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Abstract
Cryptographic hardware becomes increasingly vulnerable to physical attacks—both passive side-channel analysis and active
fault injections—performed by skillful and well-equipped adversaries. In this paper, we introduce a technique that provides
very high security against both types of attacks. It combines inner product masking (IPM), which offers higher-order side-
channel attack resistance on word level and on bit level, with nonlinear security-oriented error-detection codes that provide
robustness, i.e., strong detection guarantees for arbitrary faults. We prove that our scheme has the same security against
side-channel attacks that an earlier, non-robust IPM-based solution has and in addition preserves robustness during addition
and multiplication (and therefore arbitrary computations). Moreover, we prove that the information leakage from the checker
is small and that the attack will be detected far before the attacker will gain significant information.

1 Introduction

Confidentiality, integrity and authenticity of sensitive infor-
mation processed by integrated circuits are protected by cryp-
tographic primitives, which in turn are endangered by various
physical attacks [2]. Security-critical systemsmustwithstand
different attacks vectors, most notably, side-channel analysis
and fault-injection attacks. Countermeasures that are highly
effective against one class of attacks have been known for a
long time, and there is a good understanding of the trade-off
between a specific countermeasure’s effectiveness in protect-
ing a system against an attacker with certain capabilities and
the cost associated with that countermeasure. It turns out,
however, that countermeasures are not easily composable
and adding a countermeasure, against, e.g., fault attacks, can
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worsen the system’s resistance against side-channel threats
[3,4].

In this article, we propose the scheme IPM-RED, which
combines two sophisticated protections against fault and
side-channel attacks, and prove formally that this scheme
retains security guarantees related to each of the classes.
“IPM” stands for “inner productmasking” [5], a side-channel
countermeasure that supports user-specified security orders
both at the word and at the bit level. “RED” points to “robust
error detection,” an approach toward detecting (and correct-
ing) maliciously injected faults with a guaranteed minimal
probability of detection [6]. IPM-RED extends an earlier
scheme IPM-FD [7], which was also based on enhanc-
ing inner product masking with fault detection but used a
non-robust error-detection approach (a repetition code).Non-
robustness implies the existence of errors with 0% detection
probability, and an adversarywith very precise fault-injection
equipment could systematically mount fault attacks without
ever being detected. The same is true for other combined side-
channel/fault-attack countermeasures based on non-robust
codes, e.g., parity codes [4]. Note that IPM-RED does not
use information theoreticMAC tagswhich require fresh (ran-
dom) MAC keys for each operation [8].

Our specific contribution is as follows:

• We combine, for the first time (to the best of our knowl-
edge) an advanced masking scheme with robust error
detection in away that neither reduces side-channel resis-
tance nor error-detection guarantees.
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• We provide formal proofs that all security orders and
bounds are preserved during addition and multiplication
in the IPM-RED representation. Since arbitrary computa-
tions can be reduced to additions and multiplications [7],
IPM-RED enables universal computations in the masked
domain.We analyze the computational complexity of the
operations and find them tolerable, despite the fact that
sophisticated nonlinear codes are used.

• We formalize the problem of quantifying information
leakage from the checker (assuming an adversary can
observe its output) by means of mutual information. We
prove that this leakage is of no practical concern: the
probability that an attack will go undetected is exponen-
tially smaller than the entropy loss due to information
leak from the checker.

The remainder of the paper is organized as follows: The
next section starts with introducing notation, and then phys-
ical attacks and masking strategies are reviewed; the earlier
work [7] is recapitulated, and the various securitymetrics that
IPM-RED aims to preserve are summarized. Section 3 intro-
duces IPM-RED, discusses its construction and proves its
security. Section 4 contains proof that security is preserved
during operations in the masked domain. In Sect. 5, infor-
mation leakage from IPM-RED (and IPM-FD) checkers is
discussed and its extent is proven1. Section 6 concludes the
paper.

2 Preliminaries

2.1 Notations

We denote by F(q) = GF(q) a finite field of characteristic 2
and size q = 2s . For example, q = 24 for PRESENTand q =
28 for AES. Scalars and vectors over this field are denoted
by lowercase letters (e.g., x ∈ Fq , y ∈ F

k
q ), and matrices

are denoted by capital letters (e.g., Ak1×k2 ∈ F
k1×k2
q ). An all

zero (one) vector of length k is denoted by 0k (1k), and an
identity matrix of dimension k is denoted by Ik×k . When the
dimensions of a matrix are clear from the context we omit
them.

Calligraphic letters denote sets (e.g., C ⊆ F
k
q ). The fields

Fq and the vector space F
s
2 are isomorphic; thus, a q-ary

vector of length k can be referred to as a binary vector of
length kb = s · k bits and vice versa. For example, for a
PRESENT cipher, the plaintext is a binary vector of length

1 This journal article extends the comment [1] which appeared at the
PROOFS workshop 2019. The material from the workshop paper is
largely restricted to Sect. 5. Note that the workshop paper [1] focused
on information leakage from an unmasked circuit and did not consider
secure composition of protections against side-channel and fault attacks.

kb = 64; however, in an inner product masking scheme [5],
it is referred to as a q-ary vector of length 16 over F16.

We use parentheses to denote concatenation of vectors;
that is, for x ∈ F

k1
q and y ∈ F

k2
q the vector (x, y) is a q-

ary vector of length k1 + k2. Finally, the inner product of
two vectors x, y ∈ F

k
q is denoted by < x, y >; that is,

< x, y >= ∑k
i=1 xi yi where the computation is performed

in the Fq .

2.2 Fault-injection and side-channel attacks

It has been noticed in [9] that faults that occur during a
cryptographic operation can compromise its security. Fault-
injection attacks utilize this fact by deliberately inducing a
physical disturbance during the execution of a cryptographic
function. A plethora of fault-injection techniques have been
demonstrated, including inducing glitches on the circuit’s
inputs or clock lines; overheating; underpowering; applying
electromagnetic pulses; and illuminating the circuit with a
laser [10,11]. The best known attacks, which need a sin-
gle fault injection to recover the complete secret key of a
cipher [12,13], require very high temporal and spatial reso-
lution, i.e., a fault injection in a precisely known clock cycle
at a precisely known portion of the circuit. Even the most
sophisticated fault-injection techniques [14] currently do not
provide such resolution, and as a consequence, an attackmust
be attempted several times. Robust codes used in this paper
make a conservative assumption of the attacker: namely that
the attacker can precisely select an arbitrary number of spe-
cific bits that will be flipped as a consequence of the fault
injection. This assumption is captured by defining the error
as a binary vector which is added (XORed) to the circuit’s
outputs and errors which the attacker can choose.

Once a fault has been injected, the attacker can analyze
the circuit’s outputs (ciphertexts in the case of encryption)
obtained in the presence and in the absence of the distur-
bance. Applying differential cryptanalysis techniques, secret
key bits can be inferred. It is also possible to collect a larger
number of the circuit’s responses for faults of different inten-
sities and to infer the key from a statistical analysis [15,16].
In this paper, we make no assumption about which type of
fault analysis the attacker will perform. Any injected fault
that goes undetected by the robust code is considered critical
and the codes aim at increasing the probability of detection.
The question considered is whether knowing the check bits
gives the attacker additional information about the secret key
and how much such information leakage can occur.

Another relevant class of physical attacks is side-channel
analysis [17], where an adversary observes a circuit’s behav-
ior without actively manipulating it. For example, observed
delays or power consumption can allow the attacker to infer
bits of a secret key, or at least restrict the number of potential
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key candidates to a value forwhichbrute-first searchbecomes
feasible. Side-channel analysis is typically done using statis-
tical techniques such as differential [18] or correlation power
analysis [19]. Vulnerability of an implementation to side-
channel analysis can be captured by information-theoretical
concepts such as mutual information [20].

2.3 Masking against side-channel attacks

Masking is a well-known countermeasures for block ciphers
against side-channel attacks. It is based on data randomiza-
tion where any key-dependent q-ary variable is split into ν

random and secret shares. The shares are processed in a way
that preserves the correctness of computations and ensures
that intermediate values remain independent of the sensitive
variables. In general, the security order of a masking scheme
is defined as the largest number above which it is possible
to exploit secret information from the protected implemen-
tation, e.g., by probing wires of the protected circuit. In Sect.
2.5, we describe five security metrics that can be used to
evaluate the security order of a masking scheme against side-
channel and fault injection attacks.

In order to provide end-to-end security, all the cipher oper-
ations are performed in the mask domain and they must
be secure. That is, any cryptographic algorithm has to start
with plaintext and key in ν share representations, carry out
addition andmultiplication operations to implement the algo-
rithm, and end up with a ciphertext that still has share
representation. The most challenging part of cipher imple-
mentations is the design of a provable secure nonlinear S-box
, which involves finite field arithmetic.

There are many types of masking. The best known exam-
ples are Boolean masking [21], masked computations over
finite fields [22] and polynomial masking based on Shamir’s
secret-sharing and secure multi-party computation tech-
niques [23,24], inner product masking (IPM) [5]. Boolean
masking, which involves computations over F2, is widely
used because of its simplicity, ease of implementation and
comparatively low-performance overhead. Masking tech-
niques with higher algebraic complexity, i.e., defined over
fields of size q = 2s with s = 4, 8, provide more security
than Boolean masking at the cost of higher overheads; for
example, the software implementation of the inner product
masking in [5] is said to be four times slower than Boolean
masking.

The occurrence of glitches and maliciously injected faults
can lead to side-channel information leakage [25]. A circuit-
level approach to secret sharing, threshold cryptography
and multi-party computation protocols based on masking
schemes that resist side-channel attacks in the presence of
glitches is presented in [26]. In [4], a countermeasure for
cryptographic hardware implementations, dubbedParTI, that
combines a threshold implementation (TI) with additional

parity bits against fault injectionwas introduced.As shown in
[3], because the parity bits can leak information, a threshold
implementation of the redundant bits is required to prevent
side-channel information leakage from these bits. The codes
in [4] are linear with a minimum distance of d > 1; thus, any
number of bit-flips smaller than d − 1 is always detected.
However, due to the linearity of the code, many error pat-
terns are never detected. In [8], the masked linear redundant
bits were replaced by masked MAC in order to detect an
arbitrary number of errors.

2.4 Linear code-based approach for detecting faults
in IPM schemes

Inner product masking (IPM) is a special case of direct sum
masking (DSM). In DSM, the secret is a symbol x in Fq .
The secret is represented as sharing, i.e., a tuple of ν field
elements,

z = (x,m)L = xG + mH ∈ F
ν
q

where m = (m2,m3, . . . ,mν) ∈ F
ν
q is the random mask

drawn uniformly, the matrix L = (lT1 , lT2 , . . . , lTν ) is a ν × ν

matrix where li = (l1,i , l2,i , . . . , lν,i ) ∈ F
ν
q and L is of the

form

L = (lT1 , lT2 , . . . , lTν ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0
l2,1 1 0 . . . 0
l3,1 0 1 . . . 0

...
...

lν,1 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (1)

The subspace spanned by G is referred to as the code C. The
matrix H is a (ν − 1) × ν matrix. The subspace spanned by
the rows of H is referred to as the code D ⊂ F

ν
q . The dual

code of D is denoted by D⊥.
The value of x is demasked (recovered) by computing

x =< z, l1 >. In orthogonal DSM, GHT = 0; hence, it
is possible to recover the masking vector m knowing z by
projecting it ontoD [27]. This serves to check thatm has not
been tampered with since it was last refreshed.

Recently, a new masking scheme dubbed IPM-FD which
is built on IPM and allows for fault detection by using linear
codes was presented [7]. IPM-FD is secure both at the word-
level and the bit-level probing models and allows for end-
to-end fault detection against fault-injection attacks. In the
IPM-FDmasking scheme, the secret information is protected
by a repetition code C0 of length μ. That is, IPM-FD defines
a set Z of legal words (codewords)

z = xG + mH = (x, x . . . , x,m)L ∈ Z,
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where x ∈ Fq ,m ∈ F
ν−μ
q and

G = (1μ | 0ν−μ) ∈ F
ν
q ,

H = (L̂(ν− nur)×μ | I(ν−μ)×(ν−μ)) ∈ F
(ν−μ)×ν
q .

The corresponding matrix L is of the form

L = (lT1 , lT2 , . . . , lTν ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0

...
...

0 0 . . . 1 0 0 . . . 0
lμ+1,1 lμ+1,2 . . . lμ+1,μ 1 0 . . . 0
lμ+2,1 lμ+2,2 . . . lμ+2,μ 0 1 . . . 0

...
...

lν,1 lν,2 . . . lν,μ 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
Iμ×μ 0(ν−μ)×(ν−μ)

L̂ I(ν−μ)×(ν−μ)

)

. (2)

Note that the set of legal sharings Z is a linear q-ary code of
length ν and dimension ν − μ + 1.

The demasking operationmaps a vector v ∈ F
ν
q to a vector

y ∈ F
μ
q ,

y = (y1, . . . , yμ) =< v, (l1, . . . , lμ) > .

Then, a checker verifies that y is a legal codeword of the
repetition code C0, i.e., y1 = y2 · · · = yμ. In a fault-free
scenario, the demasking extracts the correct x from z.

The IPM-FD masking scheme requires secure computa-
tion in the mask domain that can be achieved by Lagrange
interpolation using addition and multiplication operations
[7]. The authors in [7] defined a secure addition and a secure
multiplication of IPM-FD sharings for which verification can
be carried out at the very end by comparing the μ copies of
the ciphertext. Figure 1 depicts a schematic PRESENT archi-
tecture protected by inner product masking. As shown in the
figure, 16 mask-nibble blocks transform each input nibble
into 4ν-bit sharing and then encryption is performed in the
masking domain; that is, the output of each computation step
is a codeword in Z . When the encryption ends, 16 demask-
nibble blocks extract a ciphertext from the 4ν-bit sharings.
An implementation of a PRESENT cipher protected by IPM-
FD requires checker blocks. These checkers should be placed
at the output of the demask-nibble blocks.

2.5 Security metrics

The effectiveness of masking against a side-channel attack or
a fault injection is evaluated via the following security orders
[28]:

• Word-level (nibble/byte) security order dw against a
word-level probing attack. dw equals to d⊥

D−1, where d⊥
D

is the minimum distance of the q-ary code D⊥ (equiva-
lently the dual distance of D).

• Bit-level security order db against a probing attack on
single or/and several bits that can be probed simultane-
ously. The bit-level security orderdb equalsd⊥

D2
−1where

d⊥
D2

is the dual distance of the binary expansion codeD2

derived fromD by replacing each q-ary element inD by
its sub-field representation as a (4×4) (or (8×8)) binary
matrix.

• Word-level error detection order de against random
(benign) and malicious fault injections. de is the max-
imal number of erroneous words (nibbles/bytes) that can
be detected by every codeword in C. Thus, de = dC − 1,
where the minimum dC is the distance of the q-ary code
C. For example, the G matrix in Eq. 2 defines the code
C which is the repetition code C0 padded with (ν − μ)

zeros. Hence, its minimal distance is de = μ − 1.
• Bit-level error detection orderd f against random(benign)
and malicious fault injections. d f is the maximal number
of bit flips that can always be detected by every codeword
in C. For example, the IPM-FD scheme has d f = dc2 −1,
where dc2 is the minimum distance of the expansion code
C2 derived from C. Thus, de = μ − 1.

In this paper, we suggest a fifth security metric that relates
to the robustness of the masking scheme against faults that
cause an arbitrary (unlimited) number of bit flips.

• Arbitrary-error detection rate da . The value of da indi-
cates how robust the code is against a sophisticated
attacker that can apply any error pattern it chooses. That
is, da = 1 − Q̄ , where

Q̄ = max
e∈Fν

q\D
|{z : z + e ∈ Z}|/|Z|

is the probability that an injected error pattern will pass
unnoticed.

Note that in the definition of the arbitrary-error detection
rate we exclude error patterns (vectors) which are codewords
ofD because adding an error e ∈ D to a legal codeword ofZ
is equivalent to a mask-refresh operation. In other words, an
error e ∈ D can be represented as e = (0μ,w)L = (w L̂, w)

where w ∈ F
ν−μ
q , hence

< e, (l1, . . . lμ) >= (w L̂, w)(I , L̂)T = 0μ.

Therefore, e does not change the secret, i.e.,

< c + e, (l1, . . . lμ) >=< c, (l1, . . . lμ) >,
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Fig. 1 Inner product masking
implementation of PRESENT

it only changes the mask elements. Since a mask refresh is
a legal operation, e ∈ D cannot be considered by the code
as “malicious”. It is assumed that a system-level mechanism
controls the refresh procedure andhasways to detect an unau-
thorized refresh.

Note that the IPM-FD masking scheme in [7] is based on
linear codes and thus it does not provide robustness (da = 0).
In fact, any fault-injection attack for which e ∈ Z will go
undetected.
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3 Inner product masking with robust error
detection (IPM-RED)

In this section,we present a fault detecting IPMschemebased
on robust systematic codes of rate one-half. In general, for
systematic codes, the undetected error probability of the code
is determined by the nonlinearity of the functions used to
compute the redundant portion. There are several ways to
define nonlinearity; in this paper, we define nonlinearity with
respect to the derivative of the function:

Definition 1 [29] Let F be a function Fq �→ Fq . For any
a ∈ Fq , the derivative of F with respect to a is the function
DaF from Fq to itself defined by

DaF(x) = F(x + a) � F(x),∀x ∈ Fq .

The nonlinearity of function F : Fq �→ Fq can be mea-
sured by using Def. 1. Let

�(a, b) = |{x ∈ Fq |DaF(x) = b}|.

The nonlinearity of function F is

�(F) = max
0 
=a,b∈Fq

�(a, b).

The smaller the value of �(F), the higher the corresponding
nonlinearity of F .

Definition 2 [30] A function F : Fq �→ Fq has perfect non-
linearity if �(F) = 1.

Perfect nonlinear functions do not exist for all sets of
parameters. In the case of binary fields, for example, there are
no perfect nonlinear functions from Fq to itself [30]. In this
case, functions with optimum nonlinearity are almost perfect
nonlinear functions, that is,

Definition 3 [29] Let q be a power of two, and let F be a
function Fq �→ Fq . We have

�(F) ≥ 2

and the functions for which equality holds are said to be
almost perfect nonlinear (APN).

Equivalently, if for any a, b ∈ Fq , a 
= 0, an equation of the
form

F(x) + F(x + a) = b (3)

has no more than two solutions in Fq , then F is APN. In
terms of realization cost, the cubic APN function F(x) = x3

is the simplest to implement.
Consider the following inner product masking scheme

with robust error detection (IPM-RED).

Construction 1 (IPM-RED with ν shares) Let x ∈ Fq be
the secret symbol, and let m = (m1, . . . ,mν−2) ∈ F

ν−2
q be

random mask drawn uniformly. Define,

z = (x, x3,m)L ∈ Z,

where L is the corresponding (ν × ν) q-ary matrix

L = (lT1 , lT2 , . . . , lTν ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . . . 0
0 1 0 0 . . . 0
l3,1 l3,2 1 0 . . . 0
l4,1 l4,2 0 1 . . . 0

...
...

lν,1 lν,2 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

The set of legal words forms a nonlinear q-ary code Z of
length ν, dimension ν − 1 and its minimum distance is at
most two. Thus, the code has no correction capability, and
the non-bijective APN function F(x) = x3 is good enough
for this construction.

The sharing z can be represented as

z = (x, x3, 0ν−2) + mH ∈ Z,

where

H = (L(ν−2)×2 | I(ν−2)×(ν−2)) ∈ F
(ν−2)×ν
q , (5)

is the generator matrix of the code D, the pairs (x, x3) form
a nonlinear code C0 of cardinality q and thus the code C is
the code C0 padded with (ν −μ) zeros. That is, it consists of
the codewords (c, 0ν−2) where c ∈ C0,

The demasking extracts the pair

(y1, y2) =< z, (l1, l2) >∈ F
2
q .

A checker raises a decoding error flag if (y1, y2) /∈ C0; that
is, if y2 
= y31 .

Security orders of IPM-RED.
Theword-level security order dw and the bit-level security

order db are determined by the structure of H so that in this
sense this masking scheme is equivalent to IPM-FD with
μ = 2.

Theword-level and bit-level error detection orders (de and
d f , respectively) depend on the properties of the code C; or
equivalently, on the properties of theAPN function. Note that
for bijective functions we have de = d f = 1. The function
x3 is a bijective function only when q is an odd power of
two (i.e., s is odd). When q is an even power of two, using
x3 results in de = d f = 0. Note, however, that there are
bijective APN functions of the form x3+ax2+bx for which
de = 0 and d f = 1; see for example [31].
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In terms or robustness, any attack that aims to change the
demasked information symbol x is detected with nonzero
probability. The following example clarifies this statement.

Example 1 Let q = 28. Consider an inner product masking
scheme with ν = 4 shares. Let α ∈ Fq be the root of the
primitive polynomial π(x) = x8 + x4 + x3 + x + 1. The
following L matrix is taken from [7],

L =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
α8 α27 1 0
α20 α7 0 1

⎞

⎟
⎟
⎠ . (6)

We start with the IPM-FD scheme. The security orders of this
scheme are db = 6, dw = 2 and de = d f = 1. However, this
scheme is not robust; consider, for example, the error vector

e = (α157, α179, α5, α34) = (α, α, α5, α34)L ∈ F
ν
q \ D.

For any sharing z = (x, x,m)L ∈ Z we have (y1, y2) =<

z + e, (l1, l2) >= (x + α, x + α); since y1 = y2, the error is
never detected. Therefore, we have, da,IPM−FD = 0.

The security orders db and dw are determined from the
properties of the L matrix; thus, the IPM-RED and the IPM-
FD provide the same immunity against probing attacks. The
function x3 is not bijective over F8

2; thus, we have de = d f =
0.

Aswe shownext, the IPM-REDmasking scheme is robust;
that is, da,IPM−RED > 0. For example, the error e is detected
by some sharings (e.g., z = (α64, α105, α44, 1) and unde-
tected by others (e.g., z = (α44, α78, α44, 1)). �


Formally,

Lemma 1 The arbitrary-error detection rate of the code Z
as defined by the IPM-RED scheme is da,Z ≥ 1 − 2/q.

Proof First, recall that we do not consider error vectors e ∈
D because they do not tamper with the secret x . That is,
< e, (l1, l2) >= (0, 0), and thus < z + e, (l1, l2) >=<

z, (l1, l2) >.
Next, let e ∈ F

ν
q \ D be an error vector. That is,

(β1, β2) =< e, (l1, l2) > is a nonzero pair in F
2
q . Let x

be the original information symbol and z its corresponding
tuple. Then, z + e ∈ Z if and only if the pair (y1, y2) =<

z + e, (l1, l2) > satisfies y2 = y31 . Equivalently, if

x3 + (x + β1)
3 = β2.

The function x3 is an APN function; hence, the number of
codewords in Z that mask this error is 2|D|. Consequently,
the minimal arbitrary-error detection rate is 1 − 2/q. �


Since any error in F
ν
q \ D is detected and the errors in D

are never detected, D forms the detection kernel of Z , i.e.,
Kd = D.

4 Computing with representations of
IPM-RED

In the following sections, we define two basic operations,
multiplication and addition and prove that all the security
orders are preserved. We follow the ideas presented in [7],
i.e., we treat z as two IPM sharings of length ν − 1, that is

z(1) = (z1, z3, z4, . . . , zν)

z(2) = (z2, z3, z4, . . . , zν).

We perform the computation with the two IPM sharings and
then merge the outcome into one vector using the secure
homogenization algorithm in Algorithm 3, lines 4–6 [7].

Let z, z′ ∈ Z be two sharings such that

(x, x3) =< z, (l1, l2) > and (x ′, (x ′)3) =< z′, (l1, l2) >;

each share may have different mask elements (m and m′). A
securemultiplication algorithm in the IPM-RED domain that
computes the product sharing p = IPMREDMult(z, z′) ∈
Z , and a secure addition algorithm that computes the sharing
p = IPMREDAdd(z, z′) ∈ Z are given in Algorithm 1 and
Algorithm 2, respectively. Table 1 compares the computa-
tional complexity of the IPM-RED scheme to the IPM-DF
scheme.

Both algorithms involve concatenations of secure addition
andmultiplication operations in the (single information sym-
bol) IPM domain as defined in [5]. Therefore, both preserve
the word-level (nibble/byte) security order dw and the bit-
level security order db. Similarly, since the outcome of the
algorithm is a legal codeword inZ , theword-level and the bit-
level error detection orders (de and d f ) are preserved as well.
As shown next, the fifth security metric—the arbitrary-error
detection rate —is preserved as well. This property allows
end-to-end robustness against fault-injection attacks.

In what follows, we analyze the arbitrary-error detection
ratesda,Mult,1 andda,Add,1 at the output ofIPMREDMult and
IPMREDAdd in the presence of a single erroneous sharing
(operand) and the arbitrary-error detection rates da,Mult,2 and
da,Add,2 in the presence of two erroneous operands. Based on
the bounds developed below, we have

Table 1 Complexity of the IPM-FD and IPM-RED schemes in terms
of the number of elementary masking operations

Algorithm IPAdd IPMult Homogenization

IPM-FD Add [7] 1 – –

IPM-FD Mult. [7] – μ μ − 1

IPMREDAdd 4 4 1

IPMREDMult – 2 1
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Theorem 1 The arbitrary-error detection rate of the overall
IPM-RED scheme with respect to errors that are not in the
kernel of Z is

da,IPM−RED = min
(
da,Z , da,Mult,1, da,Add,1, da,Mult,2, da,Add,2

)

> 1 − 4/q.

4.1 Securemultiplication

Lemma 2 (Arbitrary-error detection rate of secure IPM-
RED multiplication with a single erroneous sharing) The
arbitrary-error detection rate at the output of Algorithm 1
when one operand is erroneous is da,Mult,1 ≥ 1 − 2/q.

Proof First note that the homogenization algorithm in [7]
involves linear operations between the sharing symbols. For
two sharings, say a, b ∈ F

ν−1
q , it finds an equivalent third

sharing c such that a and c share all coordinates except the
first one and< b, l2 >=< c, l2 > . This makes it possible to
merge the two shares a and c into a single share p of length
ν such that

p(1) = a

p(2) = c

< p, (l1, l2) > = (< a, l1 >,< b, l2 >).

Let x, x ′ ∈ Fq be two secrets represented by the sharings
z, z′ ∈ F

ν
q such that

(x, x3) =< z, (l1, l2) > and (x ′, (x ′)3) =< z′, (l1, l2) > .

Without loss of generality, assume that an attacker tampers
with the sharing z, that is v = z + ê where ê is not in the
kernel of Z . (Otherwise, it is not considered as a harmful
error.) The injected error can be represented as ê = e + ε

where e = (e1, e2, 0ν−2) is a nonzero vector and ε ∈ D. The
sharing v satisfies

< v, (l1, l2) >= (x + e1, x
3 + e3) =< z + e, (l1, l2) > .

That is, all the errors in the coset e+D are detected with the
same probability.

Denote byIPMREDMult(v, z′) the output of themultipli-
cation algorithm.Algorithm1 receives v and z′ and computes
t = IPMult(v(1), z′(1)) and u = IPMult(v(2), z′(2))
that satisfy

< t, l1 > = (x + e1)x
′

< u, l2 > = (x3 + e2)(x
′)3,

respectively. Therefore, after the homogenization step we
have

< p, (l1, l2) >= ((x + e1)x
′, (x3 + e2)(x

′)3).

If x ′ = 0, then < p, (l1, l2) >= (0, 0) and the mul-
tiplication algorithm has properly corrected the error since
IPMREDMult(v, z′) = IPMREDMult(z, z′). On the other
hand, if x ′ 
= 0 an erroneous result may be produced, that is,

IPMREDMult(v, z′) = IPMREDMult(z, z′) + ẽ ∈ Z

where ẽ ∈ F
ν
q \ D. This happens if and only if (x + e1)3 =

x3 + e2. In this case, ẽ will not be detected by the checker
with probability Q(ẽ) = Q(e) ≤ 2/q. Consequently, the
robustness of the IPM-RED scheme is preserved, da,Mult,1 ≥
1 − 2/q. �

Lemma 3 (Arbitrary-error detection rate of secure IPM-
RED multiplication with two erroneous sharings) The
arbitrary-error detection rate at the output of Algorithm 1
when two operands are erroneous is da,Mult,2 ≥ 1 − 4/q.

Proof Let x, x ′ ∈ Fq be two secrets represented by the shar-
ings z, z′ ∈ F

ν
q such that

(x, x3) =< z, (l1, l2) > and (x ′, (x ′)3) =< z′, (l1, l2) > .

Let ê, ê′ ∈ F
ν
q \D be two error vectors not in the kernel ofZ .

That is, ê = e+ε, ê′ = e′+ε′ where e = (e1, e2, 0ν−2), e′ =
(e′

1, e
′
2, 0ν−2) are nonzero vectors and ε, ε′ ∈ D.

Define v = z + ê and v′ = z′ + ê′ and denote by
IPMREDMult(v, v′) the output of the multiplication algo-
rithm. Algorithm 1 receives v and v′ and computes t =
IPMult(v(1), v′(1)) and u = IPMult(v(2), v′(2)) that
satisfy

< t, l1 > = (x + e1)(x
′ + e′

1)

< u, l2 > = (x3 + e2)((x
′)3 + e′

2),

respectively. Therefore, after the homogenization step we
have

< p, (l1, l2) >= ((x + e1)(x
′ + e′

1), (x
3 + e2)((x

′)3 + e′
2).

An error is undetected when

(x + e1)
3(x ′ + e′

1)
3 = (x3 + e2)((x

′)3 + e′
2). (7)

In general, there are q2 pairs of (x, x ′) which are equally
likely to occur. For a given pair of error vectors e and e′,
some of the (x, x ′) pairs will detect its presence and some
will mask it.
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The number of pairs for which an erroneous product will
not be detected depends on the relation between the first two
components of the error vectors. That is, if (e′

1)
3 = e′

2, then

• For x ′ = e′
1, all theq pairs of the form (x, x ′ = e′

1) cannot
detect the error because the de-masking will produce the
pair (y1, y2) = (0, 0) which is a legal codeword in C0.

• For x ′ = 0 at most two pairs of the form (x, x ′ = 0) are
solutions to Eq. 7, and hence cannot detect the error.

• For any x ′ ∈ Fq \ {e′
1, 0}, there are at most three x’s that

solve Eq. 7.

Overall, for (e′
1)

3 = e′
2 there are at most (q + 2+ 3(q − 2))

pairs of (x, x ′)s (and hence 4(q − 1)|D|2 pairs of sharings)
for which the erroneous output of the secure multiplication
algorithm will not be detected.

However, if (e′
1)

3 
= e′
2, then QMult,2(e, e′) ≤ 3/q;

because, if the equation (x ′ + e′
1)

3 = (x ′)3 + e′
2 has no

solutions, then there are at most 3q pairs that satisfy Eq. 7.
But if there exists an x ′ that satisfies (x ′ + e′

1)
3 = (x ′)3 + e′

2,
then Eq. 7 has (2 · 2 + 3 · (q − 2)) solutions.

Therefore, we have da,Mult,2 > 1 − 4/q. �


4.2 Secure addition

Lemma 4 (Arbitrary-error detection rate of secure IPM-
REDadditionwith a single erroneous sharing) Thearbitrary-
error detection rate at the output of Algorithm 2 when one
operand is erroneous is da,Add,1 = 1 − 2/q.

Proof The proof is similar to the proof of Lemma 3. Let
x, x ′ ∈ Fq be two secrets represented by the sharings z, z′ ∈
F

ν
q such that (x, x3) =< z, (l1, l2) > and (x ′, (x ′)3) =<

z′, (l1, l2) >. Assume that an attacker tampers with the shar-
ing z, that is, v = z + ê where ê = e + ε, e = (e1, e2, 0ν−2)

is a nonzero vector and ε ∈ D.
Algorithm 2 receives v and z′ and computes p1 =

IPAdd(v(1), z′(1)) and p2 = IPAdd(v(2), z′(2)) that sat-
isfy

< p1, l1 >= (x + e1) + x ′ and < p2, l2 >= (x3 + e2) + (x ′)3,

respectively. The value of t and u after lines 6 and 9 satisfy

< t, l2 >= (x + e1)
2x ′ and < u, l2 >= (x + e1)(x

′)2,

respectively. Therefore, after the addition in line 10 we have,

< p2, l2 >= ((x3 + e2) + (x ′)3) + (x + e1)
2x ′ + (x + e1)(x

′)2

and after the homogenization we get

< p, (l1, l2 >= ((x + x ′ + e1), (x + x ′ + e1)
3

+(x + e1)
3 + (x3 + e2).

Consequently, the error ê is not detected by the checker if
and only if (x + e1)3 + (x3 + e2) = 0 and this occurs with
probability Q(ê) ≤ 2/q. Therefore, the arbitrary-error detec-
tion rate of an IPM-RED addition when a single sharing is
erroneous is da,Add,1 = 1 − 2/q. �


Lemma 5 (Arbitrary-error detection rate of secure IPM-
RED addition with two erroneous sharings)

The arbitrary-error detection rate at the output of Algo-
rithm 2 is da,Add,2 = 1 − 2/q.

Proof Let x, x ′ ∈ Fq be two secrets represented by the
sharings z, z′ ∈ F

ν
q such that (x, x3) =< z, (l1, l2) > and

(x ′, (x ′)3) =< z′, (l1, l2) >. Let ê, ê′ ∈ F
ν
q \D be two error

vectors not in the kernel ofZ . That is, ê = e+ε, ê′ = e′ +ε′
where e = (e1, e2, 0ν−2), e′ = (e′

1, e
′
2, 0ν−2) are nonzero

vectors and ε, ε′ ∈ D.
Define v = z+ ê and v′ = z′ + ê′. Algorithm 2 receives v

and v′ and after the homogenization step it produces p that
satisfies

< p, (l1, l2 >= ((x + e1 + x ′ + e′1), (x3 + e2) + ((x ′)3 + e′2)
+(x + e1)

2(x ′ + e′1) + (x + e1)(x
′ + e′1)2.

Consequently, the errors ê and ê′ are not detected if and only
if the pair (x, x ′) solves the equation

(x + e1)
3 + (x3 + e2) = (x ′ + e′

1)
3 + ((x ′)3 + e′

2).

For a given value of x ′, this equation has at most two solu-
tions; therefore, da,Add,2 = 1 − 2q/q2. �


Algorithm 1 Secure Multiplication algorithm for IPM-RED
(IPMREDMult)
1: Input: Two secrets x, x ′ ∈ Fq represented by z, z′ ∈ F

ν
q such that

(x, x3) =< z, (l1, l2) >, (x ′, (x ′)3) =< z′, (l1, l2) > .

2: Output: A sharing p ∈ F
ν
q such that (xx ′, (xx ′)3) =< p, (l1, l2) >.

3: t:= IPMult(z(1),z’(1)) // IPMultalgorithm from [5]
4: u:= IPMult(z(2),z’(2))
5: p := Homogenization(t,u); // Homogenization algorithm

from [7]
6: return p ∈ Z

123



156 Journal of Cryptographic Engineering (2021) 11:147–160

Algorithm 2 Secure Addition algorithm for IPM-RED
(IPMREDAdd)
1: Input: Two secrets x, x ′ ∈ Fq represented by z, z′ ∈ F

ν
q such that

(x, x3) =< z, (l1, l2) >, (x ′, (x ′)3) =< z′, (l1, l2) > .

2: Output: A sharing p ∈ F
ν
q such that (x + x ′, (x + x ′)3) =<

p, (l1, l2) >.

3: p1:= IPAdd(z(1),z’(1)) // IPAddalgorithm from [5]
4: p2:= IPAdd(z(2),z(2)) // < p(2), l2 >= x3 + (x ′)3
5: t:= IPMult(z(1),z(1)) // IPMultalgorithm from [5]
6: t := IPMult(t ,z’(1))
7: p2:= IPAdd(p2,t ) // < p(2), l2 >= x3 + (x ′)3 + x2 · x ′
8: u := IPMult(z’(1),z’(1)) // IPMultalgorithm from [5]
9: u := IPMult(u ,z(1))
10: p2:= IPAdd(p2,u ) // < p(2), l2 >= (x + x ′)3
11: p :=Homogenization(p1,p2) // Homogenization algorithm

from [7]
12: return p ∈ Z

5 Information leakage from IPM-FD and
IPM-RED checkers

In this section, we examine whether the use of error detect-
ing codes with a deterministic encoder in IPM schemes can
degrade security; that is, whether the checker’s response can
narrow the key’s search space.

5.1 The checker’s structure and operation

In principle, checkers for masking schemes that have error
detecting capabilities can be implemented after each cal-
culation in the masking domain. However, the hardware
implementation of online checkers is costly in terms of area
and power consumption. Therefore, a checker is typically
placed after the state register, thusmaking it possible to detect
faults in the combinational parts of the circuit as well as bit-
flips in the register itself. In this paper, we assume that the
state register is located at the output of the S-box layer (see
Fig. 2). The input to the checker is a de-masked sharing word
ĉ =< z, (l1, . . . lμ) >. In a fault-free circuit ĉ = c ∈ C0. For
the IPM-FD scheme, C0 is a q-ary repetition code and for the
IPM-RED scheme C0 is a nonlinear systematic robust code.

The checker examines the word it sees in its inputs. If
it decides that the word is not a legal codeword or that it
cannot be corrected into a legal one, it outputs the value
⊥. Depending on the design, a ⊥ may halt the processor or
cause the system to replace the output by a random one. If
the checker decides that the word is legal or that it is within
the correction capability of the code, it decodes it into a legal
codeword. The checker’s output is denoted by v, v ∈ C∪{⊥}.

The checker is implemented in hardware on the same cir-
cuit as the logic it protects. Therefore, the checker itself can

Fig. 2 Protected AES architecture. The registers are located after the
SubBytes module to enable on-line prediction and checking

be subject to fault injection as well the cryptographic circuit.
Usually, a checker is composed of two parts: an encoder and
a comparator. An attack on the encoder logic is equivalent
to an attack on the register and hence will be detected with
the same probability as if an error was injected into the cryp-
tographic circuit. Detection of an attack on the comparator
requires a security aware implementation [32].

Note that the data processed by the last two blocks in Fig.
2 are not examined by a checker. In order to provide an end-
to-end security, these outputs should be checked as well. It
is worth noting that an effective attack on these blocks will
aim to stick the bits and not flip them. Thus, codes detecting
stuck-at faults would be more effective for this part of the
circuit. This, however, is beyond of the scope of this paper.
A detailed analysis of the security provided by unidirectional
error detecting codes can be found in [33].

5.2 Attackmodel and illustrative example

To evaluate the average reduction in the size of the search
space, we assume a hypothetical probing attack on all the
checker’s output bits. That is, we assume that the checker’s
output is completely observable to the attacker. In addition,
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we assume that the attacker knows the code C0 and hence can
know which errors will always be detected and which have
a chance of passing unnoticed. Therefore, we consider the
worst scenario, i.e., we assume that an error e of the latter
type is injected.

In what follows, the information that leaks from the
checker is evaluated in terms of the mutual information (MI)
between two random variables: the secret key (or sub-key) K
and the checker’s output V . (Random variables are denoted
by capital letters and the values they take arewritten in lower-
case letters.) The MI is analyzed as a function of the injected
error; it represents the (average) number of bits that can be
learned about the key from a single injection of a specific
error vector.

As was shown in [1], the information leakage from
the checker is maximal when the attack is mounted on
the first round. In general, fault analysis attacks are per-
formed on the middle/last rounds because of the tradeoff
between the number of required correct-fault pairs and the
time-memory complexity [34,35]. Nevertheless, when error
detecting codes are embedded in hardware, an attacker who
knows the coding scheme and observes the checker’s output
can derive information about the key even when the attack
is performed on the very first cycle. The following example
illustrates how the checker’s output may be used to reduce
the search space of the key:

Example 2 For simplicity, consider a hypothetical 12-bit
cipher implemented without masking2. The inputs to the cir-
cuit implementing that cipher are a 12-bit plaintext s and a
12-bit key y. Assume that in the first cycle this cipher com-
putes

x = (x1, x2, . . . x12) = f (s + y) =
{

(s + y)−1 s + y 
= 0
0 s + y = 0

where the computation is performed in F212 with the primi-
tive polynomial D12+D6+D4+D+1. Consider a hardware
implementation protected by the Quadratic Sum (QS) code
[6]. The block we refer to as the “original component” cal-
culates x(s, y), and in parallel, the predictor generates two
redundant bits w1(s, y) and w2(s, y). When the two binary
vectors x and w are treated as vectors over F4, they form
a codeword c = (ξ1, ξ2, . . . ξ6, η) with k = 6 information
symbols and a single redundant symbol. In this example, we
use the following (intuitive) mapping ξi = (x2i−1, x2i ) and
η = (w1, w2). The codeword fulfills the following property:

η = ξ1ξ2 + ξ3ξ4 + ξ5ξ6. (8)

2 Since the checker sees the de-masked vector, we simplified the exam-
ple by considering a plain implementation (without masking).

The multiplication and additions in Eq. 8 are over F4 with
the primitive polynomial D2 + D + 1. (F4 is isomorphic
to F

2
2). Note that the predictor generates the two redundant

bits directly from s and y without explicitly computing the
variable x , even though η and ξ fulfill Eq. 8. The codeword
stored in the register is then c = (x, w). Our attack model
assumes that the adversary can flip an arbitrary number of
bits in arbitrary locations of both x and w.

Assume that s = (00 01 11 11 01 11), y = (00 00 11 10 10
10) and that the attacker injects the error e = (01 00 00 00 00
10 11). Then, the codeword written into the register is

c = (11 00 11 01 10 00︸ ︷︷ ︸
x

, 11︸︷︷︸
w

) = (3 0 3 1 2 0︸ ︷︷ ︸
ξ

, 3︸︷︷︸
η

)

and the distorted word ĉ = c + e = (x̂, ŵ) = (ξ̂ , η̂) read
from the register is

ĉ = c + e = (10 00 11 01 10 10, 00) = (2 0 3 , 1 2 2
︸ ︷︷ ︸

ξ̂

, 0︸︷︷︸
η̂

)

(the erroneous bits and symbols appear in bold). The checker
computes ξ̂1ξ̂2 + ξ̂3ξ̂4 + ξ̂5ξ̂6 = 0 and since it is equal
to η̂, it does not report a decoding error. The attacker who
knows the code sees that the attack has been masked (unde-
tected). Therefore, the attacker infers that the following
error-masking equation must be fulfilled:

(ξ1 + 1)ξ2 + ξ3ξ4 + ξ5(ξ6 + 2) = η + 3.

There are exactly 210 values of x that satisfy this equation;
they are of the form

ξ = (ξ1, ξ2 = 3 − 2ξ5, ξ3, ξ4, ξ5, ξ6).

Since y = (x−1 − s), y can take 210 values. Therefore, the
search space for the key y has been narrowed from 12 to 10
bits.

Note that if the value of the key had been such that the error
would have been detected, the attacker could observe this
outcome and narrow the search space for y from 212 down to
(212−210) possible values. However, the system would then
receive an alarm and prevent the attacker from continuing
to reduce the search space by further fault injections. For
example, the system could initiate re-keying, in which case
all the information that the attacker had acquired would be
useless. Note that the error is not detected for only 1/4 of the
keys for this error vector due to the properties of the QS code
used [6]. It is detected (leading to an alarm) for the remaining
3/4 of the keys. �
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5.3 Information leakage from IPM-FD and IPM-RED
checkers

The following theorem is taken from [1] with minor mod-
ifications. It distinguishes between standard checkers that
output a ⊥ symbol when the word in their input is illegal,
and infective checkers that output a random codeword upon
detecting such a problem.

Theorem 2 (Information leakage from the checker on the
first round) Let C be a systematic code of length nb protecting
a key (or a sub-key) of kb bits, that is |C| = 2kb . Denote by
QC(e) the probability that an error e is undetected by the
codewords of C, 0 ≤ QC(e) ≤ 1. The mutual information (in
bits) between the secret key y and a standard checker output
v ∈ F

nb
2 for a given plaintext s ∈ F

kb
2 and an injected error

e ∈ F
nb
2 is

Istandard(Y ; V |s, e) = kbQC(e)

−(1 − QC(e)) · log2(1 − QC(e)).

(9)

The mutual information between y and an infective checker
output v for a given plaintext s and an injected error e is

Iinfective(Y ; V |s, e) = kbQC(e)

−QC(e)(2 − QC(e)) log2(2 − QC(e))

−(1 − QC(e))2 log2(1 − QC(e)).

(10)

Denote by Īstandard and Īinfective the maximal mutual infor-
mation I (Y ; V |s, e) over all the non-zero errors e, plaintexts
s and over all the rounds. From [1] and Theorem 2 we have

Īstandard ≤ kb Q̄C0 − (1 − Q̄C0) · log2(1 − Q̄C0),
Īinfective ≤ kb Q̄C0 − Q̄C0(2 − Q̄C0) log2(2 − Q̄C0)

−(1 − Q̄C0)
2 log2(1 − Q̄C0).

Because of the linearity of the repetition code used in a IPM-
FD scheme, a single fault-injection attack causes the checker
to leak all the kb secret bits. That is, for IPM-FD scheme we
have

Īinfective = Īstandard =
{
4 bits PRESENT
8 bits AES

In contrast, a single fault-injection attack on a IPM-RED
scheme causes (on average over a uniformly distributed key
space) a leak of

Īinfective ≤ Īstandard =
{
0.6686 bits PRESENT
0.0737 bits AES

That is, when robust codes are used, the entropy loss due to
the information leak from the checker in a IPM-RED scheme
is small, whereas the probability that a single attack will not
be detected decreases exponentially with s (Q̄C0 = q−s+1).

The same relationship holds for the dependency of the
entropy loss and the probability of an undetected attack on
the number of fault injections. In other words, we can expect
that providing strong fault detection only has a limited and
exponentially decreasing impact on information leakage and
thus on security.

6 Conclusions and future work

We presented a solution that combines sophisticated and
highly effective countermeasures against side-channel and
fault-injection attacks in a provably composable manner.
The resulting scheme IPM-RED offers protection against
high-capability adversaries. We formalized relevant security
properties by appropriate orders and proved that the pro-
tections against side-channel analysis do not compromise
security against fault attacks, and vice versa. We introduced
basic arithmetic operations in the new IPM-RED represen-
tation and studied their security and complexity.

A number of interesting theoretical and experimental
questions are still open. The relationship between the security
order of addition andmultiplication algorithms and their real-
ization (e.g., the order in which the operations are executed)
could be better understood. Errors with maximal masking
probability could be identified and studied. Also of interest
is the strength of the IPM-RED scheme when the adversary
only injects errors from a known subset, e.g., errors that are
actually useful for cryptanalysis of a given cipher. A related
question is whether the scheme can be further improved by
incorporating more advanced security-oriented codes, such
as the compact protection code [36].

Useful experimental knowledge would include the resis-
tance of actual cryptographic primitives protected by IPM,
IPM-FD and IPM-RED to side-channel attacks. Such investi-
gations could focus on determining the success rate of actual
attacks (e.g., correlation power attacks) or evaluating infor-
mation leakage by means of mutual information [37]. An
interesting question is the implementation cost; here, find-
ing an efficient hardware realization of the basic operations
in the masked domain is essential. This question is tightly
bound to the practically achievable security order and also to
robustness against fault attacks.
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