeSelection proposed in [33] is used to find at most k positive
seed nodes that cover as many RR set in R as possible. Algorithm 3 differs
from the IMM algorithm in that R only contains the RR set generated from
the negatively activated root nodes. We use protected to denote the number of
RR sets that ∅. By Eq. 2, σ(SP ) can be estimated as n times the fraction of
RR sets that their root node is not negatively active. After selecting a positive
seed node set, the fraction can be calculated as FR(S):

FR(SP ) =
protected+

∑
R∈R I(SP ∩R ̸= ∅)

protected+ |R| . (3)

As described in [33], IMM algorithm returns an (1−1/e−ε)-approximation

ratio with at least 1 − 1
nℓ probability and runs in O( (k+ℓ)(n+m) logn

ε2
· EPT
OPT

)
expected time, where O(EPT ) is the expected time for generating a random
RR set. The big difference between IMM algorithm and RR-JIBM algorithm
is the complexity of generating RRset. Our RR-JIBM algorithm need a two
phase algorithm to generate the RRset, so the expected time for generating a
random RR set is the sum of the expect time of each phase. So, we have the
following theorem.

Theorem 1. Let S∗
P be the optimal positive seed nodes of the JIBM problem,

For every ε > 0 and ℓ > 0, with probability at least 1 − 1
nℓ , the positive seed

nodes So
P selected by Algorithm 3 satisfies

σ(So
P ) ≥ (1− 1

e
− ε)σ(S∗

P ).
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Algorithm 2 RRGen for JIBM problem

1: Input: G = (V,E), q, ∆, p, D, SN , root node r
2: Output: RR set R
3: state← Algorithm 1; ▷ forward labeling phase
4: if state ̸= negative then

5: return ∅; ▷ reverse sampling phase
6: end if

7: R← ∅;
8: Q← {r};
9: for u ∈ V do

10: delay[u]← +∞;
11: end for

12: delay[r]← 0;
13: while Q ̸= ∅ do
14: w ← argminw′∈Qdelay[w

′];
15: if w ∈ SN then

16: break;
17: end if

18: delete w from Q;
19: R← R ∪ {w};
20: for v ∈ N in[w] do
21: if (v, w) is none then

22: label edge (v, w) as live with probability p(v, w), otherwise
blocked;

23: end if

24: if (v, w) is live then

25: insert v into Q if delay[v] = +∞;
26: if d(v, w) + delay[w] < delay[v] then
27: delay[v]← d(v, w) + delay[w];
28: end if

29: end if

30: end for

31: end while

32: return R;

In this case, the expected running time for Algorithm 3 is O( (k+ℓ)(n+m) logn

OPTε2
·

(EPTF + EPTB)), where EPTF and EPTB is the expected time in forward
labeling phase and reverse sampling phase respectively.

3.2 RR-JIBM+

Algorithm 2 may incur redundant computations when the forward labeling
phase and the reverse sampling phase can be skipped entirely if the root node
and the negative seed nodes are in different connected components. In this
case, the negative seed nodes cannot affect the root node. To take advantage of
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Algorithm 3 RR-JIBM

1: Intput: G = (V,E), q, ∆, p, D, k, SN , ε, ℓ
2: Output: positive seed set S
3: R ← ∅; LB ← 0; ε′ ←

√
2ε; protected← 0;

4: find γ that satisfies ⌈λ∗(ℓ)⌉/nγ+ℓ ≤ 1/nℓ; ▷ Workaround 2 in [35]
5: ℓ← ln 2/ lnn+ ℓ+ γ;
6: for j = 1 to log2(n− 1) do
7: zj ← n/2j ; θj ← λ′/zj ;
8: while |R|+ protected < θj do

9: randomly select a node from V as the root node r;
10: generate the RR set R from r using Algorithm 2;
11: if R ̸= ∅ then
12: insert R into R;
13: else

14: protected← protected+ 1;
15: end if

16: end while

17: Sj ← NodeSelection(R, k);
18: if n · FR(Sj) ≥ (1 + ε′) · zj then

19: LB ← n · FR(Sj)/(1 + ε′);
20: break;
21: end if

22: end for

23: θ ← λ∗(ℓ)/LB;
24: while |R|+ protected ≤ θ do

25: randomly select a node from V as the root node r;
26: generate the RR set R from r using Algorithm 2;
27: if R ̸= ∅ then
28: insert R into R;
29: else

30: protected← protected+ 1;
31: end if

32: end while

33: S ← NodeSelection(R, k);
34: return S;

this observation, we propose Algorithm 4 to further improve the computation
efficiency. The critical thought is to run a reverse BFS starting from the random
root node r to determine whether the negative seed nodes can influence r. We
can skip the forward labeling phase and reverse sampling phase entirely if the
root node r cannot be influenced by the negative seed nodes. If we need to
perform the forward labeling phase and reverse sampling phase, we only need
to consider the live edges visited in the reverse BFS phase.
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Backward BFS phase.

In this phase, we use a FIFO queue Q to store the nodes that will be visited
in the future. We first enqueue the root node r into Q. Then we dequeue a
node w from Q and test the live/blocked status for each incoming edge (v, w)
independently by its propagation probability p(v, w) independently. If the state
of edge (v, w) is live and node v has not been reached before, we enqueue v into
Q. Let U represent the nodes explored in this phase. If U∩SN = ∅, that means
that no negative information can be propagated from negative seed nodes to
root node r, so that the forward labeling phase and reverse sampling phase
can be entirely skipped. Otherwise, we run Algorithm 2 only from U ∩ SN ,
along the explored live edges.

By replacing Algorithm 2 in Algorithm 3 with Algorithm 4, we can obtain
the RR-JIBM+ algorithm, where we omit the pseudocode of the algorithm.
These two algorithms have the same approximation guarantee. The analysis
on expected time complexity is similar. Because the expected time for generat-
ing a random RR set is the sum of the expect time of each phase, the expected

running time for the RR-JIBM+ algorithm is O( (k+ℓ)(n+m) logn

OPTε2
· (EPTB1 +

EPTF1 + EPTB2)), where EPTB1 and EPTB2 is the expected time of back-
ward BFS phase and reverse sampling phase respectively, and EPTF1 is the
expected time of forward labeling phase.

Algorithm 4 RRGen+ for JIBM problem

1: Input: G = (V,E), q, ∆, p, D, SN , root node r
2: Output: RR set R
3: Q← {r};
4: U ← ∅;
5: while Q ̸= ∅ do
6: dequeue w from Q;
7: for v ∈ N in[w] do
8: if (v, w) is none then

9: label (v, w) as live with probability p(v, w), otherwise blocked;
10: end if

11: if (v, w) is live ∧ v is not visited then

12: enqueue v into Q;
13: U ← U ∪ {v}; ▷ label v visited
14: end if

15: end for

16: end while

17: R← ∅;
18: if U ∩ SN ̸= ∅ then
19: R← Algorithm 2 with negative seed set U ∩ SN ;
20: end if

21: return R;
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It should be noted that there is no theoretical guarantee that the RR-
JIBM+ algorithm will always save time compared to the RR-JIBM algorithm.
The worst case of Algorithm 4 used in RR-JIBM+ is that U ∩ SN = SN ,
which means that the reverse BFS phase is wasted. In this case, the RR-
JIBM+ algorithm will be worse than the RR-JIBM. But if the negative seed
node is not able to affect the randomly selected root node, then RR-JIBM+ is
better, because in this case the simple BFS is better than the complex Dijkstra
algorithm.
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Fig. 2 The number of negatively active nodes for different algorithms in different cases

4 Empirical Evaluation

To evaluate the effectiveness and efficiency of our algorithm, we conducted
experiments on three real-world networks. All experiments are carried out on
a computer running Ubuntu 20.04 under Intel Xeon Platinum 8176 Processor
and 62G memory. All experiments code is written in C++ and compiled with
clang++ with -O2.

4.1 Experiment setting

We describe the datasets, algorithms, and parameter settings in our experi-
ments.
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4.1.1 Datasets

We use the following three datasets. wiki, Hepp, and stanford. They all come
from SNAP 1. The statistical information for datasets is given in Table 1.

4.1.2 Algorithms

We test our RR-JIBM algorithm and RR-JIBM+ algorithm with the following
baselines.

• Random: selecting nodes at random as positive seed nodes.
• Degree: selecting the k nodes with the greatest degrees as positive seed
nodes.

• Proximity: selecting the k nodes with the greatest negative activation prob-
ability among the out-neighbors of the negative seed nodes as positive seed
nodes.

• CIMM: similar with Algorithm described in [36], find the positive seed
nodes on competitive independent cascade model without refutation mech-
anism.

Table 1 Dataset description

Dataset Node Edge Avg out-Degree Max out-Degree

wiki 7K 103K 14.5 893
Hepp 34K 421K 12.2 411

stanford 281K 2M 8.2 255

4.1.3 Parameters

The negative seed nodes are the 25 nodes with the highest degree, and we test
positive seed nodes sizes of 5,10,15,20, and 25. We use the same parameters
setting for RR-JIBM and RR-JIBM+ algorithms: ℓ = 1, ε = 0.1. For the
datasets we use, the parameters cannot be estimated, so we use synthetic
settings. For the propagation probabilities, we follow WC model [9]: q(u, v) =
1/Nˆ–in˝[v] for edge (u, v) ∈ E. We first choose a random value c(v) from
{0.1, 0.05, 0.01} as the base value of the refutation probability q(v) of node v.
To consider various scenarios of refutation probability, we further consider the
following three cases:

1. Case 1: q(v) = c(v).
2. Case 2: q(v) = min{βc(v)Nˆ–out˝[v], 1}, where β is a constant value and

β = 0.01 in all experiments. This means q(v) is positively correlated with
v’s out-degree Nˆ–out˝[v].

3. Case 3: q(v) = c(v)/Nˆ–out˝[v]. If v’s out-degree is 0 we set q(v) = 0. This
means q(v) is negatively correlated with v’s out-degree Nˆ–out˝[v].

1http://snap.stanford.edu/data/index.html
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Fig. 3 Running time of RR-JIBM and RR-JIBM+ in different cases

For refutation delays and propagation delays, we use exponential distribution
with rate 1 for all nodes and edges.

4.2 Experiment results

We evaluate our algorithms from two metrics: blocking nodes and running
time.

4.2.1 Influence Blocking

As we can see in Fig. 2, our algorithms significantly outperform other intuitive
baselines in all cases across various datasets. Furthermore, the advantage of our
algorithm becomes increasingly apparent as k increases, as demonstrated on
the Hepp and stanford datasets. For CIMM algorithms that do not consider the
refutation mechanism, they are in most cases worse than those that consider
the refutation mechanism. This is because after considering the refutation
nodes, those nodes that will be activated by the refutation nodes do not need to
select additional seed nodes. In case 3 of each dataset, the gap between CIMM
and the other considered refutation mechanism is smaller than the other cases,
because in this case, the refutation probability of nodes with larger degree will
be smaller than that of nodes with smaller degree, which is reflected in the
experiment that the effect of refutation is weaker than the other two cases.
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4.2.2 Running Time

We compared the efficiency of the RR-JIBM and RR-JIBM+ algorithms in
different cases. As shown in Figure 3, running time increases with the number
of selected seed nodes increases, and RR-JIBM+ algorithm outperforms RR-
JIBM algorithm in almost all situations. This is because if the selected root
node and the negative seed node are not connected, then it is much faster
to determine whether they are connected by a reverse BFS than to simulate
information propagation using the Dijkstra algorithm. Furthermore, as the
number of seed nodes increases, the gap between the two gradually becomes
larger.

5 Conclusion and Future Work

This paper studies the influence blocking maximization problem named the
JIBM problem under a competitive independent cascade model that incorpo-
rates a refutation mechanism. We design the scalable approximation algorithm
RR-JIBM based on a reverse reachable set and propose RR-JIBM+ based on
the new generation strategy. Experiments on several real datasets show that
the effectiveness and efficiency of proposed algorithms. Our model is designed
for information maximization with a refutation mechanism. However, infor-
mation propagation in networks can be further considered for more complex
situations, such as the propagation of positive messages that may also turn into
negative messages during message propagation, which can be considered in
future studies. Finally, incorporating refutation mechanisms into other rumor-
blocking tasks or influence propagation models and designing more efficient
algorithms still need to be determined as future work.
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dismantling. Proceedings of the National Academy of Sciences 113(44),
12368–12373 (2016)

[16] Mugisha, S., Zhou, H.-J.: Identifying optimal targets of network attack
by belief propagation. Phys. Rev. E 94, 012305 (2016)

[17] Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stan-
ley, H.E., Makse, H.A.: Identification of influential spreaders in complex
networks. Nature Physics 6(11), 888–893 (2010)

[18] Wang, B., Chen, G., Fu, L., Song, L., Wang, X.: Drimux: Dynamic rumor
influence minimization with user experience in social networks. IEEE
Transactions on Knowledge and Data Engineering (2017)

[19] Yan, R., Li, D., Wu, W., Du, D.Z.: Minimizing influence of rumors by
blockers on social networks. In: CSoNet (2018)

[20] Yan, R., Li, D., Wu, W., Du, D.Z., Wang, Y.: Minimizing influence of
rumors by blockers on social networks: Algorithms and analysis. IEEE
Transactions on Network Science and Engineering (2020)

[21] Yao, Q., Guo, L.: Minimizing the social influence from a topic modeling
perspective. In: ICDS (2015)

[22] Yao, Q., Shi, R., Zhou, C., Wang, P., Guo, L.: Topic-aware social influence
minimization. Proceedings of the 24th International Conference on World
Wide Web (2015)

[23] Kimura, Masahiro and Saito, Kazumi and Motoda, Hiroshi: Minimizing
the spread of contamination by blocking links in a network. In: Proceed-
ings of the 23rd National Conference on Artificial Intelligence - Volume 2
(2008)

[24] Masahiro Kimura and Kazumi Saito and Hiroshi Motoda: Blocking links
to minimize contamination spread in a social network. ACM Trans.



Springer Nature 2021 LATEX template

Influence Blocking Maximization Under Refutation 21

Knowl. Discov. Data (2009)

[25] Medya, S., da Silva, A.L., Singh, A.K.: Approximate algorithms for data-
driven influence limitation. IEEE Transactions on Knowledge and Data
Engineering (2020)

[26] Yao, Q., Zhou, C., Xiang, L., Cao, Y., Guo, L.: Minimizing the negative
influence by blocking links in social networks. In: ISCTCS (2014)

[27] Zhu, J., Ni, P., Wang, G.: Activity minimization of misinformation influ-
ence in online social networks. IEEE Transactions on Computational
Social Systems (2020)

[28] Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misin-
formation in social networks. In: Proceedings of the 20th International
Conference on World Wide Web (2011)

[29] He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization
in social networks under the competitive linear threshold model. In: SDM
(2012)

[30] Tong, G., Du, D.-Z.: Beyond uniform reverse sampling: A hybrid sampling
technique for misinformation prevention. (2019)

[31] Wu, P., Pan, L.: Scalable influence blocking maximization in social
networks under competitive independent cascade models. Computer
Networks (2017)

[32] Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influ-
ence in nearly optimal time. In: Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (2014)

[33] Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time:
A martingale approach. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015)

[34] Lu, W., Chen, W., Lakshmanan, L.V.S.: From competition to comple-
mentarity: Comparative influence diffusion and maximization (2015)

[35] Chen, W.: An issue in the martingale analysis of the influence maxi-
mization algorithm imm. In: Computational Data and Social Networks
(2018)

[36] Tong, G., Wu, W., Guo, L., Li, D., Liu, C., Liu, B., Du, D.-Z.: An efficient
randomized algorithm for rumor blocking in online social networks. IEEE
Transactions on Network Science and Engineering 7(2), 845–854 (2020)


	Introduction
	Diffusion Model and Problem Definition
	Diffusion Model
	Joint Influence Blocking Maximization Problem

	Scalable Algorithm Design
	RR-JIBM
	Forward labeling phase
	Reverse sampling phase


	RR-JIBM+
	Backward BFS phase.


	Empirical Evaluation
	Experiment setting
	Datasets
	Algorithms
	Parameters

	Experiment results
	Influence Blocking
	Running Time


	Conclusion and Future Work

