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Abstract

In this article, we describe a methodology that aims at eikiieaking or proving the security of
CRT-RSA implementations against fault injection attacksthe specific case-study of the BellCoRe
attack, our work bridges a gap between formal proofs andémphtation-level attacks. We apply our
results to three implementations of CRT-RSA, namely therotggted one, that of Shamir, and that of
Aumiller et al. Our findings are that many attacks are possible on both theotegted and the Shamir
implementations, while the implementation of Aumukal. is resistant to all single-fault attacks. Itis
also resistant to double-fault attacks if we consider tee fwerful threat-model of its authors.

Keywords. RSA (Rivest, Shamir, AdlemdRSA78]) CRT Chinese Remainder Theorgfault in-
jection BellCoRe Bell Communications Reseajcittack formal proof OCaml

1 Introduction

It is known since 1997 that injecting faults during the comagpion of CRT-RSA could yield to malformed
signatures that expose the prime factgnsafd q) of the public modulusN = p-g). Notwithstanding,
computing without the fourfold acceleration conveyed by @RT is definitely not an option in practical
applications. Therefore, many countermeasures have aggpdaat consist in step-wise internal checks
during the CRT computation. To our best knowledge, none e$d¢hcountermeasures have been proven
formally. Thus without surprise, some of them have beendmpknd then patched. The current state-of-
the-art in computing CRT-RSA without exposipgandq relies thus on algorithms that have been carefully
scrutinized by cryptographers. Nonetheless, neither ypetheses of the fault attack nor the security itself
have been unambiguously modeled.

This is the purpose of this paper. The difficulties arpriori multiple: in fault injection attacks, the
attacker has an extremely high power because he can faulizai®ple. Traditional approaches thus seem
to fall short in handling this problem. Indeed, there are t&aonical methodologiegormal andcompu-
tational proofs. Formal proofseg.g, in the so-called Dolev-Yao model) do not capture the rexment for
faults to preserve some information about one of the two rinoicideed, it considers the RSA as a black-
box with a key pair. Computational proofs are way too congtéd (in terms of computational complexity)
since the handled numbers are typicall¥£8 bit long.

The state-of-the-art contains one reference related téotingal proof of a CRT-RSA implementation:
it is the work of Christofi, Chetali, Goubin and Vigilant [CGG3]. For tractability purposes, the proof is
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conducted on reduced versions of the algorithms paraméders fault model is chosen authoritatively (the
zeroization of a complete intermediate data), which is engfrassumption. In addition, the verification is
conducted on a pseudo-code, hence concerns about itsifityrtatter its compilation into machine-level
code. Another reference related to formal proofs and faidction attacks is the work of Guo, Mukhopad-
hyay, and Karri. In[[GMK12], they explicit an AES implemettm that is provably protected against
differential fault analyses [BS97]. The approach is puasynbinational, because the faults propagation in
AES concerns 32-bit words called columns; consequentlfatal faults (and thus all innocuous faults) can
be enumerated.

Contributions.  Our contribution is to reach a full fault coverage of the CRSA algorithm, thereby keep-
ing the proof valid even if the code is transformedg, compiled or partitioned in software/hardware). To
this end we developed a tool calléidja@ based on symbolic computation in the framework of modular
arithmetic, which enables formal analysis of CRT-RSA asdcituntermeasures against fault injection at-
tacks. We apply our methods on three implementations: theotected one, the one protected by Shamir’s
countermeasure, and the one protected by Aumaétlat’s countermeasure. We find many possible fault in-
jections that enable a BellCoRe attack on the unprotectetemmentation of the CRT-RSA computation, as
well as on the one protected by Shamir's countermeasure.offeafly prove the security of the Aumiiller
et al's countermeasure against the BellCoRe attack, under arfaadel that considerpermanent faults
(in memory) andransient faults(one-time faults, even on copies of the secret key partsh @viwithout
forcing at zero, and with possibly faults at various locasio

Organization of the paper. We recall the CRT-RSA cryptosystem and the BellCoRe atta@eic[; still
from an historical perspective, we explain how the CRT-R8lementation has been amended to with-
stand more or less efficiently the BellCoRe attack. Then g[8, we define our approach. Sec. 4, Skc. 5,
and Sec[ 6 are case studies using the methods developed. B 8eespectively an unprotected version
of the CRT-RSA computation, a version protected by Sharmaisntermeasure, and a version protected by
Aumdiiller et al’s countermeasure. Conclusions and perspectives are iflSec

2 CRT-RSA and the BellCoRe Attack

This section recaps known results about fault injectioacktt on CRT-RSA (see also [Ko¢94] and [TW12,
Chap. 3]). Its purpose is to settle the notions and the am®atinotations that will be used in the later
sections (that contain novel contributions).

2.1 CRT-RSA

RSA is both arencryptionand asignaturescheme. It relies on the identity that for all message® < N,
(m)® =m modN, whered = e"* mod¢(N), by Euler's theorem. In this equatiot, is Euler’s totient
function, equal tap(N) = (p—1)- (q— 1) whenN = p- g is a composite number, product of two primgs
andq. For example, if Alice generates the signatGe m® modN, then Bob can verify it by computing
S modN, which must be equal tmunless Alice is pretending to knosvalthough she does not. Therefore
the pair(N,d) is called the private key, while the pdiN,e) is called the public key. In this paper, we are
not concerned about the key generation step of RSA, and wiagsume thad is an unknown number in
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[Lo(N)=(p—1)-(q—1)[. Actually,d can also be chosen equal to the smallest vaitte modA (n),
whereA (n) = &%m is the Carmichael function. The computationrof modN can be speeded-
up by a factor four by using the Chinese Remainder TheorenT{ORdeed, figures modulp andq are
twice as short as those modlb For example, for 2048 bit RSA,p andq are 1024 bit long. The CRT-
RSA consists in computin§, = m? modp andS; = m® modg, which can be recombined in®with a
limited overhead. Due to the little Fermat theorem (spetsale of the Euler theorem when the modulus
is a prime),S, = (m modp)? M°4(P-1) modp. This means that in the computation S, the processed
data have 024 bit, and the exponent itself ha€)24 bits (instead of 248 bits). Thus the multiplication is
four times faster and the exponentiation eight times fastewever, as there are two such exponentiations
(modulo p andq), the overall CRT-RSA is roughly speaking four times faskem RSA computed modulo
N.

This acceleration justifies that CRT-RSA is always usedéfftctorization ofN asp- q is known. In
CRT-RSA, the private key is a more rich structure than sinfplyd): it is actually comprised of the 5-tuple
(p,0,dp,dg,iq), where:

e dp=d mod(p—1),

e dy=d mod(q—1),

e ig=q1 modp.

The unprotected CRT-RSA algorithm is presented in Alg. Xakes advantage of the CRT recombination
proposed by Garner ih [Gar65]. It is straightforward to d¢htat the signature computed at lide 3 belongs
to [0, p-g— 1]. Consequently, no reduction modibis necessary before returniisy

Algorithm 1: Unprotected CRT-RSA
Input : Messagem, key (p,q,dp,dg,iq)
Output: Signaturem® modN

1 Sp:mdp mod p /* Signature modulo p */
2 §= m% modq /* Signature modulo Q */
3 S=§+9:(ig- (Sy—) modp) /* Recombination */
4 return S

2.2 BellCoRe Attack on CRT-RSA

In 1997, an dreadful remark has been made by Boneh, DeMitld_gion [BDL97], three staff members of
BellCoRe: Alg[1 could reveal the secret primeandq if the computation is faulted, even in a very random
way. The attack can be expressed as the following propositio

Proposition 1 (Orignal BellCoRe attack)If the intermediate variable S(resp. §) is returned faulted
as S, (resp. ng, then the attacker gets an erroneous signat8reand is able to recover p (resp. Q) as
gcd(N, S— ) (with an overwhelming probabilily

Proof. For all integerx, gcd N, x) can only take 4 values:
e 1,if N andx are coprime,

2|n other papers related to faults, the faulted variablesi(s1sX) are noted either with a staX{) or a tilde ); in this paper,
we use a hat, as it can stretch, hence cover the adequatenpeoftihe variable. For instance, it allows toAmake an unaodig
difference between a faulted data raised at some power andtafi a data raised at a given power (contikfswith X€).
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e D, if Xis a multiple ofp but not ofq,

e (, if xis a multiple ofq but not ofp,

e N, if xis a multiple of bothp andq, i.e., of N.
In Alg. [, if S, is faulted (.e., replaced b)é) #$), then
S—S=0:((iq" (S~ ) modp)—(iq- (S~ ;) modp)),
and thus gctN,S— ) =q.
If S, is faulted {.e., replaced by&, # S;), then
S-S=(§-S) - (q modp)-iq-(§,—S,) =0 modp becauséq modp)-iq=1 modp. ThusS— Sis
a multiple ofp. Additionally, S— Sisnota multiple of.
So gcdN,S— §) =p

In both cases, the greatest common divisor could yieldHowever,(S— §)/q in the first case (resp.
(S— §)/p in the second case) is very unlikely to be a multiplepdfesp.q). Indeed, if the random fault is
uniformly distributed, the probability that gad, S— §) is equal top (resp.q) is negligibl@. O O

This version of the BellCoRe attack requires that two idmitmessages with the same key can be
signed; indeed, one signature that yields the gen8iaed an other that is perturbed and thus ret@nse
needed. Little later, the BellCoRe attack has been imprbyetbye, Lenstra and Quisquater [JLQ99]. This
time, the attacker can recovpror g with one only faulty signature, provided the inputof RSA is known.

Proposition 2 (One faulty signature BellCoRe attacKj the intermediate variable Jresp. §) is returned
faulted asS; (resp. §;), then the attacker gets an erroneous signatByend is able to recover p (resp. q)
asgcdN,m— §°~‘) (with an overwhelming probabilidy

Proof. By propositior 1, if a fault occurs during the computatiorsgfthen gcdN, S— §) = g (most likely.
This means that:
o S# S mod p, and thuss® # $ mod p (indeed, if the congruence was true, we would hgye-€l,
which is very unlikely
e S=S modg, and thus* =S modg;
As & =m modN, this proves the result. A symmetrical reasoning can be ddhe fault occurs during
the computation o%;. O O

2.3 Protection of CRT-RSA Against the BellCoRe Attack

Several protections against the BellCoRe attack have begroged. A non-exhaustive list is given below,
and then, the most salient features of these countermesatgeescribed:

e Obvious countermeasures: no CRT optimization, or withatigre verification;
e Shamir [Sha99];

e Aumillleret al.[ABFT02];

e Vigilant, original [Vig08] and with some corrections by @uret al. [CGM™10];

e Kim et al. [KKHH1I].

3If it nonetheless happens that gbtS— §) = N, then the attacker can simply retry another fault injectimm which the
probability that gcéN,S—S) € {p,q} increases.



2.3.1 Obvious Countermeasures

Fault attacks on RSA can be thwarted simply by refrainingnfimplementing the CRT.
If this is not affordable, then the signature can be verifietbke being outputted. B=m" modN

is the signature, this straightforward countermeasursistsin testings® 2 m modN. Such protection is
efficient in practice, but is criticized for three reasongstrof all, it requires an access & which is not
always present in the secret key structure, as in the 5-axalmple given in Set. 2.1. Nonetheless, we attract
the author’s attention on papér [Joy09] for a clever embegldfeinto [the representation off. Second, the
performances are incurred by the extra exponentiationatefmt the verification. In some applications, the
public exponent can be chosen small (for instamcan be equal to a number such as 3, 17 or 65537), and
thend is computed as~* modA (N) using the extended Euclidean algorithm or better alteresafiJP03].
Butin generalgis a number possibly as large@gboth are as large d@$), thus the obvious countermeasure
doubles the computation time (which is really non-negligildespite the CRT fourfold acceleration). Third,
this protection is not immune to a fault injection that wotddget the comparison. Overall, this explains
why other countermeasures have been devised.

2.3.2 Shamir

The CRT-RSA algorithm of Shamir builds on top of the CRT artdoduces, in addition to the two primes
p andq, a third factomr. This factorr is randorfl and small (less than 64 bit long), and thus co-prime with
p andqg. The computations are carried out modylo= p-r (resp. moduloy = q-r), which allows for

a retrieval of the intended results by reducing them mogu{oesp. modulay), and for a verification by

a reduction module. Alg.[2 describes one version of Shamir's countermeasuhes dlgorithm is aware
of possible fault injections, and thus can raiseeaneptionif an incoherence is detected. In this case, the
output is not the (purported faulted) signature, but a $jatiessageérror”.

2.3.3 Aumiller

The CRT-RSA algorithm of Aumilleet al. is a variation of that of Shamir, that is primarily intendedii
two shortcomings. First it removes the need dan the signature process, and second, it also checks the
recombination step. The countermeasure, given in[Alg.tBydiuces, in addition tg andg, a third prime
t. The computations are done modydo= p-t (resp. modulay = g-t), which allows for a retrieval of the
intended results by reducing them modpléresp. modulay), and for a verification by a reduction modulo
t. However, the verification is more subtle than for the cas8tdmir. In Shamir's CRT-RSA (Ald.] 2),
the verification issymmetrical in that the computations modufo- r andq-r operate on the same object,
namelym@®. In Aumilleret al’s CRT-RSA (Alg[3), the verification iasymmetricalsince the computations
modulop-t andg-t operate on two different objects, nameife ™°d(-1) gndmda Med(t-1) The verification
consists in an identity that resembles that of EIGamal fetaince: igmf mod(t-1))dy mod(t-1) gquivalent
to (rmfla mod(t=1)ydp mod(t-1) modulot? Specifically, if we noteS, the signature modul@', thenS, = S
mod p is equal toSp mod p. Furthermore, let us denote

° Spt = Sp modt,

° Sqt = S'q modt,

e dyt=dp mod(t—1), and

e dyt =dq mod(t—1).

4The authors notice that in Shamir's countermeasui®a priori not a secret, hence can be static and safely divulged.



Algorithm 2: Shamir CRT-RSA

Input : Messagem, key (p,q,d,iq),
32-bit random prime
Output: Signaturem® modN,

or error if some fault injection has been detected.

/

1p=p-r

2 dp=d mod(p—1)-(r—1)
3 §,=m" modp
4ad=q-r

5dy=d mod(q—1)-(r—1)
6 §=m% modq
7§=S, modp

8 §=§, modg

// Same as in line [3 of Alg. [i]
9 S=§+0-(iq: (S —&) modp)
10 if §;# §, modr then
11 ‘ return error
12 else
13 | return S
14 end

// Signature modulo p’

// Signature modulo ¢




It can be verified that those figures satisfy the identfﬂ%f = ﬁf" modt, because both terms are equal to
mtda modt. The primet is referred to as a security parameter, as the probabilippss the test (at lile 23
of Alg. B) is equal to %t (i.e., about 23?), assuming a uniform distribution of the faults. Indeeds th the
probability to find a large number that, once reduced motiuisatches a predefined value.

Alg. 3 does some verifications during the computations, apdnts an error in case a fault injection can
cause a malformed signature susceptible of unveiimpdg. More precisely, an error is returned in either
of these seven cases:

1. p' is not a multiple ofp (because this would amount to faulting p in the unprotectedrithm)

2. dy = dp+random; - (p— 1) is not equal tad, mod(p— 1) (because this would amount to faulting
dp in the unprotected algorithjn

3. d is not a multiple ofg (because this would amount to faulting q in the unprotectgdrithm)

4. dy = dq+random;- (q— 1) is not equal tal; mod(q— 1) (because this would amount to faulting d
in the unprotected algorithjn

5. S— Sp mod p is honzero fecause this would amount to faulting the recombinationutoog in the
unprotected algorithmn

6. S— Sq modq is nonzero lpecause this would amount to faulting the recombinationutmd in the
unprotected algorithmn

7. ﬁ‘@ modt is not equal t(ﬁg{’ modt (this checks simultaneously for the integrity gfeﬁSld Sﬁ‘)

Notice that the last verification could not have been donehenunprotected algorithm, it constitutes
the added value of Aumillest al's algorithm. These seven cases arfrmally assumed to protect the
algorithm against the BellCoRe attack. The criteria folltfdatection is not to detect all faults; for instance,
a fault on the final return d (line[28) is not detected. However, of course, such a faumlbtexploitable by
a BellCoRe attack.

Remark 1. Some parts of the Aumdller algorithm are actually not idieshto protect against fault injection
attacks, but against side-channel analysis, such as tipéespower analysis (SPA). This is the case of lines 2
and8 in Alg[3. These SPA attacks consist in monitoring viae-shannel the activity of the chip, in a view
to extract the secret exponent, usgenericmethods described in [KJJ99] or m@ecuratetechniques such

as wavelet transforms [SET11,IDSE"12]. They can be removed if a minimalist protection agaimgy o
fault injection attacks is looked for; but as they do notadiice weaknesses (in this very specific case), they
are simply kept as such.

2.3.4 Vigilant

The CRT-RSA algorithm of Vigilant [Vig08] also considersnaputations in a larger ring thdh, (abbrevi-
ation forZ/pZ) andZq, to enable verifications. In this case, a small random numisecast, and compu-
tations are carried out ii,,> andZg,2. In addition, the computations are now conducted not on khie p
messagen, but on an encoded messagk built using the CRT as the solution of those two requirersient
i: m=m modN, and
i: mM=1+r modr2



Algorithm 3: Aumiller CRT-RSA

Input : Messagem, key (p,q,dp,dg,iq),
32-bit random prime
Output: Signaturem® modN,

or error if some fault injection has been detected.

1 p=p-t

2 dy =dp+randomy - (p—1) // Against SPA, not fault attacks
3§ = m% modp’ // Signature modulo p
4 if (pP modp#0) or (d, #dp mod(p— 1)) then

5 ‘ return error

6 end

70 =q-t

8 di = dq+random;- (q—1) // Against SPA, not fault attacks
9 §,= m% modg // Signature modulo (

10 if (¢ modq# 0) or (dy # dq mod(q—1)) then
11 ‘ return error

12 end
13 § =S, modp
14 §=§, modq

15 S=§+4q-(iq- (S, —&) modp)
16 if (S—S,#0 modp) or (S—§,#0 modq) then
17 ‘ return error

18 end
19 St =S, modt
20 S = §; modt

21 dpt =dy mod(t—1)

22 dgt = dy mod(t—1)

23 if S¢' # S modt then
24 ‘ return error

25 else

26 \ return S
27 end

// Same as in line [3 of Alg. [lI




This system of equations has a single solution modiite r?, becauseN andr? are coprime. Such a
representation allows to conduct in parallel the functid@RT-RSA (linei) and a verification (linél). The
verification is elegant, as it leverages this remarkablelkityu (1+r)% = ?:po (dlp) =1+ dp-r modr?.
Thus, as opposed to Aumiillet al's CRT-RSA, which requires one exponentiation (liné 23 of/A), the
verification of Vigilant’s algorithm adds only one affine cpatation (namely %-d, modr?).

The original description of Vigilant's algorithm involve®me trivial computations op andq, such as
p—1,q—1andpx g. Those can be faulted, in such a way the BellCoRe attack bmqnmssmle desp|te
all the tests. Thus, a patch by Coreral. has been released in [CGNIQ] to avoid the reuse qj 1,9- q—1
and p x ¢ in the algorithm.

2.3.5 Kim

Kim, Kim, Han and Hong propose in [KKHH11] a CRT-RSA algonrihthat is based on a collaboration
between a customized modular exponentiation and veriiesitat the recombination level based on Boolean
operations. The underlying protection concepts beingcedigi different from the algorithms of Shamir,
Aumdller and Vigilant, we choose not to detail this intdi@g countermeasure.

2.3.6 Other Miscellaneous Fault Injections Attacks

When the attacker has the power to focus its fault inject@nspecific bitof sensitive resourceshen more
challenging security issues arise [BCDG12]. These threasire a highly qualified expertise level, and are
thus considered out of the scope of this paper.

Besides, for completeness, we mention that other faulctiges mitigating techniques have been pro-
moted, such as thimfective computation schenfeefer to the seminal paper [BOS03]). This family of
protections, although interesting, is neither coveredhigdrticle.

In this paper, we will focus on three implementations, nantkeé unprotected one (Sdd. 4), the one
protected by Shamir’s countermeasure (§éc. 5), and therotected by Aumillleet al’s countermeasure
(Sec[®).

3 Formal Methods

For all the countermeasures presented in the previousoee@ec[R), we can see that no formal proof
of resistance against attacks is claimed. Informal argusnare given, that convince that for some attack
scenarii, the attack attempts are detected hence harmilisss.an analysis of the probability that an attack
succeeds by chance (with a low probability gt)lis carried out, however, this analysis strongly relies on
assumptions on the faults distribution. Last but not ledmst,algorithms include protections against both
passive side-channel attacks (typically SPA) and actide-shannel attacks, which makes it difficult to

analyze for instance the minimal code to be added for theteomeasure to be correct.

3.1 CRT-RSA and Fault Injections

Our goal is to prove that a given countermeasure warks that it delivers a result which does leak infor-
mation about neithep nor g even when the implementation is subject to fault injectiand to a BellCoRe
attack. In addition, we wish to reach this goal with the twitcfeing assumptions:



e our proof applies to a very general attacker model, and
e our proof applies to any implementation that is a (striciinement of the abstract algorithm.

First, we must define what computation is done, and what ishwaat model.

Definition 1 (CRT-RSA) The CRT-RSA computation takes as input a messagassumed known by the
attacker, and a secret kép,q,dp,dqg,iq). Then, the implementation is free to instantiate any véeialbut
must return a result equal ®= §+ - (ig- (Sy— &) modp), where:

e S,=n modp, and

e §,=mk% modg.

Definition 2 (fault injection) An attacker is able to request RSA computations, as perDdbuting the
computation, the attacker can modify any intermediatee/élysetting it to either a random value or zero.
At the end of the computation the attacker can read the result

Of course, the attacker cannot read the intermediate vakexsduring the computation, since the secret
key and potentially the modulus factors are used. Such &lbit” attack would be too powerful; nonethe-
less, it is very hard in practice for an attacker to be ablect®ss intermediate variables, due to specific
protections €.g, blinding) and noise in the side-channel leakagg(power consumption, electromagnetic
emanation). Remark that our model only takes into accounit fajection on data; the control flow is
supposed not to be mutable.

As a side remark, we notice that the fault injection model ef.@ corresponds to that of Vigilant
(IVig0ag]), with the exception that the conditional testm@dso be faulted. To summarize, an attacker can:

e modify a value in memorypgermanent faujt and

e modify a value in a local register, cache, or btrar§sient faulj,
but cannot

e inject a permanent fault in the input data (message andtdaxye nor

o modify the algorithm control flow graph.

The independence of the proofs on the algorithm implemientatemands that the algorithm is de-

scribed at a high level. The two properties that characdhe relevant level are as follows:

1. The description should be low level enough for the attackdrk if protections are not implemented.

2. Any additional intermediate variable that would appeanirdy refinement could be the target of an
attack, but such a fault would propagate to an intermediat&aie of the high level description,
thereby having the same effect.

From those requirements, we deduce that:

1. The RSA description must exhibit the computation modplland g and the CRT recombination;
typically, a completely blackbox description, where thenpaitations would be realized in one go
without intermediate variables, is not conceivable.

2. However, it can remain abstract, especially for the caatpnal par@.

In our approach, the protections must thus be considered asgmentation of the unprotected code,
i.e., a derived version of the code where additional variablesuged. The possibility of an attack on the
unprotected code attests that the algorithm is describ#teadequate level, while the impossibility of an
attack (to be proven) on the protected code shows that addéetpons are useful in terms of resistance to
attacks.

5For example, a fault in the implementation of the multiptioa is either inoffensive, and we do not need to care about it
affects the result of the multiplication, and our model taketo account without going into the details of how the nmplltation’s
is computed
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Remark 2. The algorithm only exhibits evidence of safety. If after alfanjection, the algorithm does not
simplify to an error detection, then it might only revealttsame simplification is missing. However, if it
does not claim safety, it producesianplifiedoccurrence of a possible weakness to be investigated furthe

3.2 finja

Several tools ara priori suitable for a formal analysis of CRT-RSA. PARI/GP is a spkmed computer
algebra system, primarily aimed at solving number theogbl@ms. Although PARI/GP can do a fair
amount of symbolic manipulation, it remains limited cormgzhto systems like Axiom, Magma, Maple,
Mathematica, Maxima, or Reduce. Those last software alssHart to implement automatically number
theoretic results like Euler’s theorem. This explains why a@eveloped from scratch a system to reason
on modular numbers from a formal point of view. Our systemasgeneral, in that it cannot for instance
factorize terms in an expression. However, it is able to Sfgjnpecursively what is simplifiable from a set
of unambiguous rules. This behavior is suitable to the pmobbf resistance to fault attacks, because the
redundancy that is added in the computation is meant to halified at the end (if no faults happened).

Our toolfinja works within the framework of modular arithmetic, which ietmathematical framework
of CRT-RSA computations. The general idea is to represertdimputation term as a tree which encodes the
computation properties. This term can be simplifiedibja, using rules from arithmetic and the properties
encoded in the tree. Fault injections in the computatiomtare simulated by changing the properties of
a subterm, thus impacting the simplification process. Aacétisuccess condition is also given and used
on the term resulting from the simplification to check whettiee corresponding attack works on it. The
outputs offinja are in HTML form: easily readable reports are produced, tvbiantains all the information
about the possible fault injections and their outcome.

3.2.1 Computation Term

The computation is expressed in a convenient statemeetibaput language. This language’s Backus
Normal Form (BNF) is given in Fid.]1.

A computation term is defined by a list of statements finishgd beturn statement. Each statement
can either:

e declare a variable with no properties (llne 3);
e declare a variable which is a prime number (lihe 4);

e declare a variable by assigning it a value (lide 5), in thisecthe properties of the variable are the
properties of the assigned expression;

e perform a verification (lin€J6).

As can be seen in lin¢s 9[fol15, an expression can be:
e zero, one, or an already declared variable;

e the sum (or difference) of two expressions;

¢ the product of two expressions;

e the exponentiation of an expression by another;

11
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term
stmt
decl

assign
verif

mp_expr ::

expr

mp_cond ::

cond

mp_var
var

= ( stmt )* ’return’ mp_expr ’;’

( decl | assign | verif ) ’;’

’noprop’ mp_var ( ’,’ mp_var )x*
’prime’ mp_var ( ’,’ mp_var )*
var ’:=’ mp_expr

’if’ mp_cond ’abort with’ mp_expr
’{’ expr ’}’ | expr
) () mp_expr :) )

’0° | 1’ | var

’-’ mp_expr

mp_expr ’+’ mp_expr
mp_expr ’-’ mp_expr
mp_expr ’*’ mp_expr
mp_expr ’"’ mp_expr

mp_expr ’mod’ mp_expr
’{> cond ’}’ | cond

>(’ mp_cond ’)’

mp_expr ’=’ mp_expr
mp_expr ’!=’ mp_expr
mp_expr ’=[’ mp_expr ’]’ mp_expr
mp_expr ’!=[’ mp_expr ’]’ mp_expr

mp_cond ’/\’ mp_cond
mp_cond ’\/’ mp_cond
’{’> var ’}’ | var
[a-zA-Z] [a-zA-Z0-9_’]*

Figure 1: BNF offinja’s input language.
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e the modulus of an expression by another.

The condition in a verification can be (lines 1§ td 23):

¢ the equality or inequality of two expressions;

e the equivalence or non-equivalence of two expressions fo@hother (lineg 20 arid 21);
e the conjunction or disjunction of two conditions.

Optionally, variables (when declared using flieme or noprop keywords), expressions, and conditions
can be protected (linés$[3,[4, 7 dnd #p,stands for “maybe protected”) from fault injection by sumding
them with curly braces. This is useful for instance when ri@eded to express the properties of a variable
which cannot be faulted in the studied attack model. For g@anin CRT-RSA, the definitions of variables
dp, dg, andiq are protected because they are seen as input of the coroputati

Finally, line[25 gives the regular expression that variatdlsmes must match (they start with a letter and
then can contain letters, numbers, underscore, and sirapte)y

After it is read byfinja, the computation expressed in this input language is toamsfd into a tree
(just like the abstract syntax tree in a compiler). This teeodes the arithmetical properties of each of
the intermediate variable, and thus its dependencies atiopievariables. The properties of intermediate
variables can be everything that is expressible in the itgnguage. For instance, being null or being the
product of other terms (and thus, being a multiple of eactheifi), are possible properties.

3.2.2 Fault Injection

A fault injection on an intermediate variable is represdrtg changing the properties of the subterm (a
node and its whole subtree in the tree representing the daigou term) that represent it. In the case of
a fault which forces at zero, then the whole subterm is regpldry a term which only has the property of
being null. In the case of a randomizing fault, by a term wthiiekie no properties.

finja simulatesall the possible fault injectionef the attack model it is launched with. The parameters
allow to choose:

e how many faulthave to be injected (however, the number of tests to be dongacted by a factorial
growth with this parameter, as is the time needed to finisledmeputation of the proof);

o the typeof each fault fandomizingor zeroing;

o if transientfaults are possible or if onlgermanenfaults should be performed.

3.2.3 Attack Success Condition

The attack success condition is expressed using the sandéioorianguage as presented in Sec. 3.2.1.
It can use any variable introduced in the computation tefons fwo special variables and @ which are
respectively bound to the expression returned by the caatipotterm as given by the user and to the
expression returned by the computation with the fault ig@s. This success condition is checked for each
possible faulted computation term.
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3.2.4 Simplification Process

The simplification is implemented as a recursive traverfahe term tree, based on pattern-matching. It
works just like a naive interpreter would, except it does Bglic computation only, and reduces the term
based on rules from arithmetic. Simplifications are caroatlin Z ring, and itsZy subrings. The tool
knows how to deal with most of th# ring axioms:

e the neutral elements (0 for sums, 1 for products);
e the absorbing element (0, for products);

e inverses and opposites (onlyNfis prime);

e associativity and commutativity.

However, it does not implement distributivity as it is nonflaent. Associativity is implemented by flatten-
ing as much as possible (“removing” all unnecessary paeset), and commutativity is implemented by
applying a stable sorting algorithm on the terms of prodoctsums.

The tool also knows about most of the properties that arécpéat toZy rings and applies them when
simplifying a term moduld\:

e identity:
— (@ modN) modN =a modN,
— NX¥ modN =0;

e inverse:

— (a modN) x (a=! modN) modN = 1,
— (a modN)+(—a modN) modN =0;

e associativity and commutativity:

— (b modN) + (a modN) modN =a+b modN,
— (@ modN) x (b modN) modN =axb modN;

e subrings:(a modN xm) modN =a modN.

In addition to those properties a few theorems are impleetett manage more complicated cases
where the properties are not enough when conducting symbafihputations:

e Fermat’s little theorem;

e its generalization, Euler’s theorem.
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Example. If we have the ternt := a + b * c, it can be faulted in five different ways (using the ran-
domizing fault):

1. ¢t := Randomn, the final result is faulted;

2.t := Random + b * c,ais faulted;

3.t := a + Random, the result ob x cis faulted;
4. t := a + Random * c, bis faulted;

5.t := a + b * Randomn, cis faulted.

If the properties that interest us is to know wheth&r congruent witta modulob, we can use =[b] a
as the attack success condition. Of course it will be true,fbut it will only be true for the fifth version of
faultedt. If we had used the zeroing fault, it would also have beenftsu¢he third and fourth versions.

4 Study of an Unprotected CRT-RSA Computation

The description of the unprotected CRT-RSA computatiofiniia code is given in Fid.]2 (note the similarity
of finja's input code with Alg[1L).

1 noprop m, e ;

2 prime {p}, {q} ;

3

4dp := { e"-1 mod (p-1) } ;
5dq := { e"-1 mod (gq-1) } ;
6 iq := { 9°-1 mod p } ;

7

8 Sp := m"dp mod p ;

9 Sq := m"dq mod q ;

=
S

S :=8q + (q * (iq * (Sp - Sq) mod p)) ;

PP
w N

return S ;

-
'

hh

PR e
~N o O

_t=e/\N (_=[pl e\/ _=[q] @)

Figure 2:finja code for the unprotected CRT-RSA computation.

As we can see, the definitions df, dq, andiy are protected so the computation of the values of these
variables cannot be faulted (since they are seen as inptite @lgorithm). After thatS, andS, are com-
puted and then recombined in the last expression, as inDef. 1

To test whether the BellCoRe attack works on a faulted verSjave perform the following tests (we
note|S for the simplified version o8):

1. is| equal to|S?

2. is|S modp| equal to|S modp|?

3. is|S modq| equal to|S modgq|?
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If the first test is false and at least one of the second and ithirue, we have a BellCoRe attack, as seen
in Sec[2. This is what is described in the attack successtaumdafter the%’ line).

Without transient faults enabled, and in a single fault nhotfeere are 12 different fault injections of
which 8 enable a BellCoRe attack with a randomizing faul 8rwith a zeroing fault. As an example,
replacing the intermediate variable holding the valué,ofS, — &) modp in the final expression with
zero or a random value makes the first and second tests faldetha last one true, and thus allows a
BellCoRe attack.

5 Study of Shamir's Countermeasure

The description, usinginja’'s formalism, of the CRT-RSA computation allegedly progettoy Shamir's
countermeasure is given in Fid. 3 (again, note the simjlavith Alg. [2).

1 noprop error, m, d ;

2 prime {p}, {q}, r ;

3iq :={ q°-1 mod p } ;

4

5p’ =p*r;

6 dp := d mod ((p-1) * (r-1)) ;
7 Sp’ := m"dp mod p’ ;

8

99’ :=q*r;

10 dg := d mod ((q-1) * (r-1)) ;
11 8q’ :=m"dq mod q’ ;

12

13 Sp := Sp’ mod p ;

14 8q := Sq’ mod q ;

B
o o

S :=8q + (q * (iq * (Sp - Sq) mod p)) ;

PP
© ~

if Sp’ !=[r] Sq’ abort with error ;

N
o ©

return S ;

N
[y

hh

NN
B W N

_t=e/\N (_=[pl e\/ _=[q] @)

Figure 3:finja code for the Shamir CRT-RSA computation.

Using the same settings as for the unprotected implementafiCRT-RSA, we find that among the 31
different fault injections, 10 enable a BellCoRe attackwatrandomizing fault, and 9 with a zeroing fault.
This is not really surprising, as the test which is done oa[li8 does not verify if a fault is injected during
the computations 0§, or §;, nor during their recombination i8. For instance zeroing or randomizing
the intermediate variable holding the resultSf— S, during the computation of (line [16) results in a
BellCoRe attack. To explain why there is this problem in Sliamountermeasure, some context might be
necessary. It can be noted that the fault to inject in the sworeasure must be more accurate in timing
(since it targets an intermediate variable obtained kylatractior) than the faults to achieve a BellCoRe
attack on the unprotected CRT-RSA (since a fault duringegoonentiatiorsuffices). However, there is
today a consensus to believe that it is very easy to pinpaitinie any single operation of a CRT-RSA
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algorithm, using a simple power analysis method [KJJ99]sidBes, timely fault injection benches exist.
Therefore, the weaknesses in Shamir's countermeasur@daad be practically exploited.

If the attacker can dransient faultsthere are a lot more attacks: 66 different possible fajgciions
of which 24 enable a BellCoRe attack with a randomizing famil 22 with a zeroing fault. In practice,
a transient faults would translate into faulting the vaealvhen it is read€.g, in a register or on a bus),
rather than in (persistent) memory. This behavior could bésthe effect of a fault injection in cache, which
is later replaced with the good value when it is read from nignagain. To the authors knowledge, these
are not impossible situations. Nonetheless, growing teepof the attacker to take that into account break
some very important assumptions that are classical (somasteven implicit) in the literature. It does not
matter that the parts of the secret key are stored in a sekayecontainer” if their values can be a faulted
at read time. Indeed, we just saw that allowing this kind oftfanable even more possibilities to carry out
a BellCoRe attack successfully on a CRT-RSA computatiotepted by the Shamir’'s countermeasure. For
instance, if the value g is randomized for the computation of the valuesgf(line[13), then we hav8# S
but alsoS= S modg, which enables a BellCoRe attack, as seen in[Sec. 2.

It is often asserted that the countermeasure of Shamir isaatipal due to its need fat (as mentioned
in [ABE"02] and [Vig08]), and because there is a possible fault lattecthe recombination,e., line[18
(as mentioned in [Vig08]). However, the attack on the recimaiion can be checked easily, by testing
thatS—S, Z0 modp andS— §; # 0 modq before returning the result. Notwithstanding, to our best
knowledge, it is difficult to detect all the attacks our tomlihd, and so the existence of these attacks (hew, in
the sense they have not all been described previously) isyp&ling reason for not implementing Shamir’s
CRT-RSA.

6 Study of Aumuller et al.’s Countermeasure

The description of the CRT-RSA computation protected by Alken et al's countermeasure is given in
Fig.[4 (here too, note the similarity with Algl 3)

Using the same method as before, we can prove that on thefgedif possible faultsjoneof which
allow a BellCoRe attack, whether the fault is zero or randdrhis is a proof that the Aumilleet al’s
countermeasure works when there is onefault

Since it allowed more attacks on the Shamir’s countermeasue also tested the Aumillet al.s
countermeasure agairtsansient faultssuch as described in Séé. 5. There are 120 different podaillte
injections when transient faults are activated, and Alenét al.s countermeasure is resistant against such
fault injections too.

We also usedinja to confirm that the computation af,, dq, andiq (in terms ofp, g, andd) must not
be part of the algorithm. The countermeasure effectivegdeghese three variables to be inputs of the
algorithm to work properly. For instance there is a BellCaRack ifd, happens to be zeroed. However,
even withd,, dq, andiq as inputs, we can still attempt to attack a CRT-RSA impleiaigon protected by
the Aumdilleret al's countermeasure by doing more than one fault.

We then usedinja to verify whether Aumdiilleret al’s countermeasure would be resistant agdiigih
order attacks, starting with two faults. We were able to break #tifleast one of the two faults was a
zeroing fault. We found that this zeroing fault was used tsifiathe condition of a verification, which

6This result is worthwhile some emphasis: the genuine algoriof Aumilller is thusproved resistant against single-fault
attacks. At the opposite, the CRT-RSA algorithm of Vigilahot immune to single fault attacks (refer to [CGND]), and the
corrections suggested in the same paper by Cetah have not been proved yet.
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is possible in our threat-model, but which was not in the ointhe authors of the countermeasure. If we
protect the conditions against fault injection, then thepatation is immune two double-fault attacks too.
However, even in this less powerful threat-model, a CRT-R8putation protected by Aumdillet al’'s
countermeasure is breakable using 3 faults, two of whicht migeroing the computations df; anddy;.

7 Conclusions and Perspectives

We have formally proven the resistance of the Aumigleal.s countermeasure against the BellCoRe attack
by fault injection on CRT-RSA. To our knowledge, it is the fitisne that a formal proof of security is done
for a BellCoRe countermeasure.

During our research, we have raised several questions #imassumptions traditionally made by coun-
termeasures. The possibility of fault at read time is, irtipalar, responsible for many vulnerabilities. The
possibility of such fault means that part of the secret keylmafaulted (even if only for one computation).
It allows an interesting BellCoRe attack on a computatio@BT-RSA protected by Shamir’'s countermea-
sure. We also saw that the assumption that the result of thonali expression cannot be faulted, which
is widespread in the literature, is a dangerous one as itased the number of fault necessary to break
Aumdlller et al's countermeasure from 2 to 3.

The first of these two points demonstrates the lack of formalies of fault injection attack and their
countermeasures, while the second one shows the imporéficenal methods in the field of implemen-
tation security.

As a first perspective, we would like to address the hardeofrspftware codes of CRT-RSA under the
threat of a bug attack. This attack has been introduced bgrBjlCarmeli and Shamir [BCS08] at CRYPTO
2008. It assumes that a hardware has been trapped in suchthatdlyere exists two integeasandb, for
which the multiplication is incorrect. In this situationirm, Carmeli and Shamir mount an explicit attack
scenario where the knowledge @findb is leveraged to produce a faulted result, that can lead tonates
BellCoRe attack. For sure, testing for the correct funetiiy of the multiplication operation is impractical
(it would amount to an exhaustive verification 0?2 multiplications on 64 bit computer architectures).
Thus, it can be imagined to use a countermeasure, like thatmilller, to detect a fault (caused logically).
Our aim would be to assess in which respect our fault anafgsimal framework allows to validate the
security of the protection. Indeed, a fundamental diffeecis that the fault is not necessarily injectedia¢
random place, but can potentially show upsaveralplaces.

As another perspective, we would like to handle the repaicemhtermeasure of Vigilart [CGMLQ] and
the countermeasure of Kim [KKHH11]. Regarding Vigilante thifficulty that our verification framework
in OCaml [INR] shall overcome is to decide how to inject thenezkable identity(1+r)d% = 14+dp-r
modr?: either it is kept as such such, like ad hoctheorem (but we need to make sure it is called only
at relevant places, since it is not confluent), or it is made neral (but we must ascertain that the
verification remains tractable). However, this effort isrthavhile’], because the authors themselves say in
the conclusion of their article [CGMLQ] that:

“Formal proof of the FA-resistance of Vigilant's schemeluding our countermeasures is still
an open (and challenging) issue.”

“Some results will appear in the proceedings of the 3rd ACMRIGN Program Protection and Reverse Engineering Workshop
(PPREW 2014)TRG14], collocated with POPL 2014.
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Regarding the CRT-RSA algorithm from Kim, the computatiervery detailed (it goes down to the mul-
tiplication level), and involves Boolean operationsd, xor, etc). To manage that, more expertise about
both arithmetic and logic must be added to our software.

Eventually, we wish to answer a question raised by Vigilafig(8] about the primé involved in
Aumilller et al’s countermeasure:

“Is it fixed or picked at random in a fixed table?”

The underlying issue is that oféplay attacks on CRT-RSA, that are more complicated to handleedd
they would require a formal system such as ProVerif[Bladt ik able to prove interactive protocols.

Concerning the tools we developed during our research dinegntly only allow to study fault injection
in the data, and not in the control flow, it would be interegtio enable formal study of fault injections
affecting the control flow.

Eventually, we would like to define and then implement an matiic code mutation algorithm that
could transform an unprotected CRT-RSA into a protected &e know that with a few alterations (see
that the differences between Alg. 1 and Aly. 3 are enumexabilis is possible. Such promising approach, if
successful, would uncover tisenallest possibleountermeasure of CRT-RSA against fault injection attacks
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noprop error, m, e, rl, r2 ;

prime {p}, {q}, t ;

dp := { e”-1 mod (p-1) } ;

dq :

{ e”-1 mod (g-1) } ;

iqg := { q°-1 mod p } ;

p’ = p *t
dp’ :=dp + rl * (p-1) ;
Sp’ := m"dp’ mod p’ ;

if p’> !'=[p] 0 \/ dp’ !'=[p-1] dp abort with error ;

qQ =gkt
dg’ :=dq + r2 * (gq-1) ;
Sq’ :=m"dq’ mod q’ ;

if q’ !'=[q] 0 \/ dq’ '=[g9-1] dq abort with error ;

Sp :
Sq :

Sp’ mod p ;
Sq’ mod q ;

S :=8q + (q * (iq * (Sp - Sq) mod p)) ;

if S !'=[p] Sp’ \/ S !=[q] Sq’ abort with error ;

Spt := Sp’
Sqt := Sq’
dpt := dp’
dqt := dq’
if Spt~dqt
return S ;
hh

mod t ;
mod t ;
mod (t-1) ;
mod (t-1) ;

!=[t] Sqt~dpt abort with error ;

_t=e/\N (_=[pl e\/ _=[q] @)

Figure 4:finja code for the Aumillleet al. CRT-RSA computation.

22



	1 Introduction
	2 CRT-RSA and the BellCoRe Attack
	2.1 CRT-RSA
	2.2 BellCoRe Attack on CRT-RSA
	2.3 Protection of CRT-RSA Against the BellCoRe Attack
	2.3.1 Obvious Countermeasures
	2.3.2 Shamir
	2.3.3 Aumüller
	2.3.4 Vigilant
	2.3.5 Kim
	2.3.6 Other Miscellaneous Fault Injections Attacks


	3 Formal Methods
	3.1 CRT-RSA and Fault Injections
	3.2 finja
	3.2.1 Computation Term
	3.2.2 Fault Injection
	3.2.3 Attack Success Condition
	3.2.4 Simplification Process


	4 Study of an Unprotected CRT-RSA Computation
	5 Study of Shamir's Countermeasure
	6 Study of Aumüller et al.'s Countermeasure
	7 Conclusions and Perspectives

