
Faster 64-bit universal hashing using carry-less multiplications

Daniel Lemire · Owen Kaser

Abstract Intel and AMD support the Carry-less Multipli-
cation (CLMUL) instruction set in their x64 processors. We
use CLMUL to implement an almost universal 64-bit hash
family (CLHASH). We compare this new family with what
might be the fastest almost universal family on x64 proces-
sors (VHASH). We find that CLHASH is at least 60%
faster. We also compare CLHASH with a popular hash func-
tion designed for speed (Google’s CityHash). We find that
CLHASH is 40% faster than CityHash on inputs larger than
64 bytes and just as fast otherwise.

Keywords Universal hashing, Carry-less multiplication,
Finite field arithmetic

1 Introduction

Hashing is the fundamental operation of mapping data ob-
jects to fixed-size hash values. For example, all objects in
the Java programming language can be hashed to 32-bit in-
tegers. Many algorithms and data structures rely on hashing:
e.g., authentication codes, Bloom filters and hash tables. We
typically assume that given two data objects, the probabil-
ity that they have the same hash value (called a collision) is
low. When this assumption fails, adversaries can negatively
impact the performance of these data structures or even cre-
ate denial-of-service attacks. To mitigate such problems, we
can pick hash functions at random (henceforth called ran-
dom hashing).
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Random hashing is standard in Ruby, Python and Perl.
It is allowed explicitly in Java and C++11. There are many
fast random hash families — e.g., MurmurHash, Google’s
CityHash [35], SipHash [3] and VHASH [12]. Cryptogra-
phers have also designed fast hash families with strong the-
oretical guarantees [6,18,24]. However, much of this work
predates the introduction of the CLMUL instruction set in
commodity x86 processors. Intel and AMD added CLMUL
and its pclmulqdq instruction to their processors to accel-
erate some common cryptographic operations. Although the
pclmulqdq instruction first became available in 2010, its
high cost in terms of CPU cycles — specifically an 8-cycle
throughput on pre-Haswell Intel microarchitectures and a 7-
cycle throughput on pre-Jaguar AMD microarchitectures —
limited its usefulness outside of cryptography. However, the
throughput of the instruction on the newer Haswell archi-
tecture is down to 2 cycles, even though it remains a high
latency operation (7 cycles) [16,21].1 See Table 1. Our main
contribution is to show that the pclmulqdq instruction can
be used to produce a 64-bit string hash family that is faster
than known approaches while offering stronger theoretical
guarantees.

2 Random Hashing

In random hashing, we pick a hash function at random from
some family, whereas an adversary might pick the data in-
puts. We want distinct objects to be unlikely to hash to the
same value. That is, we want a low collision probability.

We consider hash functions from X to [0, 2L). An L-bit
family is universal [10,11] if the probability of a collision is
no more than 2−L. That is, it is universal if

P (h(x) = h(x′)) ≤ 2−L

1 The low-power AMD Jaguar microarchitecture does even better
with a throughput of 1 cycle and a latency of 3 cycles.
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Table 1: Relevant SIMD intrinsics and instructions on Haswell Intel processors, with latency and reciprocal throughput in
CPU cycles per instruction [16,21].

intrinsic instruction description latency rec. thr.

mm clmulepi64 si128 pclmulqdq 64-bit carry-less multiplication 7 2
mm or si128 por bitwise OR 1 0.33
mm xor si128 pxor bitwise XOR 1 0.33
mm slli epi64 psllq shift left two 64-bit integers 1 1
mm srli si128 psrldq shift right by x bytes 1 0.5
mm shuffle epi8 pshufb shuffle 16 bytes 1 0.5
mm cvtsi64 si128 movq 64-bit integer as 128-bit reg. 1 –
mm cvtsi128 si64 movq 64-bit integer from 128-bit reg. 2 –
mm load si128 movdqa load a 128-bit reg. from memory

(aligned)
1 0.5

mm lddqu si128 lddqu load a 128-bit reg. from memory
(unaligned)

1 0.5

mm setr epi8 – construct 128-bit reg. from
16 bytes

– –

mm set epi64x – construct 128-bit reg. from two
64-bit integers

– –

Table 2: Notation and basic definitions

h : X → {0, 1, . . . , 2L − 1} L-bit hash function

universal P (h(x) = h(x′)) ≤ 1/2L for
x 6= x′

ε-almost universal P (h(x) = h(x′)) ≤ ε for x 6=
x′

XOR-universal P (h(x) = h(x′)⊕ c) ≤ 1/2L

for any c ∈ [0, 2L) and distinct
x, x′ ∈ X

ε-almost XOR-universal P (h(x) = h(x′)⊕ c) ≤ ε for
any integer c ∈ [0, 2L) and dis-
tinct x, x′ ∈ X

for any fixed x, x′ ∈ X such that x 6= x′, given that we
pick h at random from the family. It is ε-almost univer-
sal [36] (also written ε-AU) if the probability of a collision is
bounded by ε. I.e., P (h(x) = h(x′)) ≤ ε, for any x, x′ ∈ X
such that x 6= x′. (See Table 2.)

2.1 Safely Reducing Hash Values

Almost universality can be insufficient to prevent frequent
collisions since a given algorithm might only use the first
few bits of the hash values. Consider hash tables. A hash
table might use as a key only the first b bits of the hash values
when its capacity is 2b. Yet even if a hash family is ε-almost
universal, it could still have a high collision probability on
the first few bits.

For example, take any 32-bit universal family H, and
derive the new 64-bit 1/232-almost universal 64-bit family
by taking the functions from H and multiplying them by
232: h′(x) = h(x) × 232. Clearly, all functions from this

new family collide with probability 1 on the first 32 bits,
even though the collision probability on the full hash values
is low (1/232). Using the first bits of these hash functions
could have disastrous consequences in the implementation
of a hash table.

Therefore, we consider stronger forms of universality.

– A family is ∆-universal [37,14] if

P (h(x) = h(x′) + c mod 2L) ≤ 2−L

for any constant c and any x, x′ ∈ X such that x 6= x′.
It is ε-almost ∆-universal if P (h(x) = h(x′) + c mod

2L ≤ ε for any constant c and any x, x′ ∈ X such that
x 6= x′.

– A family is ε-almost XOR-universal if

P (h(x) = h(x′)⊕ c) ≤ ε

for any integer constant c ∈ [0, 2L) and any x, x′ ∈ X
such that x 6= x′ (where⊕ is the bitwise XOR). A family
that is 1/2L-almost XOR-universal is said to be XOR-
universal [37].

Given an ε-almost ∆-universal family H of hash func-
tions h : X → [0, 2L), the family of hash functions

{h(x) mod 2L
′
| h ∈ H}

from X to [0, 2L
′
) is 2L−L

′ × ε-almost ∆-universal [12].
The next lemma shows that a similar result applies to almost
XOR-almost universal families.

Lemma 1 Given an ε-almost XOR-universal family H of
hash functions h : X → [0, 2L) and any positive integer
L′ < L, the family of hash functions {h(x) mod 2L

′ | h ∈
H} from X to [0, 2L

′
) is 2L−L

′ × ε-almost XOR-universal.
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Proof For any integer constant c ∈ [0, 2L), consider the
equation h(x) = (h(x′) ⊕ c) mod 2L

′
for x 6= x′ with h

picked fromH. Pick any positive integer L′ < L. We have

P (h(x) = (h(x′)⊕ c mod 2L
′
))

=
∑

z | z mod 2L′=0

P (h(x) = h(x′)⊕ c⊕ z)

where the sum is over 2L−L
′

distinct z values. Because H
is ε-almost XOR-universal, we have that P (h(x) = h(x′)⊕
c⊕z) ≤ ε for any c and any z. Thus, we have that P (h(x) =
h(x′)⊕ c mod 2L

′
) ≤ 2L−L

′
ε, showing the result.

It follows from Lemma 1 that if a family is XOR-universal,
then its modular reductions are XOR-universal as well.

As a straightforward extension of this lemma, we could
show that when picking any L′ bits (not only the least sig-
nificant), the result is 2L−L

′ × ε-almost XOR-universal.

2.2 Composition

It can be useful to combine different hash families to create
new ones. For example, it is common to compose hash fam-
ilies. When composing hash functions (h = g ◦ f ), the uni-
versality degrades linearly: if g is picked from an εg-almost
universal family and f is picked (independently) from an
εf -almost universal family, the result is εg + εf -almost uni-
versal [36].

We sketch the proof. For x 6= x′, we have that g(f(x)) =
g(f(x′)) collides if f(x) = f ′(x). This occurs with proba-
bility at most εf since f is picked from an εf -almost uni-
versal family. If not, they collide if g(y) = g(y′) where
y = f(x) and y′ = f(x′), with probability bounded by
εg . Thus, we have bounded the collision probability by εf +
(1− εf )εg ≤ εf + εg , establishing the result.

By extension, we can show that if g is picked from an
εg-almost XOR-universal family, then the composed result
(h = g ◦ f ) is going to be εg + εf -almost XOR-universal. It
is not required for f to be almost XOR-universal.

2.3 Hashing Tuples

If we have universal hash functions from X to [0, 2L), then
we can construct hash functions from Xm to [0, 2L)m while
preserving universality. The construction is straightforward:
h′(x1, x2, . . . , xm) = (h(x1), h(x2), . . . , h(xm)). If h is
picked from an ε-almost universal family, then the result is
ε-almost universal. This is true even though a single h is
picked and reused m times.

Lemma 2 Consider an ε-almost universal family H from
X to [0, 2L). Then consider the family of functions H′ of
the form h′(x1, x2, . . . , xm) = (h(x1), h(x2), . . . , h(xm))

fromXm to [0, 2L)m, where h is inH. FamilyH′ is ε-almost
universal.

The proof is not difficult. Consider two distinct values from
Xm, x1, x2, . . . , xm and x′1, x

′
2, . . . , x

′
m. Because the tuples

are distinct, they must differ in at least one component: xi 6=
x′i. It follows that h′(x1, x2, . . . , xm) and h′(x′1, x

′
2, . . . , x

′
m)

collide with probability at most P (h(xi) = h(x′i)) ≤ ε,
showing the result.

2.4 Variable-Length Hashing From Fixed-Length Hashing

Suppose that we are given a familyH of hash functions that
is XOR universal over fixed-length strings. That is, we have
that P (h(s) = h(s′)⊕ c) ≤ 1/2L if the length of s is the
same as the length of s′ (|s| = |s′|). We can create a new
family that is XOR universal over variable-length strings
by introducing a hash family on string lengths. Let G be a
family of XOR universal hash functions g over length val-
ues. Consider the new family of hash functions of the form
h(s) ⊕ g(|s|) where h ∈ H and g ∈ G. Let us consider two
distinct strings s and s′. There are two cases to consider.

– If s and s′ have the same length so that g(|s|) = g(|s′|)
then we have XOR universality since

P (h(s)⊕ g(|s|) = h(s′)⊕ g(|s′|)⊕ c)
= P (h(s) = h(s′)⊕ c)
≤ 1/2L

where the last inequality follows because h ∈ H, an
XOR universal family over fixed-length strings.

– If the strings have different lengths (|s| 6= |s′|), then we
again have XOR universality because

P (h(s)⊕ g(|s|) = h(s′)⊕ g(|s′|)⊕ c)
= P (g(|s|) = g(|s′|)⊕ (c⊕ h(s)⊕ h(s′)))
= P (g(|s|) = g(|s′|)⊕ c′)
≤ 1/2L

where we set c′ = c⊕h(s)⊕h(s′), a value independent
from |s| and |s′|. The last inequality follows because g
is taken from a family G that is XOR universal.

Thus the result (h(s)⊕g(|s|)) is XOR universal. We can also
generalize the analysis. Indeed, ifH and G are ε-almost uni-
versal, we could show that the result is ε-almost universal.
We have the following lemma.

Lemma 3 Let H be an XOR universal family of hash func-
tions over fixed-length strings. Let G be an XOR universal
family of hash functions over integer values. We have that
the family of hash functions of the form s → h(s) ⊕ g(|s|)
where h ∈ H and g ∈ G is XOR universal over all strings.

Moreover, ifH and G are merely ε-almost universal, then
the family of hash functions of the form s → h(s) ⊕ g(|s|)
is also ε-almost universal.
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2.5 Minimally Randomized Hashing

Many hashing algorithms — for instance, CityHash [35] —
rely on a small random seed. The 64-bit version of CityHash
takes a 64-bit integer as a seed. Thus, we effectively have a
family of 264 hash functions — one for each possible seed
value.

Given such a small family (i.e., given few random bits),
we can prove that it must have high collision probabilities.
Indeed, consider the set of all strings of m 64-bit words.
There are 264m such strings.

– Pick one hash function from the CityHash family. This
function hashes every one of the 264m strings to one of
264 hash values. By a pigeonhole argument [31], there
must be at least one hash value where at least 264m/264 =

264(m−1) strings collide.
– Pick another hash function. Out of the 264(m−1) strings

colliding when using the first hash function, we must
have 264(m−2) strings also colliding when using the sec-
ond hash function.

We can repeat this processm−1 times until we find 264 strings
colliding when using any of these m − 1 hash functions. If
an adversary picks any two of our 264 strings and we pick
the hash function at random in the whole family of 264 hash
functions, we get a collision with a probability of at least
(m − 1)/264. Thus, while we do not have a strict bound on
the collision probability of the CityHash family, we know
just from the small size of its seed that it must have a rela-
tively high collision probability for long strings. In contrast,
VHASH and our CLHASH (see § 5) use more than 64 ran-
dom bits and have correspondingly better collision bounds
(see Table 4).

3 VHASH

The VHASH family [12,25] was designed for 64-bit pro-
cessors. By default, it operates over 64-bit words. Among
hash families offering good almost universality for large data
inputs, VHASH might be the fastest 64-bit alternative on
x64 processors — except for our own proposal (see § 5).

VHASH is ε-almost ∆-universal and builds on the 128-
bit NH family [12]:

NH(s) =

l/2∑
i=1

(
(s2i−1 + k2i−1 mod 264)

× (s2i + k2i mod 264)
)
mod 2128.

(1)

NH is 1/264-almost∆-universal with hash values in [0, 2128).
Although the NH family is defined only for inputs contain-
ing an even number of components, we can extend it to in-
clude odd numbers of components by padding the input with
a zero component.

We can summarize VHASH (see Algorithm 1) as fol-
lows:

– NH is used to generate a 128-bit hash value for each
block of 16 words. The result is 1/264-almost∆-universal
on each block.

– These hash values are mapped to a value in [0, 2126) by
applying a modular reduction. These reduced hash val-
ues are then aggregated with a polynomial hash and fi-
nally reduced to a 64-bit value.

In total, the VHASH family is 1/261-almost ∆-universal
over [0, 264 − 257) for input strings of up to 262 bits [12,
Theorem 1].

For long input strings, we expect that much of the run-
ning time of VHASH is in the computation of NH on blocks
of 16 words. On recent x64 processors, this computation in-
volves 8 multiplications using the mulq instruction (with
two 64-bit inputs and two 64-bit outputs). For each group of
two consecutive words (si and si+1), we also need two 64-
bit additions. To sum all results, we need 7 128-bit additions
that can be implemented using two 64-bit additions (addq
and adcq). All of these operations have a throughput of at
least 1 per cycle on Haswell processors. We can expect NH
and, by extension, VHASH to be fast.

VHASH uses only 16 64-bit random integers for the NH
family. As in § 2.3, we only need one specific NH function
irrespective of the length of the string. VHASH also uses
a 128-bit random integer k and two more 64-bit random
integers k′1 and k′2. Thus VHASH uses slightly less than
160 random bytes.

Algorithm 1 VHASH algorithm
Require: 16 randomly picked 64-bit integers k1, k2, . . . , k16 defining

a 128-bit NH hash function (see Equation 1) over inputs of length
16

Require: k, a randomly picked element of {w296 + x264 + y232 +
z | integers w, x, y, z ∈ [0, 229)}

Require: k′1, k′2, randomly picked integers in [0, 264 − 258]
1: input: string M made of |M | bytes
2: Let n be the number of 16-word blocks (d|M |/16e).
3: Let Mi be the substring of M from index i to i+16, padding with

zeros if needed.
4: Hash each Mi using the NH function, labelling the result 128-bit

results ai for i = 1, . . . , n.
5: Hash the resulting ai with a polynomial hash function and store

the value in a 127-bit hash value p: p = kn + a1kn−1 + · · · +
an + (|M | mod 1024)× 264 mod (2127 − 1).

6: Hash the 127-bit value p down to a 64-bit value: z = (p1 + k′1)×
(p2 + k′2) mod (264 − 257), where p1 = p ÷ (264 − 232) and
p2 = p mod (264 − 232).

7: return the 64-bit hash value z
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3.1 Random Bits

Nguyen and Roscoe showed that at least log(m/ε) random
bits are required [31],2 wherem is the maximal string length
in bits and ε is the collision bound. For VHASH, the string
length is limited to 262 bits and the collision bound is ε =

1/261. Therefore, for hash families offering the bounds of
VHASH, we have that logm/ε = log(262×261) = 123 ran-
dom bits are required.

That is, 16 random bytes are theoretically required to
achieve the same collision bound as VHASH while many
more are used (160 bytes) This suggests that we might be
able to find families using far fewer random bits while main-
taining the same good bounds. In fact, it is not difficult to
modify VHASH to reduce the use of random bits. It would
suffice to reduce the size of the blocks down from 16 words.
We could show that it cannot increase the bound on the colli-
sion probability by more than 1/264. However, reducing the
size of the blocks has an adverse effect on speed. With large
blocks and long strings, most of the input is processed with
the NH function before the more expensive polynomial hash
function is used. Thus, there is a trade-off between speed
and the number of random bits, and VHASH is designed
for speed on long strings.

4 Finite Fields

Our proposed hash family (CLHASH, see § 5) works over
a binary finite field. For completeness, we review field the-
ory briefly, introducing (classical) results as needed for our
purposes.

The real numbers form what is called a field. A field is
such that addition and multiplication are associative, com-
mutative and distributive. We also have identity elements
(0 for addition and 1 for multiplication). Crucially, all non-
zero elements a have an inverse a−1 (which is defined by
a× a−1 = a−1 × a = 1).

Finite fields (also called Galois fields) are fields contain-
ing a finite number of elements. All finite fields have cardi-
nality pn for some prime p. Up to an algebraic isomorphism
(i.e., a one-to-one map preserving addition and multiplica-
tion), given a cardinality pn, there is only one field (hence-
forth GF (pn)). And for any power of a prime, there is a
corresponding field.

4.1 Finite Fields of Prime Cardinality

It is easy to create finite fields that have prime cardinality
(GF (p)). Given p, an instance of GF (p) is given by the
set of integers in [0, p) with additions and multiplications
completed by a modular reduction:

2 In the present paper, logn means log2 n.

– a×GF (p) b ≡ a× b mod p

– and a+GF (p) b ≡ a+ b mod p.

The numbers 0 and 1 are the identity elements. Given an
element a, its additive inverse is p− a.

It is not difficult to check that all non-zero elements have
a multiplicative inverse. We review this classical result for
completeness. Given a non-zero element a and two distinct
x, x′, we have that ax mod p 6= ax′ mod p because p is
prime. Hence, starting with a fixed non-zero element a, we
have that the set {ax mod p | x ∈ [0, p)} has cardinal-
ity p and must contain 1; thus, a must have a multiplicative
inverse.

4.2 Hash Families in a Field

Within a field, we can easily construct hash families having
strong theoretical guarantees, as the next lemma illustrates.

Lemma 4 The family of functions of the form

h(x) = ax

in a finite field (GF (pn)) is ∆-universal, provided that the
key a is picked from all values of the field.

As another example, consider hash functions of the form
h(x1, x2, . . . , xm) = am−1x1 + am−2x2 + · · ·+xm where
a is picked at random (a random input). Such polynomial
hash functions can be computed efficiently using Horner’s
rule: starting with r = x1, compute r ← ar + xi for i =
2, . . . ,m. Given any two distinct inputs, x1, x2, . . . , xm and
x′1, x

′
2, . . . , x

′
m, we have that h(x1, . . . , xm)−h(x′1, . . . , x′m)

is a non-zero polynomial of degree at most m − 1 in a. By
the fundamental theorem of algebra, we have that it is zero
for at most m− 1 distinct values of a. Thus we have that the
probability of a collision is bounded by (m − 1)/pn where
pn is the cardinality of the field. For example, VHASH uses
polynomial hashing with p = 2127 − 1 and n = 1.

We can further reduce the collision probabilities if we
use m random inputs a1, . . . , am picked in the field to com-
pute a multilinear function: h(x1, . . . , xm) = a1x1+a2x2+

· · ·+amxm. We have ∆-universality. Given two distinct in-
puts, x1, . . . , xm and x′1, . . . , x

′
m, we have that xi 6= x′i for

some i. Thus we have that h(x1, . . . , xm) = c+h(x′1, . . . , x
′
m)

if and only if ai = (xi − x′i)−1(c+
∑

j 6=i aj(x
′
j − xj)).

If m is even, we can get the same bound on the collision
probability with half the number of multiplications [7,26,
29]:

h(x1, x2, . . . , xm)

= (a1 + x1)(a2 + x2) + · · ·+ (am−1 + xm−1)(am + xm).
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The argument is similar. Consider that

(xi + ai)(ai+1 + xi+1)− (x′i + ai)(ai+1 + x′i+1)

= ai+1(xi − x′i) + ai(xi+1 − x′i+1) + xi+1xi + x′ix
′
i+1.

Take two distinct inputs, x1, x2, . . . , xm and x′1, x
′
2, . . . , x

′
m.

As before, we have that xi 6= x′i for some i. Without loss of
generality, assume that i is odd; then we can find a unique
solution for ai+1: to do this, start from h(x1, . . . , xm) =

c + h(x′1, . . . , x
′
m) and solve for ai+1(xi − x′i) in terms of

an expression that does not depend on ai+1. Then use the
fact that xi−x′i has an inverse. This shows that the collision
probability is bounded by 1/pn and we have ∆-universality.

Lemma 5 Given an even number m, the family of functions
of the form

h(x1, x2, . . . , xm) =(a1 + x1)(a2 + x2)

+ (a3 + x3)(a4 + x4)

+ · · ·
+ (am−1 + xm−1)(am + xm)

in a finite field (GF (pn)) is ∆-universal, providing that the
keys a1, . . . , am are picked from all values of the field. In
particular, the collision probability between two distinct in-
puts is bounded by 1/pn.

4.3 Binary Finite Fields

Finite fields having prime cardinality are simple (see § 4.1),
but we would prefer to work with fields having a power-
of-two cardinality (also called binary fields) to match com-
mon computer architectures. Specifically, we are interested
in GF (264) because our desktop processors typically have
64-bit architectures.

We can implement such a field over the integers in [0, 2L)

by using the following two operations. Addition is defined
as the bitwise XOR (⊕) operation, which is fast on most
computers:

a+GF (2L) b ≡ a⊕ b.

The number 0 is the additive identity element (a ⊕ 0 =

0 ⊕ a = a), and every number is its own additive inverse:
a ⊕ a = 0. Note that because binary finite fields use XOR
as an addition, ∆-universality and XOR-universality are ef-
fectively equivalent for our purposes in binary finite fields.

Multiplication is defined as a carry-less multiplication
followed by a reduction. We use the convention that ai is
the ith least significant bit of integer a and ai = 0 if i is
larger than the most significant bit of a. The ith bit of the
carry-less multiplication a ? b of a and b is given by

(a ? b)i ≡
i⊕

k=0

ai−kbk (2)

where ai−kbk is just a regular multiplication between two
integers in {0, 1} and

⊕i
k=0 is the bitwise XOR of a range

of values. The carry-less product of two L-bit integers is
a 2L-bit integer. We can check that the integers with ⊕ as
addition and ? as multiplication form a ring: addition and
multiplication are associative, commutative and distributive,
and there is an additive identity element. In this instance, the
number 1 is a multiplicative identity element (a?1 = 1?a =

a). Except for the number 1, no number has a multiplicative
inverse in this ring.

Given the ring determined by ⊕ and ?, we can derive a
corresponding finite field. However, just as with finite fields
of prime cardinality, we need some kind of modular reduc-
tion and a concept equivalent to that of prime numbers3.

Let us define degree(x) to be the position of the most
significant non-zero bit of x, starting at 0 (e.g., degree(1) =
0, degree(2) = 1, degree(2j) = j). For example, we have
degree(x) ≤ 127 for any 128-bit integer x. Given any two
non-zero integers a, b, we have that degree(a?b) = degree(a)+

degree(b) as a straightforward consequence of Equation 2.
Similarly, we have that

degree(a⊕ b) ≤ max(degree(a),degree(b)).

Not unlike regular multiplication, given integers a, bwith
b 6= 0, there are unique integers α, β (henceforth the quo-
tient and the remainder) such that

a = α ? b ⊕ β (3)

where degree(β) < degree(b).
The uniqueness of the quotient and the remainder is eas-

ily shown. Suppose that there is another pair of values α′, β′

with the same property. Then α′ ? b ⊕ β′ = α ? b ⊕ β

which implies that (α′ ⊕ α) ? b = β′ ⊕ β. However, since
degree(β′ ⊕ β) < degree(b) we must have that α = α′.
From this it follows that β = β′, thus establishing unique-
ness.

We define ÷ and mod operators as giving respectively
the quotient (a÷ b = α) and remainder (a mod b = β) so
that the equation

a ≡ a÷ b ? b ⊕ a mod b (4)

is an identity equivalent to Equation 3. (To avoid unneces-
sary parentheses, we use the following operator precedence
convention: ?, mod and ÷ are executed first, from left to
right, followed by ⊕.)

In the general case, we can compute a÷ b and a mod b

using a straightforward variation on the Euclidean division

3 The general construction of a finite field of cardinality pn for
n > 1 is commonly explained in terms of polynomials with coeffi-
cients fromGF (p). To avoid unnecessary abstraction, we present finite
fields of cardinality 2L using regular L-bit integers. Interested readers
can see Mullen and Panario [30], for the alternative development.
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algorithm (see Algorithm 2) which proves the existence of
the remainder and quotient. Checking the correctness of the
algorithm is straightforward. We start initially with values α
and β such that a = α ? b ⊕ β. By inspection, this equality
is preserved throughout the algorithm. Meanwhile, the algo-
rithm only terminates when the degree of β is less than that
of b, as required. And the algorithm must terminate, since
the degree of q is reduced by at least one each time it is up-
dated (for a maximum of degree(a)− degree(b) + 1 steps).

Algorithm 2 Carry-less division algorithm
1: input: Two integers a and b, where b must be non-zero
2: output: Carry-less quotient and remainder: α = a ÷ b and β =
a mod b, such that a = α ? b⊕ β and degree(β) < b

3: Let α← 0 and β ← a

4: while degree(β) ≥ degree(b) do
5: let x← 2degree(β)−degree(b)

6: α← x ⊕ α, β ← x ? b ⊕ β

7: end while
8: return α and β

Given a = α?b ⊕ β and a′ = α′ ?b ⊕ β′, we have that
a⊕ a′ = (α⊕ α′) ? b ⊕ (β ⊕ β′). Thus, it can be checked
that divisions and modular reductions are distributive:

(a⊕ b) mod p = (a mod p)⊕ (b mod p), (5)

(a⊕ b)÷ p = (a÷ p)⊕ (b÷ p). (6)

Thus, we have (a⊕ b) mod p = 0⇒ a mod p = b mod p.
Moreover, by inspection, we have that degree(a mod b) <

degree(b) and degree(a÷ b) = degree(a)− degree(b).
The carry-less multiplication by a power of two is equiv-

alent to regular multiplication. For this reason, a modular
reduction by a power of two (e.g., a mod 264) is just the
regular integer modular reduction. Idem for division.

There are non-zero integers a such that there is no inte-
ger b other than 1 such that a mod b = 0; effectively a is a
prime number under the carry-less multiplication interpreta-
tion. These “prime integers” are more commonly known as
irreducible polynomials in the ring of polynomials GF2[x],
so we call them irreducible instead of prime. Let us pick
such an irreducible integer p (arbitrarily) such that the de-
gree of p is 64. One such integer is 264 + 24 + 23 + 2 + 1.
Then we can finally define the multiplication operation in
GF (264):

a×GF (264) b ≡ (a ? b) mod p.

Coupled with the addition +GF (264) that is just a bitwise
XOR, we have an implementation of the fieldGF (264) over
integers in [0, 264).

We call the index of the second most significant bit the
subdegree. We chose an irreducible p of degree 64 having

minimal subdegree (4).4 We use the fact that this subdegree
is small to accelerate the computation of the modular reduc-
tion in the next section.

4.4 Efficient Reduction in GF (264)

AMD and Intel have introduced a fast instruction that can
compute a carry-less multiplication between two 64-bit num-
bers, and it generates a 128-bit integer. To get the multipli-
cation in GF (264), we must still reduce this 128-bit integer
to a 64-bit integer. Since there is no equivalent fast modular
instruction, we need to derive an efficient algorithm.

There are efficient reduction algorithms used in cryp-
tography (e.g., from 256-bit to 128-bit integers [17]), but
they do not suit our purposes: we have to reduce to 64-
bit integers. Inspired by the classical Barrett reduction [5],
Knežević et al. proposed a generic modular reduction al-
gorithm in GF (2n), using no more than two multiplica-
tions [22]. We put this to good use in previous work [26].
However, we can do the same reduction using a single mul-
tiplication. According to our tests, the reduction technique
presented next is 30% faster than an optimized implemen-
tation based on Knežević et al.’s algorithm.

Let us write p = 264 ⊕ r. In our case, we have r =

24 +23 +2+ 1 = 27 and degree(r) = 4. We are interested
in applying a modular reduction by p to the result of the
multiplication of two integers in [0, 264), and the result of
such a multiplication is an integer x such that degree(x) ≤
127. We want to compute x mod p quickly. We begin with
the following lemma.

Lemma 6 Consider any 64-bit integer p = 264 ⊕ r. We
define the operations mod and ÷ as the counterparts of the
carry-less multiplication ? as in § 4.3. Given any x, we have
that

x mod p

= ((z ÷ 264) ? 264) mod p ⊕ z mod 264 ⊕ x mod 264

where z ≡ (x÷ 264) ? r.

Proof We have that x = (x÷ 264) ? 264 ⊕ x mod 264 for
any x by definition. Applying the modular reduction on both

4 This can be readily verified using a mathematical software package
such as Sage or Maple.
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sides of the equality, we get

x mod p = (x÷ 264) ? 264 mod p ⊕ x mod 264 mod p

= (x÷ 264) ? 264 mod p ⊕ x mod 264

by Fact 1

= (x÷ 264) ? r mod p ⊕ x mod 264

by Fact 2

= z mod p ⊕ x mod 264

by z’s def.

= ((z ÷ 264) ? 264) mod p ⊕ z mod 264

⊕ x mod 264

by Fact 3

where Facts 1, 2 and 3 are as follows:

– (Fact 1) For any x, we have that (x mod 264) mod p =

x mod 264.
– (Fact 2) For any integer z, we have that (264 ⊕ r) ?

z mod p = p ? z mod p = 0 and therefore

264 ? z mod p = r ? z mod p

by the distributivity of the modular reduction (Equation 5).
– (Fact 3) Recall that by definition z = (z ÷ 264) ? 264 ⊕
z mod 264. We can substitute this equation in the equa-
tion from Fact 1. For any z and any non-zero p, we have
that

z mod p = ((z ÷ 264) ? 264 ⊕ z mod 264) mod p

= ((z ÷ 264) ? 264) mod p ⊕ z mod 264

by the distributivity of the modular reduction (see Equa-
tion 5).

Hence the result is shown.

Lemma 6 provides a formula to compute x mod p. Com-
puting z = (x÷264)?r involves a carry-less multiplication,
which can be done efficiently on recent Intel and AMD pro-
cessors. The computation of z mod 264 and x mod 264 is
trivial. It remains to compute ((z ÷ 264) ? 264) mod p. At
first glance, we still have a modular reduction. However, we
can easily memoize the result of ((z ÷ 264) ? 264) mod p.
The next lemma shows that there are only 16 distinct values
to memoize (this follows from the low subdegree of p).

Lemma 7 Given that x has degree less than 128, there are
only 16 possible values of (z ÷ 264) ? 264 mod p, where
z ≡ (x÷ 264) ? r and r = 24 + 23 + 2 + 1.

Proof Indeed, we have that

degree(z) = degree(x)− 64 + degree(r).

Because degree(x) ≤ 127, we have that degree(z) ≤ 127−
64 + 4 = 67. Therefore, we have degree(z ÷ 264) ≤ 3.
Hence, we can represent z ÷ 264 using 4 bits: there are only
16 4-bit integers.

Thus, in the worst possible case, we would need to mem-
oize 16 distinct 128-bit integers to represent ((z ÷ 264) ?

264) mod p. However, observe that the degree of z ÷ 264 is
bounded by degree(x)− 64+ 4− 64 ≤ 127− 128+ 4 = 3

since degree(x) ≤ 127. By using Lemma 8, we show that
each integer ((z÷264)?264) mod p has degree bounded by
7 so that it can be represented using no more than 8 bits: set-
ting L = 64 and w ≡ z÷264, degree(w) ≤ 3, degree(r) =
4 and degree(w) + degree(r) ≤ 7.

Effectively, the lemma says that if you take a value of
small degree w, you multiply it by 2L and then compute the
modular reduction on the result and a value p that is almost
2L (except for a value of small degree r), then the result has
small degree: it is bounded by the sum of the degrees of w
and r.

Lemma 8 Consider p = 2L ⊕ r, with r of degree less than
L. For any w, the degree of w ? 2L mod p is bounded by
degree(w) + degree(r).

Moreover, when degree(w) + degree(r) < L then the
degree of w ? 2L mod p is exactly degree(w) + degree(r).

Proof The result is trivial if degree(w) + degree(r) ≥ L,
since the degree of w ? 2L mod p must be smaller than the
degree of p.

So let us assume that degree(w) + degree(r) < L. By
the definition of the modular reduction (Equation 4), we
have

w ? 2L = w ? 2L ÷ p ? p ⊕ w ? 2L mod p.

Let w′ = w ? 2L ÷ p, then

w ? 2L = w′ ? p ⊕ w ? 2L mod p

= w′ ? r ⊕ w′ ? 2L ⊕ w ? 2L mod p.

The first L bits of w ? 2L and w′ ? 2L are zero. Therefore,
we have

(w′ ? r) mod 2L = (w ? 2L mod p) mod 2L.

Moreover, the degree of w′ is the same as the degree of
w: degree(w′) = degree(w) + degree(2L) + degree(p) =

degree(w)+L−L = degree(w). Hence, we have degree(w′?
r) = degree(w)+degree(r) < L. And, of course, degree(w?
2L mod p) < L. Thus, we have that

w′ ? r = w ? 2L mod p.

Hence, it follows that degree(w?2L mod p) = degree(w′?

r) = degree(w) + degree(r).

Thus the memoization requires access to only 16 8-bit
values. We enumerate the values in question (w?264 mod p

for w = 0, 1, . . . , 15) in Table 3. It is convenient that 16 ×
8 = 128 bits: the entire table fits in a 128-bit word. It means
that if the list of 8-bit values are stored using one byte each,
the SSSE3 instruction pshufb can be used for fast look-up.
(See Algorithm 3.)
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Table 3: Values of w?264 mod p for w = 0, 1, . . . , 15 given
p = 264 + 24 + 23 + 3.

w w ? 264 mod p
decimal binary decimal binary

0 00002 0 000000002
1 00012 27 000110112
2 00102 54 001101102
3 00112 45 001011012
4 01002 108 011011002
5 01012 119 011101112
6 01102 90 010110102
7 01112 65 010000012
8 10002 216 110110002
9 10012 195 110000112
10 10102 238 111011102
11 10112 245 111101012
12 11002 180 101101002
13 11012 175 101011112
14 11102 130 100000102
15 11112 153 100110012

Algorithm 3 Carry-less division algorithm
1: input: A 128-bit integer a
2: output: Carry-less modular reduction a mod p where p = 264 +

27
3: z ← (a÷ 264) ? r
4: w ← z ÷ 264

5: Look up w ? 264 mod p in Table 3, store result in y
6: return a mod 264 ⊕ z mod 264 ⊕ y

Corresponding C implementation using x64 intrinsics:

u i n t 6 4 t modulo ( m128i a ) {
m128i r = m m c v t s i 6 4 s i 1 2 8 ( 2 7 ) ;
m128i z =

m m c l m u l e p i 6 4 s i 1 2 8 ( a , r , 0x01 ) ;
m128i t a b l e = m m s e t r e p i 8 ( 0 , 27 , 54 ,
45 , 108 ,119 , 90 , 65 , 216 , 195 , 238 ,
245 ,180 , 175 , 130 , 1 5 3 ) ;

m128i y =
m m s h u f f l e e p i 8 ( t a b l e

, m m s r l i s i 1 2 8 ( z , 8 ) ) ;
m128i temp1 = mm xor s i128 ( z , a ) ;

re turn m m c v t s i 1 2 8 s i 6 4 (
mm xor s i128 ( temp1 , y ) ) ;

}

5 CLHASH

The CLHASH family resembles the VHASH family — ex-
cept that members work in a binary finite field. The VHASH
family has the 128-bit NH family (see Equation 1), but we
instead use the 128-bit CLNH family:

CLNH(s) =

l/2⊕
i=1

(
(s2i−1 ⊕ k2i−1) ? (s2i ⊕ k2i)

)
(7)

where the si and ki’s are 64-bit integers and l is the length
of the string s. The formula assumes that l is even: we pad

odd-length inputs with a single zero word. When an input
string M is made of |M | bytes, we can consider it as string
of 64-bit words s by padding it with up to 7 zero bytes so
that |M | is divisible by 8.

On x64 processors with the CLMUL instruction set, a
single term ((s2i−1 ⊕ k2i−1) ? (s2i ⊕ k2i)) can be com-
puted using one 128-bit XOR instructions (pxor in SSE2)
and one carry-less multiplication using the pclmulqdq in-
struction:

– load (k2i−1, k2i) in a 128-bit word,
– load (s2i−1, s2i) in another 128-bit word,
– compute

(k2i−1, k2i)⊕ (s2i−1, s2i) ≡ (k2i−1 ⊕ s2i−1, k2i ⊕ s2i)

using one pxor instruction,
– compute (k2i−1 ⊕ s2i−1) ? (k2i ⊕ s2i) using one pcl-
mulqdq instruction (result is a 128-bit word).

An additional pxor instruction is required per pair of words
to compute CLNH, since we need to aggregate the results.

We have that the family s→ CLNH(s) mod p for some
irreducible p of degree 64 is XOR universal over same-length
strings. Indeed, ∆-universality in the field GF (264) follows
from Lemma 5. However, recall that ∆-universality in a bi-
nary finite field (with operations ? and ⊕ for multiplication
and addition) is the same as XOR universality — addition
is the XOR operation (⊕). It follows that the CLNH family
must be 1/264-almost universal for same-length strings.

Given an arbitrarily long string of 64-bit words, we can
divide it up into blocks of 128 words (padding the last block
with zeros if needed). Each block can be hashed using CLNH
and the result is 1/264-almost universal by Lemma 2. If
there is a single block, we can compute CLNH(s) mod p to
get an XOR universal hash value. Otherwise, the resulting
128-bit hash values a1, a2, . . . , an can then be hashed once
more. For this we use a polynomial hash function, kn−1a1+
kn−2a2 + · · · + an, for some random input k in some fi-
nite field. We choose the field GF (2127) and use the ir-
reducible p = 2127 + 2 + 1. We compute such a poly-
nomial hash function by using Horner’s rule: starting with
r = a1, compute r ← k ? r⊕ai for i = 2, 3, . . . , n. For this
purpose, we need carry-less multiplications between pairs
of 128-bit integers: we can achieve the desired result with
4 pclmulqdq instructions, in addition to some shift and
XOR operations. The multiplication generates a 256-bit in-
teger x that must be reduced. However, it is not necessary
to reduce it to a 127-bit integer (which would be the re-
sult if we applied a modular reduction by 2127 + 2 + 1).
It is enough to reduce it to a 128-bit integer x′ such that
x′ mod (2127 +2+1) = x mod (2127 +2+1). We get the
desired result by setting x′ equal to the lazy modular reduc-
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tion [8] x mod lazy(2
127 + 2 + 1) defined as

x mod lazy(2
127 + 2 + 1)

≡ x mod 2128 ⊕ (x÷ 2128) ? 2⊕ (x÷ 2128) ? 1.
(8)

It is computationally convenient to assume that degree(x) ≤
256 − 2 so that degree((x ÷ 2128) ? 2) ≤ 128. We can
achieve this degree bound by picking the polynomial coeffi-
cient k to have degree(k) ≤ 128− 2. The resulting polyno-
mial hash family is (n−1)/2126-almost universal for strings
having the same length where n is the number of 128-word
blocks (d|M |/1024ewhere |M | is the string length in bytes),
whether we use the actual modular or the lazy modular re-
duction.

It remains to reduce the final output O (stored in a 128-
bit word) to a 64-bit hash value. For this purpose, we can use
s → CLNH(s) mod p with p = 264 + 27 (see § 4.4), and
where k′′ is a random 64-bit integer. We treat O as a string
containing two 64-bit words. Once more, the reduction is
XOR universal by an application of Lemma 5. Thus, we
have the composition of three hash functions with collision
probabilities 1/264, (n−1)/2126 and 1/264. It is reasonable
to bound the string length by 264 bytes: n ≤ 264/1024 =

254. We have that 2/264 + (254 − 1)/2126 < 2.004/264.
Thus, for same-length strings, we have 2.004/264-almost
XOR universality.

We further ensure that the result is XOR-universal over
all strings: P (h(s) = h(s′)⊕ c) ≤ 1/264 irrespective of
whether |s| = |s′|. By Lemma 3, it suffices to XOR the
hash value with k′′ ? |M | mod p where k′′ is a random 64-
bit integer and |M | is the string length as a 64-bit integer,
and where p = 264 + 27. The XOR universality follows for
strings having different lengths by Lemma 4 and the equiv-
alence between XOR-universality and ∆-universality in bi-
nary finite fields. As a practical matter, since the final step
involves the same modular reduction twice in the expression
(CLNH(s) mod p)⊕ ((k′′ ? |M |) mod p), we can simplify
it to (CLNH(s)⊕ (k′′ ? |M |)) mod p, thus avoiding an un-
necessary modular reduction.

Our analysis is summarized by following lemma.

Lemma 9 CLHASH is 2.004/264-almost XOR universal
over strings of up to 264 bytes. Moreover, it is XOR universal
over strings of no more than 1 kB.

The bound of the collision probability of CLHASH for
long strings (2.004/264) is 4 times lower than the corre-
sponding VHASH collision probability (1/261). For short
strings (1 kB or less), CLHASH has a bound that is 8 times
lower. See Table 4 for a comparison. CLHASH is given by
Algorithm 4.

Table 4: Comparison between the two 64-bit hash families
VHASH and CLHASH

universality input length

VHASH 1
261 -almost ∆-universal 1–259 bytes

CLHASH XOR universal 1–1024 bytes
2.004
264 -almost XOR universal 1025–264 bytes

Algorithm 4 CLHASH algorithm: all operations are carry-
less, as per § 4.3. The� operator indicates a left shift:O �
33 is the value O divided by 233.
Require: 128 randomly picked 64-bit integers k1, k2, . . . , k128 defin-

ing a 128-bit CLNH hash function (see Equation 7) over inputs of
length 128

Require: k, a randomly picked 126-bit integer
Require: k′, a randomly picked 128-bit integer
Require: k′′, a randomly picked 64-bit integer
1: input: string M made of |M | bytes
2: if |M | ≤ 1024 then
3: O ← CLNH(M)⊕ (k′′ ? |M |) mod (264 + 27)
4: return O
5: else
6: Let n be the number of 128-word blocks (d|M |/1024e).
7: Let Mi be the substring of M from index 128i to 128i+ 127

inclusively, padding with zeros if needed.
8: Hash each Mi using the CLNH function, labelling the result

128-bit results ai for i = 1, . . . , n. That is, ai ← CLNH(Mi).

9: Hash the resulting ai with a polynomial hash function and store
the value in a 128-bit hash value O: O ← a1 ? kn−1 ⊕ · · · ⊕
an mod lazy(2127 + 2+ 1) (see Equation 8).

10: Hash the 128-bit value O, treating it as two 64-bit words
(O1,O2), down to a 64-bit CLNH hash value (with the addi-
tion of a term accounting for the length |M | in bytes)

z ← ((O1 ⊕ k′1) ? (O2 ⊕ k′2)⊕ (k′′ ? |M |) mod (264 + 27).

Values k′1 and k′2 are the two 64-bit words contained in k′.
11: return the 64-bit hash value z
12: end if

5.1 Random Bits

One might wonder whether using 1 kB of random bits is nec-
essary. For strings of no more than 1 kB, CLHASH is XOR
universal. Stinson showed that in such cases, we need the
number of random bits to match the input length [37]. That
is, we need at least 1 kB to achieve XOR universality over
strings having 1 kB. Hence, CLHASH makes nearly opti-
mal use of the random bits.

6 Statistical Validation

Classically, hash functions have been deterministic: fixed
maps h from U to V , where |U | � |V | and thus collisions
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are inevitable. Hash functions might be assessed according
to whether their outputs are distributed evenly, i.e., whether
|h−1(x)| ≈ |h−1(y)| for two distinct x, y ∈ V . However,
in practice, the actual input is likely to consist of clusters of
nearly identical keys [23]: for instance, symbol table entries
such as temp1, temp2, temp3 are to be expected, or a col-
lection of measured data values is likely to contain clusters
of similar numeric values. Appending an extra character to
the end of an input string, or flipping a bit in an input num-
ber, should (usually) result in a different hash value. A col-
lection of desirable properties can be defined, and then hash
functions rated on their performance on data that is meant to
represent realistic cases.

One common use of randomized hashing is to avoid DoS
(denial-of-service) attacks when an adversary controls the
series of keys submitted to a hash table. In this setting, prior
to the use of a hash table, a random selection of hash func-
tion is made from the family. The (deterministic) function is
then used, at least until the number of collisions is observed
to be too high. A high number of collisions presumably in-
dicates the hash table needs to be resized, although it could
indicate that an undesirable member of the family had been
chosen. Those contemplating switching from deterministic
hash tables to randomized hash tables would like to know
that typical performance would not degrade much. Yet, as
carefully tuned deterministic functions can sometimes out-
perform random assignments for typical inputs [23], some
degradation might need to be tolerated. Thus, it is worth
checking a few randomly chosen members of our CLHASH
families against statistical tests.

6.1 SMHasher

The SMHasher program [1] includes a variety of quality
tests on a number of minimally randomized hashing algo-
rithms, for which we have weak or no known theoretical
guarantees. It runs several statistical tests, such as the fol-
lowing.

– Given a randomly generated input, changing a few bits
at random should not generate a collision.

– Among all inputs containing only two non-zero bytes
(and having a fixed length in [4, 20]), collisions should
be unlikely (called the TwoBytes test).

– Changing a single bit in the input should change half the
bits of the hash value, on average [13] (sometimes called
the avalanche effect).

Some of these tests are demanding: e.g., CityHash [35] fails
the TwoBytes test.

We added both VHASH and CLHASH to SMHasher
and used the Mersenne Twister (i.e., MT19937) to gener-
ate the random bits [28]. We find that VHASH passes all
tests. However, CLHASH fails one of them: the avalanche

test. We can illustrate the failure. Consider that for short
fixed-length strings (8 bytes or less), CLHASH is effec-
tively equivalent to a hash function of the form h(x) =

a ? x mod p, where p is irreducible. Such hash functions
form an XOR universal family. They also satisfy the iden-
tity h(x ⊕ y) ⊕ h(x) = h(y). It follows that no matter
what value x takes, modifying the same ith bit modifies the
resulting hash value in a consistent manner (according to
h(2i+1)). We can still expect that changing a bit in the input
changes half the bits of the hash value on average. However,
SMHasher checks that h(x⊕ 2i+1) differs from h(x) in any
given bit about half the time over many randomly chosen
inputs x. Since h(x ⊕ 2i+1) ⊕ h(x) is independent from x

for short inputs with CLHASH, any given bit is either al-
ways flipped (for all x) or never. Hence, CLHASH fails the
SMHasher test.

Thankfully, we can slightly modify CLHASH so that all
tests pass if we so desire. It suffices to apply an additional
bit mixing function taken from MurmurHash [1] to the result
of CLHASH. The function consists of two multiplications
and three shifts over 64-bit integers:

x← x⊕ (x� 33),

x← x× 18397679294719823053,

x← x⊕ (x� 33),

x← x× 14181476777654086739,

x← x⊕ (x� 33).

Each step is a bijection: e.g., multiplication by an odd inte-
ger is always invertible. A bijection does not affect collision
bounds.

7 Speed Experiments

We implemented a performance benchmark in C and com-
piled our software using GNU GCC 4.8 with the -O2 flag.
The benchmark program ran on a Linux server with an In-
tel i7-4770 processor running at 3.4GHz. This CPU has
32 kB of L1 cache, 256 kB of L2 cache per core, and 8MB
of L3 cache shared by all cores. The machine has 32GB
of RAM (DDR3-1600 with double-channel). We disabled
Turbo Boost and set the processor to run only at its high-
est clock speed, effectively disabling the processor’s power
management. All timings are done using the time-stamp coun-
ter (rdtsc) instruction [34]. Although all our software5 is
single-threaded, we disabled hyper-threading as well.

5 Our benchmark software is made freely available under a
liberal open-source license (https://github.com/lemire/
StronglyUniversalStringHashing), and it includes the
modified SMHasher as well as all the necessary software to reproduce
our results.

https://github.com/lemire/StronglyUniversalStringHashing
https://github.com/lemire/StronglyUniversalStringHashing
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Our experiments compare implementations of CLHASH,
VHASH, SipHash [3], GHASH [17] and Google’s City-
Hash.

– We implemented CLHASH using Intel intrinsics. As
described in § 5, we use various single instruction, mul-
tiple data (SIMD) instructions (e.g., SSE2, SSE3 and
SSSE3) in addition to the CLMUL instruction set. The
random bits are stored consecutively in memory, aligned
with a cache line (64 bytes).

– For VHASH, we used the authors’ 64-bit implementa-
tion [25], which is optimized with inline assembly. It
stores the random bits in a C struct, and we do not
include the overhead of constructing this struct in the
timings. The authors assume that the input length is di-
visible by 16 bytes, or padded with zeros to the nearest
16-byte boundary. In some instances, we would need to
copy part of the input to a new location prior to hash-
ing the content to satisfy the requirement. Instead, we
decided to optimistically hash the data in-place with-
out copy. Thus, we slightly overestimate the speed of
the VHASH implementation — especially on shorter
strings.

– We used the reference C implementation of SipHash [4].
SipHash is a fast family of 64-bit pseudorandom hash
functions adopted, among others, by the Python language.

– CityHash is commonly used in applications where high
speed is desirable [27,15]. We wrote a simple C port of
Google’s CityHash (version 1.1.1) [35]. Specifically, we
benchmarked the CityHash64WithSeed function.

– Using Gueron and Kounavis’ [17] code, we implemented
a fast version of GHASH accelerated with the CLMUL
instruction set. GHASH is a polynomial hash function
over GF (2128) using the irreducible polynomial x128 +
x7+x2+x+1: h(x1, x2, . . . , xn) = anx1+a

n−1x2+

. . . + axn for some 128-bit key a. To accelerate com-
putations, Gueron and Kounavis replace the traditional
Horner’s rule with an extended version that processes
input words four at a time: starting with r = 0 and pre-
computed powers a2, a3, a4, compute r ← a4(r+xi)+

a3xi+1+a
2xi+2+axi+3 for i = 1, 4, . . . , 4bm/4c−3.

We complete the computation with the usual Horner’s
rule when the number of input words is not divisible
by four. In contrast with other hash functions, GHASH
generates 128-bit hash values.

VHASH, CLHASH and GHASH require random bits.
The time spent by the random-number generator is excluded
from the timings.

7.1 Results

We find that the hashing speed is not sensitive to the con-
tent of the inputs — thus we generated the inputs using a

Table 5: A comparison of estimated CPU cycles per byte
on a Haswell Intel processor using 4 kB inputs. All schemes
generate 64-bit hash values, except that GHASH generates
128-bit hash values.

scheme 64B input 4 kB input
VHASH 1.0 0.26

CLHASH 0.45 0.16
CityHash 0.48 0.23
SipHash 3.1 2.1
GHASH 2.3 0.93

random-number generator. For any given input length, we
repeatly hash the strings so that, in total, 40 million input
words have been processed.

As a first test, we hashed 64B and 4 kB inputs (see Ta-
ble 5) and we report the number of cycles spent to hash one
byte: for 4 kB inputs, we got 0.26 for VHASH,6 0.16 for
CLHASH, 0.23 for CITYHASH and 0.93 for GHASH. That
is, CLHASH is over 60% faster than VHASH and almost
45% faster than CityHash. Moreover, SipHash is an order
of magnitude slower. Considering that it produces 128-bit
hash values, the PCMUL-accelerated GHASH offers good
performance: it uses less than one cycle per input byte for
long inputs.

Of course, the relative speeds depend on the length of
the input. In Fig. 1, we vary the input length from 8 bytes
to 8 kB. We see that the results for input lengths of 4 kB
are representative. Mostly, we have that CLHASH is 60%
faster than VHASH and 40% faster than CityHash. How-
ever, CityHash and CLHASH have similar performance for
small inputs (32 bytes or less) whereas VHASH fares poorly
over these same small inputs. We find that SipHash is not
competitive in these tests.

7.2 Analysis

From an algorithmic point of view, VHASH and CLHASH
are similar. Moreover, VHASH uses a conventional multi-
plication operation that has lower latency and higher through-
put than CLHASH. And the VHASH implementation re-
lies on hand-tuned assembly code. Yet CLHASH is 60%
faster.

For long strings, the bulk of the VHASH computation
is spent computing the NH function. When computing NH,
each pair of input words (or 16 bytes) uses the following in-
structions: one mulq, three adds and one adc. Both mulq
and adc generate two micro-operations (µops) each, so with-
out counting register loading operations, we need at least
3 + 2× 2 = 7 µops to process two words [16]. Yet Haswell
processors, like other recent Intel processors, are apparently

6 For comparison, Dai and Krovetz reported that VHASH used
0.6 cycles per byte on an Intel Core 2 processor (Merom) [25].
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Fig. 1: Performance comparison for various input lengths. For large inputs, CLHASH is faster, followed in order of decreas-
ing speed by CityHash, VHASH, GHASH and SipHash.

limited to a sustained execution of no more than 4µops per
cycle. Thus we need at least 7/4 cycles for every 16 bytes.
That is, VHASH needs at least 0.11 cycles per byte. Be-
cause CLHASH runs at 0.16 cycles per byte on long strings
(see Table 5), we have that no implementation of VHASH
could surpass our implementation of CLHASH by more
than 35%. Simply put, VHASH requires too many µops.

CLHASH is not similarly limited. For each pair of in-
put 64-bit words, CLNH uses two 128-bit XOR instructions
(pxor) and one pclmulqdq instruction. Each pxor uses
one (fused) µop whereas the pclmulqdq instruction uses
two µops for a total of 4µops, versus the 7µops absolutely
needed by VHASH. Thus, the number of µops dispatched
per cycle is less likely to be a bottleneck for CLHASH.
However, the pclmulqdq instruction has a throughput of
only two cycles per instruction. Thus, we can only process
one pair of 64-bit words every two cycles, for a speed of
2/16 = 0.125 cycles per byte. The measured speed (0.16 cy-
cles per byte) is about 35% higher than this lower bound
according to Table 5. This suggests that our implementation
of CLHASH is nearly optimal — at least for long strings.
We verified our analysis with the IACA code analyser [19].
It reports that VHASH is indeed limited by the number of
µops that can be dispatched per cycle, unlike CLHASH.

8 Related Work

The work that lead to the design of the pclmulqdq instruc-
tion by Gueron and Kounavis [17] introduced efficient algo-
rithms using this instruction, e.g., an algorithm for 128-bit
modular reduction in Galois Counter Mode. Since then, the
pclmulqdq instruction has been used to speed up crypto-
graphic applications. Su and Fan find that the Karatsuba for-
mula becomes especially efficient for software implemen-
tations of multiplication in binary finite fields due to the

pclmulqdq instruction [38]. Bos et al. [9] used the CLMUL
instruction set for 256-bit hash functions on the Westmere
microarchitecture. Elliptic curve cryptography benefits from
the pclmulqdq instruction [32,33,39]. Bluhm and Gueron
pointed out that the benefits are increased on the Haswell
microarchitecture due to the higher throughput and lower
latency of the instruction [8].

In previous work, we used the pclmulqdq instruction
for fast 32-bit random hashing on the Sandy Bridge and
Bulldozer architectures [26]. However, our results were dis-
appointing, due in part to the low throughput of the instruc-
tion on these older microarchitectures.

9 Conclusion

The pclmulqdq instruction on recent Intel processors en-
ables a fast and almost universal 64-bit hashing family (CL-
HASH). In terms of raw speed, the hash functions from this
family can surpass some of the fastest 64-bit hash func-
tions on x64 processors (VHASH and CityHash). More-
over, CLHASH offers superior bounds on the collision prob-
ability. CLHASH makes optimal use of the random bits, in
the sense that it offers XOR universality for short strings
(less than 1 kB).

We believe that CLHASH might be suitable for many
common purposes. The VHASH family has been proposed
for cryptographic applications, and specifically message au-
thentication (VMAC): similar applications are possible for
CLHASH. Future work should investigate these applica-
tions.

Other microprocessor architectures also support fast carry-
less multiplication, sometimes referring to it as polynomial
multiplication (e.g., ARM [2] and Power [20]). Future work
might review the performance of CLHASH on these archi-
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tectures. It might also consider the acceleration of alternative
hash families such as those based on Toeplitz matrices [37].
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