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Abstract. In this paper we present a theoretical analysis of the limits
of the Differential Fault Analysis (DFA) of AES by developing an inter-
relationship between conventional cryptanalysis of AES and DFAs. We
show that the existing attacks have not reached these limits and present
techniques to reach these. More specifically, we propose optimal DFA
on states of AES-128 and AES-256. We also propose attacks on the key
schedule of the three versions of AES, and demonstrate that these are
some of the most efficient attacks on AES to date. Our attack on AES-
128 key schedule is optimal, and the attacks on AES-192 and AES-256
key schedule are very close to optimal. Detailed experimental results have
been provided for the developed attacks. The work has been compared
to other works and also the optimal limits of Differential Fault Analysis
of AES.
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1 Introduction

Fault attacks were first proposed by Boneh et al. [7] where the author showed
that if a fault could be introduced into a microprocessor whilst it is generating an
RSA signature the entire private key can be retrieved. In the same year, Biham et
al. proposed a different form of the attack [4], where they combined the concept
of fault analysis and differential cryptanalysis to propose theoretical attacks on
DES, which is typically referred to as Differential Fault Analysis (DFA).

In 2001 NIST standardized Rinjdael as the Advanced Encryption Standard
(AES) [11] in three different versions: AES-128, AES-192 and AES-256 that have
three different key lengths of 128, 192, and 256 bits respectively. Subsequently,
the block cipher drew a significant amount of attention from the research com-
munity. That is, Giraud proposed an attack on AES-128 by inducing a fault
to the input of the ninth round [9]. Giraud showed two different ways of at-
tacking AES. One method by inducing fault in an intermediate states and the
other by inducing fault in the AES key schedule. However, Giraud used both



the techniques to break the 128-bit version of AES. The attack required around
250 faulty ciphertexts to reveal the AES-128 key. This attack was improved by
Blömer et al. [5] which required around 128 to 256 faulty ciphertexts. Dusart
et al. in [10], proposed an attack by inducing faults anywhere between the eight
round and ninth round MixColumns operations, which required only 40 faulty
ciphertexts.

Finally, Piret et al. in [23] proposed a fault attack using only two faulty
ciphertexts. Moradi et al. [20], proposed a more generalized fault attack by
considering two different fault models. In the first, the authors consider one out
of four targeted bytes are corrupted and in the second model the author consider
that all four targeted bytes are corrupted. For the first fault model the attack
required around four faulty ciphertexts whereas in the second fault model the
attack requires around 1500 faulty ciphertexts. Beside these DFA attacks there
were some practical results [1, 2, 13, 25, 26], where the authors have shown that
the required fault induction is indeed possible by inexpensive devices.

There are two more versions of AES: AES-192 and AES-256. Initially, it
was assumed that attack proposed by Piret et al. can be extended to these two
versions of the AES with little modification. However, this assumption has been
shown to be wrong. In 2009, Li et al. [18] proposed a complete attack on AES-
192 and AES-256. This attack required 16 or 3000 faulty ciphertexts depending
on the fault model. Subsequently, many attacks were proposed on AES-192 and
AES-256 [14,16,27]. The most recent among these attacks is an attack proposed
by Kim [16], which only requires two faulty ciphertexts to uniquely determine
the AES-192 key and three faulty ciphertext to retrieve the 256-bit key AES-256.

Recently, there has been a significant research on the AES key schedule. Chen
et al. [8], improved Giraud’s attack [9] and showed that the proposed attack can
retrieve the AES-128 key by inducing faults in 9-th round key and requires
less than 30 faulty ciphertexts. Peacham et al. [22], considered a different fault
model where a fault is induced while the ninth round key is being generated.
Therefore, the induced fault subsequently propagated to the tenth round key.
Peacham’s attack required only 12 faulty ciphertexts to retrieve the AES-128
secret key. Takahashi et al. [28], proposed a generalized attack that required
only two faulty ciphertexts to reduce the number of key hypotheses for a AES-
128 secret key to 248. Other variants of this attack were presented that, using
four faulty ciphertexts, reduce the number of hypotheses to 216 or, using seven
faulty ciphertexts, determine the secret key. Kim et al. [17] proposed an improved
attack on AES-128 key schedule which required only two faulty ciphertexts to
reduce the key space to 232. Recently, Kim proposed a different attack on AES-
128 key schedule by inducing single byte fault at the first column of eighth
round key, that requires two faulty ciphertexts to uniquely determine the secret
key [15].

Exploiting faults induced in the key schedule of AES-192 and AES-256 has
received less attention in the literature. Floissac et al. first proposed an attack
on the AES-192 and AES-256 key schedule [12]. They used a single byte fault
model where a fault is induced in the tenth and twelfth round key for different



instantiations of the block cipher. In both the cases their attack required 16 faulty
ciphertexts to retrieve the secret key. This attack was improved upon by Kim [15],
who proposed an attack that required between four and six faulty ciphertexts to
uniquely determine a AES-192 secret key and four faulty ciphertexts to uniquely
determine a AES-256 secret key.

The attacks described above show a gradual reduction in the data complex-
ity of differential fault analysis. However, there is no theoretical analysis which
clearly shows the limits of these attacks. There is one contribution by Gomisawa
et al. [19] that shows the limits of the attacks performed on AES where faults
are injected into intermediate states of the block cipher but the analysis is based
on existing attacks. There is no clear explanation of the limits of attacks on the
AES key schedule so that one cannot be sure whether the existing attacks on
the AES key schedule have reached limits.

In this paper, we first theoretically analyze the limits of differential fault
analysis of AES. We then describe attacks based on faults in the intermediate
states of AES-128 and AES-256 and show that these attacks have reached their
limits. This implies that theses attacks cannot be optimized further. We then
propose three more attacks on the key schedule for the three different versions of
AES and show that the attack on AES-128 key schedule reaches its theoretical
limit. However, the proposed attack on the AES-192 and AES-256 key schedule
is the most efficient attack to date but does not reach the theoretical limit.

2 Preliminaries

2.1 AES

The Advanced Encryption Standard (AES) is a 128-bit symmetric key block
cipher. It has three different versions namely: AES-128, AES-192 and AES-256
that have three different key lengths of 128, 192, and 256 bits respectively. The
intermediate results are represented by 4 × 4 state matrix, where each of its
elements is an 8-bit value. The internal operation of AES is divided into identical
round functions, where the number of iterations of a this round function varies
depending on the bit length of the secret key. That is, AES-128 has 10, AES-192
has 12 rounds and AES-256 has 14 rounds. All the round functions consist of
following four transformations, except the last round that omits the MixColumns
operation:

– SubBytes : A byte-wise substitution, where each element of the state ma-
trix is replaced by its inverse and followed by an affine mapping. All the
operations are under F28 .

– ShiftRows : A cyclic shift of i-th row by i bytes towards left (we number
the rows from zero to three).

– MixColumns: A column-wise linear transformation of the state matrix. Each
column of the state matrix is considered as a polynomial of degree 3 with
coefficients in F28 and multiplied by the polynomial {03}x3 + {01}x2 +
{01}x + {02} mod x4 + 1.



– AddRoundKey : In this transformation a 128-bit round key is XORed with
the 128-bit state.

There is one additional AddRoundKey operations at the beginning of the first
round. The round keys are generated by the AES key scheduling algorithm,
as shown in Algorithm 1. The round keys are generated from the master key
K where Nk, Nr and Kr represent the key length in bytes, number of rounds
and the r-th round key respectively. For more details one can refer to the AES
specification [11].

Algorithm 1: AES Key Scheduling Algorithm
Input: K the initial key of length Nk bytes
Output: Kr the round key where 0 ≤ r ≤ Nr

for i = 0 to Nk − 1 do
W [i] ← {K[4 ∗ i],K[4 ∗ i + 1],K[4 ∗ i+ 2],K[4 ∗ i + 3]}

end

for i = Nk to Nb ∗ (Nr − 1) do
temp← W [i− 1]
if i mod Nk = 0 then

temp← SubWord(RotWord(temp))⊕ Rcon[i/Nk]
end
else if Nk > 6 and i mod Nk = 4 then

temp← SubWord(temp)
end
W [i] ← W [i−Nk]⊕ temp

end

return W

2.2 Notations Used

In the rest of the paper we refer to the SubBytes, ShiftRows, and MixColumns

operations as SB, SR andMC respectively and their corresponding inverse func-
tions as SB−1, SR−1 and MC−1.

The AES is typically considered to operate on a 4 matrix referred to as a
state matrix. A given byte in a state matrix will be indexed by its row i and
column j. The notation used in this paper takes the form:

Ci,j : The {i, j} byte of the ciphertext C.
C∗i,j : The {i, j} byte of the faulty ciphertext C∗.
Kr

i,j : The {i, j} byte of the r-th round key Kr

where 0 ≤ i, j ≤ 3.

3 Fault Model Used

In this paper we use a single byte fault model where we assume that an attacker
has the ability to induce a single byte random fault in any chosen point during the



computation of the AES block cipher. In this paper we consider both attacks that
affect the AES state matrix and the attacks that affect the AES key schedule. In
each case we consider the attack on all three versions of AES: AES-128, AES-192
and AES-256.

In the case of attacks that could be applied to AES-128 and AES-192, we
assume that an attacker can induce single byte fault between the MixColumns

operations in rounds Nr − 2 and Nr − 3. In the case of AES-256 we assume that
an attacker can induce faults at two different locations; between the MixColumns
operation in rounds Nr − 2 and Nr − 3 and between the MixColumns operation
in rounds Nr − 3 and Nr − 4.

While considering the attack on AES key schedule, we assume a similar fault
model. For AES-128 and AES-192 we assume that an attacker can induce a
single byte random fault in the first column of KNr−2. In AES-256 we assume
two different fault models: in the first one a fault is induced in the first column
of KNr−2 and in the second one a fault can be induced in the first column of
KNr−3.

4 Estimating the Limits of DFA on AES with Single Byte
Faults

In this section, we analyze the limits of DFA on the AES algorithm. The proofs
are based on reduction techniques: we reduce an adversary against AES using
conventional cryptanalysis to an adversary in the DFA setting. First, we reduce
a collision based adversary, Advcol to a AdvstateDFA which targets a fault in the
state matrix of AES. Next, we show a reduction of a related key adversary of
AES, AdvRKey to a DFA adversary which exploits faults in the key-schedule,

Adv
key
DFA. The adversary Advcol is defined to be an attacking algorithm which

attacks AES by first varying the plaintext and finding a pair which collides by
having a state with a small difference at a chosen point in the algorithm. On the
other hand, the adversary AdvRKey obtains a key pair which is related in the
sense that the key scheduling generates fixed difference at a chosen round.

The attacker has the ability to obtain encryptions under both the related keys
and arbitrary chosen plaintexts. It is assumed that such classical adversaries
against AES are not successful in reducing the worst case key space of AES.
Further, the adversaries have no other means of inducing such collisions except
exhaustive search. We establish the optimal complexities of the DFA adversaries
by arguing that if there is a more efficient DFA adversary then the reduction
proofs lead to the definitions of classical adversaries which reduce the key space
of AES from the worst case complexities, which is assumed to be not possible in
this work.

4.1 Limits of DFA on AES States

Fig. 1 shows the construction of the adversaryAdvcol using the adversaryAdv
state
DFA

as a subroutine. The figure essentially depicts the reduction of the adversary



Advcol to the adversary AdvstateDFA. The reduction starts by Advcol searching for a
pair of plaintexts P and P ′ such that after a particular round r a target differ-
ence ∆S is obtained. If the probability of obtaining such a pair is Pr(∆S), the
expected number of pairs required to obtain at least one pair with the required
property is 1

Pr(∆S) . For each such guessed pair, the adversary Advcol obtains a

pair of ciphertexts, C = En(P ), and C′ = En(P ′) where E is the AES round
applied for n times. It then invokes AdvstateDFA with the pair C and C′.

It may be observed that if the pair P and P ′ leads to the desired difference
∆S at the output of round r, then the ciphertext pairs (C,C′) are exactly same
as in a DFA. This is because in a DFA, the induced fault during the execution
of E will generate a difference ∆S at the round r, which will lead to the same
faulty ciphertext C′. However the adversary Advcol has no way of determining
that the desired fault has occurred, and has to make expected 1

Pr(∆S) number of

trials. Thus if the AdvstateDFA reduces the search space of the key to Kl, then the
search space of AES with regard to Advcol is on an average 1

Pr(∆S) · Kl. If we

denote the security level of AES as Ks, then Ks is at most 1
Pr(∆S) · Kl. Thus,

Ks ≤
1

Pr(∆S) ·Kl, or Kl ≥ Ks · Pr(∆S). Hence, an optimal DFA on AES would

reduce the search space of AES key to Ks · Pr(∆S).

K

DFA

Er

En−r En−r

Er

P′P

C C′

∆S

AdvColn

Adv
key
DFA

Fig. 1. Collision based DFA



We assume that AES is theoretically unbreakable, i.e. there is no attack
that would require less time complexity than an exhaustive search3. Then in
the case of AES-128 Ks = 2128. In conducting DFA on AES-128, a single byte
fault is induced in the input to the eighth round. Therefore, ∆S is a single
byte difference at the input to the eighth round. The probability that the two
plaintexts P and P ′ collide at the beginning of a round in 15 bytes out of 16 is
2−120 ⇒ Kl = 2−120 · 2128 ⇒ Kl = 28. This implies, the state-of-art DFA using
a single-byte fault cannot reduce the search space of AES-128 to less then 28. If
it does then Ks < 2128 which means the security level of AES-128 is less than
128 bits which contradicts our assumption. Therefore, the lower limits of a DFA
using single-byte fault is 28.

This hypotheses is also true for the other two version of AES: AES-192 and
AES-256. In case of AES-192, Ks = 2192. Therefore, Kl = 2192−120 = 272, i.e.
a single byte fault induction can reduce the search space of AES-192 key to 72-
bit which is the minimum limit. Similarly, for AES-256, Ks = 2256. Therefore,
Kl = 2256−120 = 2136.

Note

In this paper we only consider the single byte fault model. However, our analysis
is also true for multi-byte DFA as proposed in [24]. In case of the diagonal attack
of [24], the difference is considered across a diagonal of the AES state matrix
before the input of the eighth round MixColums. The diagonal fault attack uses
the observation that the faults in the diagonals adjusts to columns at the input
of the ninth round. The subsequent MixColumns produces similar relations as
the single byte DFA on AES-128 state, which are exploited to retrieve the key.
However, the attacks proposed in [24] are not optimal in the sense described in
this paper. They do not use the inter-relationships of the faults at the output
of the eighth round MixColumns and hence can be further optimized depending
on the number of bytes corrupted in the diagonals. These optimized attacks are
presented in [1], and their optimality can be argued in a similar fashion.

According to our analysis, if the induced fault infects i bytes in the required
state matrix, then the optimal attack result is given by Ks · P (∆S), where ∆S

is the required difference which can be of i bytes. In the case of AES-128, the
optimal limit is given by 2128 · 1

2128−8·i = 28·i.

Therefore, for a diagonal attack, depending on the value of i, the results may
vary. For example, for single byte fault, the optimal limit is 28. Similarly, when
the fault affects all the four bytes of the diagonal, the optimal limit of the attack
is 232, as the difference is in four bytes.

The same analysis also true for two diagonal and three diagonal attacks. The
optimal attacks complexities are mentioned in Table 2, and it shows that the

3 This assumption is not entirely true since an attack on the full AES-128 has recently
been published [6]. However, this attack is marginal and will not affect our reasoning
with regard to collision attacks.



improvement in [1] indeed achieves the optimal complexities of the Diagonal
attacks published in [24].

4.2 Limits of DFA on AES key schedule

A similar analysis helps to compute the optimal complexity of a DFA on the
AES key-schedule. For this purpose, we reduce a related key adversary AdvRKey

to an adversary Adv
key
DFA, which performs DFA on AES exploiting faults in the

key-schedule of AES. The related key adversary has the ability to obtain encryp-
tions with related keys, the unknown key and a related key to the unknown key
(as introduced by Biham [3]). The encryptions are performed through suitable
oracles for encrypting using related keys.

The relation in this case gives a key K ′ such that the key-schedule will
generate a required difference ∆K in the r-th round key. It may be noted that
∆K is not a fixed value, but shall be a byte-wise difference (as described in
Section 7). For example, for AES-128 ∆K is such that the first row of the
difference of the 8-th round key is the bytes a, a, a, a, where a is any byte.

The attacker AdvRKey also attempts that the
Er(P,K)⊕Er(P ′,K ′) = ∆Kp where E

r is the output of the r-th round after the
addition of the r-th round key. For this the attacker starts to vary the plaintext P ′

and obtain the required difference in the state matrices. Note that the difference
∆Kp indicates that the difference is not necessarily the same difference as ∆K,
but a similar difference. Thus in the example of the attack on AES-128, the
corresponding differential is such that the first row difference is b, b, b, b, where
b is any byte, not necessarily the same as a. The probability of random two
plaintexts P and P ′ to create the above difference is Pr(∆Kp). However the
adversary AdvRKey has no way of determining that the required difference has
occurred, and hence has to make 1

Pr(∆Kp)
expected number of choices of P ′.

It thus creates an expected 1
Pr(∆Kp)

ciphertexts, C′ and invokes the adversary

Adv
key
DFA with the pairs C and C′. It may be noted that it is expected that

there will be one pair where the required difference in the state matrices is
created. Under this situation the view of AdvkeyDFA is exactly the same as in a DFA
targeting the AES key scheduling. This is because the keys K and K ′ are related
such that after the r-th round the difference as required in the DFA exists and
the plaintext pair ensures that the difference in the state matrix is also identical
to the DFA. Thus if the Adv

key
DFA reduces the key-space to Kl, then the search

space of the AES key wrt. AdvRKey is 1
Pr(∆Kp)

·Kl. Like before, if we denote the

security margin of AES as Ks, then Ks ≤ 1
Pr(∆Kp)

·Kl ⇒ Kl ≥ Ks · Pr(∆Kp).

Thus an optimal DFA on the AES state is Ks · Pr(∆Kp).
The recent attack on the AES-128 key schedule [17] required a fault that

affects three bytes in the first column of the 9-th round key while the key is
being generated. A single-byte fault induction in the first column will make a
four byte difference in the 9-th round key. Therefore, a three byte fault injection
will generate a 12 byte difference. If we map this model to our analysis the
related keys generate 12 byte differences (also the difference values are the same
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Fig. 2. Related key based DFA

in each of the three rows). Fig. 3(a) shows the faults in the 9-th round key
where a, b, and c are the fault values. The probability of getting such difference

using a pair of plaintexts is given by (255)3

(28)12 · 1
(28)4 ≈ 1

2104 .Therefore, we can write

Kl = 2128−104 = 224. This implies, the lower limit of this attack is 24-bit using
a single faulty ciphertext.

b

c

a a a a

b b b

c c c c

(a) 3-Byte Fault
in K9

a a
b b

(b) Byte Fault in
K10

1,0

a a a a

(c) Byte Fault in
K12

1,0

Fig. 3.



In this paper we consider the single-byte fault model. Therefore, if we consider
that a single-byte fault is induced in the first column of K9 the values of b and
c becomes zero in Fig. 3(a). So, only the first row differences will remain. The
probability of getting the four byte difference in a particular row using a pair

of plaintexts is given by (255)
232 · 1

296 ≈ 1
2120 . The lower limit Kl = 2128−120 = 28.

Therefore, in case of single byte fault, the attack should reduce the AES-128 key
space to 28.

Floissac et al. showed a single byte fault analysis on AES-192 and AES-256
key schedule where the fault is induced in 10-th and 12-th round key respectively
(Fig. 3(b) and Fig. 3(c)) [12]. It is clear from Fig. 3(c), that a single-byte fault
induction in AES-256 key schedule should reveal 120 bits of information on the
key. However, in the case of AES-192 the required difference can be generated

using a pair of plaintexts with probability (255)2

(28)4 · 1
296 ≈ 1

2112 . Therefore, the

lower bound of attack on AES-192 key schedule is given by Kl = 2192−112 = 280.

From the above analysis we come to know the maximum information leakage
from a DFA based on single byte-fault induction. Using this information we can
also get the optimum attack results. Here the optimum results are based on two
scenarios. In one the attacker has the access to the plaintext. Therefore, brute-
force search on final key hypotheses is possible. In this scenario the optimum
result means the minimum number of fault inductions require to reduce the key
space to a practical limit. In the second scenario the attacker does not have
access to the plaintext. Therefore, the key must be uniquely determined. In that
case the optimum result implies the minimum number of fault inductions require
to uniquely determine the key.

Table 1 shows the optimum results for the above two scenarios. The table
also shows that in case of second scenario the existing attack on AES-128, AES-
192, AES-256 states and AES-128 key schedule are optimal. In rest of the cases,
there is no reported DFA attack which reached the optimum limits. Therefore,
the table shows that there is a scope of work in this area which is the motivation
behind this paper.

In the next two sections we present differential fault analysis against the AES
state matrix and key schedule respectively. We show that our attack on the AES
state matrix has reached its theoretical limits. However, in the case of DFA on
the AES key schedule the limit has not yet been reached. Only, the DFA on
AES-128 key schedule has reached to its limits. The proposed DFA on AES-192
and AES-256 key schedule are very close to their limits.

We start with the DFA on the states of three version of AES.

5 Basic Principle of DFA on AES

We have already mentioned that DFA on AES is divided into two categories.
One in which the fault is induced in the AES states. In the other the fault is
induced at the round keys. In both the categories the objective of the attacker
is to induce certain difference at a particular state of the encryption and then



Table 1. Optimal Limits of DFA on AES

AES Version and Optimal Result Optimal Result for Unique key

Attack Type Number remaining Number

of Faults Keys of Faults

AES-128 1 28 2

State (published in [23])

AES-192 2 1 2

State (published in [16]) (published in [16])

AES-256 2 216 3

State (published in [16])

AES-128 1 28 2

Key Schedule (Published in [15])

AES-192 2 1 2

Key Schedule

AES-256 2 216 3

Key Schedule

Table 2. Optimal Limits of Diagonal Attacks on AES

No. of 1-Diagonal DFA 2-Diagonal DFA 3-Diagonal

Faulty Bytes (M0) (M1) (M3)

Optimal Optimal Optimal

Result Result Result

1 28 28 28

2 216 216 216

3 224 224 224

4 232 232 232

5 − 240 240

6 − 248 248

7 − 256 256

8 − 264 264

9 − − 272

10 − − 280

11 − − 288

12 − − 296

following the differential characteristic she deduces some equations which relate
the input-output difference of the S-boxes.

In case of the AES, the input to the S-box in each round is the XOR of
previous round output and the round key. Fig. 4 shows one such example. Here



S S

in⊕ β

out out⊕ α

K K

in

Fig. 4. Difference across S-box

in is the previous round output byte and K is the round key byte. Due to the
fault induction, a difference β is generated in X following which there is an
output difference α at the S-box output out. Now if we replace the value of
in⊕K by X , we get following differential equation;

α = S(X ⊕ β)⊕ S(X) (1)

According to the properties of AES S-box for a particular value of α and β the
above equation can have 0, 2, or 4 solutions of X [21]. For a fixed value of β, in
126 out of 256 choices of α the equation gives 2 solutions of X , and in only one
choice of α the equation gives 4 solutions and the rest of the choices of α will not
give any solution for X . This implies only 127 out of 256 choices of α produce
solutions for X . For more details one can refer [21]. Therefore, if we know the
values of α, β and in we can get the values of K from the above equation.

Equation (1) is the basis to almost all the DFA attacks on SPN and Feistel
ciphers. The attacker induces fault in such a way so that she can deduce equations
like (1), which relates the round key bytes with the input-output difference.
Then solving these equations she retrieves the round keys. Depending on the
key schedule of the cipher she needs to retrieve sufficient number of round keys
to get the master key.

In AES, retrieving the last two round keys are sufficient to get the master
key. Therefore, the attacker first try to get the final round key by inducing
certain number of faults. Once the final round key is retrieved, she performs last
round decryption and applies the same technique to get the penultimate round
key. Therefore, the attack can be divided into two phases. In the first phase
the attacker retrieves the final round key and in the second phase she retrieves
the penultimate round key. In order to explain the basic principle of the two-
phase attack, we consider a r round AES with Kr and Kr−1 as the final and
penultimate round keys.



5.1 First Phase of DFA on AES

In AES, if one byte difference is induced at the input of a round function, due to
MixColumns operation the difference spread to four bytes at the round output.
Fig. 5 shows one such scenario.
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Fig. 5. Differences across the Last Two Rounds

A single byte difference is generated before the (r− 1)-th round MixColumns

by the induced fault. The value of this difference is f and the corresponding 4-
byte output difference is (2f, f, f, 3f), where 2, 1, and 3 are the elements of the
first row of the MDS matrix used in MixColumns operation. The 4-byte differ-
ence is again changed to (f0, f1, f2, f3) by the r-th round S-box. The ShiftRows
operation will shift the differences to four different locations. The attacker knows
the value of fault-free and faulty ciphertexts which differ in four bytes. Therefore,
she can represent the 4-byte difference (2f, f, f, 3f) in terms of Kr by following
equations:



2 f = S−1(C0,0 ⊕Kr
0,0)⊕ S−1(C∗

0,0 ⊕Kr
0,0)

f = S−1(C1,3 ⊕Kr
1,3)⊕ S−1(C∗

1,3 ⊕Kr
1,3)

f = S−1(C2,2 ⊕Kr
2,2)⊕ S−1(C∗

2,2 ⊕Kr
2,2)

3 f = S−1(C3,1 ⊕Kr
3,1)⊕ S−1(C∗

3,1 ⊕Kr
3,1)

(2)

Here C and C∗ are the fault-free and faulty ciphertexts. AES S-box is bijective,
therefore each of the above four equations can be represented as equation (1).
Again, equation 1 can be represented as: A = B⊕C where A,B, and C are bytes
in F28 , having 28 possible values each. A random value of (A,B,C) satisfies this
equation with probability 1

28 . Therefore, 2
16 out of 224 choices of (A,B,C) will

satisfy the equation.
If we have M such equations which contain N variables in that case the

reduce search space is given by ( 1
28 )

M · (28)N = (28)N−M . In the above set of
four equations we have five unknown variables: f,Kr

0,0,K
r
1,3, K

r
2,2, and Kr

3,2.
Therefore, the four equations reduce the search space to (28)5−4 = 28. This
implies only 28 candidates of the quartet of key bytes will satisfy the above
four equations. By inducing two such faults one can uniquely determine the key
quartet. In the same way one can also get the rest of the three quartets of Kr.
It may also be observed that if the location of the induced difference is changed
then only the indices of the variables and the order of the equations will changed.
The basic form of the equations will remain same.

Once Kr is determine the attacker applies the second phase of the attack to
determine Kr−1.

5.2 Second Phase of DFA on AES

In the second phase, the attacker induces faults in such a way so that a single byte
difference is generated at the input of (r − 2)-th round MixColumns operation.
The fault propagation pattern remain same as in the first phase of the attack.
Therefore, if the input difference is f ′, then the 4-byte output difference of (r−2)-
th round is (2 f ′, f ′, f ′, 3 f ′). These differences can also be represented by (r−1)-
th round fault-free and faulty outputs. However, due to the (r − 1)-th round
MixColumns operation, the equations will change (the last round does not have
MixColumns). For example, 2f ′ can be represented by following equation:

2 f
′
= S

−1
(14(C

r−1
0,0 ⊕K

r−1
0,0 )⊕ 11(C

r−1
1,0 ⊕K

r−1
1,0 )⊕

13(Cr−1
2,0 ⊕Kr−1

2,0 )⊕ 9(Cr−1
3,0 ⊕Kr−1

3,0 ))⊕

S−1(14(C
∗(r−1)
0,0 ⊕Kr−1

0,0 )⊕ 11(C
∗(r−1)
1,0 ⊕Kr−1

1,0 )⊕

13(C
∗(r−1)
2,0 ⊕K

r−1
2,0 )⊕ 9(C

∗(r−1)
3,0 ⊕K

r−1
3,0 ))

(3)

Here Cr−1 and C∗(r−1) are the fault-free and faulty output of (r− 1)-th round.
Therefore, if the attacker has already determined the final round key she can
get the values of Cr−1 and C∗(r−1) by decrypting the last round. She can also
deduce three more such equations from the rest of the three differences. Solving
these equations the attacker can reduce the search space of Kr−1.



5.3 Similarity and Differences Between the Attacks

In the previous two sections we explain the basic principle of a DFA on AES. It
uses simple divide and conquer approach. However, when we apply this technique
to different versions of AES, the complexity of the attack changes drastically.
For DFA on AES states, the first phase of the attack is same for all the three
versions. It only retrieves the final round key. However, solving the second phase
equations (Eq. (3)) are real challenge. As we can see each equation consists of
four key bytes and these key bytes are not same across all the four equations
generated from the 4-byte difference. If we consider all the four equations we have
total seventeen unknown variables; sixteen bytes of Kr−1 and f . Therefore, it
is evident that the required exhaustive search on these variable is not practical.
Therefore, the attacker must find some relation between these key bytes.

In order to do that the attacker takes the help of AES key schedule. As
the key schedule is different for different versions of AES, therefore the attack
strategy will also be different. Further, attacking AES key schedule is much more
difficult than attacking AES state. In the first case the number of variables in
the first phase and the second phase equations are more due to the diffusion of
the differences in the key schedule.

6 DFA on AES State

In this section, we propose optimal DFA attacks on the AES state. The present
section presents differential fault attacks on AES-128 and AES-256, and shows
how an optimal fault attack can be performed. As proved in Section 4, a single
byte fault can reveal 120 bits of information of the AES key. Hence, an optimal
DFA on AES-128 would require a single fault (as the remaining uncertainty of 8
bits can be obtained using a practical exhaustive search). However for AES-256,
an optimal DFA should need two faults, as then the remaining uncertainty is of
(256 − 2 · 120) = 16 bits, which also can be easily computed through a brute
force analysis. In the following description, we present the attack steps which
reach these optimal limits. It may be pointed out that for AES-192, the attack
proposed in [16] already reaches the optimal limit.

6.1 DFA on AES-128 State

In these section we propose a two phase attack on the AES-128 state matrix by
inducing a single byte fault in between the seventh and eighth round MixColumns

operations. In the first phase of the attack we reduce the search space of the final
round key K10 to 232 hypotheses using the differential equations at the output
of the ninth round MixColumns operation. In the second phase of the attack we
further reduce the search space of the final round key by taking into consideration
the differential equations at the output of the MixColumns operation in the eighth
round.



First Phase of the Attack on AES-128 State A single byte random fault is
induced in between the seventh and eighth round MixColumns operations. Fig. 6
shows the flow of such a fault. The induced fault is propagated from the output
of the eighth round
MixColumns operation to the first column of S2 and subsequently to all the
volumes of the state matrix after the ninth round MixColumns operation. This
actually serves the objective of inducing four faults at four different columns
of the state matrix input to the ninth round MixColumns which is described in
Section 5.1.

Therefore, the difference between columns of state matrices in the fault-free
and faulty ciphertexts can be expressed in terms of these ciphertexts and the
tenth round key K10. The first column of S4 will produce four equations similar
to equations (2). In this case r will be replaced by 10 and the 4-byte difference
(2 f, f, f, 3 f) will be replaced by (2 p0, p0, p0, 3 p0). We call this equations as
ninth round differential equations. These equations will reduce the search space
of key quartet (K10

0,0, K
10
1,3,K

10
2,2,K

10
3,2) to an expected value of 28.

Similarly, we can deduce three sets of equations from the rest of the three
columns of the state matrix S4. These three sets of equations will reduce the
corresponding quartet of key byte’s search space to 28 hypotheses. If we combine
all the four key quartets, we get (28)4 = 232 hypotheses of K10. So, in the first
phase of the attack we have 232 hypotheses for K10. In the second phase of the
attack we further reduce the search space of K10.

Second Phase of the Attack on AES-128 State In order to further reduce
the search space of the final round key we consider the relationship between the
faulty bytes at the first column of S2, see Fig. 6. In order to do that we need
K9 and the ninth round fault-free and faulty outputs (C9, C∗9). However, as the
AES-128 key schedule is invertible, therefore, we can avoid making hypotheses
directly on K9 by performing inverse key schedule operation as:

















(K10
0,0 ⊕ S[K10

1,3 ⊕ K10
1,2] K10

0,1 ⊕ K10
0,0 K10

0,2 ⊕ K10
0,1 K10

0,3 ⊕ K10
0,2

⊕h10)

(K10
1,0 ⊕ S[K10

2,3 ⊕ K10
2,2]) K10

1,1 ⊕ K10
1,0 K10

1,2 ⊕ K10
1,1 K10

1,3 ⊕ K10
1,2

(K10
2,0 ⊕ S[K10

3,3 ⊕ K10
3,2]) K10

2,1 ⊕ K10
2,0 K10

2,2 ⊕ K10
2,1 K10

2,3 ⊕ K10
2,2

(K10
3,0 ⊕ S[K10

0,3 ⊕ K10
0,2]) K10

3,1 ⊕ K10
3,0 K10

3,2 ⊕ K10
3,1 K10

3,3 ⊕ K10
3,2

















.

In order to get (C9, C∗9) we do one round decryption operation on (C,C∗) using
the hypotheses for K10.

The 4-byte fault value (2 p, p, p, 3 p) at the first column of S2 can be rep-
resented in terms of (C9, C∗9) and K9 which in turn produces four equations
similar to equation (3). In that case the value of r will be replaced by 9 and
(2 f ′, f ′, f ′, 3 f ′) will be replaced by (2 p, p, p, 3 p). We call these equations as
eighth round differential equations. In these four differential equations, we have
232 hypotheses for (K9, C9, C∗9) and 28 possible values for p. Therefore, the four

equations reduce the search space to (232·28)
(28)4 = 28, i.e. from the 232 hypotheses

for K10 only 28 will satisfy the set of four equations. This result shows that our
proposed DFA on AES-128 reaches the limit as describe in Section 4.
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p
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p1

p3
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8th Round

MixCol

2p0

p0

2p3

p3

3p2

2p2

p2

3p1

2p1

p1

p1

p3

p0 3p3

3p0
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K8

S3

K9

9th Round

10th Round

S4

S2

S1

SubByte

ShiftRow

Fig. 6. Flow of fault in the last three rounds of AES-128



However, the time complexity of the attack is still 232, as each of the 232

choices of K10are tested by set of four equations. In the next section we propose
an acceleration technique by which the attack time complexity reduces to 230

from 232.

Reducing the Time Complexity of the Attack In order to reduce the
time complexity of the attack we observe the basic properties of the differential
equations as explained in Section 5.

If we consider the ninth round differential equations in the first phase of
the attack, each of which can be represented as equation (1). In that case
p0 corresponds to α. Therefore, if a value p0 contributes to the solutions of
(K10

0,0,K
10
1,3,K

10
2,2,K

10
3,1), then there will total 24 solutions of the quartet for one

such choice of p0 as each of the key bytes will have 2 solutions4. For exam-
ple if (a0, b0, c0, d0) is one solution of the quartet then there is another solution
(a1, b0, c0, d0) whereK

10
0,0 has the second solution a1, whereas the rest of the three

key bytes have the same values. This implies if we only want the unique choices
of the last three key bytes among all possible solutions of (K10

0,0,K
10
1,3,K

10
2,2,K

10
3,1),

we get 28

2 = 27 choices.
Now in the eighth round differential, each byte of C9 or C∗9 consists of one

byte of tenth round key. For example C9
0,0 consists of key byte K10

0,0. However,
in case of ninth round key byte, if the key byte is in the first column of K9, it
requires three byte of K10 whereas for the other key bytes of K9 requires two
bytes of K10. Therefore, if we consider these equations in pairs, all the pairs of
equations does not consists of same number of key bytes of K10. The pair of
equations which consists of second and third equations requires least number of
key bytes 14 (except the key bytes K10

0,0 and K10
0,1).

Therefore, in order to reduce the time complexity of the attack, in the second
phase we test the second and third equation first by the unique choices of 14 key
bytes of K10 (excluding key bytes K10

0,0 and K10
0,1 ). There are total 232 choices

of K10 out of which the number unique choices of required 14 key bytes is given

by 232

22 = 230. Therefore, out of these choices only 230

28 = 222 will satisfy the two
equations. Rest will be discarded. Those which satisfy are combined with the
22 choices of the rest of the two key bytes and further tested by the other two
eighth round differential equations.

As we need to test only 230 times in the second phase of the attack, therefore,
the time complexity of the attack reduces to 230 from 232. The summary of the
proposed attack is presented in Algorithm 2.

6.2 DFA on AES-192 States

A DFA on AES-192 has been proposed by Kim [16] which exploits all the avail-
able information. According to our analysis a single byte fault should reveal
120-bit of the secret key. AES-192 has a 192-bit key, and therefore one would

4 For the sake of simplicity we do not consider the 4 solutions cases.



Algorithm 2: DFA on AES-128 State
Input: C,C∗

Output: List Lk of tenth round key K10

Solve the four sets of equations of S4 (Fig. 6) independently.

Get 232 hypotheses of K10.

for Each candidates of K10 do
Get K9 from K10 using AES-128 Key Scheduling.

Get unique choices of 14 bytes of K10 except K10
0,0,K

10
0,1.

Test the 2nd and 3rd equations of S2

if Satisfied then
for Each candidates of (K10

0,0,K
10
0,1) do

Test the 1st and 4th equations of S2.

if Satisfied then
Save K10 to Lk.

end

end

end

end

return Lk

expect the most efficient attack would need two single byte faults. Kim’s attack
required two faults and uniquely determines the key.

6.3 DFA on AES-256 States

In this section we propose a two phase DFA on AES-256 states and show that
our attack reaches its limit as per the analysis in Section 4. The analysis says
that using a single byte fault induction one can reveal maximum of 120 bits of
the secret key. AES-256 has a 256-bit key. Therefore, two fault induction should
be able to reveal (120 · 2) = 240 bits of the key.

According to the AES-256 key schedule, retrieving one round key is not
enough to get the master key. Algorithm 1 shows that the penultimate round
key is not directly related to the final round key. Therefore, the attack on AES-
128 cannot be directly applicable to AES-256.

We propose an attack which requires two faulty ciphertexts C∗1 and C∗2 and a
fault free ciphertext C. The first faulty ciphertext C∗1 is generated by inducing a
single byte fault between the MixColumns operations in the eleventh and twelfth
round, whereas C∗2 is generated by inducing a singe byte fault in between the
MixColumns operations in the tenth and eleventh round. Fig. 7(a) shows the
flow of faults corresponding to C∗1 whereas Fig. 7(b) shows the flow of faults
corresponding to C∗2 .
The proposed attack works in two phases. In the first phase of the attack we
reduce the possible choices of final round key to 216 hypotheses and in the
second phase of the attack we deduce 216 hypotheses for the penultimate round
key leaving 216 hypotheses for the master key.
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three rounds of AES-256

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
��
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

p’��
��
��
��

��
��
��
��

SubByte

ShiftRow

MixCol

SubByte

ShiftRow

MixCol

ShiftRow

11th Round

S2

S1

K11

MixCol

p’

p’

3p’

2p’

K12

X

K13

K14

SubByte

12th Round

13th Round

14th Round

3p′1

2p′1 S3

2p′0

p′0

2p′3

p′3

3p′2

2p′2

p′2

p′1

p′1

p′3

p′0 3p
′

3

3p′0

p′2

(b) Flow of faults in the last
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Fig. 7. Flow of Faults

First Phase of the Attack on AES-256 States In order to get the final
round key we directly apply the first phase of the DFA on AES-128, described in
Section 6.1, to the faulty ciphertext C∗1 (Fig. 7(a)). Therefore, using the relation
between the faulty bytes in state matrix S4 we reduce the possible values of the
final round key K14 to 232 hypotheses. Next we consider the second faulty ci-
phertext C∗2 (Fig. 7(b)), where in state matrix S3 we have a relationship between



the faulty bytes that is similar to the state matrix S4 of C1 (Fig. 7(a)). We de-
fine X as the output of the 13-th round SubBytes operation in the computation
that produced the fault-free ciphertext. We also define ρ and ε as the differences
at the output of 13-th round SubBytes operation corresponding to two faulty
ciphertexts C∗1 and C∗2 respectively. These two differences can be expressed as:

ρ = SR−1
(

MC−1(SR−1(SB−1(C ⊕K14)
)

⊕

SR
−1

(SB
−1

(C
∗

1 ⊕K
14

))
)

)

ε = SR
−1

(

MC
−1(

SR
−1

(SB
−1

(C ⊕K
14

))⊕

SR−1(SB−1(C∗

2 ⊕K14))
)

)

Therefore, the fault values in the first column of S3 (Fig. 7(b)) can be represented
in terms of X and ε by four equations similar to equation (1). In that case
ε0,0, ε1,0, ε2,0, and ε3,0 are the values corresponding β and 2p′0, p

′
0, p
′
0, and 3 p′0

are the values corresponding to α in the four equations respectively.
Similarly, from the first column of state matrix S2 of Fig. 7(a), we get four

more differential equations which correspond to the first column of X and ρ.
Therefore, corresponding to first column of X , we get two sets of differential
equations. Again each byte of ε and ρ corresponds to one quartet of K14. For
example ρ0,0 can be expressed as:

ρ0,0 =
(

14(SB−1(C0,0 ⊕K14
0,0)⊕ SB−1(C∗

1(0,0) ⊕K14
0,0))⊕

11(SB−1(C1,3 ⊕K14
1,3)⊕ SB−1(C∗

1(1,3) ⊕K14
1,3))⊕

13(SB−1(C2,2 ⊕K14
2,2)⊕ SB−1(C∗

1(2,2) ⊕K14
2,2))⊕

9(SB−1(C3,1 ⊕K14
3,1)⊕ SB−1(C∗

1(3,1) ⊕K14
3,1))

)

(4)

We already know that each of the quartets are independently calculated and pro-
duces 28 hypotheses. Therefore, the four pairs (ε0,0, ρ0,0), (ε1,0, ρ1,0), (ε2,0, ρ2,0),
and (ε3,0, ρ3,0) correspond to four quartets of K14 and each having 28 values.

In order to solve two sets of differential equations of first column of X , with
minimum time complexity, we consider them in pairs. First we choose two equa-
tions, for example from the second set we choose equations corresponding toX0,0

and X1,0. We guess the values of p corresponding to each choice of (ρ0,0, ρ1,0)
and derive the possible values of X0,0, X1,0, ε0,0, and ε1,0. We test these values by
the corresponding equations in the first set. If they satisfy the relationships they
are accepted, otherwise they are rejected. It may be observed that the mapping
between a byte of ρ and the corresponding byte of ε is one-to-one, as both the
bytes are derived from same key quartet.

Therefore, in the two equations of the second set we guess 28 · 28 · 28 = 224

hypotheses for (ρ0,0, ρ1,0, p) which is reduced to 216 hypotheses by correspond-
ing two equations of the first set. Each of these 216 hypotheses are combined
with 28 hypotheses for ρ2,0 in the third equation of the second set and tested
by the corresponding equation in the first set. Again, the possible hypotheses
reduce to 216. Then these values are combined with 28 hypotheses for ρ3,0 in the
fourth equation of the second set and verified using the corresponding equation
in the first set, which will again reduce the number of possible hypotheses to



216. Therefore, finally we will have 216 hypotheses for K14 each corresponding
to one value for (X0,0, X1,0, X2,0, X3,0). Throughout the process the time con-
suming part of the calculation is where 224 hypotheses are made and the rest is
negligible. We, therefore, consider the time complexity of this process to be 224.

It can also be explained in straightforward way. There are eight equations, in
which p, p′0, (X0,0, X1,0, X2,0, X3,0) and K14 are unknown. The total search space
of these variables would be 280. Therefore, the reduced search space produced

by these eight equations is 280

(28)8 = 216.

In the second phase of the attack we deduce the values of penultimate round
key K13 corresponding to 216 choices of K14.

Second Phase of the Attack on AES-256 States In order to get the penul-
timate round key, we consider the last three columns of S3 in Fig. 7(b). For, one
choice ofK14, the differential equations from the last three columns of S4 will re-
duce the number of hypotheses for (X0,1, X1,1, X2,1, X3,1), (X0,2, X1,2, X2,2, X3,2),
and (X0,3, X1,3, X2,3, X3,3) to 28 for each set. Then we get the last three columns
of K12 from K14 as K12

i,j = K14
i,j ⊕K14

i,j−1, where 0 ≤ i ≤ 3 and 1 ≤ j ≤ 3.
Now from the first column of S2 we get four differential equations similar to

equations (3). In this case r is replaced by 13. The twelfth round fault-free output
can be expressed as C12 = S−1(X). Similarly, the faulty outputs corresponding
to two faulty ciphertexts can be expressed as C∗121 = S−1(X ⊕ ρ) and C∗122 =
S−1(X ⊕ ε).

Therefore, each of the four equations requires one column of X and one col-
umn of K12. The last three equations can be directly solved as we already know
the values of the last three columns of X and K12. In order to reduce the time
complexity we conduct a pairwise analysis. We first choose the second and third
equations which correspond to (X0,3, X1,3, X2,3, X3,3) and (X0,2, X1,2, X2,2, X3,2).
We have 28 hypotheses for both (X0,3, X1,3, X2,3, X3,3) and (X0,2, X1,2, X2,2, X3,2).
Each of these hypotheses can be evaluated using these two equations that will
reduce the value to 28 choices. Those which satisfy these equations are combined
with the 28 choices for (X0,1,X1,1,X2,1, X3,1) and further tested by fourth equa-
tion which will again reduce the combined hypotheses of the last three columns
of X to 28 possibilities. The values of (X0,0, X1,0, X2,0, X3,0) are already reduced
to one possibility for a particular value of K14 in the first phase of the attack.
Therefore, this results in 28 hypotheses for X . For each of these hypotheses we
get the first column of K12 and test using the first equation. This will further
reduce the hypotheses for X to 1. The time complexity here is around 216 as we
consider two columns of X at a time.

Therefore, one hypothesis for K14 will produce one value for X which in
turn produces one value for K13 by the following: K13 = MC(SR(X)) ⊕ C13,
where C13 is the output from the 13-th round, which is known to the attacker
from the ciphertext C and K14 previously ascertained. Hence one hypothesis for
K14 will produce one hypothesis for K13. Therefore, the 216 hypotheses of K14

will produce 216 hypotheses for K13. In which case the total time complexity
will be 216 · 216 = 232. So, finally we have 216 hypotheses for (K13,K14) which



corresponds to 216 hypotheses for the 256-bit master key. According the analysis
in Section 4, two faulty ciphertexts should reveal 240-bit of the AES-256 key.
Therefore, we can say that the proposed attack on AES-256 has reached its limit.
The summary of the attack is presented in Algorithm 3.

Algorithm 3: DFA on AES-256 State
Input: C,C∗

1 , C
∗
2

Output: List of 256-bit key Lk

/* Xi,j = 〈X0,j , X1,j , X2,j , X3,j〉*/

/* K12
i,j = 〈K12

0,j ,K
12
1,j ,K

12
2,j ,K

12
3,j〉*/

Solve four sets of equations of S4 (Fig. 7(a)) independently.

Get 232 hypotheses for K14.
Solve the two set of equations of Xi,0.

Get 216 hypotheses for K14.

for each candidate of K14 do
Guess the possible candidates of Xi,1, Xi,2, and Xi,3

Get the values of K12
i,1, K

12
i,2, and K12

i,3 from K14

for Each candidate of Xi,3,Xi,2,Xi,1 do
Test second, third and fourth equations of S2(Fig. 7(b))

if Satisfied then
Get K12

i,0 from K14 and X

Test First equation of S2 (Fig. 7(b))

if Satisfied then
Get K13 from X
Get 256-bit key from AES-256 Key Scheduling algorithm
save the 256-bit key to Lk

end

end

end

end

return Lk

7 Attacks on AES Key Schedule

In the previous section we explained how a single byte difference induced at the
state of a particular round can be exploited to reveal the secret key. Therefore, in
order to protect AES from such attacks a designer has to use some countermea-
sures which will not allow the attacker to induce fault in AES round operations.
The DFA on AES key schedule is such kind of attack which works even if the
rounds of the AES are protected against faults. In this case the fault is induced
at the round key. Therefore, the normal countermeasures which only protect the
round operations, will not be able to distinguish between a fault-free round key
and a faulty round key. Hence, it will fail.

Until recently DFA on AES key schedule was considered more difficult than
the DFA on AES states. Due to diffusion in the key schedule, a single byte
difference spreads to more number of round key bytes of same round key as well



as subsequent round key because of which the differential equations are more
complex than the DFA on AES states.

In this section, we present DFA on the AES Key Schedule for all the three
versions of AES. The current section develops the attacks published in literature
requiring 2 faults for AES-128, 16 faults for AES-192 and AES-256. The attacks
proposed in this section requires 1 fault for AES-128, 2 faults for AES-192 and 3
faults for AES-256. Thus compared to the optimal attacks as shown in Section 4,
we reach the limits for AES-128. However for AES-192 and AES-256 the present
attack is much closer to the optimal results than that in the literature.

7.1 Attack on AES-128 Key Schedule

In this section we propose a two phase attack which will reduce the AES-128
key space to 28 hypotheses using only one faulty ciphertext. The required faulty
ciphertext is generated by inducing a single-byte fault in the first column of the
eighth round key while it is being generated. Therefore, the induced byte fault
is then propagated to subsequent round keys. Fig. 8 shows the flow of this fault
as per the AES-128 key schedule. These faulty round keys subsequently corrupt
the AES state matrix during the encryption process. The flow of faults in the
AES states is shown in Fig. 9.
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Fig. 8. Flow of faults in AES-128 key schedule
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Fig. 9. Flow of faults in the last three rounds of AES-128

In the first phase of the attack we reduce the search space of the final round
key to 240 hypotheses. In the second phase we further reduce this search space
to 28 hypotheses.



First Phase of the Attack on AES-128 Key Schedule The faulty eighth
round key corrupts the AES state matrix during the AddRoundKey operation.
Fig. 9 shows that the faults in K8 corrupts the first row of the state matrix
at the input of ninth round. Subsequently, the faults are propagated to all 16
bytes in the MixColumns operation. The faulty bytes in state matrix S2 can
be represented by the fault-free and faulty ciphertexts C and C∗. The first
column S2 will produce a set of four differential equations similar to equa-
tions (2) which corresponds to the key quartet (K10

0,0,K
10
1,3,K

10
2,2,K

10
3,1). Similarly,

from other three columns we get three more sets of equations corresponding to
key quartets (K10

0,1,K
10
1,0, K

10
2,3,K

10
3,2), (K

10
0,2,K

10
1,1,K

10
2,0,K

10
3,3), (K

10
0,3,K

10
1,2,K

10
2,1,

K10
3,0). We refer to these four key quartets as Kq0,Kq1, Kq2, and Kq3 respectively.
It may be observed that unlike the proposed DFA on AES-128, here the

number of unknown variable are more. We have p, q, and r as extra unknown
variables. Therefore, existing solving techniques will not be applicable to these
equations. It may be noted that these three unknown variables are derived from
key schedule operation and related by following equations:

q = S[K8
0,3]⊕ S[K8

0,3 ⊕ p]

= S[K9
0,3 ⊕K9

0,2]⊕ S[K9
0,3 ⊕K9

0,2 ⊕ p] (5)

= S[K10
0,3 ⊕K10

0,1]⊕ S[K10
0,3 ⊕K10

0,1 ⊕ p]

r = S[K9
3,3]⊕ S[K9

3,3 ⊕ q]

= S[K10
3,3 ⊕K10

3,2]⊕ S[K10
3,3 ⊕K10

3,2 ⊕ q] (6)

In the first three sets of equations there are 8 unknown variables (p, q, r, pi)
and the corresponding quartet of key bytes Kqi; where i corresponds to the i-th
quartet. We observe that the fourth set of equations does not contain p. In order
to get the quartets Kq0,Kq1,Kq2 from the first three sets of equations, we need
to test all possible 232 values for (p, q, r, pi). For, each of these hypotheses we
get one hypothesis for Kq0,Kq1, and Kq2 each. Therefore, for all possible 232

choices we get 232 hypotheses of each of the quartets. In the last set of equations
we have only q, r, and p3. Therefore, in the last set of equations we get 224

possible hypotheses for Kq3. Hence, all the possible choices of K10 are given by
(232)3 · 224 = 2120 which is not practical.

In order to solve the individual set of equations in practical time we apply a
divide-and-conquer technique. We observe that the key bytesK10

0,3,K
10
0,1,K

10
3,2,K

10
3,3,

and (p, q) are also contained in (5) and (6). Therefore, we can combine these
equations with the last three sets of equation corresponding to Kq1,Kq2, and
Kq3. This will reduce the possible choices for the corresponding 12 key bytes.

In the first step we test the possible values of (p, q) For, each of these
values we guess the 28 values of p1 in the second set of equations. For each
(p, q, p1) we get the values of three key bytes K10

0,1,K
10
1,0, and K10

3,2 from the cor-
responding equations. Therefore, for one value of (p, q) we get 28 hypotheses for
(K10

0,1,K
10
1,0,K

10
3,2). Similarly, we guess p3 in fourth set of equations and get 28

hypotheses for (K10
0,3,K

10
1,2,K

10
3,0). Therefore, for one hypothesis for (p, q) we get



a total of 28 · 28 = 216 hypotheses for six key bytes (K10
0,1,K

10
1,0,K

10
3,2,K

10
0,3,K

10
1,2,

K10
3,0). These values are tested by using (5), which will reduce the possible values

of these six key bytes to 216

28 = 28 hypotheses.
In the second step, for each hypothesis for the six key bytes, we guess the

values of p2 and get the three key bytes (K10
0,2,K

10
1,1,K

10
3,3) from the third set of

equations. Therefore, we have a total of 28 · 28 = 216 hypotheses for nine key
bytes (K10

0,1,K
10
1,0,K

10
3,2, K

10
0,3,K

10
1,2, K10

3,0,K
10
0,2, K

10
1,1,K

10
3,3). We use these and get

the corresponding values of r from (6). Therefore, now using the values of r we
can deduce the other three key bytes (K10

2,3,K
10
2,0,K

10
2,1) from the corresponding

equations in the last three sets of equations. So, in the second step we deduce
216 hypotheses for twelve key bytes from the last three sets of equations.

In the third step we test the 28 values for p0 and get the corresponding choices
of the four key bytes {K10

0,0,K
10
1,3, K

10
2,2, K

10
3,1} from the first set of equations.

Therefore, in the third step we deduce a total of 216 · 28 =224 hypotheses for the
16 key bytes of K16 corresponding to one hypothesis for (p, q). Therefore, for all
possible 216 hypotheses for (p, q), we will get 224 · 216 = 240 hypotheses for K40.

However, the complexity of this attack is still quite high. In our experiments
we found out that for a desktop with an Intel CoreTM2 Duo processor clocked
at 3 GHz speed takes around two and half days to perform brute-force search of
240 possible keys.

Second Phase of the Attack on AES-128 Key Schedule In this phase
of the attack we deduce differential equations from the differences in the state
matrix S1 (Fig. 9). In the first row of the state matrix we have 4-byte differences
(p, p, p, p). The faulty byte p at the first column of the state matrix can be rep-
resented as equation (3). In that case r will be replaced by 10 and p corresponds
to 2f ′. Similarly, we get three more equations from rest of the three faulty bytes
of S1.

However, due to faulty key, the right hand side of each equations will have
p, q, and r. In the first phase of the attack we have already reduced p, q, r, and
K10 to 240 choices. Using these values we can get the ninth round fault-free
and faulty outputs. As per the attack on the AES-128 key scheduling algorithm
(Fig. 8), we can directly deduce the ninth round key from the tenth round key.
Therefore, for each value of K10 we get the corresponding values of K9 and can
test it using the four equations. There are four equations and the total search

space is 240. Therefore, the four equations reduce the search space to 240

(28)4 = 28.

Hence, in the second phase of the attack we have only 28 hypotheses for K10.
These can then be used to drive 28 hypotheses for the master key.

Though the final search space is 28, the time complexity of the attack is still
240 since the second phase of the attack still needs to test each of the 240 keys
generated from the first phase of the attack.

Time Complexity Reduction In the first phase of the attack we have four sets
of equations corresponding to four key quartets Kq0,Kq1,Kq2, and Kq3. These



four sets of equations produce 240 values of 16-byte key K10. Each of these keys
are tested by four equations in the second phase of the attack. However, none of
these equations require all 16 bytes of the key. For example, the first equations
required K10

0,0,K
10
1,3,K

10
2,2,K

10
3,1 and nine more key bytes corresponding to four

ninth round key bytes K9
0,0,K

9
1,0,K

9
2,0, K

9
3,0. Therefore, in the first equation we

need 13 bytes of K13. Similarly, in the rest of the three equations, each requires
ten bytes of K10. In the first phase of the attack we use (5) and (6) since their
dependencies are between the key bytes K10

0,3, K
10
0,1, and K10

3,3, K
10
3,2.

Therefore, in order to reduce the time complexity of the attack in the second
phase we only test one equation at a time. We start with the third equation,
as it only requires eleven bytes of K10 (ten key bytes plus one for K10

0,3 since
it depends on K10

0,1 in (5)). Those which satisfy this equation are accepted and
combined with the other five key bytes, and are subsequently tested using rest
of the three equations. Those which do not satisfy these equations are simply
discarded.

It is clear from the analysis in Section 6.1 that the number of unique choices

of the eleven key bytes required by the third equation is 240

25 = 235. Therefore,
we need only to test 235 hypotheses out of the 240 possibilities for the 16-byte
key. Those which satisfy the test are combined with 25 possible hypotheses for
the remaining five key bytes and subsequently tested using rest of the three
equations. The first test will reduce the possible hypotheses for 11 key bytes

to 235

28 = 227. Therefore, the rest of the three equations are tested using the
227 · 25 = 232 hypotheses for the 16-byte key, which will reduce the number of

hypotheses to 232

(28)3 = 28.

So, finally we get 28 hypotheses for K10, and we test a maximum of 235

hypotheses for the key. Therefore, the time complexity of the attack is reduced
to 235 from 240. This result also supports the analysis in Section 4, which states
that single fault should be able to reduce the number of key hypotheses for a
AES-128 to 28. Therefore, we can claim that the proposed attack is also optimal
for a fault attack that analyzes the AES-128 key schedule. The proposed attack
summary is presented in Algorithm 4.

7.2 Proposed Attack on AES-192 Key Schedule

In this section we propose an attack on AES-192 using only two faulty cipher-
texts. The most recent attack to date requires around 4 to 6 faulty cipher-
texts [15]. Due to the different key scheduling algorithm the attack described
above for the AES-128 can not be directly applied to AES-192, since the knowl-
edge of last round key is not sufficient to get the master key. From Algorithm 1
we know that the first two columns of the eleventh round key K11 can easily
be retrieved from the first three columns of the twelfth round key K12 by fol-
lowing simple XOR operations since: K11

i,j = K12
i,j ⊕K12

i,j−1 where 0 ≤ i ≤ 4 and

0 ≤ j ≤ 1. The last two columns of K11 cannot be directly recovered from K12.
Therefore, unlike the attack on AES-128, an extra eight byte need to be derived
to get the master key.



Algorithm 4: DFA on AES-128 Key Scheduling
Input: C,C∗

Output: List Lk of tenth round key K10

for Each candidate of { p, q} do

for Each candidate of (p1,p3) do

Get (K10
0,1,K

10
1,0,K

10
3,2) and (K10

0,3, K
10
1,2,K

10
3,0) from equations of 2nd and 4th

column of S2(Fig. 9).
Test equation (5)

if Satisfied then
for Each candidate of (p2, p0) do

Get (K10
0,2,K

10
1,1,K

10
3,3) from equations of 3rd column of S2.

Get r from equation (6).

Get (K10
2,3,K

10
2,0,K

10
2,1) from equations of last three columns of S2 .

Get (K10
0,0,K

10
1,3,K

10
2,2,K

10
3,1) from equations of 1st column of S2.

Get K9 from K10 using AES-128 Key Scheduling.
Test third equation of S1.

if Satisfied then

for Each values of {K10
0,0,K

10
1,0,K

10
3,0,K

10
1,3,K

10
2,3} do

Get K9 from K10 using AES-128 Key Scheduling.
Test rest of the three equations of S1.

if Satisfied then
Save K10 to Lk.

end

end

end

end

end

end

end

return Lk

We propose a two phase attack which requires two faulty ciphertexts C∗1 and
C∗2 . These two faulty ciphertexts are generated by inducing a single byte fault
at two different locations of the first column of the tenth round key. Fig. 10 and
Fig. 11 show how these faults propagate in the key schedule.

The propagation of these fault in the AES-192 state matrix in the last three
rounds is shown in Fig. 12(a) and Fig. 12(b). At the input to the eleventh round,
state matrix S1, there is a difference in only four bytes. However, unlike the AES-
128, the fault is not propagated to all the bytes at the out put of penultimate
round. In Fig. 12(a) the fault is propagated to only 14 bytes whereas in Fig. 12(b)
the fault affects 13 bytes in the penultimate round output.

In order to get the last two round keys of AES-192 we again follow a two
phase attack strategy. In the first phase of the attack we reduce the final round
key to 28 choices and in the second phase we first uniquely determine the final
round key and then reduce the penultimate round key to 210 possible choices.

First Phase of the Attack on AES-192 Key Schedule In the first phase of
the attack we consider the relationship between the fault values at state matrix
S3 (Fig. 12(a) and Fig. 12(b)). In Fig. 12(a), which corresponds to first faulty
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ciphertext C∗1 , the first column of state matrix S2 consists of two faulty bytes
p0 and q0. These two faulty bytes will produce a relation 〈(2p0 ⊕ q0), (p0 ⊕
q0), (p0 ⊕ 3q0), (3p0 ⊕ 2q0)〉 at the output of MixColumns (in S3). Therefore, this
relation will produce four equations similar to equations (2). In the same way,
from the rest of the three columns of S3 we get 〈2p1, p1, p1, 3p1〉, 〈0, 0, 0, 0〉 ,
and 〈q1, q1, 3q1, 2q1〉. Using second and fourth relations we get two more sets of
equations. However, from the third relation which does not have any difference,
we get a set of two equations corresponding to fault value p and q in K11. It
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may be observed that the third byte of this relation is zero. Therefore, from this
value we can get r = C2,0 ⊕ C∗1(2,0).



Similarly, from the four columns of S3 of Fig. 12(b), we get relations 〈3p
′
0, 2p

′
0,

p′0, p
′
0〉, 〈0, 0, 0, 0〉 , 〈2q0, q0, q0, 3q0〉, and 〈(2q1⊕3p1), (q1⊕2p1), (q1⊕p1), (3q1⊕

p1)〉. These four relations will produce four more sets of equations. Each of
these sets of equations corresponds to one key quartet of twelfth round key K12.
Like the previous attack we also name these quartets Kq0,Kq1,Kq2, and Kq3

respectively.
Therefore, each faulty ciphertext produces four sets of equations. These sets

of equations are not mutually independent, and are related by two variables. For
the faulty ciphertext C∗1 , the variables are (q, r) whereas for faulty ciphertext
C∗2 , the variables are (q′, r′). As with the propagation of faults in the AES-192
key schedule, the variables r and r′ can be deduced from q and q′ respectively
(Fig. 10 and Fig. 11). They are related by following equation:

r = S(K11
3,3)⊕ S(K11

3,3 ⊕ q) (7a)

r′ = S(K11
0,3)⊕ S(K11

0,3 ⊕ q′) (7b)

Similarly, q and q′ are related to p and p′ by following equations:

q = S(K
11
1,3 ⊕K

11
1,2) ⊕ S(K

11
1,3 ⊕K

11
1,2 ⊕ p) (8a)

q′ = S(K11
0,3 ⊕K11

0,2) ⊕ S(K11
0,3 ⊕K11

0,2 ⊕ p′) (8b)

Then r and r′ can directly be calculated from the ciphertexts C∗1 and C∗2 as
r = C2,0⊕C∗1(2,0) and r′ = C2,0⊕C∗2(2,0). Now to solve the eight sets of equations

we guess the values of (q, q′). We start with two sets of equations corresponding
to quartet Kq0. In the second set of equations, for one hypothesis for (q, q′) we
get 28 hypotheses for the quartet Kq0 corresponding to 28 hypotheses for p′1.
Therefore, for all possible values of (q, q′) we get 224 hypotheses for Kq0. Each
of these hypotheses are tested using the first set of equations.

There are eight equations in the two sets corresponding to quartet Kq0,
that contain nine unknown variables; namely q,q′,p0, p3,p

′
1 and the quartet Kq0.

Therefore, the reduced search space is given by (28)
9−8

= 28. This implies, that
out of 224 choices of q, q′,Kq0, only 28 choices satisfy both the sets of equations.

Next we derive the second quartet Kq1 from its corresponding two sets of
equations. We can directly deduce the values of K12

0,1 corresponding to the values
of q′ in second set of equations. These values can be used in the first set of
equations to get the corresponding values of 2 p1 and p1. Using these values
we can derive the three key bytes K12

1,0,K
12
2,3,K

12
3,2 from the remaining three

equations of the first set.
This gives an expected 28 hypotheses for (q, q′) from the previous step. Each

of these hypotheses will give one expected hypothesis for K12
0,1, which in turn

give one expected hypothesis for the three key bytes K12
1,0,K

12
2,3,K

12
3,2. Therefore,

the 28 hypotheses for (q, q′,Kq0) will produce 2
8 hypotheses for the quartet Kq1,

giving 28 hypotheses for (q, q′,Kq0,Kq1).
For the third quartet Kq2 we can apply the same approach and one hypothe-

ses for K12
3,3 corresponding to one hypotheses for q from its first set of equations.



This value will in turn allow a hypothesis for K12
0,2 and K12

2,0 from the first and
third equations of the second set. However, p′ is unknown. Therefore, we have to
consider all possible 28 hypotheses for p′ which in turn produces 28 hypotheses
for K12

1,1. This implies, for one hypothesis for q we get 28 hypotheses for the third
quartet Kq2. From the previous steps we have 28 hypotheses for q. Therefore, in
this step, we get 216 hypotheses for (q, q′,Kq0,Kq1,Kq2).

In the next step we consider fourth quartet Kq3. The two sets of equations
are similar to the two sets of equations corresponding to quartet Kq0. Therefore,
for one hypothesis for q we get 28 hypotheses for the quartet Kq3 from the first
set of equations. Each of these are tested using the second set of equations. We
have nine variables in the two sets of differential equations in which we choose
the values of q and q′ from the 5-tuple (q, q′,Kq0,Kq1,Kq2). Therefore, the total
number for resulting hypotheses is (28)7 · 216 = (28)9. We have eight equations
in two sets, which will reduce the hypotheses to (28)9−8 = 28 for the 6-tuple
(q, q′,Kq0,Kq1,Kq2),Kq2). Therefore, in the first phase of the attack we have 28

choices of the final round key K12.

Second Phase of the Attack on AES-192 Key Schedule In the second
phase of the attack we define differential equations based on the relationship
between the faulty bytes in state matrix S1. The fault values (p, q) and (p′, q′)
in S1 of (Fig. 12(a) and Fig. 12(b)) will give eight differential equations similar
to equation (3), where r is replaced by 12. Each of these equations corresponds
to one column of K11. Using AES-192 key scheduling algorithm we can directly
define the first two columns K11 from K12 as K11

i,j = K12
i,j ⊕K12

i,j−1 for 0 ≤ i ≤ 3
and 0 ≤ j ≤ 1.

The values of p can be deduced from K12 using equation p = S−1(K12
0,2 ⊕

C0,2)⊕S−1(K12
0,2⊕C∗1(0,2)). Therefore, p,Kq0,Kq1,K

11
i,0, and K11

i,1 can be directly

derived from K12 where 0 ≤ i ≤ 3. There is an expected 28 hypotheses for K12

from the first phase of the attack. We consider the two equations corresponding
to two values of p in S1. In these two equations the search space is 28, which can

be reduced to 28

216 = 1
28 . One would expect that only one value will satisfy both

the equations leaving one hypotheses for K12.

An attacker can then deduce the fourth column K11
i,3. The two bytes K11

0,3 and

K11
3,3 of the fourth column can directly be calculated using (7a) and (7b). For one

hypothesis for (q, r, q′, r′), we get four hypotheses for (K11
0,3,K

11
3,3). The other two

key bytes, K11
1,3 and K11

2,3, can be derived from three more differential equations
from S1. The faulty byte q in the fourth column of S1 (Fig. 12(a)), p′ in the first
column and q′ in the fourth column of S1 (Fig. 12(b), will produce equations
which correspond to K11

i,3. In these equations only K11
1,3 and K11

2,3 are unknown,

and the possible values for key bytes K11
0,3,K

11
3,3 had already been reduced to an

expected four hypotheses. One would expect that these will allow one hypothesis

for K11
i,3 to be determined (two hypotheses will remain with probability 218

(28)3 =
1
26 ).



For the third column of K11, we can get the values of two key bytes K11
0,2

and K11
1,2 from (8a) and (8b). However, for one value for K11

0,3,K
11
1,3, q, q

′ we get
two hypotheses for K11

0,2 from (8a) and two hypotheses for K11
1,2 from (8b) giving

a total of four hypotheses. For key bytes K11
2,2 and K11

3,2 we can only determine
one equation, i.e. from q′ at the third column of S1 (Fig. 12(b)). This gives an
expected four hypotheses for (K11

2,2,K
11
3,2) and 216 hypotheses for (K11

2,2,K
11
2,3).

Therefore, the resulting number of expected hypotheses is 216·4
28 = 210. So, finally

we get an expected 210 hypotheses for K12
i,2, implying the expected hypotheses

for K11 is reduced to 210.

Therefore, the two phase attack on AES-192 using two faulty ciphertexts can
reduce a 192-bit key to 210 hypotheses. However, as per our analysis in Section 4
on AES-192 key schedule should be sufficient to determine the key. The attack
described above reduces the key to 210 hypotheses and is therefore not optimal
but it is the most efficient attack on the AES-192 key schedule to date. The
attack summary is presented in Algorithm 5.

Algorithm 5: DFA on AES-192 Key Scheduling
Input: C,C∗

1 , C
∗
2

Output: List Lk of (K11,K12)

Get r and r′ from C,C∗
1 , C

∗
2 .

Derive equations from S3 of Fig. 12(a) and Fig. 12(b).

for Each candidate of (q, q′, p′) do
Get Kq0,Kq1,Kq2,Kq3 by solving corresponding two sets of equations of S3.

Get K12 from Kq0,Kq1,Kq2, and Kq3.

for Each candidate of K12 do
Get K11

i,0 and K11
i,1 (two columns of K11).

Test two equations of p of S1.
if Satisfied then

Save (p, p′, q, q′,K12).

end

end

end

Get K11
0,3 and K11

3,3 from equations (7a) and (7b).

for Each candidate of (K11
0,3,K

11
3,3) do

Get K11
1,3,and K11

2,3 from equations of q, p′ and q′ of S1.

Get K11
0,2 and K11

1,2 from equations (8a) and (8b).

for Each candidate of (K11
0,2,K

11
1,2) do

Get K11
2,2 and K11

3,2 from equations of q′ of S1.

Save (K11,K12) to Lk.
end

end

return Lk



7.3 Proposed Attack on AES-256 Key Schedule

In this section we present a two phase attack on AES-256 to uniquely determine
the secret key. The attack requires three faulty ciphertexts, that we will refer to
as C1, C2, and C3. The first two faulty ciphertexts C1 and C2 are generated by
inducing a single byte fault in the first column of twelfth round key (Fig. 13). The
third faulty ciphertext C3 is generated by inducing fault in the first column of the
eleventh round key (Fig. 14). Figs. 15(a) and 15(b) shows how the propagation
of the fault in the AES state matrix.
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Fig. 13. Flow of faults in AES-256 key schedule when the fault is induced at K12
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In the first phase of the attack we uniquely determine the 14-th round key
K14 using C1 and C2. In the second phase of the attack we uniquely determine
the penultimate round key K13 using C3.
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First Phase of the Attack of AES-256 Key Schedule In the first phase
of the attack we deduce the differential equations from the relationship between
the faulty bytes in state matrix S3 (Fig. 15(a)). From the first column of S3 we
get relation 〈2p0, p0, p0, 3p0〉, which corresponds to C1. Similarly, from C2 we get
〈2p′0, p

′
0, p
′
0, 3p

′
0〉. These two relations will give two sets of equations. Therefore,

together we get eight sets of equations, each set corresponds to the one quartet
of key bytes. As with the previously described attacks, we refer to these quartets
as Kq0,Kq1,Kq2,Kq3. There are two sets of equations each corresponding to a
quartet. In order to use these sets of equations we need to guess the values of
p, q, r, pi and p′, q′, r′, p′i where i corresponds to the i-th quartet. In which case
the total possible hypotheses is (28)8 = 264 which would make an exhaustive
search impossible. We apply a divide-and-conquer strategy to these equations.

The second and third equation of each set of equations contain only two
unknown variables except the key bytes. Therefore we can directly solve these
equations by guessing the values of pi and p′i. For example we guess p0 in the
first set of equations of Kq0 and derive 28 hypotheses for (K14

1,3,K
14
2,2). Each of

these hypotheses are tested using corresponding equations in the second set of
equations of Kq0. Those which satisfy these equations are accepted and rest are
discarded. There are four equations and four unknowns (K14

1,3,K
14
2,2, p0, p

′
0), so

one would expect one hypothesis to remain.

Similarly, we can uniquely determine the values of (K14
1,0,K

14
2,3), (K

14
1,1,K

14
2,0),

and (K14
1,2,K

14
2,1), and the corresponding values of p1, p2, p3, p

′
1, p
′
2, p
′
3 from the

second and third equations of two sets of equations of Kq1,Kq2,Kq3. Next, we
guess the values of r and r′. For each hypothesis we get one hypothesis for K14

3,1

using fourth equation of two sets of equations of Kq0. Similarly, we get the values
K14

3,2,K
14
3,3, and K14

3,0 corresponding to other three key quartets. There are eight
equations and six unknown variables (namely r, r′, and four key bytes) so an
attacker should be able to determine these bytes.

An attacker would then only need to solve the first equation of each of
the eight sets of equations. In these equations we have eight unknown variable
(q, p, q′, p′), and the four key bytes. As per Fig. 13, q and q′ can be derived from
p and p′ using the following:

q = S(K13
0,3 ⊕K13

0,2)⊕ S(K13
0,3 ⊕K13

0,2 ⊕ p) (9)

q′ = S(K13
0,3 ⊕K13

0,2)⊕ S(K13
0,3 ⊕K13

0,2 ⊕ p′) (10)

Similarly, r, r′ can be deduced from q, q′ using the following:

r = S(K14
3,3 ⊕K14

3,2)⊕ S(K14
3,3 ⊕K14

3,2 ⊕ q) (11)

r′ = S(K14
3,3 ⊕K14

3,2)⊕ S(K14
3,3 ⊕K14

3,2 ⊕ q′) (12)

The values of r, r′,K14
3,3, and K14

3,2 are already known from the previous steps.
Therefore, we get the values of q, and q′ from (11) and (12). Therefore, an
attacker would only need to guess the values of p and p′ to get the values of
K14

0,0, K
14
0,1, K

14
0,2, and K14

0,3 from the corresponding sets of equations. There are



eight equations and six unknown variables, which implies that an attacker would
be able to determine p, p′ and K14

0,0 K14
0,1, K

14
0,2, K

14
0,3.

Therefore, finally we have one choice of p, p′, q, q′, r, r′ and K14 using two
faulty ciphertexts C∗1 and C∗2 .

Second Phase of th Attack of AES-256 Key Schedule In the second phase
of the attack we use a third faulty ciphertext produced by a one byte fault in the
first column of the eleventh round key, as shown in Fig. 14. The propagation of
the fault in the last three rounds is shown in Fig. 15(b). In order to reduce the
number of hypotheses for K13 we use the relationship between the faulty byte
in the 13-th round. As we have the 14-th round key, we can decrypt one round
and get the output of the 13-th round for a fault-free and faulty outputs. We
define the output of the 13-th round of C,C∗1 , and C∗2 as C13, C13∗

1 , and C13∗
2

respectively. In case of the third faulty ciphertext C∗3 we cannot compute the
output of the 13-th round as the values of q′′ and s′′ in the final round key are
not known.

Therefore, we follow the technique proposed in Section 6.3. Let X be the
fault-free output of the 13-th round SubBytes operation and ǫ be the corre-
sponding fault value. Therefore, ǫ can be written as

ǫ = SR−1
(

MC−1
(

SR−1(SB−1(C ⊕K14))⊕

SR−1(SB−1(C∗

3 ⊕K14∗))⊕ (K13 ⊕K13∗)
))

where K14∗ and K13∗ are the 14-th and 13-th round faulty keys used to generate
faulty ciphertext C3. K

14 is already known to us. Therefore, in order to get K14∗

and (K13 ⊕ K13∗) we need to know the values of p′′, q′′, r′′, and s′′. However,
as per Fig. 14, r′′ can be directly deduced from K14 and q′′ by the following
equation:

r′′ = S(K12
3,3)⊕ S(K12

3,3 ⊕ q′′)

= S(K14
3,3 ⊕K14

3,2)⊕ S(K14
3,3 ⊕K14

3,2 ⊕ q′′) (13)

Therefore, now we need to guess p′′, q′′, and s′′ to get the possible hypotheses
for ǫ.

The possible fault values in the first column of S2 (Fig. 15(b)) can be repre-
sented in terms of first column of X and ǫ which will produce four differential
equations. Similarly, from the rest of the three columns of S2 we get three more
sets of equations. The values for X0,0, X0,1, X0,2, X0,3 can also be represented
by the faulty ciphertexts C∗1 and C∗2 . In Fig. 15(a), the first row of S1 can be
expressed in terms of (X0,0, X0,1, X0,2, X0,3), (p0, p1, p2, p3), which will produce
a set of four differential equations. Similar, equations can also be generated from
C∗2 .

In these eight equations only X0,0, X0,1, X0,2, X0,3 are unknown; the rest of
the variables have been determined in the first phase of the attack. Therefore,
using these equations we can uniquely determine the values of X0,0, X0,1, X0,2,
X0,3. It may be noted that these four bytes of X correspond to the first equations



of the four sets of equations generated from S2 (Fig. 15(b)). We use the four bytes
of X ; and get the corresponding values of 2 p′′0 , 2 p

′′
1 , 2 p

′′
2 , 2 p

′′
3 . If we multiply

these values with the inverse of 2 we get the corresponding values of p′′0 , p
′′
1 , p

′′
2 ,

and p′′3 .

We have 224 choices of ǫ corresponding to the all possible values of p′′, q′′,
and s′′. For, each possible value of ǫ we will get one hypothesis for the quar-
tet of X from each of the four sets of equations. Therefore, from all the four
sets of equations we get one hypothesis for X corresponding to one hypothesis
for ǫ. Therefore, we expect to have 224 hypotheses for X corresponding to 224

hypotheses for ǫ.

In the next step we deduce four differential equations corresponding to four
faulty bytes p′′, p′′, p′′, p′′, in S1 (Fig. 15(b)) as described in Section 6.3. Each
of these four equations requires one column of the twelfth round key K12. The
last three columns of K12 can be computed from K14 as K12

i,j = K14
i,j ⊕K14

i,j−1

where 0 ≤ i ≤ 4 and 1 ≤ j ≤ 3. Therefore, we can test each value of X using
the last three of the four equations which corresponds to last three columns of
K12. The value of p′′ is already known while considering ε.

There are 224 values of X in the three equations that will be expected to

be reduced to one hypothesis, since 224

(28)3 = 1. In some cases there could be

more than one remaining hypothesis for X satisfying the last three equations. In
which case the false hypotheses can be eliminated since K13 = (MC(SR(X))⊕
C13). Using the value of K13 and K14 we verify these hypotheses using the key
schedule.

The described attack would determine K13 and K14 allowing the 256-bit
master key of AES-256 using three faulty ciphertexts. The summary of the attack
is given in Algorithm 6.

8 Experimental Results

In this section we present experimental results used to validate our attacks.
We have simulated all the attacks. The attack codes were written in the C
programming language and compiled with gcc-4.4.3. We used Intel Core2 Duo

processor with 3 GHz and 2 GB RAM. The simulated attacks were performed
on different randomly generated keys and the results are detailed in this section.

Table 3 shows the simulated attack results on the AES-128 state matrix,
the simulated attack takes around five minutes to reveal 28 possible keys. The
second column shows the total possible choices of all four quartets of key bytes
generated in the first phase of the attack. In the second phase we used four
threads running in parallel, each taking 230 possible keys from the first phase of
the attack as describe in Section 4.1.

Table 4 shows the simulated attack results on the AES-256 state matrix. The
two phase attack reduces the search space of 256-bit key to approximately 216

hypotheses. However, the attack takes around 45-minutes which is caused by the
relatively high time complexity of 232.



Algorithm 6: DFA on AES-256 Key Scheduling
Input: C,C∗

1 , C
∗
2 , C

∗
3

Output: List Lk of (K13,K14)

Derive equations from S3 (Fig. 15(a)) corresponding to C∗
1 , and (Fig. 15(b)) corresponding

to C∗
2 .

Solve 2nd and 3rd equations corresponding to each quartet of key.

Determine 2nd and 3rd bytes of each quartets and pi, p
′
i (0 ≤ i ≤ 3).

for Each candidate of (r, r′) do
Solve equations of (r, r′) of S3.

if Solution found then

Save (r, r′) and 4th bytes of each quartets.
end

end

Get q and q′ from equations (11) and (12).

for Each candidate of (p, p′) do
Solve equations of (p, p′) of S3.

if Solution found then
Save (p, p′) and 1st bytes of each quartets.

end

end

Get K14 from Kq0,Kq1,Kq2,and Kq3,

Derive two sets of equations of X from (p, p′) of S1.
Determine X0,0, X0,1, X0,2, X0,3 by solving these equations.

Derive equations of X from S2(Fig. 15(b))

for Each candidate of (p′′, q′′, s′′) do
Determine ǫ

Determine P ′′
i from X0,i (0 ≤ i ≤ 3)

Determine X from equations of S2(Fig. 15(b))

Get K12
i,j from K14 (1 ≤ j ≤ 3)

Test last three equations of P ′′ of S1(Fig. 15(b))

if Satisfied then
Get K12

i,0 from X and K14

Test first equation of P ′′ of S1(Fig. 15(b))

if Satisfied then
Get K13 from X.

Save (K13,K14).

end

end

end

return Lk

In case of attacks based on faults in the AES key schedule we get different
results. Table 5 shows the attack results on AES-128 key schedule. Like the
attack on the AES-128 state matrix, here also the final search space is reduce
to approximately 28 hypotheses. However, the execution time is little higher.
The third column of the table shows that the proposed attack takes around 35
minutes.

Table 6 presents the simulated attack results on AES-192 key schedule. The
attack takes around 5 seconds to reveal all the possible 210 hypotheses for 192-bit
keys.



Table 3. Attack Results of AES-128 State

Random 128-bit Number of Number of Running

AES key Keys in Keys in Time

First Phase Second Phase (minutes)

a43663d288b6cffd 3538944000 240 ≈ 27.9 5.727

8e8d3dbec9dff34d ≈ 231.72

261043d7ddd03357 3774873600 227 ≈ 27.82 4.616

b05ceb45c12899f8 ≈ 231.813

5ff94723b3ab5e2f 8304721920 262 ≈ 28.03 5.342

48171a2af88e0ec6 ≈ 232.951

74a33cf4114b271b 3317760000 240 ≈ 27.9 5.64

f06a985303785c61 ≈ 231.627

ff85f16a9aa247d8 8304721920 266 ≈ 28.05 5.231

c3d5bf355c27df7b ≈ 232.951

Table 4. Attack Results of AES-256 State

Random 256-bit Number of Running

AES key Keys Time

(minutes)

0b169d18964b23cffedced73674e2bf1 56931 ≈ 45.2

8a2f68ca11ebfacb7aa5f6694d045169 215.795

e2b151958b9e86480e2b4ae624ccaa2c 54252 ≈ 44

b86f5e72c6b1ac7f114a12e4601303c4 215.727

3a1bda7d59a233de3901aee30d60ef8f 34262 ≈ 45.4

46dee1bd66c837cdfbbd20a642496ca6 215.06

3a4f6f8682e7138d02ae4b7b162c2d9f 53846 ≈ 45.4

c839c9cda1b464f54143c2f934b1c2af 215.716

3991e777a5947416a102642ed314f811 43256 ≈ 42.9

899ab00ae736dd226fa9273f00a69872 215.4

Table 5. Attack Results of AES-128 Key Schedule

Random 128-bit Number of Number of Running

AES key Keys in Keys in Time

First Phase Second Phase (minutes)

7f6a28b073e9b4f4 23631628492 248 ≈ 27.954 33.472

d9d55414fe5bab4f ≈ 234.46

6f116394d00fcd82 30966733299 258 ≈ 28.01 34.643

737799d7aa661e13 ≈ 234.85

7937fd3f2a25172f 27334426474 262 ≈ 28.03 35.93

9084da2e274f2a87 ≈ 234.67

eaa618c81145622f 31977681408 240 ≈ 27.9 35.467

b409c89c0a5ec485 ≈ 234.89

79f13f05486d3e24 24637624453 264 ≈ 28.04 36.016

cbcdeb3ac7c174cf ≈ 234.52

In case of AES-256 we performed the simulated attack on several random
keys. In all the cases the attack uniquely determined the 256-bit key and the
attack takes less then one second to compute



Table 6. Attack Results of AES-192 Key Schedule

Random 192-bit Number of Running

AES key Keys Time

(Seconds)

4277a31082c1ca12410ad654edd60d21 1024 5

20878c69302553cb ≈ 210

531e1665195a75e4859088faaa9cb334 1024 5

30c979c8ebb9cd3b ≈ 210

a4fddcc4a8604705cee71f3230923d9c 1024 5

c62f8b411aedb627 ≈ 210

5fc4ed8ec84f2f8acaf0711ed42d5fac 1024 5

19dcd7723f08d8b2 ≈ 210

5a16a80e4199945e1d929619186feba7 1024 5

95f655e1d420bd8b ≈ 210

9 Comparison With the Previous Works

In this section we compare our attacks with some of the previous attacks defined
in the literature. In Table 7 we compare our attack on AES-128 state with some
of the existing attacks. For example, the attack proposed by Fukunaga and
Takahashi [13] reduces the key hypotheses for a AES-128 key to 232 whereas our
attack reduces the key hypotheses to 28.

In case of attacks on the AES-256 state matrix, the most recent attack [19](Ta-
ble 8) reduces the key hypotheses to 216 with a time complexity of 248 which at
the upper limit of what is practical. The time complexity of our attack is 232

that means the attack can be conducted in approximately one hour.

The existing attacks on the AES-128 key schedule require at least two faulty
ciphertexts [15](Table 9, where as our attack requires only one faulty ciphertext
and reduces the key hypotheses to 28. Similar improvements can also be seen in
the attacks on the AES-192 and AES-256 key schedules (Table 10 and Table 11).
The most recent attack on the AES-192 key schedule required between four and
six faulty ciphertexts [15], whereas our attack requires only two faulty ciphertexts
and reduces the key hypotheses to 210. Our attack on the AES-256 key schedule
only requires three faulty ciphertexts, whereas the attack proposed by Kim [15]
requires four faulty ciphertexts to uniquely determine the key.

From the tables we can see that the attacks proposed in this paper present
an improvement over the attacks in the literature. Table 12 shows that we have
obtained the optimal limits for DFA on AES-128, AES-256 states and AES-128
key schedule in the first scenario. It also shows that the proposed DFA on AES-
256 key schedules for the second scenario has also reached its limit. However,
for the first scenario, it is still a open problem to find a DFA on AES-192 and
AES-256 with optimal results.



Table 7. Comparison with existing attack on AES-128 states

Reference Fault Model Number Exhaustive

of Faults Search

[23] Single byte fault 2 1

[13] Single byte fault 1 232

Our Attack single byte fault 1 28

Table 8. Comparison with existing single byte attack on AES-256

Reference Number Exhaustive Time

of Faults Search Complexity

[16] 3 1 224

[19] 2 216 248

Our attack 2 216 232

Table 9. Comparison with existing attack on AES-128 key schedule

Reference Fault Model Number Exhaustive

of Faults Search

[8] Single byte fault 22 to 44 1

[22] Multi byte fault 12 1

[28] Multi byte fault 2 248

[17] Multi byte fault 2 232

[15] Single byte fault 2 1

Our Attack Single byte fault 1 28

10 Conclusion

In this paper we analyze the limits of Differential Fault Analysis on AES, using
reduction methods based on the security assumption of AES. We then extend
the results present in the literature, targeting faults in either the state matrix
or key schedule of the block cipher. More specifically, we develop fault attacks
on the data path of AES-128 and 256, and reach the optimal limits. For the
analysis of fault in the key schedule, we present new attacks and shows that
under such scenarios AES-128, 192, and 256 can be attacked with one, two, and



Table 10. Comparison with existing attack on AES-192 key schedule

Reference Fault Model Number Exhaustive

of Faults Search

[12] Single byte fault 16 1

[15] Single byte fault 4 to 6 1

Our Attack Single byte fault 2 210

Table 11. Comparison with existing attack on AES-256 key schedule

Reference Fault Model Number Exhaustive

of Faults Search

[12] Single byte fault 16 1

[15] Single byte fault 4 1

Our Attack Single byte fault 3 1

three faults respectively. Our theoretical analysis shows that the fault attack on
the key schedule, reaches the optimal limit for AES-128, there is still scope for
improvement for the other two variants of AES. The results developed in the
paper are validated through detailed experimental results.
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5. Blömer, J., Seifert, J.P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: R.N. Wright (ed.) Financial Cryptography, Lecture Notes in

Computer Science, vol. 2742, pp. 162–181. Springer (2003)

6. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full
AES. Cryptology ePrint Archive, Report 2011/449 (2011). http://eprint.iacr.
org/

7. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic
protocols for faults. In: W. Fumy (ed.) Advances in Cryptology — EUROCRYPT
’97, LNCS, vol. 1233, pp. 37–51. Springer (1997)

8. Chen, C.N., Yen, S.M.: Differential fault analysis on AES key schedule and some
countermeasures. In: G. Goos, J. Hartmanis, J. van Leeuwen (eds.) ACISP 2003,
LNCS, vol. 2727, pp. 118–129. Springer (2003)

9. Christophe Giraud: DFA on AES. In: H. Dobbertin, V. Rijmen, A. Sowa (eds.)
AES Conference, Lecture Notes in Computer Science, vol. 3373, pp. 27–41. Springer
(2004)

10. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on AES. Cryp-
tology ePrint Archive, Report 2003/010 (2003). http://eprint.iacr.org/

11. FIPS PUB 197: Advanced encryption standard (AES). Federal Information Pro-
cessing Standards Publication 197, National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA (2001)

12. Floissac, N., L’Hyver, Y.: From AES-128 to AES-192 and AES-256, How to Adapt
Differential Fault Analysis Attacks. Cryptology ePrint Archive, Report 2010/396
(2010). http://eprint.iacr.org/

13. Fukunaga, T., Takahashi, J.: Practical Fault Attack on a Cryptographic LSI with
ISO/IEC 18033-3 Block Ciphers. In: L. Breveglieri, S. Gueron, I. Koren, D. Nac-
cache, J.P. Seifert (eds.) FDTC, pp. 84–92. IEEE Computer Society (2009)

14. Giraud, C., Thillard, A.: Piret and Quisquater’s DFA on AES Revisited. Cryptol-
ogy ePrint Archive, Report 2010/440 (2010). http://eprint.iacr.org/



15. Kim, C.: Improved Differential Fault Analysis on AES Key Schedule. Information
Forensics and Security, IEEE Transactions on PP(99), 1 (2011). DOI 10.1109/
TIFS.2011.2161289

16. Kim, C.H.: Differential fault analysis against AES-192 and AES-256 with minimal
faults. In: L. Breveglieri, M. Joye, I. Koren, D. Naccache, I. Verbauwhede (eds.)
Fault Diagnosis and Tolerance in Cryptography — FDTC 2010, pp. 3–9. IEEE
Computer Society (2010)

17. Kim, C.H., Quisquater, J.J.: New Differential Fault Analysis on AES Key Schedule:
Two Faults Are Enough. In: G. Grimaud, F.X. Standaert (eds.) CARDIS, LNCS,
vol. 5189, pp. 48–60. Springer (2008)

18. Li, W., Gu, D., Wang, Y., Li, J., Liu, Z.: An Extension of Differential Fault Analysis
on AES. In: Third International Conference on Network and System Security, pp.
443–446. NSS (2009)

19. Li, Y., Gomisawa, S., Sakiyama, K., Ohta, K.: An Information Theoretic Perspec-
tive on the Differential Fault Analysis against AES. Cryptology ePrint Archive,
Report 2010/032 (2010). http://eprint.iacr.org/

20. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Dif-
ferential Fault Attack Against AES Cryptosystem. In: L. Goubin, M. Matsui (eds.)
CHES 2006, LNCS, vol. 4249, pp. 91–100. Springer (2006)

21. Nyberg, K.: Differentially uniform mappings for cryptography. In: EUROCRYPT,
pp. 55–64 (1993)

22. Peacham, D., Thomas, B.: A DFA attack against the AES key schedule. SiVenture
White Paper 001, 26 October (2006)

23. Piret, G., Quisquater, J.J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: C.D. Walter, Çetin
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