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Abstract As part of the revelations about the NSA

activities, the notion of interdiction has become known

to the public: the interception of deliveries to manipu-

late hardware in a way that backdoors are introduced.

Manipulations can occur on the firmware or at hard-

ware level. With respect to hardware, FPGAs are par-

ticular interesting targets as they can be altered by

manipulating the corresponding bitstream which con-

figures the device. In this paper, we demonstrate the

first successful real-world FPGA hardware Trojan in-

sertion into a commercial product. On the target de-

vice, a FIPS-140-2 level 2 certified USB flash drive from

Kingston, the user data is encrypted using AES-256 in

XTS mode, and the encryption/decryption is processed

by an off-the-shelf SRAM-based FPGA. Our investiga-

tion required two reverse-engineering steps, related to
the proprietary FPGA bitstream and to the firmware

of the underlying ARM CPU. In our Trojan insertion

scenario the targeted USB flash drive is intercepted be-

fore being delivered to the victim. The physical Tro-

jan insertion requires the manipulation of the SPI flash

memory content, which contains the FPGA bitstream

as well as the ARM CPU code. The FPGA bitstream

manipulation alters the exploited AES-256 algorithm in

a way that it turns into a linear function which can be

broken with 32 known plaintext-ciphertext pairs. After

the manipulated USB flash drive has been used by the

victim, the attacker is able to obtain all user data from

the ciphertexts. Our work indeed highlights the security

risks and especially the practical relevance of bitstream

modification attacks that became realistic due to FPGA

bitstream manipulations.
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1 Introduction

In this section we provide an overview of our research

and related previous works in the area of hardware Tro-

jans and Field Programmable Gate Array (FPGA) se-

curity.

1.1 Motivation

As a part of the revelations by Edward Snowden, it be-

came known that the National Security Agency (NSA)

allegedly intercepts communication equipment during

shipment in order to install backdoors [28]. For instance,

Glenn Greenwald claims that firmware modifications

have been made in Cisco routers [12,27,18]. Related

attacks can also be launched in “weaker” settings, for

instance, by an adversary who replaces existing equip-

ment with one that is backdoor-equipped or by exploit-

ing reprogramming / updatability features to implant a

backdoor. Other related attacks are hardware Trojans

installed by OEMs. It can be argued that such attacks

are particular worrisome because the entire arsenal of

security mechanism available to us, ranging from cryp-

tographic primitives over protocols to sophisticated ac-

cess control and anti-malware measures, can be inval-

idated if the underlying hardware is manipulated in a

targeted way. Despite the extensive public discussions

about alleged manipulations by British, US, and other

intelligence agencies, the technical details and feasibil-

ities of the required manipulations are very much un-

clear. Even in the research literature most hardware

Trojans are implemented on high level (e.g., King et al.
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[16]) and thus assume an attacker at the system design

phase [15,24].

1.2 Contribution

The goal of the contribution at hand is to provide a case

study on how a commercial product, which supposedly

provides high security, can be weakened by meaningful

low-level manipulations of an existing FPGA design. To

the best of our knowledge, this is the first time that it is

being demonstrated that a bitstream modification of an

FPGA can have severe impacts on the system security

of a real-world product. We manipulated the unknown

and proprietary Xilinx FPGA bitstream of a FIPS-140-

2 level 2 certified device. This required several steps

including the bitstream file format reverse-engineering,

Intellectual Property (IP) core analysis, and a mean-

ingful modification of the hardware configuration.

Our target device is a Data Traveler 5000, an overall

FIPS-140-2 level 2 certified1 Universal Serial Bus (USB)

flash drive from Kingston. It utilizes a Xilinx FPGA for

high-speed encryption and decryption of the stored user

data. As indicated before, we implant a hardware Tro-

jan through manipulating the proprietary bitstream of

the FPGA resulting in a maliciously altered Advanced

Encryption Standard (AES)-256 IP core that is suscep-

tible to cryptanalysis.

By the underlying adversary model it is assumed

that the adversary can provide a manipulated USB

flash drive to the victim. For accessing the (seemingly

strongly encrypted) user data, the adversary can obtain

the device by stealing it from the victim. Alternatively,

it is also imaginable that a covert, remote channel can

be implanted in the target system. Due to our manip-

ulations, the adversary can easily recover all data from

the flash drive. It seems highly likely that the attack

remains undetected, because the cryptographic layer is

entirely hidden from the user. Similar attacks are possi-

ble in all settings where encryption and decryption are

performed by the same entity, e.g., hard disk encryption

or encryption in the cloud.

1.3 Related Work

Two lines of research, which have been treated mainly

separately so far, are particularly relevant to our con-

tribution, i.e., FPGA security and hardware Trojans.

FPGAs are reprogrammable hardware devices which

are used in a wide spectrum of applications, e.g., net-

work routers, data centers, automotive systems as well

1 Many categories even fulfill the qualitative security level
3, cf. [4]

as consumer electronics and security systems. In 2010

more than 4 billion devices were shipped world-wide [19].

Surprisingly many of these applications are security

sensitive, thus modifications of designs exhibit a cru-

cial threat to real-world systems. Despite the large body

of FPGA security research over the past two decades,

cf. [10], the issue of maliciously manipulating a com-

mercial and proprietary third-party FPGA design —

with the goal of implanting a Trojan that weakens the

system security of a commercial high-security device —

has never been addressed to the best of our knowledge.

SRAM-based FPGAs, for which the configuration bit-

stream is stored in external (flash) memory, dominate

the industry. Due to its volatility, SRAM-based FPGAs

have to be re-configured at every power-up. Hence, in

a scenario where an adversary can make changes to the

external memory chip, the insertion of hardware Tro-

jans becomes a possible attack vector. It is known for

long time that an FPGA bitstream manipulation is ap-

plicable, but the complexity of maliciously altering the

given hardware resources of a third-party FPGA con-

figuration has not been addressed in practice. However,

from an attacker’s point of view, the malicious manip-

ulation of a third-party FPGA bitstream offers several

practical hurdles that must be overcome. Amongst the

main problems is the proprietary bitstream format that

obfuscates the encoding of the FPGA configuration:

there is no support for parsing the bitstream file to a

human-readable netlist, i.e., the internal FPGA config-

uration cannot be explored. However, previous works

have shown that Xilinx’ proprietary bitstream file for-

mat can be reverse-engineered back to the netlist rep-

resentation up to a certain extent [26,7,30]. In general,

it seems to be a safe assumption that a determined

attacker can reverse-engineer all (or at least the rele-

vant) parts of the netlist from a given third-party bit-

stream. As the next crucial steps, the adversary must

detect and manipulate the hardware design. To the

best of our knowledge, the only publicly reported de-

tection and malicious manipulation of cryptographic al-

gorithms targeting a third-party bitstream is by Swier-

czynski et al. [29], which is also the basis of our work.

The related work by Chakraborty et al. [8] demon-

strated the accelerated aging process of an FPGA by

merging a ring-oscillator circuitry into an existing bit-

stream. Furthermore, the presented attack cannot change

the existing parts (described as “Type 1 Trojan” in

their work, e.g., the relevant parts of a cryptographic al-

gorithm or access control mechanism) and hence is not

applicable to undermine the system security of our tar-

geted device. Thus, we cover and demonstrate the the-

oretically described “Type 2 Trojan” defined by Chark-

aborty et al. [8]. Such Trojans are able to alter the ex-
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isting hardware resources and expectedly require more

analysis of the design.

Another related work was done by Aldaya et al. [5].

The authors demonstrated a key recovery attack for all

AES key sizes by tampering T-boxes which are stored

in the Block-Ram (BRAM) of Xilinx FPGAs. It is a

ciphertext-only attack and it was demonstrated that

various previously proposed FPGA-based AES imple-

mentations are vulnerable to their proposed method.

One other practical hurdle for injecting a Trojan

into an FPGA bitstream is an encrypted bitstream that

ensures the integrity and confidentially of a design. The

two market leaders Xilinx and Altera both provide bit-

stream encryption schemes to prevent IP theft and the

manipulation of the proprietary bitstream. Neverthe-

less, it has been shown that those encryption schemes

can be broken by means of side-channel analysis. Once

these attacks are pre-engineered, this countermeasure

can be broken in approximately less than one day, cf.

the works of Moradi et al. [23,21,22]. In these attacks,

the power consumption can be exploited during the en-

cryption/decryption process to reveal the cryptographic

keys under which the bitstream is encrypted. Subse-

quently, the bitstream can be decrypted, modified, and

re-encrypted. Thus, current bitstream encryption mech-

anisms only provide low additional security against a

determined adversary and would not hinder us to per-

form our presented bitstream modification attack for

the most available FPGA device families.

Another relevant strand of research is the hardware

Trojan. Malicious hardware manipulations, aka Tro-

jans, have come in the spotlight of the scientific com-

munity after a report by the US DoD in 2005 [3]. A gen-

eral taxonomy for Trojan insertion, functionality, and

activation was introduced by Karri et al. [15]. Besides

theoretical descriptions of hardware Trojans, the ma-

jority of research focused on the detection of malicious

circuits. An overview of hardware Trojan detection ap-

proaches and their inherent problem of coverage is pre-

sented by Narasimhan et al. [24]. There are only very

few research reports that address the design and imple-

mentation aspects of hardware Trojans. Most hardware

Trojans (FPGAs and ASICs) from the academic litera-

ture are implemented using high-level (register transfer

level) tools and hence assume a different, and consider-

ably stronger attacker model — namely Trojan inser-

tion during system design — compared to our low-level

Trojan insertion.

In the area of hardware Trojans, FPGAs constitute

an interesting special case because an attacker can ac-

complish a hardware modification by altering the de-

ployed bitstream prior to the FPGA power-up. The bit-

stream contains the configuration rules for programmable

logic components and programmable interconnections.

One can agree that it is arguable whether FPGA Tro-

jans are “true” hardware Trojans. On the other hand,

the bitstream controls the configuration of all hardware

elements inside the FPGA, and attacks as shown in this

paper lead to an actual change of the hardware configu-

ration. Thus, even though they represent a corner case,

we believe it is justified to classify FPGA Trojans as

hardware Trojans.

It should be noted that our strategy is considerably

different when compared to the BadUSB attack pre-

sented by Nohl et al. [25]. In our settings we needed

to bypass the security mechanisms of a protected and

special-purpose high-security USB flash drive to be able

to alter the existing cryptographic circuitry of a pro-

prietary third-party FPGA design. Compared to our

contribution, the BadUSB attack mainly targets the

reprogramming of unprotected low-cost USB peripher-

als that can distribute software-based malware, e.g., by

emulating a keyboard device. Hence, the BadUSB at-

tack is not related to the given and less explored threats

of FPGA hardware Trojans.

2 Proceeding of Inserting an FPGA Trojan

In the following we assume that the attacker is able to

intercept a device during the shipping delivery before it

arrives at the actual end user. As indicated before, this

is not an imaginary scenario as according to the Edward

Snowden documents it is known as interdiction [28].

Subsequently, we present a method of how to explore

third-party FPGA bitstreams.

2.1 Attack Scenario: Interdiction

The process of interdiction is illustrated by Fig. 1. Or-

dered products (e.g., an USB flash drive) of an end

user are secretly intercepted by an intelligence service

during the shipment. The target device is modified or

replaced by a malicious version, e.g., one with a back-

door. The compromised device is then delivered to the

end user. Intelligence agencies can subsequently exploit

the firmware or hardware manipulation.

According to the Snowden revelations, hardware Tro-

jans are placed, e.g., in monitor or keyboard cables with

hidden wireless transmitters, allowing for video and key

logging [28]. Also, it can be assumed that a Personal

Computer (PC) malware can be distributed with the

help of a compromised firmware of an embedded device

as recently demonstrated by Nohl et al. [25]. This can
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have severe impacts such as an unwanted secret remote

access by a malicious third party or decryption of user

data on physical access.

Normal Shipment

Intercepted Shipment

Order

End 
User

Fig. 1: Interdiction attack conducted by intelligence ser-

vices

It is relatively easy to alter the firmware of micro con-

trollers, ARM CPUs, or other similar platforms if no

read-out protection is given or no self-tests are utilized.

In contrast, altering hardware such as an Applica-

tion Specific Integrated Circuit (ASIC) is a highly com-

plex procedure. Recently, Becker et al. [6] demonstrated

how a malicious factory can insert a hardware Trojan

by changing the dopant polarity of existing transistors

in an ASIC. However, this requires a different and con-

siderably stronger attacker scenario than the one shown

in Fig. 1, because the modification takes place during

the manufacturing process. This is a time-consuming,

difficult, and expensive task and therefore less practical.

On the contrary, at first glance, attacking an FPGA

also seems to be similarly challenging because the bit-

stream file is proprietary and no tools are publicly avail-

able that convert the bitstream back to a netlist (for

a recent scientific work see [9]). However, the recent

work [29] has shown that a bitstream modification at-

tack may indeed be successfully conducted with real-

istic efforts depending on the realization of the FPGA

design.

In our case we conducted the scenario of Fig. 1 by

manipulating the bitstream of an FPGA contained in a

high-security USB flash drive that utilizes strong cryp-

tography to protect user data. After the manipulated

USB flash drive has been forwarded to and utilized for

a certain amount of time by the end user, the attacker

is able to obtain all user data.

2.2 Attack Scenario: Exploitation and

Reconfigurability

We want to highlight that interdiction is not the only

realistic scenario for implanting an FPGA hardware

Trojan. Modern embedded systems provide a remote

firmware update mechanism to allow changes and im-

provements after the development phase. Such func-

tionality exhibits an attractive target for an attacker

to undermine the system security by means of exploits

or logical flaws in the update mechanism. Thus, an at-

tacker may remotely implant an FPGA hardware Tro-

jan. To sum up, in several settings an attacker must not

necessarily have physical access to the target device.

2.3 Exploring Third-Party FPGA Designs

One major hurdle of altering third-party FPGA designs

is due to the proprietary bitstream file. Without any

knowledge of the bitstream encoding, an adversary can-

not analyze a third-party FPGA bitstream as the hard-

ware configuration remains a black box for him/her.

Therefore, the adversary is not able to replace the con-

figuration of any hardware components in a meaningful

way. Thus, the first important prerequisite is to learn

the configuration from the proprietary bitstream. As

mentioned above, previous works [26,7,30] have shown

that the bitstream encoding of several Xilinx FPGAs

can be (partially) reverse-engineered. Once the mean-

ing of the bitstream encoding is revealed, an attacker

can translate the bitstream to a human-readable netlist

that serves for further analysis. This netlist contains all

information of how Configurable Logic Blocks (CLBs),

Input Output Blocks (IOBs), Digital Signal Process-

ings (DSPs), or BRAMs are configured and intercon-

nected.

The second challenging hurdle is the detection of

(combinatorial) logic within a large and complex cir-

cuitry. The detection is conducted at a very low level

since the circuitry can be build by thousands of Look-

up tables (LUTs) or Flip Flops (FFs), etc., which are

interconnected by millions of wires along the FPGA

grid. As long as it is unclear to the adversary how all

those low-level elements (LUTs, FFs, wires, etc.) con-

struct a circuitry and as long as he/she has no access to

more information (e.g., the corresponding VHDL file),

it is unlikely that he/she can successfully detect and re-

place parts of the logic. During a profiling phase, which

only needs to be conducted once per FPGA device, the

adversary creates and observes different variants of how

specific functions are commonly synthesized, placed,

and routed in the target FPGA grid (low-level device

description).
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Place and route

Create bitstream
and learn 

bitstream encoding

Create circuitry 
(high-level)
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Fig. 2: Strategy of partially replacing an FPGA config-

uration

Once this investigation is conducted, the adversary knows

how to detect specific circuitry from a given hardware

configuration. If the relevant bitstream encoding part

is unknown to the adversary, he/she can learn the bit-

stream encoding of a reference circuitry by creating and

comparing the corresponding bitstreams of all possible

configurations. This strategy is illustrated in Fig. 2.

Once pre-engineered, the attack itself can be con-

ducted within approximately one day. Hence, FPGAs

should not be used as security device or trust anchor in

a commercial product unless the bitstream integrity is

not ensured.

3 Real-World Target Device

To demonstrate our FPGA Trojan insertion, we se-

lected the Kingston DataTraveler 5000 [17] as the tar-

get, which is a publicly available commercial USB flash

drive with strong focus on data security. This target

device is overall FIPS-140-2 level 2 certified [4]. It uses

Suite B [2] cryptographic algorithms, in particular AES-

256, SHA-384, and Elliptic Curve Cryptography (ECC).

All user data on our targeted USB drive is protected

by an AES-256 in XEX-based Tweaked-codebook with

ciphertext Stealing (XTS) mode. A PC software estab-

lishes a secured communication channel to the USB

flash drive and enforces strong user passwords.

Due to the FIPS-140 level 2 certification, the device

has to fulfill certain requirements of tamper resistance

on the physical, hardware and software levels as well

as on detecting physical alterations. The Printed Cir-

cuit Board (PCB) of the Kingston DataTraveler 5000

is protected with a titanium-coated, stainless-steel cas-

ing and is surrounded by epoxy resin to prevent the

undesired access to its internal hardware components.

3.1 Initial Steps and Authentication Process

When plugging the USB flash drive into a USB port for

the first time, an unprotected partition drive is mounted

making the vendor’s PC software available to the user.

Meanwhile, in the background, this software is copied

(only once) to a temporary path from which it is always

executed, c.f., the upper part of Fig. 6.

In an initial step, the end user needs to set a pass-

word. Afterwards, the user must be authenticated to the

device using the previously-set password. This means

that the key materials must be somewhere securely stored,

which is commonly a multiple-hashed and salted pass-

word.

On every successful user authentication (mainly per-

formed by the ARM CPU and the PC software), the

protected partition drive is mounted allowing access to

the user data. Any data written to the unlocked parti-

tion is encrypted with AES by the Xilinx FPGA and

the corresponding ciphertexts are written into the sec-

tors of the micro SD card as indicated in Fig. 6.

When unplugging the USB flash drive and for the

case that an adversary has stolen this device, he/she

is not able to access the user data without the knowl-

edge of the corresponding password. According to [17],

after 10 wrong password attempts, the user data is irre-
vocably erased to prevent an attacker from conducting

successful brute-force attempts.

3.2 Physical Attack — Revealing the FPGA Bitstream

To conduct an FPGA hardware Trojan insertion, we

need to have access to the bitstream. Thus, in the first

step we were able to remove the epoxy resin. Indeed,

this procedure was much easier than expected. We lo-

cally heated up the epoxy resin to 200◦C (by a hot-air

soldering station) turning it to a soft cover and removed

the desired parts by means of a sharp instrument, e.g.,

a tiny screwdriver (see Fig. 3).

By soldering out all the components, exploring the

double-sided PCB and tracing the wires, we detected

that an ARM CPU configures the Xilinx FPGA through

an 8-bit bus. We also identified certain points on the

PCB by which we can access each bit of the afore-

mentioned configuration bus. Therefore, we partially
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Fig. 3: Epoxy removal of

Kingston DT 5000 with

screwdriver

Fig. 4: Eavesdrop-

ping the bitstream of

Kingston DT 5000 with

opened case

removed the epoxy resin of another operating identi-

cal target (USB flash drive) to access these points and

then monitored this 8-bit bus during the power-up (by

plugging the target into a PC USB port) and recorded

the bitstream sent by the ARM CPU, cf., Fig. 4. Note

that SRAM-based FPGAs must be configured at each

power-up. By repeating the same process on several

power-ups as well as on other identical targets, we could

confirm the validity of the revealed bitstream and its

consistency for all targets. We should emphasize that

the header of the bitstream identified the type and the

part number of the underlying FPGA matched with the

soldered-out component.

We also identified an Serial Peripheral Interface Bus

(SPI) flash amongst the components of the PCB. As we

have soldered out all the components, we could easily

read out the content of the SPI flash. Since such com-

ponents are commonly used as standalone non-volatile

memory, no read-out protection is usually integrated.

At first glance it became clear that the SPI flash con-

tains the main ARM firmware (2nd ARM image). We

also found another image (1st ARM image) initializing

the necessary peripherals of the microcontroller. Fur-

thermore, we identified that the bitstream, which we

have revealed by monitoring the configuration bus, has

been stored in the SPI flash, cf., Fig. 5.

Motivated by these findings we continued to analyze

all other components of the USB flash drive and thus

describe our results in the following.

3.3 Overview and Component Details

Based on our accomplishments described above, we could

identify the following main components placed on the

double-sided PCB:

Unused
0xFF ... FF

Unencrypted
FPGA Bitstream

Testvectors

Security Header Fields

2nd ARM Image

Unused
0xFF ... FF

1st ARM Image

0xFFFFF

0x6FA00

0x2A400

0x28B78

0x2A200

0x10000

0x048C0

0x00000

Fig. 5: Address space layout of the SPI flash

– NXP LPC3131 with embedded ARM926EJ-S CPU

operating at 180 MHz

– Xilinx Spartan-3E (XC3S500E) FPGA

– HSM from SPYRUS (Rosetta Micro Series II) pro-

viding ECDH, DSA, RSA, DES, 3-DES, AES, SHA-

1, etc.

– 2 GB Transcend Micro SD card (larger versions also

available)

– 1 MB (AT26DF081A) SPI flash

We revealed the layout of the circuit through reverse-

engineering. The whole circuit is depicted in Fig. 6. This

step was conducted by tracing the data buses of the

PCB and by decompiling the PC software as well as
the identified ARM firmware. Both executables were de-

compiled with Hex-Rays [1]. The resulting source code

served for further reverse-engineering.

The main task of the identified ARM CPU (master

device) is to handle the user authentication, while the

Xilinx FPGA (slave device) is mainly responsible for

the user data encryption and decryption. It should be

noted that the FPGA is also partially involved in the

authentication process and exhibits our main target for

manipulation. We could not confirm the key storage

location, but we assume that the key materials are se-

curely stored in the Hardware Security Module (HSM),

c.f., Fig. 6. As we demonstrate in this paper, we need

neither any access to the key materials nor any knowl-

edge of the key derivation function to be able to decrypt

sensitive user data.

As stated before, both images (ARM CPU code and

FPGA bitstream) were discovered in the SPI flash that

are loaded and executed during the power-up of the

USB flash drive.
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FPGA
device

ARM
ProcessorSPI flash

PCB

ARM code

FPGA 
bitstream

Micro SD
Card (2GB)

1 MB

HSM

Configuration Encrypt/Decrypt

SPI
r/w

Self-
tests

Secure 
USB

channel

PC Software

DLL file

encrypted

User
Password

AES

AES

AES

Fig. 6: Overview of revealed circuit of our target device

3.4 Unlinking FPGA Trojan from the Authentication

Process

During our FPGA Trojan insertion, we identified sev-

eral AES cores, as shown in Fig. 6:

1. AES core in the PC Software: used during user au-

thentication.

2. AES core in the ARM code: used during user au-

thentication.

3. AES core in the FPGA: used during user authenti-

cation (partially) as well as for encrypting user data

at high speed (main purpose).

If only the functionality of the FPGA AES core is ma-

nipulated, the target device would not operate properly

anymore because all three AES cores need to be consis-

tent due to the identified authentication dependencies.

To be more precise, all three AES cores are involved in

the same authentication process.

As our goal is to insert a hardware Trojan by manip-

ulating the AES core of the FPGA, we first needed to

unlink the dependency (of the AES cores) between the

ARM CPU and the Xilinx FPGA, cf., Fig. 7. Therefore,

we eliminated this dependency by altering parts of the

ARM firmware, but we realized that any modification

is detected by an integrity check. We identified several

self-tests that are conducted – by the ARM CPU – on

every power-up of the USB flash drive.

Further analyses revealed the presence of test-vectors.

They are used to validate the correctness of the uti-

lized cryptography within the system. The utilized self-

tests are explained in Section 6.1 in more detail. In

Section 6.2, we demonstrate how to disable them and

how to unlink the aforementioned dependencies.

To sum up, our intended attack is performed using

the following steps:

1. Identify and disable the self-tests,

2. Unlink the AES dependency between the ARM and

FPGA, and

3. Patch (reprogram) the FPGA bitstream meaning-

fully.

Fig. 7 and Fig. 8 illustrate the impact of these steps.

As can be seen, canceling the dependency allows us to

alter the AES core and add an FPGA Trojan. The de-

DLL

FPGA

ARM

AES

AES

AES
User
data

DLL

FPGA
Trojan

ARM

AES

AES

AES
User
data

Fig. 7: User authentica-

tion (dashed) and user

data (solid) dependen-

cies before modification

DLL

FPGA

ARM

AES

AES

AES
User
data

DLL

FPGA
Trojan

ARM

AES

AES

AES
User
data

Fig. 8: User authentica-

tion (dashed) and data

(solid) dependencies af-

ter modification

tails of how we could successfully alter the FPGA bit-

stream to realize a hardware Trojan are presented in

Section 4. Below, we discuss why modifying a bitstream

is more elegant for planting an FPGA Trojan than re-

placing the whole bitstream.

3.5 Modifying Bitstream vs. Replacing Whole

Bitstream

We want to pinpoint that replacing the complete FPGA

design to insert a Trojan does not necessarily mean that

an attack is less complicated to be performed. Replac-
ing the whole FPGA bitstream by a completely new

design is a more challenging task. The attacker would

need to further reverse-engineer and fully understand

the whole FPGA environment (ARM code, data buses,

protocols, etc.) and re-implement all functions to en-

sure the system’s compatibility. It even turned out to

be the easier and faster approach, since we were able

to modify this third-party IP core without the need to

reverse-engineer or modify any part of the routing.

Thus, we only focus on detecting and replacing the

relevant parts of the utilized FPGA design. By doing so,

we secretly insert a stealth FPGA Trojan that turns the

AES encryption and decryption modules into certain

compatible weak functions, c.f., Section 5.

3.6 Manipulation – Master vs. Slave

To be fair, on one hand the Kingston DataTraveler 5000

is not the best target device to demonstrate an FPGA
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hardware Trojan insertion because the embedded ARM

CPU acts as the master device containing all control

logic. The FPGA is merely used as an accelerator for

cryptographic algorithms. In order to preserve the func-

tionality of the USB flash drive with an active FPGA

hardware Trojan the ARM CPU firmware – as previ-

ously explained – has to be customized too, i.e., the

integrity check of the ARM CPU code needs to be dis-

abled (explained in Section 6). At this point, the at-

tacker can alter the firmware to not encrypt the user

data at all, turning the device into a non-secure drive

accessible to everyone. As another option, the attacker

can secretly store the encryption key which would result

in a conventional software-based embedded Trojan.

On the other hand, there are solutions which contain

only an FPGA used as the master device [11]. Conven-

tional software-based embedded Trojans are not appli-

cable in those systems. Our attack is a proof of concept

that FPGA hardware Trojans are practical threats for

the FPGA-based systems where no software Trojan can

be inserted. Our attack also highlights the necessity of

embedded countermeasures on such systems to detect

and defeat FPGA hardware Trojans.

4 Building the FPGA Trojan

In this section, we present the information which can

be extracted from the given bitstream file followed by

our conducted modification on the AES-256 core. The

impact of this modification – considering the utilized

XTS mode of operation – is described in Section 5.

4.1 Analysis of the Extracted Bitstream

Based on the method presented in Section 2, we could

dump and analyze the initial memory configuration of

each block RAM of the extracted bitstream. The Spartan-

3E FPGA contains up to 20 block RAMs. We figured

out that only 10 out of 20 block RAMs are used by the

extracted FPGA design. We observed that the block

RAMs are organized in a byte-wise manner fitting well

to the structure of the AES state.

Our analysis revealed the presence of multiple in-

stances of certain precomputed substitution tables. Af-

ter investigating the extracted data in more detail, we

obtained a structure for each table. We refer to the four

identified tables whose details are depicted in Table 1.

Each substitution table stores 256 entries that can be

accessed using the input x ∈ {0, 1, ..., 255}. Our anal-

ysis revealed that the following precomputed substitu-

tion tables are stored in several block RAMs:

T̃ (x) = 01 ◦ S(x)||01 ◦ S−1(x)||02 ◦ S(x)||03 ◦ S(x)

MC−1(x) = 09 ◦ x||11 ◦ x||13 ◦ x||14 ◦ x
S(x) = S(x)

S−1(x) = S−1(x)

Detected tables Identified block RAM Data
000: S(00)||S−1(00)||02 ◦ S(00)||03 ◦ S(00)

16 T̃ (x) instances 001: S(01)||S−1(01)||02 ◦ S(01)||03 ◦ S(01)
(1024 bytes each) . . .

0FF: S(FF)||S−1(FF)||02 ◦ S(FF)||03 ◦ S(FF)
000: 09 ◦ 00||11 ◦ 00||13 ◦ 00||14 ◦ 00

16 MC−1(x) instances 001: 09 ◦ 01||11 ◦ 01||13 ◦ 01||14 ◦ 01
(1024 bytes each) . . .

0FF: 09 ◦ FF||11 ◦ FF||13 ◦ FF||14 ◦ FF
000: S(00)

4 S(x) instances 001: S(01)
(256 bytes each) . . .

0FF: S(FF)
000: S−1(00)

4 S−1(x) instances 001: S−1(01)
(256 bytes each) . . .

0FF: S−1(FF)

Table 1: Identified substitution tables stored in block

RAM

In other words, we identified the tables which realize

the inverse MixColumns transformation MC−1(·), the

SubBytes S(·) and inverse SubBytes S−1(·). However,

T̃ (·) is not equivalent to any T-box (T0, . . . , T3), cf., [14],

but exhibits a very similar structure: one entry includes

the S-box, the inverse S-box, and the S-box multiplied

by two and three (02 ◦ S(·) and 03 ◦ S(·)). In par-

ticular T̃ (·) combines the SubBytes and MixColumns

transformations, and thus has the same purpose as one

T-box, but one remarkable difference is the storage of

the inverse S-box S−1(·). Note that all four T-boxes

T0, . . . , T3 can be easily derived from T̃ .

4.2 Modifying the Third-Party FPGA Design

Our main goal is to replace all AES S-boxes to the

identity function, cf., Section 5. For this purpose, we

have to replace all identified look-up table instances of

Table 1. We need to replace all S-box values such that

S(x) := x and the inverse S-box to S−1(x) := x. This

is essential in order to synchronize the encryption and

decryption functions. Hence, it leads to the following

precomputation rules for x ∈ {0, 1, ..., 255}:

T̃ (x) = 01 ◦ x||01 ◦ x||02 ◦ x||03 ◦ x
MC−1(x) = 09 ◦ x||11 ◦ x||13 ◦ x||14 ◦ x

S(x) = x

S−1(x) = x
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Note that the modifications must be applied on all de-

tected instances of the look-up tables in the bitstream

file, c.f., Table 1.

In the next step we updated the SPI flash with this

new malicious bitstream and powered up the USB flash

drive by plugging it into the PC. We could observe that

the FPGA modification is successful as the encryption

and decryption still work. This is true only when all

instances of the relevant substitution tables (S-box and

its inverse) are modified appropriately.

From now on we consider that the malicious AES

core is running on the FPGA. Hence, in the next sec-

tion, we explain in the next section how this Trojan in-

sertion can be exploited even though a complex mode

of operation (AES-256 in XTS mode) is used by our

altered FPGA design.

5 XTS-AES Manipulation and Plaintext

Recovery

In this section the cryptographic block cipher mode of

operation XTS is presented. As already indicated in

the previous sections, our target device uses a sector-

based disk encryption of user data. Subsequently, the

modification of the underlying AES is described. We

also express how this malicious modification can be ex-

ploited to recover sensitive user data encrypted by the

weakened XTS-AES mode.

The tweakable block cipher XTS-AES is standard-

ized in IEEE 1619-2007 [13] and used by several disk-

encryption tools, e.g., TrueCrypt and dm-crypt as well
as commercial devices like our targeted USB flash drive.

Before describing the details of the algorithm, general

remarks regarding the memory organization are given

in the following.

Each sector (usually 512 bytes of memory) is as-

signed consecutively to a number, called tweak and de-

noted by i in the following, starting from an arbitrary

non-negative integer. Also, each data unit (128-bit in

case of XTS-AES) in a sector is sequentially numbered,

starting from zero and denoted by j. This pair (i, j) is

used for encryption and decryption of each data unit’s

content. In general, XTS-AES uses two keys (k1, k2).

The first key k1 is used for the plaintext encryption

and the second key k2 for the tweak encryption. The

XTS-AES encryption diagram is depicted in Fig. 9. Af-

ter the tweak encryption, the output is multiplied by

αj in the Galois field GF(2128), where α is a primitive

element, e.g., α = x and j is the data unit position in

the sector i. This result is then XOR-ed before and af-

ter encryption of the plaintext block p. The encryption

of one 16-byte plaintext can be described as

c = (AESk2(i)⊗ αj)⊕AESk1(AESk2(i)⊗ αj ⊕ p),

while the decryption is computed as follows

p = (AESk2
(i)⊗ αj)⊕AES−1

k1
(AESk2

(i)⊗ αj ⊕ c).

AES ENC
⊗

AES ENC

⊕

⊕

k2

i αj p

k1

c

Fig. 9: XTS-AES encryption block digram overview

In the following we present the impact of our FPGA

bitstream manipulations (expressed in Section 4.2) on

the AES in XTS mode.

5.1 AES SubBytes Layer Manipulation

To understand the impacts of manipulation of the AES

algorithm, the internal transformations are briefly de-

scribed in this section.

Brief Recap of AES AES is based on the symmetric

block cipher Rijndael. Its operations consist of four trans-

formations, which all operate on a block size of 128 bits.

The state is arranged in a 4×4 matrix consisting of ele-

ments in GF(28). Furthermore, AES supports three key

sizes (128, 192 and 256 bits) corresponding to a different

number of rounds (10, 12, and 14, respectively) denoted

by Nr. The AES encryption diagram is depicted on the

left side of Fig. 10. In the following we present how to

turn the AES cryptosystem into a weak block cipher

whose plaintexts can be easily recovered from phony

ciphertexts.

SubBytes Layer Manipulation The SubBytes transfor-

mation is amongst the most important part of the AES

algorithm. It adds non-linearity to the cipher state. We

intend to cancel the SubBytes layer as this makes the

whole encryption scheme vulnerable to cryptanalysis.
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The corresponding AES SubBytes manipulation is an

extension of the recent work [29]. The manipulation im-

pacts are shortly described for the XTS-AES mode.

The main idea behind the SubBytes modification

is to transform the AES into a linear function. Having

altered the normal and inverse AES S-box to the iden-

tity function, the whole algorithm can be expressed as a

linear equation. Hence, we updated all identified S-box

and inverse S-box instances in the FPGA bitstream to

the identity function S(x) = x. Due to the linearity of

ShiftRows SR(·) and MixColumns MC(·), the modified

AES (denoted by ÃES) can be described as follows:

ÃESk(p) = SR(MC(· · ·MC(SR(p) · · · )

⊕ (k̃0 ⊕ k̃1 ⊕ k̃2 ⊕ ...⊕ k̃Nr )

:= MS(p)⊕ K̃.

The impact of this alteration is illustrated by Fig. 10.

The plaintext p is processed by several MixColumns

and ShiftRows transformations, Nr − 1 and Nr times

respectively. This round-dependent process is denoted

by MS(·). The constant K̃ represents the XOR sum

of the round keys which have also been preprocessed

by certain number of the MixColumns and ShiftRows

transformations.

p

AddRoundKey

ShiftRows

MixColumns

AddRoundKey

ShiftRows

AddRoundKey

c

N
r

-
1

p

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

c

N
r

-
1

Fig. 10: Comparison between AES (left) and modified

ÃES (right)

Therefore, with only one known plaintext-ciphertext

pair (p, ÃESk(p)), the constant K̃ can be determined.

Thus, all further phony ciphertexts, that are encrypted

by ÃESk, can be decrypted without any knowledge

about the actual key. For more detailed information

we refer the interested reader to the work of Swierczyn-

ski et al. [29]. In the following, we extend this approach

to the XTS mode.

5.2 Manipulation Impact for XTS-AES

With the presented AES SubBytes manipulation, an
XTS-AES ciphertext can be described as a linear equa-
tion too:

c = (ÃESk2
(i)⊗ αj)⊕ ÃESk1

((ÃESk2
(i)⊗ αj)⊕ p)

= (MS(i)⊕ K̃2)⊗ αj ⊕MS((MS(i)⊕ K̃2)⊗ αj ⊕ p)⊕ K̃1

= (MS(i)⊗ αj)⊕MS(MS(i)⊗ αj)︸ ︷︷ ︸
TWi,j

⊕MS(p)

⊕ (K̃2 ⊗ αj)⊕MS(K̃2 ⊗ αj)⊕ K̃1︸ ︷︷ ︸
CKj

(1)

Note that MS(·) is a linear function, and thus the tweak

part TWi,j , the plaintext-related part MS(p), and the

key-related part CKj could be separated. Every plain-

text p is encrypted in this way by the FPGA hardware

Trojan of our target device.

5.3 Plaintext Recovery of Encrypted XTS-AES

Ciphertexts

To recover the plaintexts from the weakly encrypted

XTS-AES ciphertexts, the attacker has to obtain two

sets of information:

– 32 plaintext-ciphertext pairs (pi, ci), i ∈ {0, ..., 31}
of one sector (512-byte wide), and

– knowledge about the tweak values i and the data

unit position j of the ciphertexts within a sector.

Due to the combination of the data unit’s position j

and the key k2 (through Galois field multiplication by

αj), each position j in a sector has its own constant key-

related part CKj . Further, CKj is constant for every

sector of the memory as it is independent of i. Hence,

the attack requires only all 32 plaintext-ciphertext pairs

of one arbitrary sector to generate all CKj values. To

obtain the tweak values TWi,j , the attacker needs to

obtain the starting value of i identifying the first sector

(as explained before, i indicates the sector number and

starts from an arbitrary non-negative integer). Gener-

ally, this can be achieved through reverse-engineering

(ARM code), cf., Section 6.

With this data the attacker can compute the tweak

and the key-related parts of Eq. (1). Afterwards, by

inverting the MS(·) function the plaintexts p can be

revealed. MS−1(·) can be determined by applying the

inverse MixColumns and inverse ShiftRows transforma-

tions (dependent on the underlying AES key size).

It is worth mentioning that the produced ciphertext

still appears to be random for a victim, who visually

inspects the phony ciphertexts from the micro SD card.
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Therefore, the victim cannot observe any unencrypted

data as it would be the case if the FPGA is simply

bypassed.

6 ARM code modification

In this section we briefly describe the cryptographic

self-tests and ARM firmware modifications essential to

enable the above presented FPGA hardware Trojan in-

sertion.

6.1 Utilized Self-tests

When we reverse-engineered the ARM code using the

tool IDA Pro, we were able to identify several functions

that check the integrity of the ARM firmware and con-

sistency of several cryptographic functions. Every exe-

cuted self-test must return a specific integer indicating

whether the test passed or not. If any self-test fails, the

target device switches to an error state.

The corresponding test-vectors used by the self-tests

are stored in the SPI flash. Table 2 provides an overview

of all self-tests and the integrity checks. Besides, we also

Self-test function Utilized parameter of self-test
AES-256 (CBC) Key K = 0x2B2B...2B (16 Bytes)

IV = 0x3C3C...3C (16 Bytes)
Input x = 0x1111...11 (32 Bytes)

AES-256 (XTS) Key K1 = 0x2021...3F (32 Bytes)
Key K2 = 0x4041...5F (32 Bytes)
Tweak = 0xA2566E3D7EC48F3B

Input x = 0xF0F1...FF (16 Bytes)
SHA-{224,256,384,512} Input x = ”abc”

Integrity check Input
SHA-384 Main ARM firmware

Table 2: Identified self-tests and firmware integrity

check

identified several relevant security header fields that are

processed by the ARM CPU.

Field Name Offset Byte size Value
Header Signature 0x00 4 0x11223344
FPGA signature 0x04 16 ”SPYRUS HYDRA2005”
Bitstream length 0x14 4 0x45600
SHA-384 hash of 2nd image 0x1D0 48 SHA-384(2nd image)

Table 3: Security Header Fields

The ARM CPU expects to receive a specific signature

(during power-up of the system) from the Xilinx FPGA

to ensure that it operates correctly after the configura-

tion process. Also, the bitstream length is coded in the

header such that the ARM CPU knows the amount of

configuration bytes. Lastly, a SHA-384 hash value, cal-

culated over the main ARM firmware, is appended to

ensure the program code integrity.

6.2 Disabling Self-tests to Modify ARM Code and

FPGA Bitstream

Preliminary tests have shown that even minor code

changes, which do not influence the behavior of the

firmware, cause the USB flash drive to enter the error

state and halt during power-up. It was concluded that

there exists an implemented self-test at least checking

the integrity of the code. Thus, it became a mandatory

prerequisite to find and deactivate such a test. The re-

sponsible code was identified due to its obvious struc-

ture and function calls.

In addition to the firmware integrity, the correct

functionality of several cryptographic algorithms is tested:

the AES, ECC and Secure Hash Algorithm (SHA) in

the ARM code and the AES inside the FPGA. The in-

dividual checks are performed in dedicated functions

invoked by the main self-test function, and their corre-

sponding return values are verified. Finally, the self-test

succeeds only in case all individual checks are passed.

In order to disable the self-test the code was patched

in a way that the function always returns zero, which

is the integer representation for success. Hence, arbi-

trary firmware modifications and changes to the cryp-

tographic algorithms can be applied after this patch.

6.3 Separating Key Derivation and FPGA AES

IP-Core

As explained in the previous sections, cf., Fig. 7, there is

a software AES implementation executed by the ARM

CPU and a considerably faster hardware AES instance

inside the FPGA. They are both capable of ECB, CBC

and XTS operation modes. The software AES is mainly

used for self-tests and the hardware AES for key deriva-

tion as well as encryption and decryption of the user

data stored on the USB flash drive. The key derivation

requires the establishment of a secure communication

channel between the PC software and the USB flash

drive. The FPGA hardware Trojan weakens the AES

IP-core making it incompatible to the standard AES,

cf., Section 5. Thus, the initialization of the commu-

nication channel fails and the USB flash drive goes to

an error state. To avoid such a situation the firmware

has to be changed in such a way that only the original

software AES is used during the key derivation and the
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secure channel establishment (instead of the modified

hardware AES inside the FPGA).

The ARM code internally uses a unified AES API.

Four parameters are passed to its AES instance con-

structor routine. They hand over the key, the key length,

the mode of operation and a flag indicating whether

the ARM CPU or the FPGA is selected for the actual

computations. The creation of all the AES instances,

which are related to the key derivation as well as se-

cure channel establishment, had to be patched. Con-

sequently all corresponding AES encryptions and de-

cryptions are computed by the ARM CPU instead of

the FPGA. In total the parameters of 12 AES instance

constructor calls have been patched to eliminate the

AES dependency between the ARM and FPGA.

6.4 Recording XTS-AES Parameters

In order to recover all user data from the USB flash

drive we need several values for the attack, cf., Sec-

tion 5: 32 plaintext-ciphertext pairs of the same sector,

the sector number and the initial tweak value. The lat-

ter parameter is hard-coded in the firmware and was

obtained by static analysis. The plaintext-ciphertext

pairs are acquired at runtime during normal opera-

tion of the USB flash drive. In the ARM code there

is a highly-speed-optimized function which reads data

from the embedded SD card, sends them to the FPGA

for decryption and finally copies the plaintexts from

the FPGA to the USB endpoint so that the computer

receives the requested data. This function was inter-

cepted at several positions in a way that the plaintext-

ciphertext pairs and the initial sector number could be

obtained. They are then written (only once) in the em-

bedded SPI flash from where they can be read out by

an attacker to launch the cryptographic attack.

As explained in Section 5, having this information

is essential to decrypt the phony ciphertexts due to

the underlying XTS mode. We practically verified the

plaintext recovery of the weakly encrypted ciphertexts

stored on the SD card of our target device.

7 Summary

In this section we summarize the security problems of

our investigated target device and further outline which

security barriers might be inserted by the vendor to

improve the security of the analyzed USB flash drive.

As previously stated, during our analysis we found

a HSM from SPYRUS that is directly connected to the

Xilinx FPGA over a single-bit bus. According to [20] it

provides certain cryptographic primitives and serves as

secure storage device, e.g., for secret (symmetric) keys.

We suggest to include the following security measure:

during the power-up of the USB flash drive, the FPGA

should validate its AES implementation using the AES

core provided by the HSM. It should be extremely chal-

lenging for an attacker to alter the AES core of the HSM

as its internal functionality is realized by an ASIC. The

HSM should decide whether the USB flash drive con-

tinues (no alteration detected) or switches to an error

state (alteration detected).

To further raise the bar for an attacker, the FPGA

design should include built-in self-tests for the S-box

configuration as well as for the whole AES core. To

be more precise, it is recommended to include several

test vectors in the FPGA firmware so the FPGA can

validate its consistency. Probably, the built-in self-tests

do not hinder a more powerful attacker who can dis-

able them, but the reverse-engineering efforts are sig-

nificantly increased and require a more powerful ad-

versary. Since in our attack scenario we exploited the

content of the block RAMs, it is also important to as-

sure its integrity. Their initial content can be encrypted

with an appropriate mode of operation: a built-in cir-

cuitry in the FPGA design might (during the FPGA

power-up) decrypt the block RAM’s contents and up-

date them with the corresponding decrypted data. By

doing so, an attacker cannot replace the highly impor-

tant S-boxes in a meaningful way, which can have severe

security implications as demonstrated in this work.

More importantly, all self-tests (including those we

found) should be performed by the HSM. Therefore,

the HSM should verify the integrity of the ARM code.

Further, the bitstream of the FPGA must be protected

(not stored in plain in the SPI flash) and its integrity

must be verified e.g., by the HSM. This should prevent

any modification attempt on the ARM code as well as

on the bitstream, making a firmware modification at-

tack extremely difficult. We should emphasize that an

attacker is able to turn the device into a malicious one

that can infect the target computer with malicious soft-

ware, as shown by Nohl et al. [25].

8 Conclusions

In this paper we demonstrated the first practical real-

world FPGA Trojan insertion into a high-security com-

mercial product to weaken the overall system security.

We reverse-engineered a third-party FPGA bitstream

to a certain extent and replaced parts of the FPGA

logic in a meaningful manner on the lowest level. In par-

ticular, we significantly weakened the embedded XTS-

AES-256 core and successfully canceled its strong cryp-

tographic properties making the whole system vulnera-
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ble to cryptanalysis. Our work is a proof of concept that

an FPGA can also be one of several weak points of a

seemingly protected system. It is important to ensure

the integrity of the FPGA bitstream even though its file

format is proprietary. This is especially critical in appli-

cations where the FPGA acts as master device. Future

work must deal with counterfeiting bitstream modifica-

tion attacks by developing appropriate countermeasures

that have to be implemented within an FPGA design.
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