
Triathlon of Lightweight Block Ciphers for the Internet of Things

Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov

SnT and CSC, University of Luxembourg
Maison du Nombre, 6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg
{dumitru-daniel.dinu,yann.lecorre,dmitry.khovratovich,leo.perrin}@uni.lu

{johann.groszschaedl,alex.biryukov}@uni.lu

Abstract. In this paper we introduce a framework for the benchmarking of lightweight block ciphers
on a multitude of embedded platforms. Our framework is able to evaluate the execution time, RAM
footprint, as well as binary code size, and allows one to define a custom “figure of merit” according to
which all evaluated candidates can be ranked. We used the framework to benchmark implementations
of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED, Piccolo, PRE-
SENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and
TWINE, on three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results
bring some new insights to the question of how well these lightweight ciphers are suited to secure the
Internet of Things (IoT). The benchmarking framework provides cipher designers with an easy-to-use
tool to compare new algorithms with the state-of-the-art and allows standardization organizations to
conduct a fair and consistent evaluation of a large number of candidates.

Keywords: IoT, lightweight cryptography, block ciphers, evaluation framework, benchmarking.

1 Introduction

The Internet of Things (IoT) is a frequently-used term to describe the currently ongoing evolution of the
Internet into a network of smart objects (“things”) with the ability to communicate with each other and to
access centralized resources via the IPv6 (resp. 6LoWPAN) protocol [5]. Today, the two most important and
widely noticed exponents of the IoT are RFID technology (which has become a major enabler of modern
supply-chain management and industrial logistics) and Wireless Sensor Networks (WSNs), which have found
widespread adoption in several application domains ranging from home automation over environmental
surveillance and traffic control to medical monitoring. A recent white paper by Cisco IBSG estimates up to
50 billion devices being connected to the Internet by the year 2020 [28], which implies that, in the not so
distant future, every person in the developed world will be surrounded by dozens of sensors, actuators, RFID
tags, and many other kinds of smart objects yet to be developed. This evolution from the Internet of people
to the Internet of things will have a huge impact on our daily life and change the way we interact with the
physical world surrounding us [5]. However, it is also evident that 50 billion smart devices connected to the
Internet introduce unprecedented challenges to the security and privacy of their owners or users.

It is widely accepted that symmetric-key cryptosystems play a major role in the security arena of the
IoT, but they need to be designed and implemented efficiently enough to not exhaust the scarce resources
of typical IoT devices. Gligor defined in [30] lightweight cryptography as cryptographic primitives, schemes
and protocols tailored to extremely constrained environments such as sensor nodes or RFID tags. A standard
sensor node (e.g. the MICAz mote) is equipped with an 8-bit microcontroller (e.g. the ATmega128) clocked
at 7.8 MHz and features 4 kB of RAM. Passive RFID tags do not even have a (software-programmable)
processor, which means that performing cryptography on such tags is only possible through hardware imple-
mentation. The efficient implementation of cryptographic primitives so that they become applicable in the
constrained regimes of sensor nodes and RFID tags is a challenging task since, for example, performance is
conflicting with other metrics of interest like silicon area and power consumption (in the case of hardware
implementation) or memory consumption and code size (for software). In addition, lightweight primitives
should be able to withstand all known cryptanalytic attacks (e.g. linear and differential cryptanalysis when
thinking of block ciphers) since lightweight cryptography is not meant to be “weak” cryptography in the
sense that a lightweight primitive should not be the weakest link in the security of a system [30].

In this paper we present a survey of lightweight block ciphers along with software benchmarking results
obtained on embedded 8, 16, and 32-bit microcontrollers. We consider three metrics of interest: execution

1



time, memory (i.e. RAM) requirement, and binary code size. To ensure a fair and consistent evaluation, we
developed a benchmarking toolsuite that we make available to the cryptographic research community fol-
lowing the spirit of the well-known and widely-used eBACS system [9]. Our benchmarking tool is “open” in
various aspects; first, it is possible to upload implementations of new ciphers as well as new (i.e. improved)
implementations of ciphers that are already included. Second, the tool was developed from the ground up
with the goal of supporting a wide range of embedded platforms through both cycle-accurate instruction
set simulation and actual measurements on development boards. Currently, our tool includes cycle-accurate
instruction set simulators for AVR ATmega and TI MSP430, as well as an ARM development board equipped
with a Cortex-M3 processor1. We use GCC for all these platforms, but other compilers could be supported
as well. Third, our tool is also open with respect to the evaluation metrics. Currently, it can evaluate three
basic metrics, namely execution time, RAM footprint, and binary code size. Other metrics can be derived
thereof or are, at least, closely related. For example, the energy consumption of a block cipher executed on
an embedded processor operating in a certain power mode can be estimated by the product of execution
time, supply voltage, and average power dissipation. However, since our framework supports development
boards, it could be extended to acquire more accurate energy figures by simply measuring the processor’s
power dissipation while it executes a cryptographic algorithm.

Our benchmarking toolsuite accepts source codes written either in “pure” ANSI C or in C with inlined
Assembly sections for the three processor architectures mentioned above. In this way, the toolsuite supports
various trade-offs between performance and portability. At one end of the spectrum are highly-optimized
implementations for which the complete encryption/decryption function consists of hand-crafted Assembly
code. Assembly programming allows one to fully exploit the architectural features of a processor and, in
this way, reach peak performance. The speed-up due to the integration of hand-crafted Assembly code is
especially pronounced if a cipher performs a large number of operations that are significantly less efficient in
C than in Assembly language (e.g. multi-word arithmetic, certain bit manipulations). Benchmarking results
obtained from carefully-optimized Assembler implementations played an important role in the evaluation
of candidates for cryptographic standards like the AES [43] and SHA-3 [45], and this will also be the case
for future standardization activities in the area of lightweight cryptography for the IoT [44]. However, an
implementation of a cipher written in Assembly language is architecture-dependent and, consequently, not
portable. At the other end of the performance-portability spectrum are pure C implementations, which are
highly portable but, in general, less efficient than their hand-crafted Assembly counterparts.

While the importance of benchmarking hand-optimized Assembly implementations is out of dispute, we
argue that it makes also sense to benchmark portable C implementations of lightweight ciphers. Our argu-
ment is twofold and based on the specific properties and constraints of the IoT. First, it has to be noticed
that there is no single dominating hardware platform in the IoT, in contrast to the “conventional” Internet
of commodity computers, where the Intel architecture has a market share of over 90%. In fact, the IoT is
populated by billions of heterogenous devices with largely incompatible processors and different operating
systems. Supporting a large number of platforms with optimized Assembly code is tedious and error-prone
since, for each processor architecture, a separate code base needs to be written, tested, debugged, and then
maintained. In the light of ever-increasing time-to-market pressure, cryptographic engineers may value the
portability of C code more than the performance of Assembly code. Our second argument is related to the
steadily increasing research interest in lightweight ciphers with new designs being published (almost) every
month. Implementations written in C often serve as proof-of-concept in the design phase of a new primitive
to explore e.g. different candidates for a round function. Benchmarks generated from C implementations
allow cipher designers to quickly evaluate the impact of various design options (e.g. round function, number
of rounds) on execution time, RAM footprint and code size. In this way, designers can already assess in an
early phase of the design cycle how a new primitive may compare with the state-of-the-art.

We report detailed benchmarking results for a total of 19 lightweight block ciphers, namely the AES
[43], Chaskey [42], Fantomas [31], HIGHT [35], LBlock [58], LEA [34], LED [32], Piccolo [50], PRESENT
[12], PRIDE [1], PRINCE [13], RC5 [48], RECTANGLE [61], RoadRunneR [6], Robin [31], Simon [7], SPARX
[23], Speck [7], and TWINE [52]. Our rationale for selecting exactly the mentioned 19 ciphers is twofold;
first, each of these candidates has some special property or feature that makes it interesting for applications
in the IoT. Second, they cover a wide range of different design strategies and approaches. Our evaluation
considers two application scenarios or use cases; the first relates to the encryption of messages transmitted
in a Wireless Sensor Network (WSN) and the second is a simple challenge-response authentication protocol
with applications in e.g. object identification or access control. To accommodate the different requirements

1 The main reason for evaluating the execution time for ARM on a development board is that we could not find a
cycle-accurate Cortex-M instruction set simulator of good quality that is freely available.

2



of these application scenarios, we evaluated at least two versions of most of the 19 ciphers, including a low-
memory variant and a speed-optimized variant. The former can be seen as a “minimalist” implementation
that favors low memory footprint and small code size over performance. On the other hand, the second
implementation includes certain optimizations that increase code size and/or memory footprint (e.g. partial
loop unrolling, use of small lookup tables) with the goal of improving performance. Roughly half of the
implementations were written from scratch by us, whereby we put a comparable effort into optimizing each
cipher to ensure a consistent and fair evaluation. The other half was either taken from other open-source
projects or contributed by the designers of the algorithms or by volunteers; in all these cases we carefully
reviewed the source codes and further optimized them whenever possible. In this way, we tried to minimize
the impact of varying programming skills and/or experience. Most of our implementations are faster or on
par with the best execution times reported in the literature on the platforms we consider. Therefore, these
implementations form a solid code base for the benchmarking of lightweight block ciphers.

Related Work. There exist a number of related research projects that evaluate software implementations
of lightweight block ciphers, but none of them analyzed execution time, RAM footprint, and code size on
different 8, 16, and 32-bit platforms. We studied previous benchmarking initiatives in detail, but in the end
we decided to develop a new benchmarking framework from scratch instead of contributing to an existing
one since each of the existing frameworks has a certain issue or limitation that would have been difficult
to fix. Nevertheless, understanding the strengths and weaknesses of other benchmarking initiatives helped
us to design a flexible and powerful framework capable of collecting accurate and detailed results about the
execution time, RAM consumption and code size of lightweight ciphers.

In the course of the BLOC project [17], a total of 16 lightweight block ciphers were evaluated on an
MSP430 microcontroller. The provided C library [16] shows that the project does not insist on a common
interface for all ciphers and there seems to be no way to easily integrate new platforms. By inspecting the
benchmarking code we discovered a bug in the calculation of the RAM requirements because the authors
assumed that a variable of type unsigned int has a size of one byte instead of two. Furthermore, some
implementations did not verify the test vectors provided in the cipher specification2. For the block ciphers
considered both in our paper and in [17], our results on MSP430 are, on average, three times better.

During the ECRYPT II project, a survey paper [25] with the results of a performance evaluation of 12
low-cost block ciphers on an 8-bit AVR ATtiny45 device was published. Among the analyzed ciphers are
only designs that were introduced before 2012, i.e. more recent ciphers, such as Simon and Speck [7], are
not included. The authors describe their evaluation methodology and the implementation guidelines they
followed to ensure a fair comparison of the 12 lightweight ciphers. Although the Assembly source codes are
available [27], there is no framework provided that can help users to asses the performance of new designs
under the same conditions. The Assembly implementation results of this survey on AVR ATtiny45 are on
par with our Assembly implementation results on AVR ATmega128.

The XBX extension [57] to SUPERCOP [9] allows one to benchmark hash functions on embedded devices
and adds two new metrics, namely RAM footprint and ROM consumption. Unfortunately, the framework is
currently not maintained any more, but still worth mentioning because of the consistent evaluation across
several platforms and the importance of the benchmarking results for the SHA-3 competition [45].

Our Contributions. First, we designed and implemented a framework for fair and consistent benchmark-
ing of lightweight cryptographic primitives on 8, 16, and 32-bit processors. Our work is motivated by the
lack of a well-accepted and widely-used tool that allows the cryptographic research community to analyze
and compare the execution time, RAM requirements and code size of lightweight primitives on a range
of embedded platforms. These three metrics can be extracted at a very detailed level for different operations
(e.g. encryption, decryption, key expansion) through a well-defined API. We make the entire source code
of our framework available under GPL version 3 to facilitate the establishment of a completely free and
open benchmarking environment for lightweight cryptosystems. The source code can be downloaded from
the CryptoLUX wiki [19].

Second, we survey 19 lightweight block ciphers and analyze, in particular, their suitability for software
implementation on resource-restricted devices. This set of ciphers covers a wide range of different design
principles and includes a number of recent proposals with highly interesting properties, e.g. Simon/Speck
[7], Robin/Fantomas [31], and SPARX [23]. We collected between two and up to 24 implementations of each
cipher to account for different trade-offs between execution time, RAM footprint, and code size. For nine
2 The maintainers of the BLOC project merged our pull request on GitHub that fixed the mentioned issues, see
http://github.com/kmarquet/bloc/pull/2.

3

http://github.com/kmarquet/bloc/pull/2


out of the 19 ciphers we have not only C implementations, but also optimized Assembly code for the three
platforms we consider. In total, our repository includes over 250 implementations, of which we developed
roughly half from scratch and the rest we took over (and slightly modified) from other open-source projects
or they were contributed by the cipher designers. The source code of all our implementations is available
under GPL and can be downloaded from the CryptoLUX wiki3.

Third, we present detailed timing, RAM consumption, and code size figures of all 19 ciphers, which we
generated with the help of our benchmarking toolsuite. Furthermore, we define two typical usage scenarios
that aim to resemble security-related operations commonly carried out by “real” IoT devices. The results
we obtained shed some new light on the relative efficiency of lightweight block ciphers because (i) several
of our implementations are much faster or smaller than that of other survey and benchmarking efforts, and
(ii) we include a few designs that have been published only very recently. Since lightweight cryptography is
a rapidly progressing area of research, we also maintain a web page [19] with the latest results, which gets
automatically updated when users provide new implementations. Our framework allows the user to define
a custom “Figure Of Merit” (FOM) according to which an overall ranking of a set of block ciphers can be
assembled. The FOM metric can use different weight factors for execution time, RAM footprint, and code
size, and may even consider (cryptanalytic) security aspects.

To the best of our knowledge, this paper is the first to analyze a broad range of lightweight block ciphers
on different processors in a comprehensive and consistent fashion, taking into account the specific constraints
and requirements of the IoT. Our results allow one to infer some interesting relations between cipher design
principles and performance figures, and, in this way, contribute to a better understanding of how to design
and implement lightweight block ciphers.

2 Benchmarking Framework

Most papers introducing a new block cipher report some kind of results of some kind of performance eval-
uation on some kind of platform using some kind of implementation. These results are then used by the
authors to claim that the proposed cipher has some kind of “advantage” over existing ciphers or compares
“favorably” with the state of the art. However, the practical relevance of such comparisons is questionable
since it is not easily possible to take differences in the characteristics of the target platforms or differences
in the simulation/measurement conditions into account. Consequently, it is difficult to assess the relative
efficiency of the numerous proposals for lightweight ciphers in a fair and consistent fashion. This motivated
us to develop a benchmarking toolsuite that allows for a unified evaluation of a large number of candidates
by collecting accurate and comprehensive results for execution time, RAM footprint, and code size. The
toolsuite is currently able to extract these metrics from implementations for 8-bit AVR, 16-bit MSP430, and
32-bit ARM Cortex-M processors, but other platforms could be supported as well. We make the full source
code of the benchmarking framework available under GPL to facilitate its acceptance in the cryptographic
research community and to maximize transparency in the evaluation of lightweight block ciphers.

We developed our framework with the goal of being easy to use, but we also aimed for high flexibility in
order to support various optimization strategies for lightweight ciphers. Therefore, the benchmarking frame-
work accepts implementations written in C, which can optionally contain inlined Assembly segments to
speed up performance-critical operations. New ciphers typically come with a reference implementation in C
that can be easily cross-compiled for the three platforms mentioned above. This allows cipher designers to
quickly assess the performance of a new block cipher on different 8, 16, and 32-bit processors. Currently, the
GNU Compiler Collection (GCC) is used for all three platforms, but our toolsuite could be easily extended
with other compilers. The benchmarking framework applies different combinations of compiler switches to
optimize the code generation and achieve best possible results. To ensure a fair and consistent evaluation
of ciphers, each implementation has to adhere to a pre-defined Application Program Interface (API) and
follow a set of guidelines to meet certain constraints. A detailed description of the framework requirements
can be found in Appendix B.

As stated in the previous section, we consider benchmarking results obtained with C implementations
to be useful for cipher designers and for cryptographic engineers who prefer portable C code over platform-
optimized Assembly code. Since cipher designers tend to write reference implementations in ANSI C, the
effort of evaluating a new cipher boils down to adapting the C source code to meet the requirements of the
framework. However, benchmarks generated with C implementations do often not reflect the full potential
of a lightweight cipher because ANSI C can not efficiently express multi-word arithmetic operations and
3 All results reported in this paper are based on version 1.1.20 of the FELICS framework, which can be downloaded
from http://www.cryptolux.org/index.php/File:FELICS.zip

4

http://www.cryptolux.org/index.php/File:FELICS.zip


certain bit manipulations. In addition, the quality of the C compiler (i.e. its ability to apply sophisticated
optimizations) may impact the relative performance of lightweight ciphers. To mitigate these issues, and to
serve cryptographic engineers who are primarily interested in high speed rather than high portability, the
toolsuite supports the benchmarking of hand-optimized Assembly implementations for the three considered
platforms. We had both C and Assembly implementations available for nine of the 19 lightweight ciphers
we benchmarked; the remaining ten ciphers were evaluated using C source codes only. In total, we analyzed
more than 250 different C and Assembly implementations of 19 lightweight block ciphers. We make the full
source code of all implementations available under GPL to ensure the reproducibility of our results and, in
this way, increase the transparency and trustability of our evaluation process.

2.1 Evaluation Metrics

The benchmarking framework is able to extract three primary metrics, namely execution time, run-time
memory (i.e. RAM) consumption, and code size. We consider these metrics as “primary” because (i) they
determine to a large extent how well a block cipher meets the constraints and requirements of the IoT, and
(ii) they can not be derived from other metrics. Since reaching high performance is the main design goal
of essentially any software-oriented cipher, it is clear that a benchmarking framework needs to be capable
to evaluate the execution time in a comprehensive and precise fashion. In addition, other metrics, such as
the energy consumption of a cipher, have a strong correlation with the execution time4. While most existing
papers that present implementation results for a lightweight block cipher only report execution times, we
consider it important to take also RAM footprint and code size into account. Many IoT devices are so
constrained that they feature only a few hundred bytes of RAM and a few kB of flash memory, which means
RAM footprint and code size are crucial criterions for cryptographic engineers when selecting a lightweight
cipher. In addition, since it is not possible to optimize all three metrics simultaneously, one has to find a
trade-off. For example, common approaches to reduce the execution time, such as loop unrolling or the use
of a lookup table to speed up the round function, generally increase the code size or RAM consumption
or both. Our benchmarking framework allows a cryptographic engineer to analyze such trade-offs and, in
this way, determine the best optimization strategy for the requirements of the target application and the
constraints of the target device. The execution time, RAM footprint, and code size of an implementation
can be combined into a single number by defining a Figure-of-Merit (FOM), which makes it possible to rank
different implementations. We describe in Subsection 4.1 a FOM that is basically a weighted sum of the
three metrics across the three platforms we support.

Execution Time. The execution time is quantified through the number of clock cycles required for the
execution of each of the four basic operations of a block cipher, namely encryption, decryption, encryption
key schedule, and decryption key schedule (see Appendix B). As mentioned earlier, our framework supports
instruction-set simulators as well as the acquisition of real measurements from development boards. Con-
cretely, the cycle-accurate simulators Avrora [55,54] and MSPDebug [8] are used to evaluate the execution
times for the 8-bit AVR and 16-bit MSP430 platform, respectively. On the other hand, the cycle counts on
the ARM Cortex-M3 are determined with help of the system timer by reading the SysTick Current Value
Register (SYST_CVR). This register gets decremented with each processor clock and allows for very precise
measurement of elapsed cycle counts. The framework automatically inserts C code for reading the system
timer immediately before and immediately after the operation to be measured and calculates the execution
time as the difference of the two timer values. However, the obtained execution time may vary by a few
cycles depending on how the compiler translates the C code for reading the timer into Assembly instructions
in different contexts and how the data types are aligned in memory. Therefore, it is possible to get slightly
varying execution times for one and the same operation in different usage scenarios. We collected the timings
for ARM reported in Section 4 using an Arduino Due board [2] with a Cortex-M3 [3] processor.

RAM Footprint. The RAM footprint is determined by the size of the data section (which contains all
static variables that are initialized to a non-zero value) and the maximum stack consumption. There is no
need to take the bss section into account since the two usage scenarios we developed for the benchmarking
of lightweight ciphers (described further below) operate without uninitialized static data. In addition, the
heap is not used at all because the framework does not permit any dynamically-allocated variables. The
4 One can get a rough estimate of the energy consumption by simply forming the product of execution time, average
power consumption of the target processor, and supply voltage. More accurate energy figures could be obtained
by extending the framework to support power measurements on microprocessor development boards.

5



amount of RAM occupied by the data section is determined with help of the size tool from the GNU
Binutils collection. On the other hand, the maximum stack consumption of an operation or usage scenario
is evaluated in the standard way with a so-called stack canary. At the beginning of the operation/scenario
(i.e. directly after the function call for that operation/scenario), the free stack space is filled with a certain
pattern. Then, at the end of the function’s execution, the values in the stack area are compared with the
pattern and the number of overwritten bytes gives the stack consumption. The parameters passed to the
function under evaluation do not need to be counted since the arguments are placed in registers on all three
platforms and not pushed on the stack. However, what is added to the RAM consumption is the size of the
operation-specific or scenario-specific variables (e.g. byte-arrays for plaintext, key, round key, initialization
vector, etc.), which are declared and defined in the main function.

Code Size. The code size is measured in bytes and quantifies the amount of storage an operation or usage
scenario occupies in the non-volatile memory (e.g. flash memory) of the target device. It is evaluated by
applying the size tool on the relevant object files generated by the compiler. This tool, which is part of the
GNU Binutils, lists the size of the different sections of an object file or executable. In order to obtain the
overall code size, the framework simply adds the size of the text and data sections of the relevant object
files. The text section contains the executable machine instructions the compiler generated from the source
code. On the other hand, the data section comprises all static variables that are initialized with a non-zero
value. The content of this section is loaded from flash memory into RAM at the beginning of the program
execution. As already mentioned above, the bss section is empty since none of the benchmarked operations
and scenarios use any uninitialized static variables. It should also be noted that common code fragments
(e.g. auxiliary functions used in both encryption and decryption) are counted only once when computing the
overall code size. Hence, it makes sense for implementers to identify common functionality and put it into
a single C function or procedure. However, we do not take into account the size of the main function (from
where the functions for the basic operations like encryption or decryption are called) because it is the same
for all ciphers and not relevant in the context of the studied scenarios.

2.2 Usage Scenarios

Besides the evaluation of the four basic operations of a block cipher (i.e. encryption, decryption, encryption
key schedule, and decryption key schedule), the benchmarking framework also supports more advanced forms
of assessment based on usage scenarios. A usage scenario should implement some common security service
with practical relevance for the IoT and utilize the basic cipher operations. In this way, it is possible to
obtain realistic benchmarking results that are meaningful in the real world. The results reported in Section
4 are based on two simple usage scenarios, which we describe below. Further usage scenarios can be easily
added thanks to the modular design of the benchmarking framework.

Scenario 1: Communication Protocol. This scenario covers the need for secure communication between
two IoT devices such as two sensor nodes in a WSN. It is assumed that the sensitive data is encrypted
and decrypted using a lightweight block cipher in CBC mode of operation. Since standard communication
protocols for the IoT, such as IEEE 802.15.4 [36] and ZigBee [62], are characterized by low transmission
rates and small packet sizes, we assume the plaintext to have a length of 128 bytes (i.e. 1024 bits) in this
scenario. There is no need for a padding scheme because the length of the plaintext is a multiple of both
64 and 128 bits, which are the two block sizes we consider in this paper. Furthermore, we assume that the
master key resides in RAM and that the round keys (obtained through the operation for key schedule) are
also kept in RAM for later use by the encryption or decryption operation. The plaintext and initialization
vector for CBC mode shall also be in the device’s RAM at the beginning of the execution. In order to reduce
the RAM footprint, the encryption is performed in place, which means the plaintext gets overwritten by the
ciphertext (and vice versa for decryption). However, the key schedule does not modify the master key.

Scenario 2: Challenge-Response Authentication. This scenario is inspired by a simple authentication
protocol where an IoT device proves that it is in possession of a secret key by encrypting a challenge using
a block cipher. In real-world settings, the IoT device can, for example, be an RFID tag (see e.g. [29]) or a
smart card. In this scenario we assume that a lightweight block cipher is used in CTR mode to encrypt 128
bits of data. The device has the full round key stored in flash memory, which means there is no need to store
the master key and also no key schedule operation has to be performed. Both the 128-bit plaintext to be
encrypted and the counter value are held in RAM at the beginning of the execution. In order to reduce the
RAM footprint, the encryption is done in place, i.e. the plaintext gets overwritten by the ciphertext.

6



2.3 Target Devices

The IoT is populated by billions of devices that are equipped with a highly diverse and largely incompatible
range of hardware platforms. In fact, the microcontroller population of the IoT is much more heterogeneous
than the processor population of commodity computers, where the Intel architecture enjoys a market share
of over 90%. Since there is no single dominating platform in the IoT, it is essential that a lightweight block
cipher achieves consistently good performance on a variety of 8, 16, and 32-bit microcontrollers. It is also
essential that a benchmarking framework is capable to collect implementation results from a wide range
of platforms. Our framework supports the AVR ATmega128 [4] as example for an 8-bit architecture, the
TI MSP430F1611 [53] as representative for a 16-bit platform, as well as the ARM Cortex-M3 [3] as example
for a 32-bit RISC machine. However, as stated in the previous section, the benchmarking framework can
be easily extended to support further platforms. A brief description of the main characteristics of the three
currently supported microcontrollers can be found in Appendix A.

3 Analyzed Ciphers

Since our aim is to contribute to a better understanding of the relation between basic design methodologies
for lightweight ciphers and the resulting software performance on resource-limited IoT devices, we selected
19 ciphers that represent a wide variety of design approaches based on Substitution-Permutation Networks
(SPNs) and Feistel Networks (FNs). A classical example for an SPN is the AES [43,21], but other designs
for the S-box and the linear layer are possible, as demonstrated by PRESENT [12], Robin, and Fantomas
[31]. The overall structure of an SPN-based cipher can also vary while still maintaining a round function
consisting of an S-box layer and a linear layer: LED [32] adds key material every four rounds only, while
PRINCE [13] implements a property called α-reflection, which minimizes the overhead for decryption on top
of encryption. Furthermore, it is also possible to build an SPN using only modular Addition, Rotation, and
XOR (ARX), as was done by the designers of SPARX [23]. An FN, on the other hand, can be designed by
utilizing a small SPN as the Feistel function, as in LBlock [58] and Piccolo [50], or with simple arithmetic
and logical operations, as in Simon [7] and ARX designs like HIGHT [35], RC5 [48], and SPECK [7]. These
operations may be data-dependent like in RC5. A variant of the FN is the Generalized FN, which uses
more than two branches. The way the branches are mixed at the end of each round can consist of a simple
rotation (HIGHT) or a dedicated permutation optimizing diffusion (TWINE [52], Piccolo). A high number
of branches allows the use of very simple Feistel functions like in TWINE and HIGHT.

Besides representing a wide variety of different design approaches, most of the 19 lightweight ciphers we
selected for our study have a certain property or feature that makes them particularly interesting for use
in the IoT. We intentionally did not restrict our selection to software-oriented ciphers and included some
designs that were developed for efficiency in hardware, e.g. Piccolo, PRESENT, and PRINCE. As stated in
the previous section, the device population of the IoT is very heterogenous and shows extreme differences
in terms of computational capabilities and resources. Some devices are so constrained that cryptographic
operations can only be implemented in hardware (e.g. RFID tags), while other devices are powerful enough
to run cryptographic software at acceptable speed. Since all these devices should be able to interact and
communicate securely with each other, they have to use one and the same cipher. In order to be suitable
for the IoT, a lightweight block cipher needs to be efficient in both hardware and software. Thus, it makes
sense to evaluate the software performance of hardware-oriented ciphers and vice versa. In the following, we
give an overview of the 19 lightweight ciphers we selected for benchmarking and describe how they can be
implemented in software. The main characteristics of the candidates are summarized in Table 1.

AES. The AES is standardized by the NIST and by far the most-widely used block cipher today. It has
an SPN structure with an internal state of 128 bits represented in the form of a (4 × 4)-byte matrix. The
SubBytes, ShiftRows, MixColumns, and AddRoundKey functions operate on the cipher’s state [43,21]. To
date, the best single-key cryptanalysis of AES-128 is a meet-in-the-middle attack on seven rounds out of ten
[22]. Size-optimized implementations of the AES put the S-box and the round constants in lookup tables
since they occupy just slightly more than 256 bytes. The source code of our size-optimized implementation
mostly follows the cipher pseudocode on all three considered architectures. Since T-tables are very large
(4 kB for either encryption or decryption), we did not include such implementations.

Chaskey. The Chaskey cipher is based on the π permutation of the Chaskey MAC algorithm [42] that is
currently considered for standardization by the ISO/IEC. Said π permutation is a generalized FN and uses
ARX operations on 32-bit words. The cipher has an Even-Mansour structure, which means there is no key

7



Table 1. Overview of the 19 lightweight block ciphers considered in this paper. Block, key and round
key sizes are expressed in bits. The security level is the ratio of the number of rounds broken in a single
key setting to the total number of rounds.

Cipher Year Block
size

Key
size

Round
key size Rounds Security

level Type Target

AES 1998 128 128 1408 10 0.70 SPN SW, HW
Chaskey 2014 128 128 0 8/16 0.87/0.43 Feistel SW
Fantomas 2014 128 128 0 12 NA SPN SW
HIGHT 2006 64 128 1088 32 0.81 Feistel HW
LBlock 2011 64 80 1024 32 0.72 Feistel HW, SW
LEA 2013 128 128 3072 24 0.63 Feistel SW, HW
LED 2011 64 80 0 48 NA SPN HW, SW
Piccolo 2011 64 80 864 25 0.56 Feistel HW
PRESENT 2007 64 80 2048 31 0.84 SPN HW
PRIDE 2014 64 128 0 20 NA SPN SW
PRINCE 2012 64 128 192 12 0.83 SPN HW
RC5∗ 1994 64 128 1344 20 0.80 Feistel SW, HW
RECTANGLE 2015 64 80/128 1664 25 0.72 SPN HW, SW
RoadRunneR 2015 64 80/128 0 10/12 0.5/0.58 Feistel SW
Robin/Robin? 2014 128 128 0 16 1/NA SPN SW
Simon 2013 64 96/128 1344/1408 42/44 0.71/0.70 Feistel HW, SW
SPARX 2016 64/128 128 1600/4224 24/32 0.62/0.68 Feistel SW
Speck 2013 64 96/128 832/864 26/27 0.73/0.74 Feistel SW, HW
TWINE 2011 64 80 1152 36 0.64 Feistel HW, SW
∗ We use RC5 with increased number of rounds, RC5-20.

schedule but the master key is simply XORed to the internal state before and after π is applied. Chaskey-LTS
(Long Term Security) has twice as many rounds as Chaskey and is recommended as a fallback in the case
of cryptanalytic breakthroughs. Currently, the best attack against Chaskey is a differential-linear attack on
seven out of eight rounds [40]. We benchmarked the C implementation provided by the designers, which is
straightforward thanks to the simple structure of the cipher. In addition, we developed implementations in
Assembly language from scratch. The execution times of both can be improved by unrolling several rounds
at the cost of larger code size.

Fantomas. Fantomas is a 128-bit cipher belonging to the family of LS-designs [31]. Its linear layer consists
in the parallel application of so-called “L-boxes,” while the S-box is designed to simplify the implementation
of masking, a countermeasure against Differential Power Analysis (DPA). There is no key-schedule; the
master key is simply added in every round. At the time of writing this paper, there was to our knowledge
no attack against Fantomas. A software implementation of Fantomas usually combines lookup-table based
L-boxes with bit-sliced S-boxes, which are computed using a Feistel structure. Storing the four 512 B L-boxes
in RAM instead of flash improves the execution time by a quarter on AVR and ARM. Our implementations
are based on the C source code provided by the designers.

HIGHT. The lightweight cipher HIGHT is a generalized FN with an ARX structure. More precisely, the
Feistel functions perform only logical XOR and bitwise rotations. The output of the Feistel functions is
combined with the other branches using either XOR or addition modulo 28 [35]. An impossible differential
attack breaks 26 out of 32 rounds of HIGHT [46]. All implementations we benchmarked follow closely the
specification from [33], which modifies the design of the original paper [35]. The 128 7-bit δ constants are
either computed when the key-schedule function is called or pre-computed and stored in flash or RAM. An
entirely unrolled version with inlined auxiliary round functions F0 and F1 requires only half of the cycles
of the reference implementation. When implemented in Assembly language, the execution time decreases
by 50% on MSP and by 10% on AVR and ARM, respectively.

LBlock. LBlock is an FN with 32 rounds. The Feistel function consists of a logical XOR with the round
subkey, a substitution layer of eight different S-boxes, and a permutation of eight nibbles. Furthermore, the
content of one of the branches is rotated by eight bits in each round. The chosen design trade-offs between
security and performance led not only to hardware efficiency but also software efficiency [58]. To date, the

8



best cryptanalytic result is obtained through an impossible differential attack against 23 out of 32 rounds
[14]. The benchmarked LBlock implementations follow the specification from [58]. Optimization strategies
include performing operations on 8, 16 or 32 bits when possible, storing the S-boxes in flash or RAM, and
unrolling the loops. The best execution time on ARM is achieved by the fully-unrolled implementation using
32-bit operations, with the S-boxes stored in RAM.

LEA. The block cipher LEA uses a generalized FN with four 32-bit branches [34]. Designed for high-speed
software encryption on 32-bit platforms, the cipher can be efficiently implemented in hardware as well. The
designers mention a boomerang attack against 15 rounds, which is, to our knowledge, the best cryptana-
lytic result to date. The benchmarked assembler implementations are based on three different optimization
strategies: fast execution time, small code size, and a trade-off between speed and size. These optimizations
are facilitated by LEA’s simple structure requiring only 32-bit operations.

LED. The AES-based cipher LED is aimed at very compact hardware implementation while maintaining
reasonable performance in software. It represents the state by a (4×4)-nibble matrix and uses similar round
transformations as the AES, except that they are nibble-oriented. A distinguishing characteristic of LED is
the absence of a key schedule; the round keys are simply replaced by a part of the master key [32]. To the
best of our knowledge, there are no attacks on LED-80. However, there is a differential attack that covers
16/32 rounds of LED-64 and 24/48 rounds of LED-128 [41]. The structural attack breaking 32/48 rounds
of LED-128 proposed in [24] is unlikely to be adaptable to LED-80. Our LED implementation combines the
SubCells, ShiftRows, and MixColumnsSerial operations into a table lookup to reduce execution time.

Piccolo. Piccolo has a generalized FN structure with four 16-bit branches. To improve diffusion, Piccolo
uses a byte permutation between rounds. Picoolo’s Feistel function consists of two S-box layers separated
by a diffusion matrix [50]. The currently best attack against Piccolo-80 is a meet-in-the-middle attack on 14
rounds, which was presented by the designers. Our Piccolo implementation follows closely the description
provided in [50]. The arithmetic in GF(24) uses only XORs and two small lookup tables for multiplication
by two and three. Both the S-box and the key schedule constants are stored in lookup tables. No specific
loop unrolling is applied.

PRESENT. PRESENT has an SPN structure and comes with a bit-oriented permutation layer. The non-
linear layer is based on a single 4-bit S-box that was designed for efficiency in hardware [12]. A truncated
differential attack against 26 out of 31 rounds of PRESENT is described in [11]. Since the S-box is quite
small, a lookup table is used in all our implementations. However, its combination with a bit permutation
over a 64-bit word is difficult to optimize without introducing extremely large lookup tables (up to 1 MB
for decryption). The size-optimized implementation resembles the cipher’s pseudocode and was taken from
[16]. In general, the bit-oriented design of PRESENT makes C implementations very slow unless one can
afford huge lookup tables. Our Assembly implementations take advantage of bit-manipulation instructions
that the target platforms support. On AVR, the Assembly implementation is around 12 times faster than
its C counterpart, while the MSP Assembly version is even 19 times faster than the C code.

PRIDE. The block cipher PRIDE is an SPN with a strong linear layer and a bit-sliced S-box, which are
optimized for 8-bit microcontrollers [1]. It uses the so-called FX construction with the same key for pre- and
post-whitening and a different key as basis for the round keys. A differential attack on 19 out of 20 rounds
is described in [59]. The designers contributed a C implementation using only 8-bit operations. PRIDE’s
simple key schedule can be performed on the fly to reduce the RAM requirements at the cost of execution
time. The S-box requires only bitwise operations, and also the linear layer consisting of four transformations
(one for every 16 bits of the state) can be implemented efficiently in software.

PRINCE. Similar to PRIDE, PRINCE is an FX construction, whereby the first two subkeys are used as
whitening keys, while the third subkey is the 64-bit key for a 12-round SPN called PRINCEcore . PRINCE
introduced the α-reflection property: encryption with a given key corresponds to decryption with a related
key [13]. To date, the best cryptanalytic result is a multiple differential attack on ten out of the 12 rounds
[15]. We implemented PRINCE as described in the original paper [13,15]. The optimization strategies we
considered include the use of 8, 16, 32, and 64-bit operations where possible and different amounts of loop
unrolling. We obtained the best performance with fully unrolled implementations based on 8-bit operations
for AVR and 16-bit operations for MSP. On ARM, the best execution times were achieved using a partially
unrolled version with 32-bit operations.

9



RC5. RC5 is an FN that uses data-dependent rotations [48]. Even though RC5 was designed long before
lightweight ciphers became popular, it is obviously suitable for resource-constrained devices like wireless
sensor nodes as shown in e.g. [47]. The block and key size, as well as the number of rounds, can be chosen
freely. We use RC5-32/20/16, i.e. a version of RC5 operating on two 32-bit words with a total of 20 rounds
(or 40 half-rounds) and a 16-byte key. The number of rounds was chosen so as to have a security margin
of 0.80. RC5-32/12/16 can be attacked using differential cryptanalysis as explained in [10]. This attack can
be extrapolated to 18 rounds, but would require almost the full codebook (i.e. 264 ciphertexts). RC5 was
implemented by slightly adapting the reference code provided in [48]. Because of its elegant and simple
design, there are only very few possibilities for optimization. To explore different trade-offs, we unrolled the
cipher’s operations and pre-computed the encryption-key-schedule array S to store it in flash or RAM.

RECTANGLE. The block cipher RECTANGLE is an SPN that allows for efficient implementation in
hardware and software thanks to its bit-sliced structure [61]. Its non-linear layer applies a 4-bit S-box to
each column of the state, which is represented through a (4 × 16)-bit matrix, while the linear layer rotates
each row by a different amount. A differential attack that covers 18 out of 25 rounds is described by its
designers. RECTANGLE was implemented in C and Assembly by its designers using different optimization
strategies. The bit-sliced S-box is relatively fast in software because it uses only logical operations. On the
other hand, the simple linear layer involves three rotations of 16-bit words by 1, 12, and 13 bits, which can
be efficiently implemented on 8, 16, and 32-bit architectures.

RoadRunneR. RoadRunnerR has an FN structure that was designed with the aim of high efficiency on
8-bit processors and provable security in terms of minimum number of active S-boxes in differential and
linear trails [6]. The Feistel function is an SPN composed of four 4-bit S-box layers, three linear layers, as
well as three key additions. There exists a high-probability truncated trail covering five rounds, which can
be utilized to attack a 7-round variant of RoadRunneR-128 [60]. RoadRunneR facilitates implementations
in a bit-sliced fashion and is easy to optimize thanks to its simple structure. The bit-sliced S-box and the
linear layer use only bitwise operations and rotations of 8-bit values by 1 bit and are, therefore, very fast in
software. To reduce the RAM requirements, the round keys can be computed on the fly.

Robin. Robin is a 128-bit cipher similar to Fantomas, but its “L-boxes” are involutions [31]. The lookup
table-based diffusion layers and the structure of the S-boxes makes this family of ciphers good candidates
for Boolean masking in bit-sliced software implementations. Unfortunately, there exists a set of weak keys
of density 2−32 that leads to a practical attack on the full primitive as shown in [39]. In response to this
so-called invariant subspace attack, the designers of Robin proposed Robin? [37], in which the 8-bit round
constant is replaced by a 128-bit round constant. Robin was implemented in different ways based on the
C code provided by its designers. The two L-boxes are stored in flash or RAM, while the S-box layer is
computed at each round using the Feistel structure. Robin? requires more memory and is also slower than
the original Robin due to the costly derivation of the 128-bit round constants.

Simon. Simon uses an FN structure with a very simple round function performing bitwise XOR, bitwise
AND, and circular left-shifts. It was primarily optimized for high performance in hardware, but achieves
excellent results in software as well [7]. Differential attacks on 30 out of 42 rounds of Simon-64/96 and on
31 out of 44 rounds of Simon-64/128 are presented in [18]. Optimized implementations of Simon written in
Assembly (for AVR and MSP) and C (for ARM) were provided by its designers. Simon’s simple structure
enables various trade-offs between code size and execution time by combining a different number of rounds
in one loop iteration.

SPARX. The block cipher SPARX is an SPN designed on the foundation of the recently introduced Long
Trail Strategy (LTS), which allows the use of a large and relatively “weak” S-box rather than a small and
strong one [23]. Its ARX-based S-box consists of an unkeyed Speck-32 round [7], while the linear layer is
inspired by that of Noekeon [20]. The designers studied in [23] an integral attack based on Todo’s division
property covering 15 out of 24 rounds of SPARX-64/128 and 22 out of 32 rounds of SPARX-128/128. Due
to its simple and flexible structure, SPARX can be implemented using various optimization strategies. We
explored various different trade-offs between execution time and code size by unrolling the rounds of a step
function and performing one or two step functions at once.

Speck. Speck was designed to achieve high efficiency in hardware and software, especially when executed
on resource-restricted microcontrollers [7]. It uses a Feistel structure in which both branches are modified

10



at each round using bitwise XOR, modular addition, and circular shifts in both directions. The to-date
best cryptanalytic results against Speck-64/96 and Speck-64/128 are differential attacks targeting 19 and
20 rounds out of 26 and 27, respectively [51]. Speck has a simple round function that is extremely fast and
takes just a few bytes of code. Optimized implementations of Speck written in Assembly (AVR, MSP) and
in C (ARM) were provided by the designers. Depending on the optimization strategy, one or several round
functions can be unrolled to improve the execution time at the cost of a minor increase in code size.

TWINE. TWINE is a generalized FN with 16 branches of four bits [52]. The Feistel function just consists
of a key addition and the application of a 4-bit S-box. TWINE’s linear layer is a nibble permutation with
a much higher diffusion than a nibble rotation as used in e.g. HIGHT. The designers aimed for both small
footprint in hardware and low RAM as well as ROM/flash consumption in software. The best attack on
TWINE-80 is a multi-dimensional zero-correlation linear attack on 23 out of 35 rounds [56]. Since TWINE
has a rather minimalist structure, the speed-optimized implementation is only marginally larger than the
size-optimized version. The speed-optimized implementation described by the designers in [52] places the
4-bit branches in separate bytes, which means the state becomes twice as large. We wrote a size-optimized
implementation from scratch. Both implementations are small enough to run on all three platforms.

4 Benchmarking Results

In this section, we firstly describe our evaluation methodology, including the Figure Of Merit (FOM) we
developed to rank the candidates, and then we present and discuss the benchmarking results of 19 ciphers
in the two scenarios described in Section 2.2. A block size of 64 bits was used when available, otherwise we
resorted to 128-bit blocks. We only consider cipher versions with a key length of at least 80 bits, which we
deem the minimum security level acceptable for common IoT applications. For some ciphers we collected
benchmarking results for 80 and 128-bit keys to assess how the key length impacts execution time, RAM
footprint, and code size.

4.1 Evaluation Methodology

At the time of writing this paper, our repository contained between two and 24 different implementations
of 19 lightweight ciphers, and more than 250 altogether. Using the tool suite introduced in Section 2, we
benchmarked the implementations in a highly automated way on three platforms (AVR, MSP, ARM) and
for two usage scenarios. It is possible to rank all these 250+ implementations according to their execution
time, RAM footprint, or code size in any scenario on any platform. In addition, we maintain an interactive
web-page [19] with up-to-date benchmarking results where all these ranking options can be chosen. Due to
space limitations we can only present a small subset of the results in this paper, whereby we aggregated the
data as described below. We also introduce a Figure-of-Merit (FOM) that allows us to assemble an overall
ranking of the 19 evaluated ciphers.

As explained in Section 2, our benchmarking tool determines the execution time, RAM footprint, and
code size of each implementation on each platform, which yields a massive amount of “raw” data. Then, for
each implementation i and platform d, we calculate a performance indicator pi,d that aggregates the three
metrics from M = { execution time, memory consumption, code size } according to the formula

pi,d =
∑
m∈M

wm
vi,d,m

mini(vi,d,m)
, (1)

where vi,d,m is the value of metric m for implementation i on platform d; wm is the relative weight of metric
m and mini(vi,d,m) represents the minimum value of metric m among all considered implementations of all
considered ciphers on the same platform d. By default, we set wm = 1 for each platform and select the
implementation with the best (i.e. smallest) performance indicator pi,d on each platform for the calculation
of the FOM. However, the benchmarking tool suite also allows one to choose different weights for the three
metrics (which can be useful when e.g. execution time is more important than RAM footprint or code size)
or the three platforms (when e.g. ARM is more important than AVR or MSP). Finally, for each cipher and
the selected set of best implementations i1, i2, i3 (one for each platform), we calculate the FOM value as
the average performance indicator across the three platforms:

FOM(i1, i2, i3) =
pi1,AV R + pi2,MSP + pi3,ARM

3
(2)

11



Table 2. Results for Scenario 1: Encryption and decryption of 128 bytes of data in CBC mode. For each cipher and
each platform, the results of the implementation with the best performance indicator according to Equation (1) are
shown. The Figure-of-Merit (FOM) is based on the performance indicators on all three platforms (the smaller the
FOM value, the better the implementations of a cipher).

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 1328∗ 229∗ 20622∗ 900∗ 222∗ 16674∗ 438 236 9851 4.0
Chaskey-LTS 128 128 1328∗ 229∗ 33102∗ 904∗ 222∗ 25394∗ 438 236 12859 4.6
Speck 64 96 966∗ 294∗ 39875∗ 556∗ 288∗ 31360∗ 492 308 15427 5.1
Speck 64 128 874∗ 302∗ 44895∗ 572∗ 296∗ 32333∗ 444 308 16505 5.2
Simon 64 96 1084∗ 363∗ 63649∗ 738∗ 360∗ 47767∗ 600 376 23056 7.0
Simon 64 128 1122∗ 375∗ 66613∗ 760∗ 372∗ 49829∗ 560 392 23930 7.2
RECTANGLE 64 80 1152∗ 352∗ 66722∗ 812∗ 398∗ 44551∗ 664∗ 426∗ 35286∗ 8.0
RECTANGLE 64 128 1118∗ 353∗ 64813∗ 826∗ 404∗ 44885∗ 660∗ 432∗ 36121∗ 8.0
LEA 128 128 1684∗ 631∗ 61020∗ 1154∗ 630∗ 46374∗ 524∗ 664∗ 17417∗ 8.3
SPARX 64 128 1198∗ 392∗ 65539∗ 966∗ 392∗ 36766∗ 1200∗ 424∗ 40887∗ 8.8
SPARX 128 128 1736∗ 753∗ 83663∗ 1118∗ 760∗ 53936∗ 1122∗ 788∗ 67581∗ 13.2
HIGHT 64 128 1414∗ 333∗ 94557∗ 1238∗ 328∗ 120716∗ 1444∗ 380∗ 90385∗ 14.8
AES 128 128 3010∗ 408∗ 58246∗ 2684∗ 408∗ 86506∗ 3050∗ 452∗ 73868∗ 15.8
Fantomas 128 128 3520 227 141838 2918 222 85911 2916 268 94921 17.8
Robin 128 128 2474 229 184622 3170 238 76588 3668 304 91909 18.7
Robin? 128 128 5076 271 157205 3312 238 88804 3860 304 103973 20.7
RC5-20 64 128 3706 368 252368 1240 378 386026 624 376 36473 20.8
PRIDE 64 128 1402 369 146742 2566 212 242784 2240 452 130017 22.8
RoadRunneR 64 80 2504 330 144071 3088 338 235317 2788 418 119537 23.3
RoadRunneR 64 128 2316 209 125635 3218 218 222032 2504 448 140664 23.4
LBlock 64 80 2954 494 183324 1632 324 263778 2204 574 140647 25.2
PRESENT 64 80 2160∗ 448∗ 245232∗ 1818∗ 448∗ 202050∗ 2116∗ 470∗ 274463∗ 32.8
PRINCE 64 128 2412 367 288119 2028 236 386781 1700 448 233941 34.9
Piccolo 64 80 1992 314 407269 1354 310 324221 1596 406 294478 38.4
TWINE 64 80 4236 646 297265 3796 564 387562 2456 474 255450 40.0
LED 64 80 5156 574 2221555 7004 252 2065695 3696 654 594453 138.6
∗ Results for Assembly implementations.

The FOM defined by Equation (2) is an attempt to condense three performance indicators into a single
overall performance figure. Using this FOM allows one to compare (and rank) different ciphers, taking into
account two major requirements for the IoT, namely (i) that not only speed but also memory requirements
and code size are important, and (ii) that good implementation results should be achieved on a wide range
of platforms and not just a single one. Of course, there are many alternative ways to define a performance
indicator or a FOM. The performance indicator specified by Equation (1) aggregates each of the three
considered metrics in relation to the best (i.e. smallest) value of the metric among all implementations. One
could, for example, also relate the value of the memory and code-size metric to the amount of resources
available on a device and calculate the performance indicator pi,d as

pi,d = wtimevi,d,time +
∑

wm
vi,d,m

maxi(vi,d,m)
for m ∈ {memory, size}. (3)

where maxi(vi,d,m) is the total RAM capacity (for the memory metric) or the total flash capacity (for the
code-size metric) of device d; see Appendix A for details. In this way, we essentially measure the fraction
of the totally available resources occupied by the implementation of a cipher. The FOM could, besides the
efficiency metrics that determine the performance indicator, also take security aspects into account; the
Figure of Adversarial Merit (FOAM) proposed in [38] serves as a good example.

4.2 Discussion of Results

Table 2 shows the results for Scenario 1 (“Communication Protocol”) ordered by FOM value, whereby we
measured the encryption and decryption of 128 bytes using CBC mode, including key schedule. The top-3

12



Table 3. Results for Scenario 1: Encryption and decryption of 128 bytes of data in CBC mode. For each cipher and
each platform, the results of the implementation with the best performance indicator according to Equation (1) are
shown, whereby different weights were assigned to the three metrics. Both the memory consumption and code size
have a weight of 1, while the execution time has a weight of 2, which means the execution time is considered more
important than the other two metrics. The Figure-of-Merit (FOM) is based on the performance indicators on all
three platforms (the smaller the FOM value, the better the implementations of a cipher).

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 1328∗ 229∗ 20622∗ 900∗ 222∗ 16674∗ 472 240 9313 5.4
Chaskey-LTS 128 128 1328∗ 229∗ 33102∗ 904∗ 222∗ 25394∗ 576∗ 228∗ 11076∗ 6.5
Speck 64 96 966∗ 294∗ 39875∗ 664∗ 290∗ 29611∗ 492 308 15427 7.5
Speck 64 128 1112∗ 302∗ 41103∗ 592∗ 298∗ 31832∗ 444 308 16505 7.8
Simon 64 96 1084∗ 363∗ 63649∗ 758∗ 362∗ 47266∗ 600 376 23056 10.7
Simon 64 128 1122∗ 375∗ 66613∗ 780∗ 374∗ 49328∗ 560 392 23930 11.0
LEA 128 128 1684∗ 631∗ 61020∗ 1154∗ 630∗ 46374∗ 696 644 16192 11.5
RECTANGLE 64 80 1152∗ 352∗ 66722∗ 832∗ 400∗ 44050∗ 664∗ 426∗ 35286∗ 12.4
RECTANGLE 64 128 1118∗ 353∗ 64813∗ 846∗ 406∗ 44384∗ 660∗ 432∗ 36121∗ 12.5
SPARX 64 128 1426∗ 392∗ 61955∗ 986∗ 394∗ 36265∗ 1200∗ 424∗ 40887∗ 13.4
SPARX 128 128 1736∗ 753∗ 83663∗ 1710∗ 758∗ 46640∗ 2290∗ 784∗ 53109∗ 19.6
AES 128 128 3010∗ 408∗ 58246∗ 2684∗ 408∗ 86506∗ 3080∗ 452∗ 73579∗ 23.6
HIGHT 64 128 1414∗ 333∗ 94557∗ 1258∗ 330∗ 120215∗ 1444∗ 380∗ 90385∗ 25.1
Fantomas 128 128 5892 267 111677 4164 234 56788 4604 308 70142 26.3
Robin 128 128 4944 271 146149 3170 238 76588 3572 1312 74665 28.5
Robin? 128 128 5076 271 157205 3312 238 88804 3724 1316 85247 31.1
RC5-20 64 128 3706 368 252368 1240 378 386026 624 376 36473 37.0
PRIDE 64 128 3384 373 111155 2918 380 226135 2240 452 130017 38.8
RoadRunneR 64 80 2504 330 144071 3088 338 235317 2788 418 119537 39.2
RoadRunneR 64 128 2316 209 125635 2952 362 218909 2504 448 140664 39.8
LBlock 64 80 2954 494 183324 1632 324 263778 2204 574 140647 43.7
PRESENT 64 80 2160∗ 448∗ 245232∗ 1838∗ 450∗ 201549∗ 2528∗ 502∗ 270464∗ 59.3
PRINCE 64 128 5358 374 243396 4174 240 357423 4372 504 201136 62.3
TWINE 64 80 4236 646 297265 3796 564 387562 2456 474 255450 70.8
Piccolo 64 80 1992 314 407269 1354 310 324221 1596 406 294478 71.9
LED 64 80 5156 574 2221555 7004 252 2065695 3696 654 594453 264.8
∗ Results for Assembly implementations.

ciphers based on the FOM score are Chaskey, Speck, and Simon; the FOM value of these three ciphers is
less than half of the FOM value of the AES. Note that the FOM value takes into account all three metrics
(i.e. execution time, RAM footprint, and code size) and does so across three platforms (i.e. AVR, MSP, and
ARM). Of course, when looking at execution time, RAM requirements, or code size individually, or when
looking at AVR, MSP, or ARM individually, the specific rankings can differ significantly from the overall
ranking based on the FOM score. Furthermore, it should be noted that up to 24 different implementations
of one and the same cipher exist, which are based on different optimization strategies. In particular, when
comparing different C implementations, it can (and usually does) happen that they perform differently on
the three platforms. It may also happen that one and the same cipher is slower on the 16-bit MSP platform
than on 8-bit AVR (e.g. HIGHT, AES, RC5), which is not a mistake but simply due to considering RAM
footprint and code size equally important as execution time. Another interesting observation is that small
differences in the key length (e.g. 32 bits in the case of Simon and Speck, or even 48 bits for RECTANGLE
and RoadRunneR) have only a marginal impact on the FOM value.

When having a closer look at the results on AVR, it turns out that the top-ranked algorithms are quite
similar in terms of RAM footprint, which means the overall rank is primarily determined by execution time
and code size. Speck has roughly twice the execution time of Chaskey, while Simon carries a performance
penalty by a factor of approximately three. A somewhat surprising result is that the AES beats Simon on
AVR, but its high performance comes at the expense of a rather large code size. Also LEA and SPARX are
a bit faster than Simon when comparing the versions with 64-bit blocks and 128-bit keys. All other ciphers
are at least three time slower than Chaskey. The situation is similar on MSP in the sense that Chaskey is

13



Table 4. Results for Scenario 2: Encryption of 128 bits of data (pre-computed round keys). For each cipher and
each platform, the results of the implementation with the best performance indicator according to Equation (1) are
shown. The Figure-of-Merit (FOM) is based on the performance indicators on all three platforms (the smaller the
FOM value, the better the implementations of a cipher).

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 624∗ 80∗ 1465∗ 388∗ 70∗ 1153∗ 216∗ 76∗ 524∗ 4.4
Chaskey-LTS 128 128 624∗ 80∗ 2265∗ 390∗ 70∗ 1690∗ 216∗ 76∗ 648∗ 5.0
Speck 64 96 506∗ 53∗ 2647∗ 328∗ 48∗ 1959∗ 256 56 1003 5.1
Speck 64 128 452∗ 53∗ 2917∗ 332∗ 48∗ 2013∗ 276 60 972 5.2
Simon 64 96 600∗ 57∗ 4269∗ 460∗ 56∗ 2905∗ 416 64 1335 7.0
Simon 64 128 608∗ 57∗ 4445∗ 468∗ 56∗ 3015∗ 388 64 1453 7.2
LEA 128 128 906∗ 80∗ 4023∗ 722∗ 78∗ 2814∗ 520∗ 112∗ 1171∗ 8.0
RECTANGLE 64 128 602∗ 56∗ 4381∗ 480∗ 54∗ 2651∗ 444∗ 76∗ 2365∗ 8.5
RECTANGLE 64 80 606∗ 56∗ 4433∗ 480∗ 54∗ 2651∗ 444∗ 76∗ 2365∗ 8.5
SPARX 64 128 662∗ 51∗ 4397∗ 580∗ 52∗ 2261∗ 654∗ 72∗ 2338∗ 8.7
SPARX 128 128 1184∗ 74∗ 5478∗ 1036∗ 72∗ 3057∗ 1468∗ 104∗ 2935∗ 13.0
RC5-20 64 128 1068 63 8812 532 60 15925 372 64 1919 14.8
AES 128 128 1246∗ 81∗ 3408∗ 1170∗ 80∗ 4497∗ 1348∗ 124∗ 4044∗ 14.9
HIGHT 64 128 636∗ 56∗ 6231∗ 636∗ 52∗ 7117∗ 670∗ 100∗ 5532∗ 15.9
Fantomas 128 128 2496 108 5919 1920 78 3602 2184 184 4550 19.6
Robin 128 128 2530 108 7813 1942 80 4913 2188 184 6250 23.0
Robin? 128 128 2580 106 8052 1980 80 5262 2272 196 6417 23.7
RoadRunneR 64 80 1420 61 7329 1536 76 13034 1900 172 7234 25.5
PRIDE 64 128 2064 91 5727 1842 68 13108 1592 148 7446 25.6
RoadRunneR 64 128 1184 59 6289 1724 74 13266 1436 164 8573 26.3
LBlock 64 80 1440 64 11183 804 58 16101 1220 284 9015 28.7
PRESENT 64 80 1294∗ 56∗ 16849∗ 1072∗ 58∗ 12347∗ 1222∗ 80∗ 17105∗ 38.6
PRINCE 64 128 1362 72 20060 1576 76 24246 1384 280 15165 44.0
Piccolo 64 80 1114 72 25820 784 70 20081 688 112 17965 44.2
TWINE 64 80 1528 64 21701 1922 136 23662 1180 156 15673 44.6
LED 64 80 2548 267 135061 4422 104 121850 2172 352 35891 149.2
∗ Results for Assembly implementations.

clearly the fastest of all 19 ciphers, followed by Speck. Simon is again on the sixth position, outperformed
by RECTANGLE, LEA, as well as SPARX with 64-bit blocks. However, the results on MSP also illustrate
a weakness of Chaskey, namely its rather large code size, which exceeds that of Speck by a factor of 1.6. In
terms of RAM consumption, PRIDE and RoadRunneR perform very well on the MSP platform. Finally, on
ARM, the winners in the performance competition are Chaskey, Speck, and LEA. In addition, these three
ciphers also hold the top positions in terms of code size, which is mainly because of their extremely simple
round function operating on 32-bit words. All other algorithms are both slower and larger than LEA.

Table 3 shows the results for Scenario 1 when different weights are assigned to the three metrics used to
calculate the performance indicator according to Equation (1), namely when the execution time has twice
the weight of RAM footprint and code size. Setting the weights in this way can make sense when a cipher is
used on battery-powered devices and low energy dissipation (enabled by fast execution times) is considered
more valuable than low memory requirements or small code size. In this setting, the top-3 ciphers are still
the same as in Table 2, which was assembled with all three metrics having the same weight, but there are
some changes in the middle of the table. For example, LEA holds now the position of RECTANGLE (and
vice versa) and also HEIGHT and the AES exchanged their position.

The results for Scenario 2 (“Challenge-Response Authentication”) are provided in Table 4, whereby we
measured the encryption of 128 bits of data in CTR mode using pre-computed round keys. We calculated the
performance indicators according to Equation (1) using the default weights, which means all three metrics
and all three platforms are considered equally important. The results are similar to that of Scenario 1 since
the three top spots are held by the same ciphers in exactly the same order, i.e. Chaskey is the best overall
performer and Speck is the runner-up. Simon secured the third place, even though on all three platforms
some other ciphers show better execution times. However, Simon profits from its relatively small code size

14



Table 5. Results for Scenario 2: Encryption of 128 bits of data (pre-computed round keys). For each cipher and
each platform, the results of the implementation with the best performance indicator according to Equation (1) are
shown, whereby different weights were assigned to the three metrics. Both the memory consumption and code size
have a weight of 2, while the execution time has a weight of 1, which means the former two metrics are considered
more important than the execution time. The Figure-of-Merit (FOM) is based on the performance indicators on all
three platforms (the smaller the FOM value, the better the implementations of a cipher).

Cipher AVR MSP ARM

Block Key Code RAM Time Code RAM Time Code RAM Time FOM
[b] [b] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.]

Chaskey 128 128 624∗ 80∗ 1465∗ 388∗ 70∗ 1153∗ 184∗ 76∗ 568∗ 7.1
Speck 64 96 448∗ 53∗ 2829∗ 328∗ 48∗ 1959∗ 256 56 1003 7.3
Speck 64 128 452∗ 53∗ 2917∗ 332∗ 48∗ 2013∗ 264 56 1029 7.4
Chaskey-LTS 128 128 624∗ 80∗ 2265∗ 390∗ 70∗ 1690∗ 216∗ 76∗ 648∗ 7.7
Simon 64 96 534∗ 57∗ 4521∗ 460∗ 56∗ 2905∗ 416 64 1335 9.8
Simon 64 128 542∗ 57∗ 4709∗ 468∗ 56∗ 3015∗ 388 64 1453 10.0
RECTANGLE 64 128 602∗ 56∗ 4381∗ 480∗ 54∗ 2651∗ 444∗ 76∗ 2365∗ 11.5
RECTANGLE 64 80 606∗ 56∗ 4433∗ 480∗ 54∗ 2651∗ 444∗ 76∗ 2365∗ 11.5
LEA 128 128 906∗ 80∗ 4023∗ 722∗ 78∗ 2814∗ 520∗ 112∗ 1171∗ 12.1
SPARX 64 128 662∗ 51∗ 4397∗ 580∗ 52∗ 2261∗ 654∗ 72∗ 2338∗ 12.2
RC5-20 64 128 1068 63 8812 532 60 15925 372 64 1919 18.1
SPARX 128 128 1184∗ 74∗ 5478∗ 904∗ 80∗ 3273∗ 932∗ 108∗ 4085∗ 19.0
HIGHT 64 128 636∗ 56∗ 6231∗ 636∗ 52∗ 7117∗ 670∗ 100∗ 5532∗ 19.7
AES 128 128 1246∗ 81∗ 3408∗ 1170∗ 80∗ 4497∗ 1348∗ 124∗ 4044∗ 21.4
Fantomas 128 128 1712 76 9689 1412 74 5506 1412 104 6484 27.7
Robin 128 128 1712 78 12499 1406 72 7051 1424 116 7686 30.9
PRIDE 64 128 958 60 11222 1842 68 13108 1592 148 7446 33.3
RoadRunneR 64 128 1184 59 6289 756 58 18067 1436 164 8573 33.3
RoadRunneR 64 80 1420 61 7329 1536 76 13034 1900 172 7234 33.7
Robin? 128 128 1754 80 14285 1980 80 5262 1472 116 9186 34.2
LBlock 64 80 1440 64 11183 804 58 16101 616 80 11818 34.7
PRESENT 64 80 1294∗ 56∗ 16849∗ 1072∗ 58∗ 12347∗ 1222∗ 80∗ 17105∗ 44.2
Piccolo 64 80 1114 72 25820 784 70 20081 688 112 17965 48.8
PRINCE 64 128 1362 72 20060 1578 70 24375 1200 132 16270 51.0
TWINE 64 80 1528 64 21701 1922 136 23662 1180 156 15673 52.3
LED 64 80 2602 91 143317 4422 104 121850 2172 352 35891 164.0
∗ Results for Assembly implementations.

and low RAM footprint. Positions 4 to 6 are held by LEA, RECTANGLE and SPARX with FOM scores
that are between 1.82 and 1.98 times worse than Chaskey’s FOM score. The FOM score of all other ciphers
is more than three times higher than the FOM of Chaskey.

Table 5 shows the results when the performance indicators are computed using a higher weight for the
RAM footprint and code size than for execution time. In real-world implementations of challenge-response
authentication (e.g. access control systems), the overall latency is often determined by the data transfers
between the two parties rather than the execution time of the encryption. This is, in particular, the case
for RFID systems, which support only relatively low transmission rates and are also prone to transmission
errors. In such a setting, one could argue that the execution time of a lightweight cipher is not the main
priority (especially since the amount of data to be encrypted is small), but rather the RAM consumption
and code size. The ranking of the 19 ciphers in Table 5 is based on performance indicators that assign the
RAM footprint and code size twice the weight of execution time. Besides Chaskey, Speck turns out to be
very lightweight and is, thus, an excellent choice for applications where size is the primary constraint. On
all three platforms, Speck has a code size of below 500 Bytes and RAM footprint of less than 60 Bytes. Also
Simon is size-wise consistently good on all three platforms.

Caveats. The results of any “benchmark paper” in cryptography, including ours, always reflect the state
of research at the time when it was written. However, the efficient implementation of (lightweight) ciphers
is an active area of research that is likely to provide new approaches for speeding up one or more of the
19 candidates considered in this paper. The AES serves as a good example on how progress in software

15



optimization techniques can yield significantly more efficient implementations. Similar progress could also
make one or more of our lightweight ciphers much faster than anticipated today. This is the reason why we
maintain a web page [19] where up-to-date benchmarking results and cipher rankings can be found. We also
note that the results of most of the hardware-oriented ciphers are based on C implementations since, at the
time of writing this paper, we had optimized Assembly code only for PRESENT. Although hand-crafted
Assembly code is often much more efficient than compiled C code, it seems rather unlikely that Assembly
programming could bring one of the hardware-tailored ciphers close to the current top performers, unless
a tremendous breakthrough in software optimization is made. Furthermore, the presented results reflect, to
a certain degree, also the effort the implementers have put into optimization. We invite the cryptographic
research community to send us improved implementations of the 19 lightweight ciphers we analyzed in this
paper. In addition, we also welcome implementations of new ciphers.

4.3 Comparison with other Benchmarking Results

Many of the ciphers we study in this paper have already been evaluated on AVR, MSP, or ARM processors
before, either separately or within some other benchmarking project. It is not easily possible to compare
performance figures across various frameworks and implementations because the evaluation methodology is
usually different and also the optimization efforts typically vary. The importance of a consistent evaluation
framework and methodology becomes quickly evident when taking the AES counter-mode implementation
for Cortex-M3 processors in [49, Section 3] as example. This implementation uses the T-table approach in
combination with a careful optimization of the memory accesses and achieves, according to [49], an average
execution time of 659.4 clock cycles for a single-block encryption with a 128-bit key. However, this cycle
count was only reached by configuring the Cortex-M3 processor to have a reduced number of wait states
for memory accesses, which favors implementations using T-tables, but limits the maximum frequency the
processor can be clocked with. On the other hand, our benchmarking framework operates the Cortex-M3
with the full wait states (so that it can be clocked with its maximum frequency) and reports an execution
time of 1641 clock cycles for this T-table implementation. In addition, it must be taken into account that
using T-tables entails a large memory footprint, which worsens the FOM score. This also explains why an
implementation using only Sbox lookups can reach a better FOM score than the T-table approach, despite
the fact that T-tables have the potential to reduce the execution time by a factor of more than two.

The most notable differences between our benchmarks and previous implementation results obtained on
AVR, MSP, and ARM are as follows. The MSP implementations of LBlock, Piccolo, and Twine developed
as part of the BLOC project [16] are a bit worse than ours, whereas the AES, HIGHT, and PRESENT are
much slower. On the other hand, the AVR Assembly implementations of PRESENT and the AES from the
ECRYPT project [27] are slightly slower than our Assembly versions, while our implementation of HIGHT is
twice as fast as the Assembly implementation from [26] and 10 times faster than that from [27].

5 Conclusions

We presented a benchmarking framework for fair and consistent evaluation of lightweight block ciphers on
three widely-used microcontroller platforms for IoT devices, namely 8-bit AVR, 16-bit MSP430, as well as
32-bit ARM Cortex-M3. The framework is able to extract three metrics of interest (execution time, RAM
footprint, and binary code size) in a highly automated fashion and supports both cycle-accurate instruction
set simulators and development boards. Furthermore, we introduced two usage scenarios for the evaluation
of block ciphers that accomplish common IoT security services by utilizing the basic cipher operations. The
framework allows one to aggregate the three extracted metrics on the three platforms into a single figure
of merit according to which a set of ciphers can be ranked. With the help of this framework, we evaluated
a total of 19 lightweight block ciphers using a code base consisting of over 250 different implementations
altogether (including carefully-optimized Assembly implementations for nine of the 19 ciphers). Our results
show that state-of-the-art ARX and ARX-like designs are not only very fast, but also extremely small in
terms of RAM footprint and code size. The overall winner of our triathlon competition, based on the FOM
metric, is Chaskey, closely followed by Speck. Both perform consistently well in the two usage scenarios and
on all three platforms, which makes them strong candidates for a lightweight cipher to secure the IoT. Also
Simon, LEA, RECTANGLE, and SPARX achieved very good results with FOM values below 10.0 when
execution time, RAM footprint, and code size are considered equally important.

The FOM scores we used to rank the 19 lightweight block ciphers are solely based on efficiency metrics
and do not take any (cryptanalytic) security aspects into account. In this context, it should be noted that

16



neither Chaskey nor versions of Speck operating on more than 32 bits provide provable security against
linear or differential cryptanalysis. Also related to security is our observation that the key size has only a
marginal impact on the overall efficiency of modern lightweight ciphers. In particular, the results for Simon
and Speck indicate a gain in the FOM metric by a few per cent when the key size is reduced from 128 bits
to 96 bits, which can hardly justify the corresponding loss of security.

The provided results can assist IoT security engineers when choosing a lightweight cipher to match the
requirements of the target application and the constraints of the target device(s). Furthermore, the results
are relevant for designers of ciphers as they allow them to infer some links between basic design decisions
and the resulting performance and size figures when the cipher is implemented in software and executed on
microcontrollers. In particular, we recommend cipher designers to focus on simple round functions that use
as few operations as possible and reach a good security level after several iterations. Among the most effi-
cient operations are the bitwise logical operations and modular addition/subtraction. The cost of rotations
depends on both the features of the target architecture and the rotation amount. One should use rotations
by some carefully-chosen value (e.g. 7, 8, 9, 15, or 16 bits for a 32-bit word) to reduce the execution time
and code size on platforms that support only rotations by one bit at a time. To get the best performance
across architectures with different word sizes, the cipher’s word size should match the largest register size
available on the considered architectures. In this way, the content of the registers is efficiently used on the
platforms with the largest word size, while the performance on architectures with a smaller register size is
not affected. The efficient operations mentioned above do not require memory accesses, provided that the
cipher’s state can be kept in the available registers. Finally, lookup tables of any size should be avoided as
they increase the code size and/or RAM footprint and also require costly load instructions.

Future work may include the addition of new ciphers, integration of countermeasures against physical
attacks, extending the toolsuite’s capabilities to benchmark other lightweight symmetric primitives (stream
ciphers, hash functions, authenticated encryption algorithms) and the support of additional processors.

6 Acknowledgements

We thank all contributors listed at http://www.cryptolux.org/index.php/FELICS_Contributors for the
submitted implementations and their support for a fair evaluation of lightweight block ciphers. Daniel Dinu
and Léo Perrin were supported by the CORE project ACRYPT (ID C12-15-4009992), funded by the Fonds
National de la Recherche (FNR) Luxembourg.

References

1. M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar, and T. Yalçin. Block ciphers – Focus on the
linear layer (feat. PRIDE). In J. A. Garay and R. Gennaro, editors, Advances in Cryptology — CRYPTO 2014,
volume 8616 of Lecture Notes in Computer Science, pages 57–76. Springer Verlag, 2014.

2. Arduino. Arduino Due. Specification, available online at http://arduino.cc/en/Main/arduinoBoardDue, 2015.
3. ARM Limited. An Introduction to the ARM Cortex-M3 Processor. White paper, available for download at

http://www.arm.com/ja/files/pdf/IntroToCortex-M3.pdf, 2006.
4. Atmel Corporation. 8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash: ATmega128,

ATmega128L. Datasheet, available for download at http://www.atmel.com/images/doc2467.pdf, 2008.
5. L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer Networks, 54(15):2787–2805,

Oct. 2010.
6. A. Baysal and S. Sahin. RoadRunneR: A small and fast bitslice block cipher for low cost 8-bit processors. In

T. Güneysu, G. Leander, and A. Moradi, editors, Lightweight Cryptography for Security and Privacy — LightSec
2015, volume 9542 of Lecture Notes in Computer Science, pages 58–76. Springer Verlag, 2016.

7. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and SPECK families
of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.

8. D. Beer. MSPDebug: Debugging tool for MSP430 MCUs. Available online at http://mspdebug.sourceforge.net,
2015.

9. D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems. Available online at
http://bench.cr.yp.to, Feb. 2015.

10. A. Biryukov and E. Kushilevitz. Improved cryptanalysis of RC5. In K. Nyberg, editor, Advances in Cryptology
— EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer Science, pages 85–99. Springer Verlag, 1998.

11. C. Blondeau and K. Nyberg. Links between truncated differential and multidimensional linear properties of block
ciphers and underlying attack complexities. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology —
EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 165–182. Springer Verlag, 2014.

17

http://www.cryptolux.org/index.php/FELICS_Contributors
http://arduino.cc/en/Main/arduinoBoardDue
http://www.arm.com/ja/files/pdf/IntroToCortex-M3.pdf
http://www.atmel.com/images/doc2467.pdf
http://mspdebug.sourceforge.net
http://bench.cr.yp.to


12. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, Y. Seurin, and C. H. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems — CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466. Sprin-
ger Verlag, 2007.

13. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar,
C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalçin. PRINCE – A low-latency block cipher for pervasive
computing applications. In X. Wang and K. Sako, editors, Advances in Cryptology — ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 208–225. Springer Verlag, 2012.

14. C. Boura, M. Naya-Plasencia, and V. Suder. Scrutinizing and improving impossible differential attacks: Appli-
cations to CLEFIA, Camellia, LBlock and Simon. In P. Sarkar and T. Iwata, editors, Advances in Cryptology —
ASIACRYPT 2014, volume 8873 of Lecture Notes in Computer Science, pages 179–199. Springer Verlag, 2014.

15. A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia, and J.-R. Reinhard. Multiple differential cryptanalysis of
round-reduced PRINCE. In C. Cid and C. Rechberger, editors, Fast Software Encryption — FSE 2014, volume
8540 of Lecture Notes in Computer Science, pages 591–610. Springer Verlag, 2015.

16. M. Cazorla, S. Gourgeon, K. Marquet, and M. Minier. Implementations of lightweight block ciphers on a WSN430
sensor. Available online at http://bloc.project.citi-lab.fr/library.html, 2015.

17. M. Cazorla, K. Marquet, and M. Minier. Survey and benchmark of lightweight block ciphers for wireless sensor
networks. In P. Samarati, editor, Proceedings of the 10th International Conference on Security and Cryptography
(SECRYPT 2013), pages 543–548. SciTePress, 2013.

18. H. Chen and X. Wang. Improved linear hull attack on round-reduced Simon with dynamic key-guessing tech-
niques. Cryptology ePrint Archive, Report 2015/666, 2015.

19. CryptoLUX Team. FELICS: Fair Evaluation of Lightweight Cryptographic Systems. Available online at http:
//www.cryptolux.org/index.php/FELICS, 2016.

20. J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie proposal: NOEKEON. Specification, available for
download at http://gro.noekeon.org/Noekeon-spec.pdf, 2000.

21. J. Daemen and V. Rijmen. The Design of Rijndael: AES – The Advanced Encryption Standard. Springer Verlag,
2002.

22. P. Derbez and P.-A. Fouque. Exhausting Demirci-Selçuk meet-in-the-middle attacks against reduced-round AES.
In S. Moriai, editor, Fast Software Encryption — FSE 2013, volume 8424 of Lecture Notes in Computer Science,
pages 541–560. Springer Verlag, 2013.

23. D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. Biryukov. Design strategies for ARX with
provable bounds: Sparx and LAX. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology — ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages 484–513. Springer Verlag, 2016.

24. I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Key recovery attacks on 3-round Even-Mansour, 8-step LED-
128, and full AES2. In K. Sako and P. Sarkar, editors, Advances in Cryptology — ASIACRYPT 2013, volume
8269 of Lecture Notes in Computer Science, pages 337–356. Springer Verlag, 2013.

25. T. Eisenbarth, Z. Gong, T. Güneysu, S. Heyse, S. Indesteege, S. Kerckhof, F. Koeune, T. Nad, T. Plos, F. Regaz-
zoni, F.-X. Standaert, and L. van Oldeneel tot Oldenzeel. Compact implementation and performance evaluation of
block ciphers in ATtiny devices. In A. Mitrokotsa and S. Vaudenay, editors, Progress in Cryptology — AFRICA-
CRYPT 2012, volume 7374 of Lecture Notes in Computer Science, pages 172–187. Springer Verlag, 2012.

26. T. Eisenbarth, S. S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A survey of lightweight-cryptography
implementations. IEEE Design & Test of Computers, 24(6):522–533, Nov. 2007.

27. European Network of Excellence in Cryptology (ECRYPT II). Implementations of Low Cost Block Ciphers in
Atmel AVR Devices. Available online at http://perso.uclouvain.be/fstandae/lightweight_ciphers, 2015.

28. D. Evans. The Internet of Things: How the Next Evolution of the Internet is Changing Everything. Cisco
IBSG white paper, available for download at http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_
0411FINAL.pdf, Apr. 2011.

29. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID systems using the AES
algorithm. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems – CHES
2004, volume 3156 of Lecture Notes in Computer Science, pages 357–370. Springer Verlag, 2004.

30. V. D. Gligor. Light-weight cryptography – How light is light? Keynote presentation at the Information Security
Summer School, Florida State University. Slide deck available online at http://www.sait.fsu.edu/conferences/
2005/is3/resources/slides/gligorv-cryptolite.ppt, May 2005.

31. V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. LS-designs: Bitslice encryption for efficient masked
software implementations. In C. Cid and C. Rechberger, editors, Fast Software Encryption — FSE 2014, volume
8540 of Lecture Notes in Computer Science, pages 18–37. Springer Verlag, 2015.

32. J. Guo, T. Peyrin, A. Poschmann, and M. J. Robshaw. The LED block cipher. In Cryptographic Hardware and
Embedded Systems — CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 326–341. Springer
Verlag, 2011.

33. B. Han, H. Lee, H. Jeong, and Y. Won. The HIGHT Encryption Algorithm. Internet Engineering Task Force,
Network Working Group, Internet draft draft-kisa-hight-00 (work in progress), Dec. 2011.

34. D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu, and D. Lee. LEA: A 128-bit block cipher for fast encryption
on common processors. In Y. Kim, H. Lee, and A. Perrig, editors, Information Security Applications — WISA
2013, volume 8267 of Lecture Notes in Computer Science, pages 3–27. Springer Verlag, 2013.

18

http://bloc.project.citi-lab.fr/library.html
http://www.cryptolux.org/index.php/FELICS
http://www.cryptolux.org/index.php/FELICS
http://gro.noekeon.org/Noekeon-spec.pdf
http://perso.uclouvain.be/fstandae/lightweight_ciphers
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.sait.fsu.edu/conferences/2005/is3/resources/slides/gligorv-cryptolite.ppt
http://www.sait.fsu.edu/conferences/2005/is3/resources/slides/gligorv-cryptolite.ppt


35. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim, and
S. Chee. HIGHT: A new block cipher suitable for low-resource device. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems — CHES 2006, volume 4249 of Lecture Notes in Computer
Science, pages 46–59. Springer Verlag, 2006.

36. IEEE Standards Association. IEEE 802.15.4-2015 – IEEE Standard for Low-Rate Wireless Networks. Available
online at http://standards.ieee.org/findstds/standard/802.15.4-2015.html, 2015.

37. A. Journault, F.-X. Standaert, and K. Varici. Improving the security and efficiency of block ciphers based on
LS-designs. Designs, Codes and Cryptography, 82(1–2):495–509, Jan. 2017.

38. K. Khoo, T. Peyrin, A. Y. Poschmann, and H. Yap. FOAM: Searching for hardware-optimal SPN structures
and components with a fair comparison. In L. Batina and M. J. Robshaw, editors, Cryptographic Hardware and
Embedded Systems — CHES 2014, volume 8731 of Lecture Notes in Computer Science, pages 433–450. Springer
Verlag, 2014.

39. G. Leander, B. Minaud, and S. Rønjom. A generic approach to invariant subspace attacks: Cryptanalysis of
Robin, iSCREAM and Zorro. In E. Oswald and M. Fischlin, editors, Advances in Cryptology — EUROCRYPT
2015, volume 9056 of Lecture Notes in Computer Science, pages 254–283. Springer Verlag, 2015.

40. G. Leurent. Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning. In M. Fischlin and
J.-S. Coron, editors, Advances in Cryptology — EUROCRYPT 2016, volume 9665 of Lecture Notes in Computer
Science, pages 344–371. Springer Verlag, 2016.

41. F. Mendel, V. Rijmen, D. Toz, and K. Varici. Differential analysis of the LED block cipher. In X. Wang and
K. Sako, editors, Advances in Cryptology — ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer
Science, pages 190–207. Springer Verlag, 2012.

42. N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel, and I. Verbauwhede. Chaskey: An efficient
MAC algorithm for 32-bit microcontrollers. In A. Joux and A. M. Youssef, editors, Selected Areas in Cryptography
— SAC 2014, volume 8781 of Lecture Notes in Computer Science, pages 306–323. Springer Verlag, 2014.

43. National Institute of Standards and Technology (NIST). Advanced Encryption Standard (AES). FIPS Publication
197, available for download at http://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf, 2001.

44. National Institute of Standards and Technology (NIST). Lightweight Cryptography Project. Available online at
http://csrc.nist.gov/projects/lightweight-cryptography, 2016.

45. National Institute of Standards and Technology (NIST). SHA-3 Project. Available online at http://csrc.nist.
gov/projects/hash-functions/sha-3-project, 2016.

46. O. Özen, K. Varici, C. Tezcan, and Ç. Kocair. Lightweight block ciphers revisited: Cryptanalysis of reduced
round PRESENT and HIGHT. In C. Boyd and J. G. Nieto, editors, Information Security and Privacy — ACISP
2009, volume 5594 of Lecture Notes in Computer Science, pages 90–107. Springer Verlag, 2009.

47. A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: Security protocols for sensor networks.
Wireless Networks, 8(5):521–534, Sept. 2002.

48. R. L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Software Encryption — FSE ’94, volume
1008 of Lecture Notes in Computer Science, pages 86–96. Springer Verlag, 1995.

49. P. Schwabe and K. Stoffelen. All the AES you need on Cortex-M3 and M4. In R. M. Avanzi and H. M. Heys,
editors, Selected Areas in Cryptography — SAC 2016, volume 10532 of Lecture Notes in Computer Science, pages
180–194. Springer Verlag, 2017.

50. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. Piccolo: An ultra-lightweight block-
cipher. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded Systems — CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 342–357. Springer Verlag, 2011.

51. L. Song, Z. Huang, and Q. Yang. Automatic differential analysis of ARX block ciphers with application to
SPECK and LEA. Cryptology ePrint Archive, Report 2016/209, 2016.

52. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. TWINE: A lightweight, versatile block cipher. In
G. Leander and F.-X. Standaert, editors, Proceedings of the 1st ECRYPT Workshop on Lightweight Cryptography
(LC 2011), pages 146–169, 2011.

53. Texas Instruments. MSP430x1xxx Family User’s Guide. Available for download at http://www.ti.com/lit/ug/
slau049f/slau049f.pdf, 2006.

54. B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable sensor network simulation with precise timing. In
Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN 2005),
pages 477–482. IEEE, 2005.

55. B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: The AVR simulation and analysis framework. Available online
at http://compilers.cs.ucla.edu/avrora, 2005.

56. Y. Wang and W. Wu. Improved multidimensional zero-correlation linear cryptanalysis and applications to LBlock
and TWINE. In W. Susilo and Y. Mu, editors, Information Security and Privacy — ACISP 2014, volume 8544
of Lecture Notes in Computer Science, pages 1–16. Springer Verlag, 2014.

57. C. Wenzel-Benner and J. Gräf. XBX: eXternal Benchmarking eXtension for the SUPERCOP crypto benchmark-
ing framework. In S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded Systems —
CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages 294–305. Springer Verlag, 2010.

58. W. Wu and L. Zhang. LBlock: A lightweight block cipher. In J. López and G. Tsudik, editors, Applied Cryptog-
raphy and Network Security — ACNS 2011, volume 6715 of Lecture Notes in Computer Science, pages 327–344.
Springer Verlag, 2011.

19

http://standards.ieee.org/findstds/standard/802.15.4-2015.html
http://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
http://csrc.nist.gov/projects/lightweight-cryptography
http://csrc.nist.gov/projects/hash-functions/sha-3-project
http://csrc.nist.gov/projects/hash-functions/sha-3-project
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://compilers.cs.ucla.edu/avrora


59. Q. Yang, L. Hu, S. Sun, K. Qiao, L. Song, J. Shan, and X. Ma. Improved differential analysis of block cipher
PRIDE. In J. López and Y. Wu, editors, Information Security Practice and Experience — ISPEC 2015, volume
9065 of Lecture Notes in Computer Science, pages 209–219. Springer Verlag, 2015.

60. Q. Yang, L. Hu, S. Sun, and L. Song. Extension of meet-in-the-middle technique for truncated differential and
its application to RoadRunneR. In J. Chen, V. Piuri, C. Su, and M. Yung, editors, Network and System Security
— NSS 2016, volume 9955 of Lecture Notes in Computer Science, pages 398–411. Springer Verlag, 2016.

61. W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. RECTANGLE: A bit-slice lightweight block
cipher suitable for multiple platforms. Science China Information Sciences, 58(12):1–15, Dec. 2015.

62. ZigBee Alliance. ZigBee Wireless Standard. Available online at http://www.zigbee.org, 2015.

A Target Devices

8-bit AVR ATmega128 Microcontroller. The ATmega128 [4] microcontroller developed by Atmel is
based on an 8-bit RISC architecture and provides 133 instructions, which are encoded to be either 16 or 32
bits wide. Most of the instructions are executed in only one or two clock cycles. The ATmega128 features
a two-stage pipeline, making it possible to execute an instruction while the next instruction is fetched from
program memory. In addition, it comes with a relatively large register file consisting of 32 general-purpose
registers (R0 to R31) of 8-bit width. Six registers can be used as three 16-bit pointers (X, Y, and Z) to access
the data space. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU). The standard
ALU instructions have a two-address format, which allows them to read two 8-bit operand words from two
independent registers and write the result of the operation back to one of them. Like other members of the
8-bit AVR family, the ATmega128 uses a Harvard architecture (i.e. separate memories, buses, and address
spaces for program and data) to maximize performance and parallelism. The memory sub-system includes
128 kB of flash (for storing program code), 4 kB of SRAM, and 4 kB of EEPROM.

16-bit MSP430F1611 Microcontroller. The MSP430F1611 [53] is a 16-bit microcontroller from Texas
Instruments that contains a RISC CPU optimized for ultra-low power consumption and various peripheral
modules. A distinguishing feature of the MSP430 architecture is its minimalist instruction set comprising
only 27 core instructions and 24 emulated instructions. The length of an instruction can vary between one
and three 16-bit words, i.e. between two and six bytes. Depending on the instruction format, the 27 core
instructions fall into three categories: double-operand instructions (which overwrite one of the two operands
with the result), single-operand instructions, and jumps. The MSP430 instruction set is highly orthogonal
and supports seven addressing modes for the source operand and four addressing modes for the destination
operand. Depending on the used addressing modes, double-operand instructions have a latency of between
one clock cycle (when source and destination operands are held in registers) and six clock cycles (operands
are in RAM or flash). There are 16 registers, of which four, namely R0 to R3, serve a special purpose. The
von-Neumann memory system of the MSP430F1611 consists of 10 kB RAM and 48 kB flash.

32-bit ARM Cortex-M3 Microcontroller. The Cortex-M3 is a member of the ARM Cortex-M series
of 32-bit microcontrollers that was specifically designed to achieve high system performance in power- and
cost-sensitive embedded applications [3]. It is based on the ARMv7-M architecture and supports Thumb-2
technology, which extends the 16-bit fixed-width Thumb instruction set with some additional 32-bit ARM
instructions, whereby 16-bit and 32-bit instructions can be freely intermixed. Data processing instructions
have a conventional three-address format that allows the target register to be distinct from the two source
operands. The first operand must always be one of the 13 general-purpose 32-bit registers, while the second
operand can be a register, an immediate value, or a register with an optional shift. Many instructions can
be executed conditionally, based on condition flags set by another instruction. Cortex-M3 microcontrollers
incorporate a Harvard architecture (enabling simultaneous instruction fetch with data load/store) and have
a three-stage pipeline with branch speculation. The specific Cortex-M3 device we use for benchmarking is
an Arduino Due board equipped with an Atmel SAM3X8 that features 512 kB flash and 96 kB RAM.

B API and Implementation Requirements

To unify evaluation conditions, our framework imposes some requirements on the implementation of a block
cipher. Firstly, basic operations must be performed by functions having the following C prototypes.

void RunEncryptionKeySchedule(uint8_t *key, uint8_t *roundKeys);

20

http://www.zigbee.org


void Encrypt(uint8_t *block, uint8_t *roundKeys);
void RunDecryptionKeySchedule(uint8_t *key, uint8_t *roundKeys);
void Decrypt(uint8_t *block, uint8_t *roundKeys);

Each of the above functions should be implemented in its own C file. If the cipher key schedule is the same
for encryption and decryption then only the encryption key schedule function has to be implemented. The
framework takes a common key schedule into account when computing the different metrics. Secondly, all
other common code sections should be placed in separate functions to reduce the overall code size. The
implementer needs to add the names of the common files to the implementation info file, which gets parsed
by the framework when extracting the three metrics for the implementation. Thirdly, the implementer has
to choose whether the constants used by the cipher should be stored in flash/ROM or RAM. However, this
flexibility comes at the expense that the implementer has to define and use a dedicated macro to read the
constant value(s). Fourthly, the block size used by the implementation must be a multiple of 64 bits.

While these requirements guarantee the same evaluation conditions for an accurate assessment of the
performance of a block cipher in various different evaluation scenarios, they limit the applicability of some
optimization techniques like bit-slicing. Even though bit-sliced implementations can be very fast, they have
the disadvantage of high memory consumption and can only be used in non-feedback modes of operation
(e.g. CTR mode). However, the performance of a cipher implementation in such (highly) specific settings
does not say anything about the cipher’s performance in more general usage scenarios, which is what we are
mainly interested in and our framework was designed for. The benchmarking toolsuite is able to verify the
compliance with the formulated requirements and to check the correctness of an implementation with the
help of test vectors. Since the metrics extraction process is completely automated, the toolsuite is easy to
use, even for beginners with little experience.

21


