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Abstract
Detecting deception reliably has been a sought-after goal for researchers since the early 20th century.
This is due to its high stakes nature, especially when considering the setting under which a deception
detection system would be utilized, such as law enforcement sectors, judicial bodies, and criminal
investigation bodies. Therefore, recent literature has greatly focused on developing systems with ever
increasing accuracies to minimize false positives. Attempts to diversify the sources of data being
analyzed and classi�ed as well as the reliance on arti�cial intelligence technologies have shown great
success. But little attention was paid to the applicability of these systems in real-life scenarios. an idle
deception detection system needs to exhibit accuracy but also perform in real-time, a feature that is
lacking in the current state-of-the-art. In this work, a non-invasive real-time multimodal deception
detection system is developed using advanced machine learning techniques. It combines data sources
from video and audio streams to extract visual, acoustic, and linguistic features. It also utilizes parallel
computing techniques to ensure high performance adequate for real-time usage. Furthermore, a user-
friendly graphical user interface was built to facilitate the use of the system. Multiple experiments were
conducted to determine its accuracy under various circumstances and combinations of features, the
system had a detection accuracy of 99.83% under real-life, high-stakes scenarios using visual and
acoustic features, and 91.03% accuracy under controlled environments, while an 89.54% accuracy was
achieved using mixed environments and using visual, acoustic, and linguistic features.

1. Introduction
One of the most important challenges humans have struggled with is the ability to discern lies in
communication, whether it’s in the judicial, law enforcement, or day-to-day contexts. This is especially
true when it comes to high stakes situations where criminal behavior is suspected. This led to many
attempts to develop a method or a system which e�ciently, effectively, and repeatedly makes that
distinction. Attempts such as taking the wrist pulse or observing facial expressions were commonplace.
However, it has been shown that human’s ability to detect deception manually is no more accurate than
pure chance[1], [2].

Advancements in technology have facilitated the emergence of more re�ned systems, bolstering
con�dence in the ability to detect deception. Among the pioneering implementations is the polygraph
and its various iterations—a device designed to gauge physiological changes in the human body,
including temperature, heart rate, and respiration rate, among others. These changes are believed to be
correlated with deception. Despite its initial adoption in popular media, the polygraph faced substantial
criticism for its susceptibility to producing false positives in readings [3]. This criticism ultimately
prompted its abandonment by judiciary bodies, acknowledging its demonstrated unreliability [4].
However, the polygraph, while deemed unreliable, maintained its popularity among popular media. This
popularity was not unfounded, it was due to its ability to work in real-time situations and therefore
provide immediate feedback, which is a signi�cantly valuable feature as evident by its popularity despite
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the emergence of far more reliable and well researched systems in the literature that lacked real-time
capabilities.

With the advent of arti�cial intelligence and machine learning, innovative methods began to develop,
relying less on physiological changes induced by stress—a major contributor to false positive results.
Instead, these approaches shifted focus towards features directly associated with deception, often
involuntarily manifested while maintaining minimum correlation with stress. Addressing a signi�cant
challenge, these new technologies successfully reduced dependence on invasive techniques that involve
encroaching upon the subject's personal space with sensors and monitoring devices, either attached to
the body or within their immediate surroundings. Invasive systems not only exacerbate the subject's
stress levels, but also perform sub optimally when the data analyst or judge, overseeing the system and
interpreting output data, is physically present and visible to the subject. Buller and Burgoon's work,
“Interpersonal Deception Theory” [5], illustrates how various interview contexts, including the
environment, incentives, and relationships, can impact the subject's behavior, compelling them to exert
greater effort in concealing the truth.

One of the initial solutions proposed to address the challenges of stress and invasiveness was the
utilization of facial expressions. By capturing subtle changes in facial expressions, it becomes possible
to identify deceit. The advantage of employing facial expressions for deception detection lies in its
independence from sensors, judges, or the presence of an interviewer or investigator. A basic camera,
positioned at a distance or discreetly concealed, along with a teleprompter for posing questions, proves
su�cient for this method. This e�ciency stems from the absence of a need for special sensors or
human analysts to interpret data. The sole input required is a straightforward video feed of the subject's
face, and the analysis is executed by an algorithm with minimal to no human intervention.

Another promising and equally non-invasive modality for detecting deception, involves the analysis of
audio features generated by the subject under investigation. These features encompass physical
changes in acoustic expressions, including pitch, intensity, spectral, cepstral (MFCC), duration, spectral
harmonicity, psychoacoustic spectral, and sharpness, among others. Another set of features in audio-
based deception detection pertains to emotion-related attributes within the audio domain. In contrast to
the low-level attributes of the acoustic domain, these emotion-driven features are considered high-level,
as they are derived from a combination of low-level features. Examples include arousal levels, valence,
and various emotion categories [6], [7], [8].

Finally, text-based deception detection has also risen in popularity due to its varied use cases, which
includes written text in internet messaging services, emails, social media, news articles, as well as
transcriptions of audio conversation recordings. These relied on detecting patterns in the text to indicate
false information, spam, emotion, or deception attempts [9]. Text based deception detection was
especially useful because it did not suffer from the same weak points that audio or visual modals had
such as the quality of the recordings, the setting at which the recording was done, lighting, noise, among
others.
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While these modalities and the use of arti�cial intelligence were a major step in the �eld of deception
detection, due to the high-stakes nature of the challenge, improving classi�cation performance further
was imperative. Furthermore, it needed to be more adaptable to real world applications and reduce bias
while increasing con�dence in the results produced. This led researchers to experiment with a
multimodal approach. A technique that combines multiple sources of data and making predictions
based on their combined patterns. This new approach further improved accuracy and reliability of
deception detection systems. However, it didn’t improve on the adaptability front. This is due to the
multimodal approach being implemented in similar fashion to the individual modal, where classi�cation
was done as a separate process from the investigation and cannot be directly integrated into it due to
the lack of real-time capability of these systems.

This work sets out to develop the �rst ever non-invasive real-time multimodal deception detection
system that combines the high performance of multimodal techniques with real-time classi�cation
capabilities. In order to ensure reliability, a machine learning model was trained on two of the largest
databases in the �eld, together they cover real-life environments such as court trials as well as controlled
environments for low stakes situations. Visual, acoustic, and linguistic modals were utilized in various
combinations to analyze the performance of the system under various situations. The raw data from
each modal was aggregated separately in a fashion which produces samples that match among all
modals in terms of sample size and sampling rate, which then undergo feature level fusion before being
fed to the classi�er. A deep analysis was conducted to determine the appropriate factors that govern the
sample generation and matching for each modal, this allowed the generated samples to be meaningful
in terms of discriminating patterns while maintaining interoperability with other modals.

2. Related work
The �eld of deception detection in recent years has been moving towards diversifying the techniques
and modalities employed. In fact, a simple keyword search in the Scopus database in published articles
relating to deception detection from the last 13 years, reveals there has been as much published papers
with the keyword “multimodal” in in the title in the last 3 years as there was in the 10 years prior. This is
due to the limitations that one modal will inevitably face, this is further exacerbated by the limited
databases available for research. There is a total of 8 databases publicly available [10], only 2 of which
support audio and acoustic features out of the box, the rest include raw video clips which require
additional preprocessing and feature extraction. Furthermore, these datasets are relatively low in the
number of participants with an average of 51 participants per database and 101 at the high end and 26
at the low end. Therefore, researchers quickly shifted towards a multimodal approach to address the
problem of deception detection from as many angles as possible simultaneously.

Karnati et al. [11] developed a multimodal deception system which can discern deceptive sentiment
using visual, auditory and EEG signals features. They used multiple databases in their experiments and a
combination of deep learning techniques for the classi�cation job. They achieved an accuracy of up to
98%. Kamboj et al. [12] attempted to create their own dataset by collecting videos from the internet of
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political �gures and labeling them using PolitiFact. The target modals they were aiming for are linguistic,
acoustic, and visual features. A decision tree classi�er was used for the classi�cation job. They achieved
accuracy up to 69%. Şen et al. [13] used multiple classi�ers, namely Random Forest, Support Vector
Machine, and Neural Network. They were experimented with against the authors own database which
they developed and published in 2015 [2] which is made up of a collection of real life court trails videos.
By utilizing visual and acoustic features, they achieved classi�cation accuracy of 84% and 83% with the
addition of the linguistic features. Chebbi and Jebara [14] were able to achieve a 93% accuracy using
feature level fusion approach that involved video, audio and text features with KNN (K Nearest Neighbor)
as the classi�er. Farahani and Moradi [15] designed their own experiment with 52 participants, 40 male
and 12 female. The participants’ EEG data was collected while they ran through a series of
predetermined scenarios where participants were either deceptive or truthful. Genetic Support Vector
Machine (GSVM) to classify the EEG data along with a few other machine learning algorithms. They
achieved 95.45% accuracy for autonomic response features and 93% for autonomic as well as event-
related potential features. Another EEG based attempt was done by Lakshan et al. [16] where they
developed a real-time deception detection, emotion detection, and attention detection system. Their best
performing deception detection attempt had an F1 score of 87% using random forest classi�er on 30 live
participants.

Table 1 illustrates the multimodal attempts along with the data, features, and classi�er type used in
recent literature. These works were curated for their high performance or unique approach in features or
classi�er choice. It can be seen that multimodal systems are highly �exible with many opportunities for
innovation, given the number of variables at the researcher’s disposal to work with albeit at the expense
of increased complexity.

Table 1. Top results from recent literature on multimodal deception detection
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Paper Year Data Feature Classi�er ACC

[11] 2022 MU3D [17] Video, Audio Softmax Class�er ACC=0.9814

[12] 2020 Politifact.Com Linguistic,
Acoustic, Visual

Decision Tree ACC=0.69

[13] 2022 Real life court trials [2] Visual and
Acoustic

NN ACC=0.8418

[14] 2021 Real life court trials [2] Audio, Video KNN ACC=0.85;

F1=0.85

[15] 2017 Experimental EEG GSVM ACC=0.9545

[18] 2018 Real life court trials [2] Visual and Verbal  SVM ACC=0.99

[19] 2019 Real life court trials [2] Audio, Text, Micro
Expressions

AdaBoost, SRKDA,
and Linear SVM

ACC=0.97

[20] 2021 Real life court trials [2] Visual, Acoustic,
and Verbal

FFCSN (An
Adversial Learning
Module)

ACC=0.97;

AUC=0.9978

[21] 2019 Experimental
(Females, Abortion
Topic)

Thermal and
Visual

Decision Tree ACC=0.736

3. Databases used
The �rst dataset utilized in this study is "The Miami University Deception Detection Database (MU3D)"
[17]. It consists of 320 videos, involving 80 participants (40 males and 40 females) with ages ranging
from 18 to 26 (refer to Fig. 1). Each participant recorded four videos, recounting four different stories
representing positive truth, negative truth, positive lie, and negative lie scenarios. The duration of the
videos’ ranges from 24 to 57 seconds, with an average duration of 35 seconds (as shown in Fig. 2).
 Audio sampling rate is either 44.1 kHz or 48 kHz.

The second database utilized in this study is called "Real Life Deception Detection Database" [2]. It
comprises 121 publicly available videos recorded during trials and courtrooms, featuring witnesses or
defendants. The dataset includes 61 deceptive clips and 60 truthful clips, involving 56 subjects (21
females and 35 males) aged between 16 and 60 years. The duration of the video clips ranges from 4
seconds to 1 minute and 11 seconds, with an average duration of 27.7 seconds (as depicted in Fig. 3).
Audio sampling rate is either 44.1 kHz or 48 kHz.

4. Feature extraction and processing
Feature extraction is a major cornerstone in the �eld of deception detection in terms of quality as well as
quantity. This is because data in its raw form are typically video or audio recordings which have no
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discernable patterns relating to deception. Therefore, for a given deception detection system to be
effective, information needs to be extracted from the raw data and presented in a fashion that is
meaningful in accordance with the design of said system. For the system proposed in this work, three
modals are introduced. Visual modal, where the facial features are extracted in real time fashion instead
of treating facial queues as discrete events (also known as action units), they are captured as a
continuous stream of data points representing position, orientation, and direction as well as the
aforementioned action units for every frame in the video feed. The audio modal is also utilized where two
feature sets are extracted, acoustic features representing the real time changes in physical attributes of
the vocal domain, and linguistic features which are transcribed in real time for the target’s speech.

4.1 Visual features
Visual features were extracted using the OpenFace 2.0 toolkit [22]. This toolkit extracts the eye gaze,
head pose, facial landmarks and AUs for each frame in each video, this is achieved using a combination
of computer vision and machine learning algorithms. The toolkit is capable of working in o�ine batch
mode or real-time input using a video feed. The output dataset contains 8 eye gaze features (position
and angle), 280 eye position features, 6 head pose features, 380 facial landmark features, 35 AU features
for a total of 709 features (see �g. 4).

4.2 Acoustic features
Acoustic features were extracted using the OpenSMILE toolkit [23], A cross platform open-source tool for
extracting audio features based on a wide array of feature sets. The tool aggregates datapoints
extracted from the source audio feed into samples by calculating the average of all datapoints in a
preset time frame which will control the sampling rate. The time frame can be manipulated to match the
sampling rate of the acoustic features with the sampling rate of the visual features which is determined
by the frame rate. This will be important for the real-time classi�cation method employed in the system.

The ComParE_2016 feature set [8] used in this work has three feature levels, LLDs, low level descriptors
calculated over a sliding window with 65 features, a secondary level of the LLD calculating the delta
regression of LLDs with 6373 features, and �nally, the functionals feature level which is a statistical
mapping of the variables from the LLDs into static values with 65 features.

The acoustic features extracted using LLDs include energy, intensity, critical band spectra, MFCC,
auditory spectra, loudness approximated from auditory spectra, perceptual linear predictive (PLP)
coe�cients, perceptual linear predictive cepstral coe�cients (PLP-CC), linear predictive coe�cients
(LPC), line spectral pairs, fundamental frequency, probability of voicing from ACF and SHS spectrum
peak, jitter and shimmer, formant frequencies and bandwidths, zero and mean crossing rate, spectral
features, psychoacoustic sharpness, spectral harmonicity, CHROMA features, F0 harmonics ratios. LLD
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feature level was chosen for this work for representing the physical changes of the audio signal, unlike
the other two levels which are mathematical and statistical derivatives of LLD [24].

4.3 Linguistic features
The transcriptions for each of the two databases were produced using Whisper “large” speech to text
model [25]. Each raw audio recording was transcribed individually and conversations where two or more
people were involved were separated, only the target subject speech was kept for processing and model
training. The produced transcriptions were timestamped on an individual word level for mapping to their
corresponding audio and visual datapoints at the same time frame as illustrated in table 2. MU3D
database produced 32,718 words with approximately 171 average words per minute. RL database
produced 8,055 words with approximately 66 average words per minute.

In the preprocessing phase, two expanded datasets were derived from each original database,
encompassing all the transcriptions and their corresponding labels. Subsequently, each dataset
underwent lemmatization, a process that reduced the occurrence of similar words by transforming each
word to its base form and eliminating duplicates. Additionally, stop words were eliminated from the
dataset, and all words were converted to lowercase to ensure a consistent and informative �nal dataset.

The lemmatized dataset was then vectorized using Scikit-Learn’s implementation of MurmurHash3
hashing algorithm, a 32-bit value non-cryptographic hashing function that assigns a token occurrence to
each word. The resulting vectorized transcriptions, now organized as a matrix, had their values scaled
down using a term-frequency times inverse document-frequency (TF-IDF) algorithm. This was done to
mitigate the in�uence of tokens with high frequencies, which tend to be less informative (refer to Fig. 7
for details).

5. Classi�cation
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Random forest (RF) is used for the model training and classi�cation task due to its out of the box
resilience to over�tting, high dimensional data and noise[26], [27]. This is especially useful for the
datasets produced in this work. RF is also one of the most successful machine learning algorithms for
real world problem solving  [28].

The cuML python library by RAPIDS implementation of RF is used due to its utilization of the GPU to
accelerate computation speed when working with such large datasets. Hyperparameter optimization
was also performed using DASK, another python library that allows the utilization of the GPU for
accelerated and distributed computation, the Randomized Search Cross Validation implementation is
used with a 5-fold cross validation for optimizing the number of classi�ers/decision trees in the
ensemble (n_estimators), max number/percentage of features to be considered by each spawned
decision tree (mtry), the max number of splits that each decision tree is allowed to make (max_depth).
Table 3 highlights the values found:

Table 3. Estimation of optimized values for hyperparameters of the model

The hyperparameter values shown above seem to work best with all datasets with the remaining
hyperparameters left as default. A great attention was given to the mtry hyperparameter due to the high
dimensional data being worked with, despite RFs natural resilience to this factor, it was necessary to
make sure that minimal over�tting was occurring since no feature selection or dimensionality reduction
took place in producing any of the datasets. By keeping the mtry range of values to be searched high (0.6
– 0.9), it was ensured that the best mtry value found be su�ciently high to make sure little to no
over�tting took place, albeit at the expense of the increase in computational requirements.

6. Pre-fusion single modal method and results
In order to set up a baseline for the real-time deception detection system, each modality will be
experimented with individually in o�ine mode, to determine the effectiveness of the system compared to
state-of-the-art.

6.1 Visual features
The feature extraction process generated time series samples for each video in the form of frames with
709 associated features. This resulted in the creation of 320 datasets for the MU3D database and 121
datasets for the "Real Life Deception Detection Database" (RL) where each video corresponds to one
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dataset. All datasets under each database were then concatenated, creating two �nal datasets. Each of
the two underwent normalization to scale their features within the range of 0 to 1.

In the realm of deception detection, a novel approach was adopted for training the machine learning
classi�er and label prediction. In it, every frame was treated as an individual data sample. However, since
detecting deception from facial expressions relies on Macro and Micro expressions[29], [30], [31], [32],
[33], which typically last between 0.2 and 0.5 seconds [6], a simple moving average calculation (as
described in equation 1) was applied to each feature. This calculation employed a moving window (k)
with values of 5, 10, 15, and 30. These values were chosen based on the average frame rate of the videos
in the databases, which is 29 frames per second. This ensured that the minimum expression captured
spanned no less than 5 frames and no more than 15 frames with the addition of 30 frame range or 1
second worth of data, to match the videos’ frame rate. This approach yielded a new set of samples (p),
each representing a unique value for a group of samples (n-k) equal to the window size, thereby allowing
the classi�er to consider multiple frames simultaneously.

The datasets resulting from the normalization and window averaging processes were concatenated
within each dataset, leading to the creation of two larger datasets for each window size. Lastly, a third
larger dataset was formed for each window size by combining the two previous datasets, as illustrated in
�gure 8. In total, these parameters produced nine datasets, with three datasets for each of the three
window sizes.

Table 4. Classi�cation results for each dataset and window size K for all facial features
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Two trends can be observed from the results in table 4. First, varying the increasing the window size K
had a positive impact on the performance of all datasets, especially RL where a 38.06% improvement
was achieved by increasing the window size from 5 to 10. This can be rationalized by the fact that RL
dataset is comprised of video clips of widely different sources, which meant largely varying video angles,
lighting, video quality, distance from the camera, all affecting micro expression detection especially on
small k values, increasing k seemed to be very impactful since it allowed the classi�er to capture more
information since each sample was the product of a bigger data pool.

Second, MU3D seems to perform very well among all window sizes on average, this can be attributed to
the fact that the dataset is generally far more uniform when it comes to �lming angles, lighting, video
quality and even the subjects are uniform in their seating and body positions. This effect carried to the
MU3D-RL dataset bringing its average up even when k=5 where RL performed poorly.

6.2 Acoustic features
In order to produce comparable results to the visual features and later the real time results, the sampling
rate was set to match the frame rate of the video feed. This corresponds to 30 samples per second.
Similar to the visual modal, both databases were experimented with as well a third dataset produced
from concatenating MU3D and RL acoustic datasets. The classi�cation results are illustrated in table 5.

From the results above, it can be seen that RL dataset outperforms MU3D and the combined dataset.
This can be justi�ed by the fact that RL database is comprised of real-life interviews and court trails
where the speakers are under distress and expressing real emotions in their speech patterns. Unlike
visual features, this made their acoustic features more informative and less uniform where patterns can
be detected. MU3D on the other hand includes subjects in low stakes environment, allowing them to be
more in control of their emotions, making their acoustic features more uniform with less patterns to be
detected [34].

6.3 Linguistic features
Text classi�cation in o�ine mode was done in batches similar to the state-of-the-art systems approach.
Disregarding the timestamps, a video’s transcription is classi�ed as a whole. Prior to the classi�cation
process, a feature selection algorithm was executed on the datasets to identify the most in�uential
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keywords for training the Random Forest classi�er. This algorithm employed a Chi-Square scoring
method to select the top 100 features from each dataset. Subsequently, the classi�cation process was
carried out using various n-gram variations, and the results are depicted in table 6.

The results above show consistent patterns across both datasets. When all n-gram values are combined
in the vectorizer, it yields robust results, with MU3D achieving its highest accuracy using this approach at
84.37%. In the case of RL, while it also achieves a high accuracy with this combination, its peak accuracy
is obtained from bigrams at 94.59%, marking a state-of-the-art result in the �eld of deception detection
[35].

7. Real-time feature level fusion and model training

7.1 Preprocessing
Most multimodal systems rely on voting mechanisms to make the �nal classi�cation. This approach has
shown a lot of merit in o�ine batch classi�cation. However, a real-time system needs to classify the data
on the �y. Furthermore, data size needs to be matched among all modalities, where in a given time
frame, all the events that took place in it are aggregated and fed to the classi�er as a single sample. In
order to determine the appropriate time frame that all modals will adhere to, it needs to be large enough
to encompass enough data among all modals to be meaningful and discriminating, as well as leave
minimum empty data points where a modal experienced no events at a certain point in time within the
time frame. It also needs to be small enough to minimize lag and maintain the real-time nature of
classi�cation.

To choose the right time frame, two factors were considered for each modal. The minimum and
maximum data rate and the minimum and maximum sample size that amounts to a meaningful
expression. For the visual modal, the sample rate is equal to the frame rate of the video feed, while the
meaningful expression range is 0.2 to 0.5 seconds as mentioned previously. From the visual modal
classi�cation results above, 0.5 second frame appears to yield better results overall.

The linguistic modal sample rate range to choose from is equal to the visual modal data rate as the
minimum, and shortest word utterance duration within both databases for the maximum, this range will
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encompass the longest word utterance duration in both databases. The minimum meaningful
expression the linguistic modal has to offer is a single word, and the maximum is an entire sentence.

The sample rate for the acoustic modal, unlike the visual modal, isn’t �xed and can effectively be as high
as the audio feed sample rate of up to 48 kHz. There isn’t an obvious precise meaningful expression
range for the acoustic modal, however, it can be narrowed down to equal the visual modal sample rate
for the minimum and equal to the linguistic meaningful expression for the maximum. This ensures that
acoustic samples integrate with the visual and linguistic modal which have a more �xed and de�ned
sample size de�nitions. Table 7 illustrates the summary of factors and their ranges as well as the chosen
value for the system.

Table 7. Summary of the time frame size factors and chosen values

Modal Factors Considered Range Chosen Value

Visual Sample Rate Equal to video frame
rate

30 samples/second

Meaningful
Expression Range

0.2 to 0.5 seconds 0.5 seconds

Linguistic Sample Rate Equal to visual modal
data rate

30 words/second

Meaningful
Expression Range

Single word to an entire
sentence

However many words that �t within
1 second

Acoustic Sample Rate Up to 48 kHz (audio
feed sample rate)

30 samples/second

Meaningful
Expression Range

0.5 to 1 seconds 1 second worth of aggregated
acoustic feature samples

In order to achieve feature level fusion among all modals, sample size needs to be matched. Each
sample of data will be equivalent to 1 second of data from each modal which represents the time frame
value. This is implemented by taking the average of 30 datapoints from the visual features and 1 second
worth of data from the acoustic features, and however many consecutive words that �t within 1 second.
This time frame value satis�es the criteria chosen for the acoustic and linguistic modalities. However, it
doesn’t satisfy the visual modal criteria of 0.5 seconds sample size that was chosen. To mitigate this,
two sets of overlapping samples will be produced and interleaved with a 0.5 second delay. This creates
samples that have an intersection time of 0.5 seconds. This allows the system to detect patterns that
occur on the edges of any given sample since the next sample contains data that’s captured from 0.5 to
1.5 seconds of the previous sample instead of 1.0 to 2.0 seconds. Figure 9 illustrates the sample
generation and interleaving process.
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7.2 Feature level fusion 
After matching all three modalities in terms of sample size, features were concatenated horizontally.
This produced the �nal batch of datasets that will be used for model training and real-time classi�cation.
Three datasets were produced similar to the individual modal experiments, MU3D dataset, RL dataset
and a combined dataset produced by vertically concatenating the two datasets. Finally, the values of the
visual and acoustic features of each dataset were scaled down between 0 and 1. Figure 10 illustrates the
overall feature extraction and preparation steps.

7.3 Classi�cation results and discussion
The classi�cation process discussed in section 5 was carried out for the three generated datasets. Each
dataset was split into an 80% training set and a 20% testing set. Each dataset was run through �ve
experiments, one for each modal, visual and acoustic modal, and all modals. All experiments were
conducted under the same conditions such as hyperparameters and classi�cation model. Classi�cation
results for all experiments are illustrated in table 8. Confusion matrix and learning curves for the
combined datasets and modals are illustrated in �gure 11 and 12 respectively.

7.3.1 Modalities' Unique Contributions
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The study demonstrates that each modality offers distinct strengths in the deception detection process.
Visual cues consistently exhibit high accuracy across both the MU3D and RL dataset and their
combination. This emphasizes the signi�cance of non-verbal communication in discerning deceptive
behavior. Acoustic cues under real-life data as shown in the RL results also shown respectable
performance, this suggests that auditory signals in real-life applications have an impactful effect on
detecting deception in real-time. The  same effect is seen in the linguistic modal, where speakers under
uncontrolled and relatively high stress environments have more discernable patterns in their
communication.

7.3.2 Role of each dataset
The inclusion of the Real-Life Deception Detection Database (RL) provides a valuable perspective on the
generalizability of the deception detection system to real-world scenarios. The dataset's in�uence on the
system's performance underscores the importance of evaluating deception detection algorithms in
authentic, diverse settings. The �ndings suggest that the multimodal approach, when applied to real-life
data, is effective in capturing deceptive patterns that may differ from controlled environments. MU3D,
while performing poorly on the acoustic and linguistic front, showed promising results in the visual and
visual + acoustic modal. This highlights the versatile nature of the deception detection system in this
work for its viability in controlled environments where speakers are more aware and in control of their
non-verbal cues. The combination of the two datasets also provided similar insight into the versatility of
the system as well as the importance of diversifying the training data to expose the system to more
varied scenarios that can be encountered.

7.3.3 Synergistic Effects of Modal Combinations
Combining modalities continues to be a crucial strategy for achieving a comprehensive understanding of
deceptive behavior. The Visual + Acoustic combination, and particularly when incorporating linguistic
cues, results in a highly accurate deception detection system. The integration of modalities, especially
when considering the nuances of real-life scenarios from the RL dataset, emphasizes the practicality and
adaptability of the multimodal approach. The results achieved when combining all datasets and modals
outperform all other modal combinations for the same dataset and outperform many of the single
dataset experiments.

8. Comparing results to state-of-the-art
Currently, there are no works in literature which implement similar real-time capabilities to compare
against. However, raw classi�cation performance can be compared with the state-of-the-art to
demonstrate the reliability of this system in terms of accuracy without considering real-time capabilities.
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The classi�cation model in this work was trained based on the MU3D dataset, RL dataset and their
combination. Karnati et al. [11] utilized the same datasets in their work minus the combination of them,
this makes it the ideal candidate for comparison. Their work employed the visual and audio modal in
addition to electroencephalogram (EEG) modal. The classi�cation is done using a softmax classi�er on
each modal and the �nal decision is made via a score level fusion.

The common experiments between the two works are the visual, audio and visual+audio modals on both
RL and MU3D. for the RL dataset, this work outperforms theirs on the visual and visual+audio modals
with 98.83% versus 97.35% and 99.83% versus 97.33% respectively while underperforming in the audio
modal with 85.57% versus 94.45%. MU3D on the other hand underperformed overall with 90.55% versus
98.22% for the visual modal, 57.47% versus 95.80% for the audio modal, and 90.40% versus 98.14% for
the visual+audio modal (see �gure 13 for summary of result comparison).

9. System development and analysis
A graphical user interface was developed using python employing the real-time deception detection
classi�er based on the combined modals and datasets model. It captures video and audio stream input
from a webcam, using the OpenCV library, the system is able to detect the existence of a face in the
video stream and draws a green squire around the detected face, this is used to control classi�cation job
where the system only captures and classi�es received data when a human face is detected. Another
safety guard is implemented to halt classi�cation is when no audio is detected, this is done in two
stages. The �rst stage is when acoustic data falls below a given threshold which indicates no vocal
signal is detected, and the second stage is to check whether a valid transcription is obtained from the
audio stream, indicating whether or not actual speech exists. These safety guards are actively analyzing
the data stream in real-time and can halt or resume the classi�cation job accordingly.

The system captures data over a 1.5 second period. This is then split into two time frames, 0 – 1 second
time frame and 0.5 – 1.5 second time frame. These two time frames are independently classi�ed as
containing deception or not and the results are printed. The system also indicates the results of both
classi�cations by changing the color of the square drawn around the face to red if both results are
deceptive, and orange if one of them is deceptive, as an additional visual cue for a more user-friendly
interface as demonstrated by �gure 14.

The performance of the system was also analyzed and optimized for real-time operation. Throughout the
testing phase, the system was analyzed to �nd performance bottlenecks, and the largest bottleneck
found was the feature extraction task followed by the data processing task, especially with the video
stream. This was alleviated by employing parallel computing on these two tasks, where instead of
processing these tasks sequentially, the feature extraction task for the video stream was split into 3 time
frames, each 0.5 seconds long, and features were extracted from each of them in parallel, the �rst and
second frame and second and third frames are then concatenated into their expected form. This
provided a 7.86% speed up in performance in the video feature extraction and processing task. The same
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technique was also used for the audio stream where acoustic features and transcriptions were extracted
and processed for both time frames in parallel, this provided a 8.22% and 5.50% speed up in
performance respectively.

Figure 15 illustrates the pre and post optimized system work�ow. These optimizations provided some
speedup in performance; however, the feature extraction task remains the largest bottleneck in the
system due to technical limitations within OpenFace and OpenSmile that cannot be mitigated. For
OpenFace, these limitations are lack of native compatibility with python and parallelism support that
would allow feature extraction of multiple frames at once. For OpenSmile, it has native python
compatibility, but parallelism is not supported, however, it provides an option to increase the number of
workers dedicated to the extraction task, but the performance speed up plateau’s at a certain point and
no additional speed up is gained by increasing the number of workers, suggesting that there are hard
limits in terms of speed within the tool. Table 9 highlights the worst recorded delays throughout the
testing period for each task as well as the overall system delay in both sequential and parallel computing
modes. The hardware speci�cations of the test machine are the following: the CPU is an AMD Ryzen 7
7700X, the GPU is an Nvidia GeForce RTX 4080 with 16 GB of VRAM, the RAM is a 32 GB DDR5 memory
with 5200MHz speed.

 

Conclusion
In this work, a real-time multimodal deception detection system with graphical user interface was
developed to explore new avenues in terms of applicability in real-world scenarios. the system was able
to outperform many of the-state-of-the-art systems in the �eld that operate in o�ine or batch mode.
When employing all modalities, the system was able to achieve a 91% accuracy under controlled
environments, 98.58% accuracy under real-life environments, and 89.54% accuracy under mixed
environments. Its best accuracy however was achieved under the combination of the visual and acoustic
modalities at 99.83% under real-life environments. These results, when paired with the real-time
classi�cation capability, sets up the system as a valuable tool for detecting deception in high stakes
situations such as courtrooms and police investigations where immediate feedback is necessary for
decision-making. It also highlights the viability of the real-time approach in the �eld which hasn’t been
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explored by the literature. This opens up new paths in the �eld of deception detection for researchers to
explore and expand to develop versatile systems that can be highly adaptable in real-life applications.
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Figures

Figure 1

Number of participants for each age group

Figure 2

Audio clips duration distribution for MU3D dataset.



Page 22/28

Figure 3

Various frames from the MU3D database

Figure 4

Audio clips duration distribution for RL dataset.
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Figure 5

Various frames from the RL database

Figure 6

Feature extraction illustration of facial features
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Figure 7

Audio transcription and text processing steps

Figure 8

Data processing steps of visual features for a window size of K= 5
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Figure 9

Sample generation and interleaving process

Figure 10

Overall sample generation, processing, and classi�cation steps

Figure 11
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(A): Accuracy learning curve. (B): Negative Mean Squared Error learning curve.

Figure 12

Confusion matrix for combined modals and datasets model

Figure 13
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Performance comparison between this work and the work of Karnati et al. in terms of accuracy for
matching experiments.

Figure 14

(A): GUI interface when no deception is detected. (B): GUI interface when deception is uncertain. (C): GUI
interface when deception is detected

Figure 15
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System work�ow pre and post optimization


