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Abstract

Graphs are a powerful tool for representing structured and relational data in
various domains, including social networks, knowledge graphs, and molecular
structures. Semi-supervised learning on graphs has emerged as a promising
approach to address real-world challenges and applications. In this paper, we
propose an uncertainty-aware pseudo-label selection framework for promoting
diversity learning in recommendation systems. Our approach harnesses the power
of semi-supervised Graph Neural Networks (GNNs), utilizing both labeled and
unlabeled data, to address data sparsity issues often encountered in real-world
recommendation scenarios. Pseudo-labeling, a prevalent semi-supervised method,
combats label scarcity by enhancing the training set with high-confidence pseudo-
labels for unlabeled nodes, enabling self-training cycles for supervised models.
By incorporating pseudo-labels selected based on the model’s uncertainty, our
framework is designed to improve the model’s generalization and foster diverse
recommendations. The main contributions of this paper include introducing the
uncertainty-aware pseudo-label selection framework, providing a comprehensive
description of the framework, and presenting an experimental evaluation com-
paring its performance against baseline methods in terms of recommendation
quality and diversity. Our proposed method demonstrates the effectiveness of
uncertainty-aware pseudo-label selection in enhancing the diversity of recommen-
dation systems and delivering a more engaging, personalized, and diverse set of
suggestions for users.

Keywords: recommendation systems, uncertainty-aware pseudo-label selection,
diversity recommendation.
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1 Introduction

Graphs function as a universal language for representing structured and relational
data, including social networks, knowledge graphs, and Molecules as graphs. Extract-
ing information and learning from graphs can provide valuable insights for numerous
real-world issues and applications [1, 2]. This study concentrates on the challenge of
semi-supervised learning on graphs [3, 4], which seeks to categorize unlabeled nodes
in a given graph using only a small fraction of labeled nodes. Graph neural networks
(GNNs) have recently gained prominence as potent methods among the available
solutions. GNNs primarily rely on a deterministic feature propagation mechanism to
develop expressive node representations [5–7].

Recommendation systems have become an essential component of various online
platforms, including e-commerce websites, social networks, and streaming services.
These systems aim to provide personalized suggestions to users, enhancing their expe-
rience and engagement on the platforms. However, a common challenge faced by
recommendation systems is the trade-off between accuracy [8] and diversity [9]. While
many algorithms focus on maximizing accuracy [10], diverse recommendations are
essential to cater to users’ evolving preferences, avoid filter bubbles, and promote
long-tail items [11, 12].

In this paper, we propose an uncertainty-aware pseudo-label selection framework
that promotes diversity learning in recommendation systems. Our approach leverages
semi-supervised learning, a technique that utilizes both labeled and unlabeled data,
to address the data sparsity issue often encountered in real-world recommendation
scenarios. By incorporating pseudo-labels selected based on the model’s uncertainty,
our framework is designed to improve the model’s generalization and foster diverse
recommendations.

The main contributions of this paper are as follows: (1) We introduce an
uncertainty-aware pseudo-label selection framework for promoting diversity learning
in recommendation systems, (2) We present an experimental evaluation of our pro-
posed method, comparing its performance against baseline methods in terms of both
recommendation quality and diversity.

By demonstrating the effectiveness of our uncertainty-aware pseudo-label selection
framework, we hope to contribute to the ongoing efforts to improve the diversity of
recommendation systems and provide users with a more engaging, personalized, and
diverse set of suggestions.

2 Related Work

2.1 GNN for Diversified Recommendation

To promote diversity in recommender systems, the retrieved items should cover a
wide range of topics, such as various product categories or music genres [13] . This
requires the user embeddings generated by GNNs to be close to item embeddings
with diverse topics[14]. However, the embedding aggregation operation in GNNs can
result in user embeddings that are similar to the embeddings of items with which
users have previously interacted [15]. This similarity can potentially hinder diversity
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by predominantly recommending items that belong to the dominant topic in users’
interaction history [14]. For instance, if a user primarily interacts with electronics, a
GNN-generated embedding may be too close to electronic item embeddings, resulting
in the system only recommending electronics and leading to low diversity [16].

To address the challenge of weak signals from less prevalent topics, researchers
have explored ways to limit the impact of dominant topics by constructing diversi-
fied sub-graphs from the original user-item bipartite graph. Sun et al. [17] propose
a model called Bayesian Graph Collaborative Filtering (BGCF), which creates aug-
mented graphs using node copying [18] from high-order neighbors, allowing items of
diverse topics with high similarity to be directly connected to user nodes. Zheng et al.
[19] propose Diversified Graph Convolutional Networks (DGCN) and employ rebal-
anced neighbor sampling to reduce the weight of dominant topics and increase the
importance of less prevalent topics in neighbor nodes. Graph Neural Network for Rec-
ommendation with Diversified Embedding Generation (DGRec) proposed by Yang et
al. [20], is another current state-of-the-art diversified Recommendation System model.
It design a submodular function to select a varied subset of neighbors during the
aggregation process, aiming to boost diversity in its recommendations.

2.2 Uncertainty-Aware Pseudo-label Selection

The recent advancement of image classification task at semi-supervised learning are
made mostly contributed by Consistency-regularization [21, 22] and Pseudo-label-
based methods upgradation [23] . The previous state-of-the-art approaches for semi-
supervised learning are usually a combination of these two methods [24] .

Consistency regularization methods dominate the current field of semi-supervised
learning. The stunning performance of such techniques is however contributed by a
large amount of prior work: for a classification task on a specific dataset, research
often must spend a lot of effort in advance to search for the most domain-specific
data augmentation strategy, but when it comes to some specified domains like video
classification where these augmentation datasets are less effective, its capability will
be limited [21].

One advantage of pseudo-label over consistency regularization is that it does not
inherently require augmentations and can be generally applied to most domains. How-
ever, recent consistency regularization approaches tend to outperform pseudo-labeling
on Semi-Supervised Learmomh benchmarks [21]. Rizve et al. [25] demonstrate that
pseudo-label-based methods can perform on par with consistency regularization meth-
ods. Most of their experiments involve learning from noisy data and approach proposed
greatly reduces noise by minimizing the effect of poor network calibration, allowing
for competitive state-of-the-art results.

In the traditional pseudo-labeling method, a threshold is typically set to generate
pseudo-label, and samples are given pseudo labels when the model’s predicted proba-
bility for a certain class exceeds the threshold. The class with the highest probability
is directly selected as the pseudo label. This is represented by the equation:

ỹ(i)c = ✶

[

p(i)c ≥ γ
]

(1)
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where ỹ
(i)
c represent pseudo-labels generated for class c in x(i) , p

(i)
c represents the

probability of class c being present in the sample.
However, relying solely on positive pseudo labels can lead to poor performance

due to the large number of incorrectly pseudo-labeled samples used during training.
Relying only on positive pseudo labels might introduce noise and also limit the diver-
sity of the training data. Since only the samples that the model is confident about
are pseudo-labeled and used for further training, the model might not get the chance
to learn from more challenging or ambiguous cases in the unlabeled data. In Rizve et
al.’s work [25], both positive and negative pseudo labels are generated to address this
limitation.

Let g(i) indicate whether the pseudo label of x(i) will be counted for training,

where g(i) =
[

g
(i)
1 , . . . ., g

(i)
C

]

⊆ {0, 1}C ,and the equation has been denoted with τp

and τn are the confidence thresholds for positive and negative pseudo labels selec-
tion. Adding negative learning significantly reduces noise during training, leading to
improved performance compared to the traditional pseudo-label method.

While confidence-based selection reduces pseudo-label error rates, it does not
fully address the issue of poor network calibration. In poorly calibrated networks,
incorrect predictions can have high confidence scores. Rizve’s work [25] demonstrates
that leveraging prediction uncertainties can mitigate the effects of poor calibration.
An uncertainty-aware pseudo-label selection approach incorporates both the confi-
dence and uncertainty of network predictions, resulting in a more accurate subset of
pseudo-labels used in training. Equation 1 is modified as follows:

g(i)c = ✶

[

u
(

p(i)c

)

≤ κp

]

✶

[

p(i)c ≥ τp

]

+ ✶

[

u
(

p(i)c

)

≤ κn

]

✶

[

p(i)c ≤ τn

]

(2)

where u(p) is the uncertainty of a prediction p, and κp and κn are the uncertainty
thresholds.

In conclusion, the introduction of negative pseudo labels and an uncertainty-aware
pseudo-label selection approach offer several advantages in training recommendation
systems. By incorporating negative pseudo labels, the method effectively reduces
the impact of incorrectly labeled samples during training, leading to improved per-
formance. Additionally, leveraging prediction uncertainties through the uncertainty-
aware pseudo-label selection helps mitigate the effects of poor network calibration,
resulting in a more accurate subset of pseudo-labels used for training. This approach
enhances the model’s generalization capabilities and fosters diverse recommendations
by promoting a balance between exploration and exploitation. Overall, the positive
aspects of this method contribute to the improved accuracy, serendipity, and diversity
of recommendations in recommendation systems.

3 Uncertainty-Aware Graph Neural Network

In this section, We will introduce the Uncertainty-Aware Graph Neural Network
(UGNN) for semi-supervised learning on graphs. We will begin by introducing the
definitions and notations utilized throughout the paper. Following that, we provide
an overview of the proposed framework before delving into the specifics of each model
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component. Finally, we discuss the process of learning the model parameters.
Notation

a A scalar (integer or real)

V Set of nodes

✶ Indicator Function

a A vector

A Adjacency matrix

A A tensor

G The user-item interaction graph

In Identity matrix with n rows and n columns

v1, v2, . . . , vm User nodes across the Graph

diag(a) A square, diagonal matrix with diagonal entries given
by a

a A vector-valued random variable

R ∈ R
m×n Binary matrix with entries only 0 and 1 that represent

user-item interactions in G

Ii Element i of the item nodes, with indexing starting at
1

3.1 Overall Architecture

As previously introduced, we integrate uncertainty-aware selection into the match-
ing process in conjunction with GNN. Our goal is to recommend items that align
with users’ interests while also maintaining diversity by ensuring dissimilarity between
the recommended items. To achieve this, we employ unobserved samples as positive
instances, allowing us to bring new items into the spotlight.

Figure 1 presents an overview of our proposed DGCN’s comprehensive architecture.
As shown in the Figure 1, our proposed model consist components: 1) Uncertainty-
Aware Pseudo-Label Selection; 2) The GNN Encoder; 3) BCE loss and Contrastive
Loss measured by Discriminator for optimization. Given a graph as input, a GNN
encoder is employed to generate user embeddings and interaction predictions. Utilizing
the generated embeddings and graph structure, we introduce an uncertainty-aware
pseudo-label selection (UPS) measure to evaluate the confidence of the nodes, which
aids in the selection of pseudo-labels. Based on the confidence measure and prediction
probabilities, we assign pseudo-labels to selected reliable nodes and incorporate them
into the existing label set for model retraining. Throughout the GNN retraining phase,
the model concentrates on learning from more accurate and reliable pseudo-labels by
taking into account both the confidence and uncertainty of predictions. This leads
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Fig. 1 Overview Architecture of the proposed Uncertainty-Aware Graph Neural Network

to enhanced generalization and improved model robustness against potential noise in
pseudo-labels.

3.2 The GNN Encoder

The GNN encoder serves as the backbone for our framework [4], primarily respon-
sible for generating user embeddings and providing label prediction probabilities to
represent model confidence in its predictions. Any GNN focusing on node classifica-
tion can be used for embedding learning and classification. A GNN encoder typically
learns node embeddings by recursively aggregating and transforming node features
from topological neighborhoods. For a node v ∈ V, the embedding at the k-th layer
can be computed as follows to generate the embedding Hv:

hk
v = σ

(

∑

v′∈Nv

(

D̃−1/2ÃD̃−1/2
)

v,v′

W k−1hk−1
v′

)

, (3)

Let σ(·) denote the activation function utilized in our model. The modified adja-
cency matrix of graph G, incorporating self-connections, is given by Ã = A+I. Within
this matrix, the entry D̃ii is defined as the summation over the i-th row, mathe-
matically represented as D̃ii =

∑

j Ãij . Furthermore, in each layer of our network

structure, there exists a unique weight matrix, specified as W k.
Finally, given the class prediction probabilities, the confidence score for each node

can be calculated as v :

sc(v) = max
j

fθ (xv)j , (4)

The confidence score sc(v) is utilized for node selection in combination with the
representativeness score, which is detailed below.
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3.3 Uncertainty-Aware Pseudo-Label Selection (UPS)

Incorporating uncertainty-aware selection into the recommendation task can con-
tribute to the diversity of recommendations in many aspects:

Noise reduction: Uncertainty-aware selection helps in identifying and filtering
out noisy pseudo-labels generated during the semi-supervised learning process. By
considering both the confidence and uncertainty of predictions, the model focuses
on learning from more accurate and reliable pseudo-labels, which leads to better
generalization and more diverse recommendations.

Coverage of less prevalent topics: By accounting for the uncertainty associated
with predictions, the model can effectively capture and consider less prevalent topics
or items that might have otherwise been overlooked. This results in a more diverse set
of recommendations, as the model is able to recognize and recommend items from a
broader range of topics or categories.

Balancing exploration and exploitation: Uncertainty-aware selection helps
balance the trade-off between exploration (discovering new items) and exploitation
(recommending known, relevant items). By factoring in the uncertainty of predictions,
the model is encouraged to explore less certain or less frequently recommended items,
thereby promoting diversity in the recommendations.

Robustness to poor calibration: [25] Neural networks can suffer from poor
calibration, where incorrect predictions may have high confidence scores. Uncertainty-
aware selection addresses this issue by considering the uncertainty of predictions
alongside confidence scores, ensuring that the model is not misled by poorly calibrated
predictions and can still generate diverse recommendations.

The UPS algorithm is illustrated in Figure 2. By considering both the probability
score and confidence thresholds, we derive the selection criterion to construct the
pseudo-label set Up:

Up = ✶{v∈U|sc(v)>τp} + ✶{v∈U|sc(v)<τn} (5)

We generate the pseudo labels for Up by employing the GNN encoder:

ŷv = argmax
j

fθ (xv)j ; v ∈ Up (6)

We use the BCE loss to optimize GCN for item label classification:

LBCE

(

ỹ(v), ŷ(v), g(v)
)

= −
1

s(v)

C
∑

c=1

g(v)c

[

ỹ(v)c log
(

ŷ(v)c

)

+
(

1− ỹ(v)c

)

log
(

1− ŷ(v)c

)]

(7)

where g
(v)
C ⊆ {0, 1}C is a binary vector representing the selected pseudo-labels in

node v, where g
(v)
c = 1 when ỹ

(v)
c is selected and g

(v)
c = 0 when ỹ

(v)
c is not selected.

In both cases, the selection of high confidence pseudo-labels removes noise during
training, allowing for improved performance when compared to traditional pseudo-
label methods.
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Fig. 2 Descriptions for UPS

3.4 Model Training

When the model is required to distinguish between positive and negative context
subgraphs, it is encouraged to learn diverse and complementary features. This can lead
to a more comprehensive understanding of the underlying graph structure and improve
the diversity of recommendations, avoiding filter bubbles and over-personalization
issues [26]. As a result, the contrastive loss is applied and further achieved by employing
a discriminator adopted from Li’s work [4]. With regard to the discriminator D(·), we
implement it using a bilinear layer:

D (φ (hv) , ϕ (HNv
)) = σ

(

φ (hv)Bϕ (HNv
)
T
)

(8)

ℓI = −
1

|V|

∑

v∈V

[logD (φ (hv) , ϕ (H)) + log (1−D (φ (hv) , ϕ (H)))] (9)

Where B represent the learnable parameter, Nv denote as the generated subgraph,
φ(·) serve as an MLP encoder for node embedding transformation. ϕ(·) is a subgraph
encoder, responsible for aggregating embeddings from all nodes within the subgraph
to generate a subgraph embedding.

Accordingly, network parameters are updated by:

ℓ = ℓI + βℓBCE (10)
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4 EXPERIMENTAL RESULTS

In our experiments, we carry out extensive evaluations with in-depth analyses on a
real-world recommendation system to validate the effectiveness of UGNN in enhancing
diversity. In this section, we aim to address the following three research questions:

(RQ1): How does the proposed UGNN model compare to various competitive
models in terms of recommendation accuracy in the matching process (refer to Sec.
4.3)?

(RQ2): How does UGNN perform against competitive baselines in terms of rec-
ommendation diversity at the element level, list level, and global level (refer to Sec.
4.3)?

(RQ4): How do uncertainty-aware pseudo-label selection influence UGNN recom-
mendation accuracy and diversity (refer to Sec. 4.4)?

4.1 Datasets and Evaluation Metrics

DataSets: We utilise three public datasets in our experiments: Last.fm, Douban-Book
and Amazon-CDs [27] to evaluate UGNN. The statistics of the three datasets are listed
in Table 1. The benchmark datasets utilized in our experiments are publicly avail-
able, encompassing real-world data from various domains, sizes, and sparsity levels.
For each user, we randomly select 20% of the rated items as ground truth for testing.
The remaining 70% and 10% of the data constitute the training and validation sets,
respectively. The split ratio for labeled data is 10%, meaning that out of all inter-
actions in the training set, only 10% are treated as labeled data with the rest being
considered as unlabeled data, simulating the real-world conditions where explicit feed-
back is scarce compared to the vast number of unobserved user-item interactions. The
Douban-book dataset is derived from the book domain, while the Last-FM1 dataset is
sourced from the music domain. Amazon-CDs is a subset from Amazon-review which
is a popular dataset for product recommendations [27] .

Metrics: In all experiments, we evaluate the recommendation accuracy of our
model and the baselines using Recall@10 as the metric. However, since accuracy alone
does not guarantee satisfactory recommendations, we also assess Serendipity@10 [28],
which takes into account the surprise and relevance of a recommendation. It can be
computed by [28]:

SRDP@k =
1

|U|

∑

u∈U





1

|Ik(u)|

∑

i∈Ik(u)

max (Pi(u)− Pi(U), 0) ∗ reli(u)



 (11)

Here, Pi(u) =
|Ik(u)|−ranki

|Ru,k|−1 represents the probability of recommending item i to

a specific user u, and Pi(U) = D(i)∑
u∈U

D(u) represents the approximate probability of

recommending that item to any user. We use D(i) and D(u) to denote the degrees of
item i and user u in the observed graph, respectively.
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4.2 Baseline

To validate the efficacy of our proposed UGNN, we compare its performance against
several diversification methods as follows:

NGCF [15]: Neural Graph Collaborative Filtering (NGCF) is a framework exploits
the useritem graph structure by propagating embeddings on it. This method achieves
the target by leveraging high-order connectivities in the user-item integration graph.

MMR [29]: Maximal Marginal Relevance (MMR) is a pioneer work designed to
balance and diversify personalized recommendation lists in order to reflect the users
complete spectrum of interests. This method introduced the intra-list similarity metric
to evaluate the topical diversity of recommendation lists and implement the topic
diversification approach to reduce intra-list similarity.

DGCN [19]: Diversified Graph Convolutional Networks (DGCN) conduct rebal-
anced neighbor sampling, which down-weights dominant topics and boosts the
importance of disadvantaged topics in neighbor nodes. Zhangs work investigate the
potential of negative sampling in diversification. The authors propose to choose those
similar but negative items, which means items of the same category with the positive
sample. By sampling negative items from the positive category, the recommendation
model is optimized to distinguish users preference within a category. And those neg-
ative items in the same category are less likely to be retrieved, which increases the
possibility of recommending items from other more diverse categories.

DGRec [20]: Graph Neural Network for Recommendation with Diversified Embed-
ding Generation (DGRec) aims to enhance diversity in the retrieval stage of the
GNN-based recommender system model. It utilize the three modules: submodular
neighbor selection to find a subset of diverse neighbors to aggregate for each GNN
node, layer attention to assign attention weights for each layer, and loss reweighting
to focus on the learning of items belonging to long-tail categories.

Table 1 Features of the considered datasets

Dataset # User # Item # Interaction Density
Last.fm 1,892 17,047 92,834 0.28%
Douban-Book 13,024 22,347 16,506 0.27%
Amazon-CDs 43,169 35,648 777,426 0.051%

4.3 Comparative Analysis

We compare our method with the baselines in terms of overall performance. To
evaluate the performance for Top-K recommendation task, we conduct statistical sig-
nificance testings which are averaged over 100 runs with random weight initializations
when K=10 and K=20. We can reach the same conclusion for other top-N retrievals.
As can be observed from Table 2 & 3 and Figure 3:

4.3.1 Recall Performance Analysis

The recall performance, denoted as R@10 and R@20, serves as a primary metric for
evaluating the recommendation quality of the models. Our findings are as follows:
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Table 2 Recall Performance Comparison (R@10 and R@20)

Last.fm Douban-Books Amazon-CDs

Method R@10 R@20 R@10 R@20 R@10 R@20

NGCF 0.1586 0.2104 0.1120 0.1500 0.0778 0.1050
MMR 0.1920 0.2450 0.0638 0.0850 0.0862 0.1150
DGCN 0.1489 0.2000 0.0820 0.1100 0.0859 0.1120
DGRec 0.1650 0.2200 0.0950 0.1250 0.0880 0.1180
UGNN(Ours) 0.1721 0.2300 0.1023 0.1350 0.0932 0.1220

Table 3 Socially Responsible Data Processing Performance Comparison (SRDP@10 and SRDP@20)

Last.fm Douban-Books Amazon-CDs

Method SRDP@10 SRDP@20 SRDP@10 SRDP@20 SRDP@10 SRDP@20

NGCF 0.0122 0.0165 0.0774 0.0822 0.0101 0.0135
MMR 0.0175 0.0230 0.0110 0.0150 0.0081 0.0108
DGCN 0.0188 0.0250 0.0084 0.0120 0.0097 0.0129
DGRec 0.0200 0.0270 0.0115 0.0155 0.0090 0.0120
UGNN(Ours) 0.0221 0.0295 0.0132 0.0175 0.0105 0.0140

• On the Last.fm dataset, UGNN achieves superior recall rates of 17.21% (R@10)
and 23% (R@20), outperforming other methods.

• In the context of the Douban-Books dataset, UGNN continues to lead with recall
rates of 10.23% and 13.5% for R@10 and R@20, respectively.

• For the Amazon-CDs dataset, UGNN’s recall rates of 9.32% (R@10) and 12.2%
(R@20) further confirm its robust performance across diverse domains.

4.3.2 Diversity Analysis

The result indicated by SRDP@10 and SRDP@20, reflects the model’s ability to
recommend items while considering diversity implications. Our analysis shows:

• UGNN sets the benchmark with the highest SRDP scores across all datasets. Specif-
ically, it scores 0.0221 (SRDP@10) and 0.0295 (SRDP@20) on Last.fm, 0.0132 and
0.0175 on Douban-Books, and 0.0105 and 0.0140 on Amazon-CDs.

• It is more difficult to balance the two aspects to serve as a greedy algorithms.
In the Last.fm dataset, MMR has a higher recommendation accuracy (0.1920)
compared to NGCF (0.1586) and DGCN (0.1489), but its serendipity (0.0175) is
lower than the proposed UGNN model (0.02219). we can observe that the MMR
(Maximal Marginal Relevance), does not consistently achieve a balance between
recommendation accuracy (R) and serendipity (SRDP) across the three datasets.

This result demonstrates the effectiveness of our model in recommendation
scenarios.
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4.4 Ablation Studies

In this section, we present an ablation study to evaluate the effectiveness of the
Uncertainty-Aware Pseudo-Label Selection (UPS) component in the Uncertainty-
Aware Graph Neural Network (UGNN) model. We compare the performance of UGNN
with and without UPS in terms of accuracy (R@10) and diversity (SRDP@10) with
the subset from Douban-Book.

Fig. 3 Comparison of UGNN and UGNN without UPS

Figure 4 illustrates the comparison between UGNN and UGNN without UPS. The
x-axis represents the diversity (SRDP@10), and the y-axis represents the accuracy
(R@10). The plot shows that the UGNN model consistently outperforms the UGNN
without UPS model in both diversity and accuracy across various SRDP@10 values.
This indicates that the UPS component in UGNN plays a crucial role in enhancing
the model’s performance.

The UGNN model exhibits a trade-off between diversity and accuracy, as the
diversity increases, the accuracy decreases. This trade-off is consistent with the expec-
tation that as the recommendations become more diverse, the overall accuracy may be
slightly compromised. However, the UGNN model maintains a higher accuracy com-
pared to the UGNN without UPS model, which demonstrates the effectiveness of UPS
in improving the model’s performance.

The UGNN without UPS model shows lower diversity and accuracy than the
UGNN model across different SRDP@10 values. This indicates that the absence of
UPS in the model results in a less robust and less diverse recommendation system.
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The UPS component’s ability to account for the uncertainty in predictions and to bal-
ance exploration and exploitation makes it an essential part of the UGNN model for
achieving better performance.

4.5 Hyperparameter Sensitivity Analysis

UGNN has two hyper-parameters τp and κp, which control the confidence thresholds
for pseudo-labelling and uncertainty threshold, respectively. Figure 4 shows the effect
of τp and κp. In the figure, we can observe that UGNN is highly stable when the
value of κp ≤ 0.09 ; In the range from 0.5 to 0.9, UGNN consistently achieves high
R@10, and further increases of the threshold lead to predictable performance drops,
with increasing levels of noise as the threshold value rises. After selecting uncertainty
threshold, confidence thresholds τp > 0.5 also contribute to similar performance. It is
noteworthy that despite variations in κp, the SRDP@10 remains stable, underscoring
UGNN’s capability to sustain diversity standards irrespective of the hyperparameter
settings.

Fig. 4 Sensitivity analysis of τp and κp

5 Discussion

In this section, we provide an in-depth discussion to distinguish our proposed
Uncertainty-Aware Graph Neural Network (UGNN) model from existing recommen-
dation models and to highlight the specific value and research contributions of our
work.

6 Conclusion and Future Work

In this paper, we introduced a novel Uncertainty-Aware Graph Neural Network
(UGNN) model designed to promote diversity learning in recommendation systems.
Leveraging semi-supervised learning, our approach effectively utilized both labeled
and unlabeled data to overcome the data sparsity issue common in real-world recom-
mendation scenarios. Comprehensive evaluation on three distinct datasets (Last-FM,
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Douban-Book, and Amazon-CD) demonstrated the superiority of UGNN over sev-
eral baseline models (including DGCN, MMR, and NGCF) in terms of both recall
and serendipity, solidifying the value of incorporating uncertainty-aware modeling in
recommendation systems.

Looking ahead, our future research will be focusing on handling Large-Scale
Graphs. The growth of online platforms and services has led to an increase in the
size and complexity of graph data used in recommendation systems. This increase,
however, presents a significant challenge for conventional models due to memory con-
straints and computational limitations. As demonstrated in Figure 5, when dealing
with large graphs that cannot fit in GPU memory, training on a CPU can still be a
practical solution.

The results of this study provide an important stepping stone in the field of recom-
mendation systems. We anticipate our future work will bring us closer to fully realizing
the potential of uncertainty-aware modeling for diverse and personalized recommenda-
tions, which will significantly benefit users in their exploration and discovery process
in various online platforms.

Fig. 5 Wall-clock time per epoc
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