
Journal of Cryptographic Engineering manuscript No.
(will be inserted by the editor)

Practical Feasibility Evaluation and Improvement of a
Pay-per-Use Licensing Scheme for Hardware IP Cores in
Xilinx FPGAs

Jo Vliegen · Nele Mentens · Dirk Koch · Dries Schellekens · Ingrid

Verbauwhede

Received: date / Accepted: date

Abstract In earlier published work, Maes et al. present

a pay-per-use licensing scheme for hardware Intellectual

Property (IP) cores. This scheme focuses on the use of

IP cores on SRAM-based FPGAs and is mainly based

on the partial reconfigurability property of this type of

FPGA. Our work evaluates the practical feasibility of

the scheme and the accompanying architecture. As al-

ready (partly) indicated by Maes et al., their solution

introduces some security and usability issues. There-

fore, we present improvements to the scheme and the

architecture together with an additional method for de-

creasing the area overhead. The overall result is the first

practical implementation of the pay-per-use licensing

scheme occupying 841 slices on a Xilinx XC6S-LX45

FPGA. The small area overhead is mainly achieved

by moving the storage of keys from slice flip-flops to

configuration memory. Moreover, the implementation

would not have been feasible with commercially avail-

able tools. We use an academic tool that allows nested

partial reconfiguration and flexible IP core placement.

This work was supported in part by the Research Council
KU Leuven: GOA TENSE (GOA/11/007) and by the Flemish
iMinds projects. In addition, this work is supported in part by
the Flemish Government, FWO G.0550.12N, by the Hercules
Foundation AKUL/11/19, and by the European Commission
through the ICT program under FP7-ICT-2011-8.

J. Vliegen, N. Mentens, D. Schellekens, I. Verbauwhede
KULeuven, ESAT/COSIC & iMinds
Kasteelpark Arenberg 10 - bus 2452,
B-3001 Leuven-Heverlee, Belgium
E-mail: givenname.surname@esat.kuleuven.be
Tel: (+32) 11 180 921

D. Koch
The University of Manchester, School of Computer Science
Oxford Road, Manchester, M13 9PL, United Kingdom
E-mail: dirk.koch@manchester.ac.uk
Tel: (+44) 161 275 61 27

Keywords Hardware IP core licensing · FPGA ·
Dynamic partial reconfiguration · Key storage ·
Cryptography

1 Introduction and previous work

Hardware designs are made for a wide variety of ap-

plications. The devices for which these designs are tai-

lored, are also getting more complex and more pow-

erful. Additionally, the techniques available for devel-

oping hardware designs continue to improve and per-

fect. This makes the design of efficient hardware an

increasingly complex task. Rather than starting each

hardware design from scratch, reusing already designed

components becomes common practice. With the com-

plexity of individual components increasing, the mar-

ket of designing and selling Intellectual Property (IP)

cores has been introduced around the turn of the cen-

tury. With reconfigurable hardware, e.g. a Field Pro-

grammable Gate Arrays (FPGAs), these IP cores can

be implemented easily and dynamically. Moreover, their

reconfigurable property allows IP cores to be software

and/or hardware in contrast with the firmware updates

of microprocessors which only target software updates.

With the pitfall of loosing IP, and therefore money, a

number of solutions have been proposed. Simpson and

Schaumont describe an offline authentication scheme

for embedded software IP modules in FPGAs [16]. Be-

sides this software-oriented approach, a number of hard-

ware solutions were proposed [5][6][7][9]. In [6], a proof-

of-concept implementation is presented to reconfigure

the majority of the FPGA such that it has a design,

containing a specific IP core. However, this does not

provide a flexible way of obtaining and implementing

one or more IP cores. Although none of the other solu-



2 Jo Vliegen et al.

tions ([5][7][9]) were implemented in practice, the work

of Maes et al. [9] elaborates the most on practical is-

sues. Moreover, their work offers the pay-per-use fea-

ture where the system developer pays a price for the IP

core per device in which it is instantiated. The scheme

of Maes et al. is based on the property of FPGAs to

support partial and dynamic reconfiguration.

Although Maes et al. worked out their pay-per-use

licensing scheme to a detailed level, it still leaves con-

siderable practical aspects untouched. In this paper,

we evaluate the practical feasibility of their scheme.

As already partly indicated by the authors of [9], the

proposed architecture is vulnerable for side-channel at-

tacks. Additionally, commercially available tools do not

allow nested and flexible placement of IP cores. We

present an improved scheme and architecture that give

a solution to the nesting and flexibility issues. In addi-

tion, we describe a novel technique to decrease the area

overhead. In order to achieve a more secure, practically

implementable, and smaller solution, we use a tool flow

based on the academic tool: GoAhead [1]. The result is

a working FPGA implementation with a small overhead

in area. This is the first implementation of a pay-per-

use licensing scheme for hardware IP cores.

This paper first describes the Xilinx SRAM-based

FPGAs in Sect.2 to introduce or refresh the readers

comprehension of FPGAs. Subsequently, this work gives

an overview of the original licensing scheme and the is-

sues it introduces in Sect. 3. The implementation of

the scheme, including the solutions to the problems

and a modified version of the scheme, are thoroughly

explained in Sect. 4. Finally, Sect. 5 gives the results

of the prototype implementation and Sect. 6 concludes

this work.

2 The Xilinx SRAM-based FPGA in a nutshell

2.1 The FPGA chip

An FPGA can be seen as dual-layer chip consisting of

the reconfigurable fabric and the configuration memory.

Depending on the technology used for storing the con-

figuration bits, the three most common technologies for

FPGAs are: SRAM-based, Flash-based and antifuse-

based FPGAs. For more information and a comparison

between these technologies we refer to [3]. The work

of Maes et al. [9], hence this work as well, focuses on

Xilinx SRAM-based FPGAs. The reconfigurable fabric

mainly consists of Configurable Logic Blocks (CLBs)

and routing components, where the CLBs contain Look-

Up Tables (LUTs), multiplexers and flip-flops. The out-

put of a LUT can be configured to any function of the

LUT’s inputs. Furthermore, next to flip-flops, there are

two types of storage primitives: Block RAMs and dis-

tributed memory. Block RAM (BRAM) is a dedicated

memory component on the silicon of the FPGA. Dis-

tributed RAM consists of a combination of many small

RAM blocks in the LUTs. while the flip-flops provide

storage. The routing components in the reconfigurable

fabric are use to achieve the desired routing.

2.2 The FPGA configuration

To configure an FPGA with a certain design a ‘bit-

stream’ is to be created first. The different steps in

generatring a bitstream for a Spartan-6 FPGA are done

through the ISE design software of Xilinx. Their current

tool, Vivado, does not provide support for Spartan-6

devices and is hence not used.

The first step is to describe the design in a Hardware

Description Language (HDL), like VHDL or Verilog, or

through schematic entry. The design has to go through

the synthesis tool to be transformed into a netlist .ngc.

This netlist then gets combined with any other cores in

the Build step, which results in a .ngd file. This .ngd file

contains a logical description in terms of logic elements

like AND gates, flip-flops, and similar gates. Thereafter,

this .ngd file gets mapped on the hardware primitives,

which are the building blocks of the reconfigurable fab-

ric of the targeted FPGA, resulting in a .ncd file. The

subsequent step is to place and route the mapped de-

sign. Placing is determining where each primitive of the

mapping phase is placed in the chip, while routing tries

to make every required connection through the routing

lines on the chip. These steps result in in a routed .ncd
file which, finally, can be used to generate a bitstream

for the FPGA.

By loading the configuration memory with a bit-

stream, the behavior of the reconfigurable fabric is de-

termined. Commonly an FPGA is configured in its en-

tirety, but partial reconfiguration is a technique that

allows the reconfiguration of a certain partition of an

FPGA. A bitstream that contains the configuration of

a partition of the FPGA is referred to as a partial

bitstream. The partition that stays unchanged is re-

ferred to as the ‘static partition’ while the one or more

other partitions are referred to as ‘reconfigurable parti-

tions’. If the operation of the static partition continues

uninterruptedly during the reconfiguration of a recon-

figurable partition, this is referred to as ‘dynamic’ re-

configuration. The possibility exists to use encrypted

bitstreams to configure FPGAs. An on-chip decryption

core is present to perform bitstream decryption, but up

to the latest Xilinx series [19] this feature is not avail-

able for partial bitstreams. Moreover, this decryption



Pay-per-Use Licensing Scheme: Implementation, Evaluation and Improvement 3

core is not available for any purpose other than bit-

stream decryption.

To access the configuration memory from the recon-

figurable fabric only the Internal Configuration Access

Port (ICAP) primitive provides an interface. Reading

back as well as writing the configuration memory can

be performed through the ICAP. Note that the ICAP

even allows read-back if the FPGA was configured with

an encrypted bitstream. The storage of the encryption

key and the Initial Value can be done in battery-backed

RAM (BBRAM) or in eFUSE. The former is preferred

over the latter because the eFUSE can be erased [20].

Table 1 summarizes which recent Xilinx FPGA fam-

ilies offer certain features. This table learns that au-

thentication, which guarantees the FPGA configuration

is not tampered with, is only available on the most re-

cent devices. All device families mentioned in Table 1

can be partially reconfigured using the vendor tools,

except the Spartan 6 family.

3 The original licensing scheme and

architecture

This section summarizes the relevant parts of the li-

censing scheme presented in [9], discusses the originally

proposed architecture, and points out the possible se-

curity and usability issues.

3.1 The original licensing xcheme

There are four entities that participate in the scheme:

the FPGA vendor (FV), the metering authority (MA),

the IP core vendor (CV) and the system developer (SD).

The interactions between the different entities are shown

in Fig. 1. The scheme consists of an initialization phase

and a design phase. Both are described below in detail.

3.1.1 Initialization phase

When the FPGA vendor produces an FPGA F ∗
i , the

device can be sent to a metering authority for registra-

tion (transaction 1 in Fig. 1). The metering authority

generates a random device key kFi and metering key

kMi and stores these keys in a database together with

the ID of the FPGA: ID(F i). Further, the metering

authority stores the device key kFi in the secure non-

volatile memory of the FPGA. The metering authority

will additionally perform an encryption of a bitstream,

using the key kFi . This bitstream is called the meter-

ing bitstream and it contains the metering design M

which includes a register that stores the metering key

kMi . The metering bitstream Bi(M,kMi ) is computed as

./licScheme_scheme.pdf

Fig. 1 Interactions between the entities in [9], where FV,
MA, CV and SD stand for FPGA vendor, metering authority,
IP core vendor and system developer, respectively.

Bi(M,kMi ) = Enc[b(M,kMi )]kF
i

, where Enc[x]y stands

for a symmetric encryption of x using key y; and b(x, y)

stands for a plaintext bitstream that implements hard-

ware components x and y. The uninitialized FPGA F ∗
i

is now transformed into a registered FPGA Fi, which

is handed back to the FPGA vendor, together with

Bi(M,kMi ) (transaction 2 in Fig. 1).

When a system developer buys an FPGA, possibly

as component on a development board, which is enabled

to use the licensing scheme, the FPGA Fi is delivered,

together with Bi(M,kMi ) (transaction 3 in Fig. 1).

IP core providers also need to register their cores

through the metering authority. They have to register

every offered IP core by providing the metering author-

ity with an ID of the IP core, ID(IP j), together with

a key, kIPj (transaction 4 in Fig. 1). Both the metering

authority and the IP core provider store ID(IP j) and

kIPj in a database.

3.1.2 Design phase

When a system developer wants to obtain and use an

IP core in a specific FPGA, the following interactions

occur. The system developer requests the IP core iden-

tified by ID(IP j) from the IP core vendor (transaction 5

in Fig. 1). This results in the IP core vendor sending the

bitstream of the IP core to the system developer, en-

crypted with the key kIPj , i.e. B(IPj) = Enc[b(IPj)]kIP
j

(transaction 6 in Fig. 1). After transactions 5 and 6 the

system developer cannot use the IP core because the

decryption key is not yet available.



4 Jo Vliegen et al.

Table 1 Feature overview of recent Xilinx FPGAs

Virtex-4 Virtex-6
feature & Spartan-6 &

Virtex-5 7-series

year of commercial release 2004 & 2006 2009 2010 & 2011
encrypted full bitstream AES256 AES2561 AES256
encrypted partial bitstream no no no
key storage BBRAM BBRAM / eFUSE BBRAM / eFUSE
ICAP readback with encrypted bitstream yes yes yes
ICAP support with encrypted bitstream yes2 yes yes
bitstream authentication no no HMAC

1 not in LX, SX and FX12
2 for Virtex-4: only in LX75(T), SLX100(T), LX150(T)

When the system developer wants to integrate the

core in his design, the IDs of the FPGA (ID(F i)) and

the IP core (ID(IP j)) are sent to the metering authority

(transaction 7 in Fig. 1). The metering authority gener-

ates a license KIP
i,j , with KIP

i,j = Enc[kIPj ]kM
i

, which is

sent to the system developer (transaction 8 in Fig. 1).

The system developer then configures the FPGA Fi

with bitstream Bi(M,kMi ), which allows the key kMi
to get on the FPGA without another entity being able

to read that key. Using kMi , the system decrypts the

license (KIP
i,j ) to obtain kIPj , which is used to decrypt

the encrypted IP core B(IPj) on the FPGA, in order to

configure the IP core in the system developer’s design

through partial reconfiguration.

3.2 The original architecture

During the design phase, after all transactions in Fig. 1

have been performed, the architecture implemented on

the FPGA is altered a few times. This is depicted in

Fig. 2, where the white area represents the reconfig-

urable resources of the FPGA, while the gray area holds

additional dedicated components available on the die of

the FPGA. It is pointed out that the ICAP is perma-

nently present in the reconfigurable part. In every step

of Fig. 2 incoming data is used to update registers or

to reconfigure the FPGA. The targeted components of

the incoming data are indicated by the bold arrows.

The top image visualizes how Bi(M,kMi ) configures

the metering design and the metering key in the FPGA

through a full configuration. This configuration uses the

on-chip bitstream decryption core which is available on

the FPGA, using the key kFi , which is stored in Non-

Volatile Memory (NVM). The partial reconfigurations

of the FPGA that follow in a later phase, do not alter

the metering design. Therefore, we refer to the part of

the FPGA that holds the metering design as the ’static

part’, while the rest of the FPGA is reserved for the

system developer’s design together with the IP cores.

./act_seq-crop.pdf

Fig. 2 The evolution of the FPGA architecture in [9] during
the design phase. The Non-Volatile Memory (NVM) stores
the device key for the on-chip decryption core.

The second image in Fig. 2, shows the second step in

which the metering design, consisting of a custom AES

decryption core and two registers (of which one contains

the metering key kMi ), is already present in the static

part of the FPGA. The license KIP
i,j is decrypted by the

custom decryption core on the reconfigurable fabric of

the FPGA, using key kMi , which results in the initial-

ization of the already implemented register for kIPj . It

should be noted that this step performs no configura-

tion, but the initialization of a key in a register.

The bottom image shows the incoming, encrypted

bitstreamB(IPj), containing the obtained IP core. This

bitstream is decrypted on the custom decryption core,

using key kIPj , and is routed to the ICAP. This results

in a partial reconfiguration of the FPGA to implement

the design of the IP core.



Pay-per-Use Licensing Scheme: Implementation, Evaluation and Improvement 5

3.3 Issues in implementing the licensing scheme

As already partly indicated by Maes et al., the imple-

mentation of the licensing scheme leads to a number of

practical issues. In this subsection we explain the two

most important issues.

3.3.1 Side-channel security of the embedded AES core

The original scheme uses the dedicated AES bitstream

decryptor in the die of the FPGA for the full configu-

ration of the initial system. In [9], Maes et al. already

mention the work of Moradi et al., that presents a side-

channel attack on the AES core in CBC mode [11]. The

attack reveals the key that is used to decrypt encrypted

bitstreams. In the licensing scheme, this means that kFi
can be revealed during the decryption of Bi(M,kMi ).

With kFi , the attacker can decrypt Bi(M,kMi ) outside

the FPGA to obtain kMi . This would reveal kIPj from

the license, which can finally be used to decrypt the

partial bitstream containing the obtained IP core. This

would directly lead to a loss of revenue for the CV.

Moreover, an in-depth study of this bitstream can re-

veal implementation details of the IP core. Note that

Maes et al. use a custom AES decryption core for the

partial bitstreams, since decryption of a partial bit-

stream was not supported by the on-chip core.

3.3.2 Nested and flexible integration of IP cores

As shown in Fig. 2, the metering design resides in the

static part of the FPGA. The system developer’s design

is a partial module that covers the remaining part of the

FPGA. Since the obtained IP core will be placed inside

the system designers’ hardware, the IP core needs to be

nested as a partial module inside the system developer’s

design. This requires the ability of performing nested

partial reconfiguration, which is not supported by the

commercial tools. Moreover, flexible placement of IP

cores is not allowed either, which means that an IP core

can only be implemented at a predetermined location

on the FPGA. Maes et al. support this by having the IP

core vendor tailor the obtained IP core to the system

developer’s needs. However, this slows down the design

time, increases the IP core price and results in a non-

flexible, non-scalable solution.

4 Improvement and implementation

This section explains how the issues in Sect. 3 can be

overcome. In addition, we propose a method for de-

creasing the area overhead of the architecture. Finally,

the novel implementation and tool flow are discussed.

4.1 Overcoming the issues

4.1.1 Side-channel security of the embedded AES core

The original architecture in [9] uses the on-chip AES

decryption core for full configuration and uses a cus-

tom AES core in the reconfigurable logic of the FPGA

in order to decrypt licenses and partial bitstreams, as

explained in Sect. 3.2. To solve the side-channel security

issues of the on-chip AES core, there are two solutions.

Either the on-chip AES core needs to be replaced by a

side-channel secure core or a work-around needs to be

found based on the existing FPGA technology. Because

the former lies with the FPGA vendor and because we

want to offer a solution for existing FPGAs, we pro-

pose not to use the on-chip AES core. Instead we only

use the custom AES core in the reconfigurable logic for

all sensitive decryptions. This core needs to be config-

ured in the FPGA which is done with an encrypted

bitstream, Binit, that also contains a connection to the

ICAP and a storage unit for the metering key kMi and

the IP core key kIPj . This static bitstream Binit is to be

generated by the MA and handed back to the FV when

the FPGA is registered with the MA (transaction 2

in Fig. 1). Next, the encrypted bitstream Bi(M,kMi )

is sent to the FPGA and gets decrypted by the custom

AES core. According to the original scheme, Bi(M,kMi )

contains a register that holds kMi , an AES decryption

component, and a connection to the ICAP. Since the

AES decryption component and the connection to the

ICAP were already implemented by Binit, the only new

component in Bi(M,kMi ) is the metering key kMi . The

encrypted bitstream Bi(M,kMi ) is decrypted with key

kFi , which is available inside the FPGA after the ini-

tialization phase.

Note that no precautions have been taken to pre-

vent an attacker from altering the encrypted bitstream

Binit through the techniques of Moradi et al. [11]. By

doing so, an attacker can modify the decrypted bit-

stream by making connections between the key storage

and the outside world to simply eavesdrop every key in

a later phase. Some tools exist to reverse engineer a bit-

stream [2,14], but these tools often focus on a specific

device family. The results of these tools look promiss-

ing but are not yet optimal and flexible enough to take

bitstream reverse enginering for granted. Therefore, we

do not take precautions to prevent this attack in this

work. The evolution of the FPGA architecture using

this novel approach, is vizualised in Fig. 3.



6 Jo Vliegen et al.

./act_seq_new-crop.pdf

Fig. 3 The evolution of the FPGA architecture in the im-
proved scheme, during the design phase. The KSwU stands
for the key switching unit and KStU for the key storage unit.

4.1.2 Nested and flexible integration of IP cores

Commercially available tools for partial reconfiguration

do not allow partial modules to be nested. Koch et al.

developed an academic tool called ReCoBus-Builder [8]

that evolved into the GoAhead tool [1], which allows

nested partial reconfiguration. This tool heavily relies

on the Xilinx Design Language (XDL) [18] to achieve

its unique features. Therefore, the use of the tool binds

the scheme to Xilinx FPGAs. Further, GoAhead also

allows the flexible placement of reconfigurable modules

in comparison to a predetermined location of modules

using commercial tools. This makes our solution more

practical, cheaper and less devious for both the IP core

vendor and the system developer. An additional benefit

of using GoAhead is that partial reconfiguration on the

Spartan 6 FPGA family becomes possible, in contrast

with commercial tools’ as mentioned in Sect. 2.2.

4.2 Additional improvements to the architecture

In order to decrease the resource occupation of the

static partition that handles the licensing scheme, an

alternative method for key storage is proposed. In the

original scheme, only the metering key (kMi ) and the IP

core key (kIPj ) are stored in the flip-flops of the FPGA,

since these are the keys used for the custom decryp-

tion core. The device key (kFi ) is stored in a memory

element that drives the built-in AES decryptor. As ex-

plained in Sect. 4.1.1 our solution uses the custom AES

core for all decryptions, which means three keys have to

be stored. Sect. 4.2.1 describes how traditional storage

of the keys can be done, while 4.2.2 explains how our

novel approach allows the storage of three keys using

only half the area compared to the storage of two keys

using the traditional method. Moreover, in the tradi-

tional setting, two additional reconfigurable partitions

are needed for the storage of the keys, while our ap-

proach does not need any further partitioning in the

static partition. This leads to additional savings in area

and timing, since the interconnection of partial modules

with the rest of the FPGA introduces an overhead in

area and timing.

4.2.1 The traditional way: key storage in slice flip-flops

Upon initial configuration, the registers for storing kMi
and kIPj are empty. During two partial reconfiguration

steps the partial bitstream Bi(M,kMi ) and the license

KIP
i,j store kMi and kIPj in these registers. Assuming

AES-128 is used for encryption, each register holds a

128-bit key. Given that one slice contains four flip-flops

(for a Xilinx Virtex-5 FPGA), the two registers require

64 slices.

4.2.2 The improved way: key storage in configuration

memory

In order to reduce the overhead used by the key reg-

isters, the storage of the keys is moved from the slice

flip-flops to the “configuration memory” of the FPGA

by using the configuration bits of the LUTs.

Fig. 4 shows the architecture of a LUT6 which is

available in a Spartan-6 FPGA. This LUT6 can be con-

figured as a single 6-to-1 LUT or as two 5-to-1 LUTs.

Any function with n inputs can be configured in a LUT,

resulting in 2n possible functions. Among these func-

tions are two functions that map any given input to

‘0’ or to ‘1’, respectively. Configuring both 5-to-1 LUTs

through the SRAM memory to one of these two func-

tions, turns a single LUT6 in a 2-bit ROM. The value of

the ROM is stored in the configuration memory. Since

the AES core needs 128 key bits in parallel, we need 64

LUTs or 16 slices for the storage of one key.

As explained earlier in this section, there are three

keys to be stored, namely kFi , kMi and kIPj . By alter-

ing the truth table of the LUT-as-2-bit-ROM as shown

in Table 2, the single LUT can hold 2 bits of all three

keys. This means that the 16 occupied slices can store

all three keys. From a functional point of view, the

achieved behavior could be represented as shown in

Fig. 5. The configuration bits of the LUT determine



Pay-per-Use Licensing Scheme: Implementation, Evaluation and Improvement 7

./LUT6-crop.pdf

Fig. 4 Architecture of a LUT6 in a Spartan-6 FPGA

the value of the three 2-bit ROMs and therefore deter-

mine 2 bits of each key.

Table 2 Truth table of the LUTs in the key storage unit

A1 A2 A3 A4 A5 A6 O5 O6

0 X X X X X kFi [n] kFi [n + 1]
1 0 X X X X kMi [n] kMi [n + 1]
1 1 X X X X kIPj [n] kIPj [n + 1]

./functional_LUT3-crop.pdf

Fig. 5 A functional representation of the LUT configuration
in the key storage unit

The group of 16 slices which stores the three keys

is referred to as the “key storage unit”. To prevent the

design tool from optimizing this construction away, the

key storage unit is implemented as a hard macro [17].

When instantiating the key storage unit, all key bits

are initialized to ‘0’. An update of the keys is achieved

through the reconfiguration of the 16 slices of the key

storage unit.

In order to be able to switch between the three keys

for the AES decryption core, the selection inputs A1

and A2 of the multiplexers in Fig. 5 have to be altered.

To be able to switch between keys through reconfigu-

ration, the same approach of using a LUT as a 2-bit

ROM can be used again. The truth table of this LUT

is shown in Table 3 and its functional representation is

shown in Fig. 6. The slice in which this LUT resides is

referred to as the “key switching unit”.

Table 3 Truth table of the LUT in the key switching unit

A1 A2 A3 A4 A5 A6 O5 O6

X X X X X X A1 A2

./functional_LUT4-crop.pdf

Fig. 6 A functional representation of the LUT configuration
in the key switching unit

Combining the key storage and key switching units
would functionaly look as depicted in Fig. 7.

This novel technique of storing the different keys

also alters the protocol of changing between keys. In

the original licensing scheme of Maes et al. [9], receiv-

ing a new key occurs in a single update. This is pos-

sible because both kMi and kIPj are stored in two sep-

arate registers. Using the proposed technique requires

two updates for storing a new key: 1) storing the key in

the key storage unit and 2) updating the selection bits

in the key switching unit.

In the first step, the incoming partial bitstream (con-

taining the new key knew) is decrypted with the cur-

rently used key kactive and forwarded to the ICAP to

update the key storage unit. This has no effect on the

value of kactive, used for decrypting the incoming bit-

stream, because the key switching unit is not yet up-

dated. This first step is depicted in Fig. 8.

It is only upon receiving an update on the key switch-

ing unit, that knew gets used in the AES core. Naively

using the same method as updating the key storage unit



8 Jo Vliegen et al.

./functional_LUT5-crop.pdf

Fig. 7 A functional representation of the LUT configuration
in the key switching unit

./kStU_update.pdf

Fig. 8 The first step: Updating the key storage unit

would result in switching the key during decryption of

the incoming partial bitstream. This corrupts the key

among other, as is depicted in the top half of Fig. 9. To

prevent this, the partial bitstream to update the key

switching unit has to be received, decrypted and tem-

porarily stored before routing it to the ICAP. Achiev-

ing this can be done by adding a FIFO that stores the

decrypted partial bitstream. This is depicted in the bot-

tom half of Fig. 9. Because the partial bitstream for

updating the key switching unit (1 slice) is small, the

FIFO is small as well.

./kSwU_update.pdf

Fig. 9 The second step: Updating the key switching unit.
The top half depicts the naive approach and the bottom half
depicts the correct approach.

4.3 Novel architecture and tool flow

4.3.1 Side-channel robust decryption core

As mentioned in Sect. 4.1.1, a side-channel robust AES

decryption core is required in the novel architecture.

We follow the approach of Moradi et al. [12] in which

the authors describe a twofold contribution. First there

is the very compact implementation of AES and sec-

ondly have they implemented the threshold counter-

measure, presented by Nikova et al. [13]. With this

countermeasure, Nikova et al. achieve provable security

against differential power analysis and higher-order dif-

ferential power attacks. The discussion of these attacks

and countermeasures fall out of the scope of this work,

but the interested reader should consult [10], [4], [13],

and [12].

The very small overhead of this AES128 implemen-

tation is beneficial for our work as well. The smaller the

cost of the static partition, the larger the amount of re-

configurable resources for the single reconfigurable par-

tition. The countermeasure presented in [13] protects

implementations against side-channel attacks based on

logic glitches.

4.3.2 Novel architecture

The architecture residing in the static partition, han-

dling the licensing scheme, is depicted in Fig. 10. The

key switching unit sends the selection signals A1 and

A2 to the key storage unit in order to determine which



Pay-per-Use Licensing Scheme: Implementation, Evaluation and Improvement 9

of the three keys (kFi or kMi or kIPj ) is used in the AES

core. The output of the custom AES core is forwarded

through a bit swapper to the ICAP. The bit swapper

makes sure the bits of the decrypted bitstreams are

routed in the correct order to the ICAP. The need for

the FIFO is explained in Sect. 4.2.2. In our proof-of-

concept implementation, encrypted bitstreams are sent

to the AES core over a UART [15]. In an industrial im-

plementation the communication interface needs to be

replaced by an interface with a higher throughput that

is accessible through the Internet.

./static-crop.pdf

Fig. 10 The architecture residing in the static partition, han-
dling the improved licensing scheme.

Fig. 11 shows a floorplan for the nested partial re-

configuration of the FPGA. The largest block (Static)

consists of all reconfigurable resources on the FPGA.

The two rightmost components are the key switching

unit (KSwU) and the key storage unit (KStU). These

units reside in the static partition. The darker colored

component on the left is a reconfigurable partition (De-

sign), which holds the design of the system developer.

Up until this point there is a single static partition with

a single reconfigurable partition. The IP core which is

acquired for the design of the system developer is a re-

configurable partition as well, encapsulated in another

reconfigurable partition (Design). The first level of the

reconfigurable partitions contains the Design and the

second level contains the obtained IP cores.

4.3.3 Novel tool flow

Xilinx offers the PlanAhead tool for partial reconfigu-

ration. The tool generates a partial bitstream for ev-

./nested_PR-crop.pdf

Fig. 11 Graphical representation of the nesting levels, where
the Static partition occupies one level; the Design partition,
the key storage unit (KStU) and key switching unit (KSwU)
form the first level and the IP core(s) form the second nesting
level.

ery possible configuration of the static and reconfig-

urable partitions. For example, a design with two re-

configurable partitions for which the first reconfigurable

partition has two available designs and the second re-

configurable partition has three available designs, ends

up with six full bitstreams and six times two partial

bitstreams. Additionally to this large processing over-

head, generating bitstreams for nested reconfigurable

partitions is not feasible in PlanAhead.

In order to reduce the processing overhead and to

allow nested reconfigurable partitions, we use the GoA-

head tool [1]. This tool originated from the ReCoBus

Builder [8], developed by Koch and Beckhoff.

In order to reconfigure the key storage unit and the

key switching unit which both reside in the static par-

tition through partial reconfiguration, the key bits and

the key selection bits need to be inserted through par-

tial bitstreams. These partial bitstreams are generated

by making differential bitstreams with respect to the

initial bitstream, binit, and to b(Mi, k
M
i ), respectively

for kMi and kIPj . To use the technique of making differ-

ential bitstreams, first a full bitstream with uninitial-

ized hard macros for the key storage and key switching

unit is generated. Then, the second full bitstream, con-

taining the desired modification to one of both units,

is generated. Both full bitstreams have to be restricted

in the area which can be used. To achieve this, GoA-

head applies restrictions on the placement and routing

tools to force the exclusive usage of primitives in a cer-

tain area. The router tool has to generate routing in

this same area, which is achieved by blocking out all

connections outside the restricted area.



10 Jo Vliegen et al.

The initial full bitstream is then generated for the

first placed-and-routed bitstream. Instead of perform-

ing the bitstream generation step on the initialized con-

figuration like in the traditional tool flow, this step is

to be slightly altered to make a differential bitstream

with respect to the initial full bitstream. This results

in a partial bitstream for the first level of the recon-

figurable parition which only updates the frames which

differ in the second full bitstream from the first full

bitstream. For more details and a more in-depth expla-

nation about generating the full and partial bitstreams

using GoAhead, we refer to the documentation [1].

5 Results

The architecture has been implemented on a Xilinx

XC6S-LX45 FPGA. The FPGA resources occupied for

the implementation of the licensing scheme, are shown

in Table 4. The table illustrates that the majority of

resources is dedicated to the AES core. Because the

system developer needs as much free space as possi-

ble for the implementation of his/her own design in

combination with licensed IP cores, the number of re-

maining resources available on the FPGA is important.

Therefore, the table shows the total number of rele-

vant resources for the FPGA we used for our proof-of-

concept implementation, but also for the smallest and

the largest member of the XC5V FPGA family. We can

conclude that the relative overhead in area is accept-

ably small, except for the smallest FPGA on which the

static partition not even fits.

Table 4 FPGA resources occupied by the licensing scheme

Relative usage of the
static partition in a

AES static XC6S LX
partition 4 45 150T

Slice FF 2486 3019 63 % 6 % 2 %
Slice LUTs 1729 2636 110 % 10 % 3 %
Occ. Slices 646 841 140 % 12 % 4 %
BRAM8 0 4 13 % 2 % 1 %

Next to the overhead in area, we also report on

the execution speed of the licensing scheme. A full bit-

stream for the XC6X LX45 has a size of 1’484’785 bytes.

The partial bitstream to update a key in the key stor-

age unit, including padding for communication and en-

cryption, is 2’232 bytes. The partial bitstream to alter

the output of the key switching unit is 1’432 bytes. In

our proof-of-concept implementation, a UART interface

with a baud rate of 115’200 Bd is used. This results in a

duration of 193.750 ms and 124.306 ms for the commu-

nication of the two partial bitstreams, respectively. For

an update of the key in the key storage unit, 140 AES

decryptions have to be performed, which takes 0.462 ms

(at a speed of 3.3 µs per decryption of a 128-bit block).

For an update of the key switching unit, 90 AES de-

cryptions have to be performed, which takes 0.297 ms.

In total a key update takes 194.212 ms (193.750 ms +

0.462 ms) and a key switch takes 124.603 ms (124.306

ms + 0.297 ms). In our proof-of-concept implementa-

tion, the communication speed forms the bottleneck. It

is clear that a communication channel with a higher

bandwidth is necessary for the practical enrollment of

the system. To place the timing cost of the presented

solution in perspective, we measured the duration of a

single, full configuration of the XC6X LX45 which takes

7.94 seconds. Assuming an IP core occupies 12.5% of

the device, Table 5 illustrates the absolute and relative

impact on the duration to reach to a working system,

with respect to a single full FPGA configuration.

Table 5 Absolute and relative timing with respect to a single
full FPGA configuration, for a system with 1, 3 or 5 IP cores.

Quantity for
duration 1 3 5

Operation [ms] IP cores

Binit 7940.000 1 1 1
KStU update 194.212 2 4 6
KSwU update 124.603 2 2 2
IP core 993.000 1 3 5

absolute duration 9.57 11.95 14.32
relative duration 1.21 1.51 1.81

KStU: key storage unit
KSwU: key switching unit

As could be expected, from Table 5 it is clear that

there is an increasing overhead with the number of IP

cores. However, this additional cost in timing is still

acceptable and could, in an extreme case, double the

duration. Obviously, this relates the number and the

size of the IP cores.

6 Conclusion and future work

This work describes a practical evaluation of the licens-

ing scheme presented by Maes et al. in [9]. We tackle

a number of feasibility and usability issues that occur

in the licensing scheme and the accompanying archi-

tecture. Further, we present additional improvements

that decrease the area overhead of the implementation,

where the novelty consists of moving the key storage



Pay-per-Use Licensing Scheme: Implementation, Evaluation and Improvement 11

from the slice flip-flops to the configuration memory.

The novel architecture was implemented on a Xilinx

FPGA, with a very small area overhead. The tool flow

is based on the academic GoAhead tool, that allows

nested partial reconfiguration and flexible IP core place-

ment.

Future work consists of implementing a state-of-the-

art mode of operation around the AES cipher. Such a

mode of operation can, additionally, provide data au-

thentication and data integrity to the conversed bit-

stream. This, respectively, encompasses that the FPGA

is ensured the data comes from a trusted entity and is

not tampered with during the conversation. The sec-

ond issue is the storage of the ’root’ key in non-volatile

memory. In current versions, this is based on fuses, in

future versions, newer technologies such as PUF-based

key storage could be used. Further, a communication

channel with a higher bandwidth and Internet connec-

tivity should be included to make the solution usable

in a real-life setting.

References

1. C. Beckhoff, D. Koch, and J. Tørresen. Go Ahead: A
Partial Reconfiguration Framework. In IEEE 20th An-

nual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 37–44. IEEE,
2012.

2. F. Benz, A. Seffrin, and S. A. Huss. Bil: A tool-chain for
bitstream reverse-engineering. In International Confer-
ence on Field Programmable Logic and Applications (FPL),
pages 735–738. IEEE, 2012.

3. A. Braeken, S. Kubera, F. Trouillez, A. Touhafi,
J. Vliegen, and N. Mentens. Secure FPGA technologies
and techniques. In International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 560–563.
IEEE, 2009.

4. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards
sound approaches to counteract power-analysis attacks.
In Advances in Cryptology — CRYPTO’ 99, pages 398–412.
Springer Berlin Heidelberg, 1999.

5. S. Drimer, T. Güneysu, M. G. Kuhn, and C. Paar. Pro-
tecting multiple cores in a single FPGA design, 2008.

6. T. Feller, S. Malipatlolla, D. Meister, and S. A. Huss.
TinyTPM: A Lightweight Module aimed to IP Protec-
tion and Trusted Embedded Platforms. In IEEE Interna-

tional Symposium on Hardware Oriented Security and Trust
(HOST), pages 6–11. IEEE Computer Society, 2011.

7. T. Guneysu, B. Möller, and C. Paar. Dynamic Intellec-
tual Property Protection for Reconfigurable Devices. In
International Conference on Field-Programmable Technol-

ogy (ICFPT), pages 169–176. IEEE, 2007.
8. D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder; A

novel tool and technique to build statically and dynami-
cally reconfigurable systems for FPGAs. In International

Conference on Field Programmable Logic and Applications
(FPL), pages 119–124. IEEE, 2008.

9. R. Maes, D. Schellekens, and I. Verbauwhede. A Pay-per-
Use Licensing Scheme for Hardware IP Cores in Recent
SRAM based FPGAs. IEEE Transactions on Information

Forensics and Security, 7(1):98–108, 2012.

10. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel
Leakage of Masked CMOS Gates. In A. Menezes, editor,
CT-RSA, pages 351–365. Springer, 2005.

11. A. Moradi, M. Kasper, and C. Paar. Black-Box Side-
Channel Attacks Highlight the Importance of Counter-
measures - An Analysis of the Xilinx Virtex-4 and Virtex-
5 Bitstream Encryption Mechanism. In Proceedings of the

Cryptographers’ Track at the RSA Conference (CT-RSA),
pages 1–18. Springer, 2012.

12. A. Moradi, A. Poschmann, S. Ling, C. Paar, and
H. Wang. Pushing the limits: a very compact and
a threshold implementation of AES. In Advances in
Cryptology–EUROCRYPT 2011, pages 69–88. Springer,
2011.

13. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware
implementation of non-linear functions in the presence
of glitches. In Information Security and Cryptology–ICISC
2008, pages 218–234. Springer, 2009.

14. J.-B. Note and E. Rannaud. From the Bitstream to
the Netlist. In Proceedings of the 16th International
ACM/SIGDA Symposium on Field Programmable Gate Ar-

rays, page 264–264. ACM, 2008.
15. A. Osborne. An Introduction to Microcomputers: Basic con-

cepts. McGraw-Hill, 2nd edition, 1980.
16. E. Simpson and P. Schaumont. Offline Hard-

ware/Software Authentication for Reconfigurable Plat-
forms. In Proceedings of the 8th International Workshop

Cryptographic Hardware and Embedded Systems (CHES),
pages 311–323. Springer, 2006.

17. Xilinx. Xilinx Implementation Strategies using FPGA
Editor, 2010.

18. Xilinx. Xilinx Partial Reconfiguration User Guide
(UG702), 2010.

19. Xilinx. 7 Series FPGAs Configuration (UG470), 2013.
20. Xilinx. Spartan-6 FPGA Configuration User Guide

(UG380), 2013.


