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Abstract
FPGA system on chips (SoCs) are ideal computing platforms for edge devices in applications which require high performance
through hardware acceleration and updatability due to long operation in the field. A secure update of hardware functionality
can in general be achieved by using built-in cryptographic engines and provided secret key storage. However, reported
examples have shown that such cryptographic engines may become insecure against side-channel attacks at any later point
in time. This leaves already deployed systems vulnerable without any clear mitigation options. To solve this, we propose
a comprehensive concept that uses an alternative and side-channel protected cryptographic engine within the FPGA logic
instead of the built-in one for the crucial task of bitstream decryption. Remarkably this concept even allows to update the
cryptographic engine itself. As proof of concept, we describe an application to the Xilinx Zynq-7020 FPGA SoC in detail.
We provide two options for a leakage resilient decryption engine which are based on the same primitive, a leakage resilient
pseudorandom function (LR-PRF). Depending on a side-channel evaluation of this primitive on the target platform, either a
version with additional side-channel countermeasures or a more efficient variant is deployed. The lack of accessible secret key
storage poses a significant challenge and requires the use of a physical unclonable function (PUF) to generate a device intrinsic
secret within the FPGA logic. At the same time this means that manufacturer-provided secret key storage or cryptography is
no longer required; only a public key for signature verification of the first stage bootloader and initial static bitstream. We
provide empirical results proving the side-channel security of the protected cryptographic engine as well as an evaluation of
the PUF quality. The full design and source code is made available to encourage further research in this direction.

Keywords Secure boot · Leakage resilience · PUF · AES · Zynq

Florian Unterstein, Nisha Jacob and Neil Hanley have contributed
equally to this research.

B Florian Unterstein
Florian.Unterstein@aisec.fraunhofer.de

Nisha Jacob
Nisha.Jacob@aisec.fraunhofer.de

Neil Hanley
n.hanley@qub.ac.uk

Chongyan Gu
cgu01@qub.ac.uk

Johann Heyszl
Johann.Heyszl@aisec.fraunhofer.de

1 Fraunhofer Institute for Applied and Integrated Security
AISEC, Garching near Munich, Germany

2 Centre for Secure Information Technologies (CSIT), ECIT,
Queen’s University Belfast, Belfast, Northern Ireland

1 Introduction

High-performance edge computing is becoming increasingly
important in automotivemobility, industrial control and other
application domains. Vast amounts of sensor data need to be
processed instantly within embedded systems for extraction
of relevant information and fast reaction times. This is dif-
ferent to many current applications like speech recognition
where data is sent to centralized cloud backends for pro-
cessing. At the same time it is difficult to pre-determine
all required edge functionality for devices which operate in
the field for many years. For example, statistical analysis of
sensor data through deep neural networks requires high com-
putational capabilities best implemented in hardware, and
will likely require fundamental updates during the field life-
time, e.g., to counteract so-called adversarial learning attacks
on specific neural network instances or to improve recogni-
tion capabilities. FPGA SoCs are considered to be valuable
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platforms in this regard. They offer powerful application
CPUs integratedwith hardware acceleration on an FPGAand
update capabilities for improved functionality and/or secu-
rity of the hardware as well as the software. The security of
of intellectual property (IP) which is implemented in such
FPGA-based hardware against read-out and manipulation is
the focus of this contribution.

FPGAs (i.e., SRAM-based ones) are configured with the
hardware implementation at every power-up. The respective
bitstreammust be stored in a chip-external non-volatilemem-
ory (NVM). Since adversaries with physical access to the
field devices must be expected, a read-out is often realis-
tic and the contained IP prone to reverse-engineering. To
counteract this, FPGA devices usually provide bitstream
encryption and authentication features using dedicated built-
in hardwired cryptographic engines. Unfortunately, it has
been shown for several devices from different manufactur-
ers that such cryptographic engines can be attacked using
side-channel analysis (SCA) [30,31,38–40] which is widely
known to attackers with physical access to devices. Another
security issue can arise from hardware design flaws, as is
evident by the work of Ender et al. [6]. They uncovered
a hardware bug in the Xilinx 6 and 7 series FPGAs that
allows them to read out user IP after it is decrypted by the
built-in hardware cryptographic engine.Aswith theSCAvul-
nerabilities of hardwired engines, this bug cannot be fixed
and requires a new revision of the hardware. Due to this,
it is highly advisable to have a concept for retrofitting and
updating the cryptographic engine which is used for bit-
stream decryption. This applies even if no successful attack
is currently known against the cryptographic engine of a cer-
tain device. Hence, using an improved engine implemented
within the FPGA logic instead of the built-in hardwired
engine is the goal as soon as security issues arise. Unfor-
tunately, with most currently available FPGAs and FPGA
SoCs, it is difficult to use alternative cryptographic engines
within the FPGA logic for this core functionality of bitstream
decryption. While partial FPGA configuration is helpful and
mostly available, on-chip key storage for symmetric decryp-
tion keys is often not accessible from the FPGA logic or not
trusted in the long-term. Furthermore, it has been shown that
readout of both eFuses and battery backed RAM (BBRAM),
which are commonly used to implement key storage, can
be possible with state of the art equipment [22,42]. These
restrictions make it difficult to retrofit cryptographic engines
with a clear security benefit without inadvertently creating
new attack vectors.

In this contribution, we provide a sound concept for
integrating an alternative side-channel hardened authenti-
cated encryption with associated data (AEAD) engine into
an FPGA SoC for decrypting hardware configuration bit-
streams during startup and later operation. This concept
allows to securely update the main FPGA functionality and

even allows to update the cryptographic engine itself (i.e., to
use a different algorithm later). We describe a proof of con-
cept implementation on aXilinx Zynq-7020 FPGASoC1 and
discuss the generalization to other devices. It is important to
note that this is the first comprehensive solution allowing to
dismiss all manufacturer-provided secret key storage options
while enabling side-channel secure field updates of user IP
cores and updates of the decryption engine.

As an alternative cryptographic engine for authenticated
decryption of bitstreams, we use one that is side-channel
protected by principles from leakage resilient cryptography.
Protection through leakage resilience has gained significant
attention in recent years. Unlike more mainstream protec-
tion mechanisms such as masking, these schemes do not
require high-quality random numbers whichmight be hard to
generate on embedded devices with limited entropy sources.
The secure realization of masking schemes also poses imple-
mentation pitfalls [3,13] which we avoid. In this work, we
provide two constructions for the leakage resilient AEAD
(LR-AEAD) that are both based on the same LR-PRF primi-
tive. The two options differ from each other in terms of their
protection level against side-channel attacks and hardware
overhead. We also provide side-channel evaluation results
of the protected engine on the Xilinx Zynq device using
high-precision laboratory equipment as evidence for its side-
channel security. Based on the results of the side-channel
evaluation of the target platform, either the LR-AEAD vari-
ant with additional side-channel protection or the variant that
ismore efficient in terms of hardware area can be chosen. The
more efficient construction is newly added to the extended
version of this paper and details of this construction are found
in Sect. 8.

For complete independence from manufacturer-provided
secret key storage, and since many devices do not allow
access to a dedicated key storage facility from the FPGA
logic, we use a PUF-based secret key storage in the FPGA
logic. Note that in the case of the targeted Xilinx Zynq-7020
device, there is no secret key storagewhich is accessible from
FPGA logic. Hence PUF-based key storage is the only option
for alternative bitstream decryption engines. PUFs provide a
mechanism for key storage by leveraging the manufacturing
differences of an integrated circuit to derive a device intrinsic
secret. This eliminates the need for a secure NVM. As evi-
dence for the cryptographic quality of the PUF, we provide
evaluation results from 20 Xilinx Zynq-7020 devices.

The concept describes the necessary integration into the
FPGA SoC start-up and the precise use of partial reconfigu-
ration (PR). Whenever a core functionality such as bitstream
decryption employing secret keys is implemented in the
FPGA logic instead of using the hardwired built-in options,

1 Source code is available at https://github.com/Fraunhofer-AISEC/
leakres_updatable_SoC.
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this part of the FPGA logic configuration must be authenti-
cated and integrity-protected. Otherwise, an attacker could
modify or replace those initial hardware parts to leak secret
keys. This makes using built-in bitstream authentication
features unavoidable. However, when using public key sig-
natures (e.g., the Xilinx Zynq-7000 series supports RSA
signature authentication), this only requires storing and pro-
cessing public keys on-chip. No secret private keys are stored
on-chip, hence, leading to minimal additional attack surface.
In our concept, the integrity of the bootloader and initial
FPGA configuration containing the LR-AEAD, PUF, and
PR handling are verified in this manner.

2 Related work

The general idea behind retrofitting an FPGA SoC with
custom cryptographic cores to protect user IP has been previ-
ously outlined by Xilinx [33] in a white paper. Their concept
includes anAES core togetherwith a PUF and dynamic PR to
secure user IP cores. They also suggest to use amanufacturer-
provided authentication scheme like RSA to authenticate the
static bitstream consisting of the custom cryptographic cores.
However, little detail is given and no working implementa-
tion of this scheme was provided. Therefore, a large number
of technical challenges, such as the PUF error correction, or
buffering the authentication of bitstream segments, remained
unaddressed. The white paper also lacks an analysis of the
overall system security, and the various attack vectors which
we later discuss are not considered. An implementation of
that scheme was later published by Jacob et al. [16] where
they use AES in Galois counter mode (GCM) for decryp-
tion and authentication with a twisted bistable ring PUF
for the key storage. Their implementation is basic in the
way that it provided no comprehensive evaluation of the
used PUF and contains no countermeasures against side-
channel attacks. Furthermore, the FPGA is updated after the
decryption of the partial bitstreams but before its integrity
is verified, allowing an adversary to physically damage the
device via bitstream tampering. Owen et al. [18] follow a
similar approach, but use the PUF to generate a key in a way
that is sensitive to all changes within the bitstream to achieve
a self-authenticating design. While they therefore do not
require the manufacturer-provided authentication, they do
however need physical access to the chip for the encryption
of images since it can only be performed on-chip using a sep-
arate bitstream that contains the encryption core. This makes
their proposal unsuitable to provide updates for devices in the
field as it would entail that said devices need to be brought
back to a secure environment for the update.

In contrast to the work of Owen et al., we use the PUF
to embed an external secret key and only perform decryp-
tion on-chip thereby allowing off-chip encryption of updates.

Additionally, and extending the work of Jacob et al., we also
perform an analysis of the stability and reliability of the PUF
on a set of 20 Zynq devices, and implement side-channel
countermeasures where required, in order to prevent leakage
of secret information.

The work of Kashyap et al. [20] deals with security issues
that arise if a partial bitstream is received during the runtime
of a device and has to be stored in insecure external memory.
They protect the partial bitstream by re-encrypting it with a
fresh random key and keeping that key and certain values
for integrity checks in internal memory. Their work assumes
that the device has securely booted and is already running,
thus their scope is a lot narrower than our approach which
establishes security from boot until full configuration. Addi-
tionally, they also keep the keys in volatile internal memory,
so after a reboot the configuration is lost.

3 System overview

In this section, we show how the user IP cores in the FPGA
design can be protected using custom cryptographic cores on
an FPGA SoC and provide a reference design for the Xilinx
Zynq-7020 device. Custom cores are used for secure key
storage and decryption instead of the manufacturer-provided
built-in key storage and decryption core.

Figure 1 provides a system overview of the FPGA SoC
consisting of the FPGA fabric and processing system on the
same die. The cryptographic cores, namely the LR-AEAD,2

PUF and PR controller (depicted in orange), are part of the
initial static configuration of the FPGA. This part of the
FPGA configuration is independent of the so-called user
designwhich contains the actual design to fulfill the applica-
tion’s purpose. All respective user cores (depicted in green)
are loaded using dynamic PR only once they have been suc-
cessfully decrypted and authenticated using the initial static
parts.

Prior to deployment of the device, a user supplied encryp-
tion key is linked to the PUF as a one-time operation. A
dedicated software routine is loaded onto the device which
retrieves the PUF helper data for that key. The PUF inter-
nally creates a device intrinsic secret which in combination
with that helper data is later used to regenerate the supplied
encryption key (this process is illustrated in Fig. 3). Neither
the encryption key nor the PUF secret are permanently stored
on the device which means that the secret cannot be recov-
ered via offline attacks. After embedding the encryption key,
an RSA public key is burned into the eFuses of the device and
authenticated boot is enforced. This prevents the execution of

2 In the original version of this paper the primitive is denoted as LR-
AES; we changed the name to LR-AEAD to make it more generic and
reflective of both solutions presented in this extended version.
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Fig. 1 System overview

Fig. 2 Boot flow of the hardened boot process

an unauthentic boot loader and, importantly, also stops adver-
saries from embedding their own key into the PUF after the
device is deployed. This does not prevent an authentic user
from changing the key at a later point in time if required,
once they have physical access to the device.

Figure 2 describes the boot flow of our Xilinx Zynq-7020
implementation once it is deployed. It shows the different
stages of the secure boot process starting from power-up
until the system has successfully booted and user software
is running. After power-up the boot process begins with the
hardwired BootROM code in the CPU that is provided by
the manufacturer. To establish a chain of trust the first soft-
ware and logic configuration that is loaded onto the system
needs to be protected against manipulation by an adversary.
As a result, the BootROM code has to be able to authenticate
the first user provided boot code before control is handed
over. The BootROM code itself cannot be altered. Hence,
all implementations must rely on manufacturer-provided
authentication of the first stage boot loader (FSBL), in our
case RSA signature verification. However, since the signa-
ture check only requires the public part of the RSA key pair,
no secret keys are stored or processed. Our concept is only
based on the assumption that manufacturer-provided storage
for the public key can be trusted. The FSBL, static bitstream
and second stage bootloader (U-boot) are authenticated using

this RSA verification routine. After verification, the FSBL is
loaded to the on-chip memory and control is handed to it.

The FSBL is a modifiable bootloader that initializes the
system and authenticates and loads the static configuration to
the FPGA fabric. We modify the FSBL to transfer the helper
data to the PUF module and trigger the regeneration of the
encryption key. The helper data is publicly accessible and is
stored and authenticated together with the FSBL. Following
the successful reproduction of the encryption key, the PUF
is locked until the next reset. This prevents any entity from
misusing thePUFat a later instance of time in order to attempt
to reproduce the key. The encryption key generated by the
PUF is directly transferred to the LR-AEAD engine and does
not leave the FPGA fabric as can be seen in Fig. 1. The LR-
AEAD core is now capable of authenticating and decrypting
user hardware IP. The boot process continues with the FSBL
authenticating and loading the second stage bootloader, U-
boot. As the on-chip memory is too small for U-boot it is
usually loaded to external memory.

U-boot is an open-source bootloader commonly used
for embedded systems whose functions include system ini-
tialization and loading the kernel. In addition to this, we
use U-boot to securely load the partial bitstreams. After
completing the system initialization, U-boot begins send-
ing encrypted partial bitstreams containing user IP to the
LR-AEAD core for tag validation and decryption. Upon
successful verification, the plain partial bitstreams are trans-
ferred from the LR-AEAD core directly to the PR controller,
i.e., they never leave the FPGA fabric and are not transferred
on any shared resources of the FPGASoC . The PR controller
dynamically reconfigures the relevant part of the FPGAwith-
out interrupting other regions and services. Depending on
the application, those user cores may for example contain
secret data for higher software layers. The last step in the
boot process is for U-boot to load the software stack on the
CPU. Currently, the software is only authenticated and not
encrypted; this is explored in greater detail in Sect. 9.

This boot sequence comprises the same boot stages as the
standard flow supported by Xilinx. The difference is that we
leverage PR and how the partial bitstreams are decrypted
and validated, namely by custom cores instead of vendor-
provided ones. Looking back at Fig. 2, in case of the standard
boot flow, all user cores would typically be loaded during
Stage 1 following their validation using the built-in crypto-
graphic cores. In contrast, we only load the static bitstream
consisting of the custom cryptographic cores during this
stage, all user cores are loaded during Stage 2 following their
successful verification using the custom cores.

If over the lifetime of the device an update of a user core
is necessary, the new version can be encrypted off-chip using
the encryption key that was previously embedded during
the enrollment process. It can then be sent to the device as
remote update without requiring physical access. Remark-
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ably, the LR-AEAD core for actual bitstream decryption can
also be remotely updated by updating the static bitstream.
When changes to the core are made, a new version of the
entire static bitstream has to be generated, signed with the
RSA private key and then transferred to the device to replace
the old one. However, updating the PUF requires a secure
connection or physical access. Due to its nature, changes to
the PUF will inevitably change the intrinsic PUF secret and
will prevent the recovery of the encryption key with existing
helper data. In that case, the encryption key enrollment has
to be repeated as it was done for a fresh device.

4 Building blocks

In this section, we describe the functionality of the hardware
building blocks that make up the static FPGA configuration
of our system: thePUF that generates a device intrinsic secret,
the LR-AEADwhich protects confidentiality and integrity of
user cores and the PR controller which loads the user cores
using dynamic PR.

4.1 Generating a device intrinsic secret

A PUF is a security primitive that utilizes manufacturing
process variations to generate a unique digital fingerprint
intrinsic to a physical piece of hardware [7]. As this nat-
ural variation between otherwise identical silicon devices is
outside the control of even the manufacturer, PUFs are inher-
ently difficult to clone.Constructions can be broadly split into
two categories; challenge-response type PUFs which pro-
duce a device unique response for a given input challenge
(often referred to as ‘strong’ PUFs), and identity-generator
type PUFs which produce few or just a single response for
the device (often referred to as ‘weak’ PUFs)3. While these
constructions and how they are implemented provide dif-
ferent trade-offs for a designer to explore, for this work a
method to generate a secret key is required. Hence we focus
on identity-generator type PUFs where no input challenge is
required and modeling type attacks, which have proven to
be effective against many challenge-response constructions
[36], are not in scope.

A number of publications suggest using PUFs for the gen-
eration of secret keys, for example the works in [1,24]. In
order to be of use for security applications, a PUF must ful-
fill certain properties with respect to reliability, entropy and
uniqueness. While the evaluation of these properties varies
from work to work, they generally include Hamming dis-
tancemeasurements between responses from the samedevice
(indicating the reliability) and between different devices

3 Note the terms strong and weak here refer to the size of the response
space rather than the security of the PUF constructions.

Fig. 3 Fuzzy commitment scheme

(indicating the uniqueness). These broad measurement met-
rics can hide subtle biases in the responses however, so care
must be taken when performing the analysis. Recent work
has looked to formalize this measurement analysis through
the ISO standardization process [4].

Rather than using a PUF circuit to directly generate a
device dependent key, a fuzzy commitment scheme is used
where the PUF is used to mask the user-generated secret key
[19]. A fuzzy commitment scheme is required as the PUF
output is dependent on manufacturing variations hence there
is an error probability when reproducing the PUF response,
which empirically has been shown to vary across tempera-
ture and voltage variations. The fuzzy commitment scheme,
as shown in Fig. 3, uses an error correcting code (encoder)
to introduce redundancy to the key prior to masking with the
PUF output. This expanded and masked key can be publicly
stored as helper data to regenerate the secret key as required
at a later stage. However, should the PUF response not have
sufficient entropy, information leakage can occur through this
helper data. Where a biased PUF is used to mask the helper
data, key recovery could be possible through this publicly
available helper data. Hence in practice, a de-biasing stage
should be used in conjunction with an entropy extractor to
securely generate a key. There are a number of approaches
to implement such a stage, such as index-based syndrome
(IBS) coding [46], von Neumann corrector [25] or wiretap
coset codes [14] for example. In this work a de-biasing stage
is not considered as the empirical bias of the PUF, as calcu-
lated over 20Xilinx Zynq-7020 devices at room temperature,
is close to ideal as shown in Sect. 6.1.

The PUF architecture used in this work is based on that in
[10] which creates a cross coupled feedback loop contained
within a single slice of an FPGA to generate a single PUF
bit. For the error-correction, a (23, 12, 7) Golay linear block
code is used, where every 12 bits of the key are encoded
to a 23-bit codeword, with a Hamming distance of at least 7
between any codeword pair. This allows up to three errors per
codeword to be corrected. Hence the 256-bit key is expanded
to a 498-bit codeword and combined with the 498-bit PUF
output bits to generate the helper data4. Once generated, this
public helper data is then incorporated as part of the FSBL to
enable key generation as outlined in Sect. 3. AGolay encoder

4 The key is zero padded to a multiple of 12, however these additional
mask bits are not required in the final codeword.
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Fig. 4 Side-channel secure authenticated decryption

can be implemented very efficiently in hardware using a shift
register, with the decoder block utilizing the same encoder
block combined with an additional 12-bit look-up table of
depth 2048. Both encoder and decoder architectures run in
constant time to prevent unintended side channel leakage
from the core.

4.2 Protecting confidentiality and integrity of HW IP

Toprotect integrity and confidentiality, hardware IP is usually
encrypted and protected by a message authentication code
(MAC). This mitigates offline attacks, but since edge nodes
might be deployed in hostile environments we also need to
protect the decryption against side-channel attacks.

Figure 4 shows a dataflow diagram of the authenticated
decryption core that consists of three components: a side-
channel secure stage with a LR-PRF, decryption using AES
in output-feedback (OFB)mode and authentication using the
Galois MAC (GMAC). Leakage resilient cryptography is an
algorithmic countermeasure against SCA attacks. It aims to
bound the leakage per execution such that an attacker can-
not accumulate information about the processed secret. We
use the LR-PRF proposed by Unterstein et al. [45] to derive
a secret pseudorandom state from public initialization vec-
tors (IVs). Specifically, that means processing two public
IVs, IVof b and IVgmac, with the LR-PRF to get two secret
IVs, denoted by ˆIVof b and ˆIVgmac, for the subsequent stream
cipher andMAC.This LR-PRF is similar to the one presented
byMedwed et al. [28], but it provides security against sophis-
ticated attacks using high precision EMmeasurements at the
cost of a higher latency. In our use case this is acceptable
because the computational overhead occurs only once dur-
ing the boot process. Internally the LR-PRF uses AES-128
encryption, so for the stream cipher we re-use the same AES
core in OFB mode which makes the area overhead almost
negligible.

For common SCA attacks the precondition is that the
attacker can guess some internal value of the algorithm
that depends on the secret and an input (e.g., the plaintext)

that is known to the attacker. The general idea behind our
construction is that only the initial LR-PRF stage needs to
be side-channel secure (through means of leakage resilient
cryptography), because behind it, no public inputs are pro-
cessed by the block cipher. This gives no surface to mount an
SCA attack on the unprotected stages as there are no known
inputs and thus guessing internal values is not possible. A
detailed security analysis and a practical evaluation of our
target platform is presented in Sect. 6.2.

Formessage authenticationwe choseGMAC [26] because
it can be efficiently implemented in hardware since it only
requires an additional Galois field multiplier. Differing from
the specification,where theMACkey h is derived by encrypt-
ing a plaintext with all zeros, we derive the MAC key by
processing another public IVgmac with the LR-PRF and then
encrypt the resulting ˆIVgmac to get h.Wedivert from the spec-
ification here because, as previously explained, we need to
prevent an unsecured encryption where the inputs are known
to the attacker. This is achieved by processing the public input
with the side-channel secured PRF first.

A general problem when decrypting and authenticating
data in one pass is that the authentication tag can only be
checked after processing all the data. But sending unau-
thenticated data to the PR controller, in our case the Xilinx
proprietary internal configuration access port (ICAP), can
be dangerous. Configuring the FPGA with unauthentic data
could damage the FPGA due to short-circuits caused by false
or malicious configurations as stated in [31]. Hence we need
to buffer the decrypted data until it is verified beforewepass it
on. This buffering has to be done in on-chip memory (OCM),
otherwise it would be prone to manipulation, for example by
probing of the memory bus. Therefore, we implemented a
first in, first out (FIFO) buffer immediately prior to the PR
controller that releases data only after its tag has been ver-
ified. To keep the allocated block RAM (BRAM) for the
FIFO small, we split the bitstream into segments which are
decrypted and authenticated individually. While the FIFO is
sending authenticated data to the PR controller, decryption
of the next segment is concurrently being performed, thus
reducing the latency. To prevent IV re-use, the IV must be
unique for every segment. For this purpose, IVof b is split up
into a 96-bit random value and a 32-bit counter value that is
incremented with every segment. That also means that at the
beginning of every segment, the LR-PRF is evaluated to gen-
erate a fresh ˆIVof b. Updating IVgmac in between segments is
not necessary because it is only used to generate the GMAC
key h which we keep constant for the entire bitstream (note
that in the original GMAC scheme h is always derived by
encrypting an all zero plaintext).

U-boot only continues the boot process if the verification
of all the segments of the partial bitstream succeeds. If the
verification of any of the segment fails, U-boot aborts the
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Table 1 Resource utilization Module Slices BRAM
RAM36LUTs Registers

LR-AEAD (LR-PRF, AES-OFB, GMAC) 4568 2810 0

PicoPUF, Fuzzy Commitment 3917 4179 1

PR Controller 50 53 0

ICAP FIFO buffer 99 124 1

Overall, incl. interconnects 9274 7911 2

boot process and systemgoes into a secure lockdownmode.A
power cycle is necessary to remove the system from this state.

4.3 Partial reconfiguration of user IP cores

The PR controller receives the authenticated and decrypted
partial bitstream from the corresponding LR-AEADcore and
then passes them to the Xilinx ICAP interface. The ICAP is
a proprietary interface from Xilinx typically used for con-
figuration readback and reconfiguration of the FPGA. The
ICAP has direct access to the configuration memory through
the configuration registers, hence can be used to dynamically
reconfigure the FPGA. In this work, the ICAP only operates
in the device reconfiguration mode and no configuration data
can be read back through the ICAP.

5 Implementation

Here, we describe the prototype implementation for the Xil-
inx Zynq-7020 FPGA SoC . The resource utilization of the
various building blocks is provided in Table 1. Overall, we
only use around 22% of the available slices and 1.5% of the
available BRAM of this device, which is among the smaller,
low-cost devices of the Xilinx Zynq-7000 product range.
Hence, 78% of the slices of this lightweight device are still
available to implement for user IP cores.

All the hardware building blocks are configured and man-
aged over the AXI interface by software drivers that are
patched to a standard U-boot and FSBL. The helper data
for the PUF is generated once and then hard coded into
the FSBL. As the BRAM modules on the Xilinx Zynq-7000
series are each 4.5 KB large, we split the partial bitstreams
into segments of 4 KB with an additional 16 bytes for the
tag appended to each segment. This configuration leads to a
storage overhead of less than 0.4 percent.

6 Security evaluation

This section presents the crucial elements of the security eval-
uation. We use an attacker model that allows physical access

to the device and full control over all inputs. The attacker is
capable of mounting passive side channel attacks by taking
measurements of the device.We will in our analysis consider
the most powerful method, namely high-precision EM mea-
surements directly over the decapsulated die. For our DUT
we had to remove the packaging which technically makes it
an invasive attack, but there are derivates within this product
family that are shipped as ’naked’ flip chip. In that case the
die is bonded upside down and the backside silicon is directly
accessible formeasurements,making it a non-invasive attack.
In this work we do not consider active or invasive attacks
like glitching, laser fault injection or focused ion beam (FIB)
attacks.

6.1 Evaluation of the PUF

In this work, an identity type PUF design similar to that pro-
posed in [10] is employed to regenerate the secret key. It
comprises of 498 elementary 1-bit PUF cells, which are used
to mask the output of the Golay linear block code used to
encode the 256-bit user-generated key as shown in Fig. 3.
Each PUF cell is designed to fit compactly in one FPGA
slice as shown in Fig. 5. Figure 5a shows the architecture
of each PUF cell comprising of four logic and three regis-
ter components. The physical layout of a single PUF cell is
shown in Fig. 5b with the registers and logic (implemented
in the LUTs) depicted in blue, located in a single slice, and
the timing-critical routing paths highlighted in black. The
routing is fixed with the use of scripts as part of the Vivado
design flow to ensure that all cells have identical routing
paths, which have been selected to maximize the entropy
while retaining sufficient reliability to allow minimal error
correction of subsequent evaluations. As the register compo-
nents all have the same clock source, they can be placed in the
same slice. Therefore, this enables the timing-critical routing
paths between PUF components, which largely determines
the response value, to be placed within the local interconnect
rather than the general purpose interconnect.

To assess the suitability of the PUF architecture for our
side-channel protected secure boot design, a 256-bit output of
the core PUF module was generated for testing prior to error
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(a)

(b)

Fig. 5 PicoPUF design

correction being applied5. This output was regenerated 1001
times at room temperature for each of 20 Xilinx Zynq-7000
devices.

Analyzing the reliability of each bit, it was found that
≈ 80% of bits on each device returned a stable value across
all evaluations.While temperature andvoltage variationswill
introduce additional noise to the PUF responses, empirical
evidence indicates that constraining the design to a sin-
gle slice helps minimize these effects [10]. The expected
fractional Hamming distance (i.e., the bit error rate (BER))
between a sample evaluation and the reference response was
empirically estimated to be 0.0217, or 5.56 bits of the 256
bit response. It was shown in [11], that the probability of a
string of n bits having more than t errors is given by:

Ptotal = 1 −
t∑

i=0

(
n

i

)
pib (1 − pb)

n−i (1)

Given that the Golay encoder can correct up to t = 3
errors in an n = 23 bit codeword, this gives an expected
Ptotal = 1.4 × 10−3. While not implemented here, using a
simple (3, 1, 3) repetition code concatenated with the Golay
encoder brings Ptotal down to 3.26× 10−8, trading off addi-
tional hardware requirements for the increased reliability.
Alternatively, multiple PUF readouts could be taken with a

5 The 256-bit output is for testing purposes only, the full design requires
498 PUF cells.

majority vote applied to determine the PUF response. While
the bits are no longer independent and identically distributed
(IID), this should still have a similar error rate to the equiv-
alent sized repetition code. The hardware tradeoff here is
an additional counter per PUF cell along with some mini-
mal extra latency, removing the need for the additional PUF
cells requiredwhen implementing a repetition code.Note that
for smaller repetition code/majority voting implementations
(e.g., 3 or 5), the area difference will be minimal.

The bias of the PUF response was close to ideal, with the
average value of a bit expected to be 0.498, when averaged
over all responses and devices. The expected fractional Ham-
ming distance between the outputs of two different devices
was empirically estimated to be 0.497. Given these results,
it is expected that the helper data generated by different
devices is sufficiently independent such that an adversary
cannot learn anything useful about the key given access to
the helper data from multiple devices.

SCA attacks on PUF designs can be categorized into
attacks on the core PUF instance, and attacks on the post-
processing. While attacks such as directly reading out PUF
bits using a FIB are outside the scope of the attacker model,
there has been work directly attacking the generation of
the PUF output. For example, delay-based arbiter designs
are attacked using power analysis in [2], while recovering
frequencies from ring oscillator (RO) PUF designs is inves-
tigated in [29]. However, as the PUF design used in this work
evaluates in a single clock cycle, it is not expected to be sus-
ceptible to attacks on its core bit generation.

Of greater threat are attacks on the post-processing stage
[29,41]. Typically such attacks are differential attacks and
require the attacker to manipulate the helper data. In our pro-
posal, the helper data is authenticated before use and thus
protected from tampering. This greatly reduces the number
of different observable traces that an attacker can obtain, with
differences only generated due to PUF response errors. The
Golay error correction block consists of linear operations,
and a single, constant time, table look-up indirectly based on
the PUF response error. Linear operations have been shown
to require a large number of side-channel traces to obtain
information [34], hence are not considered practical in this
scenario. While many attacks against block ciphers target
look up tables, this is as their non-linearity makes them a
suitable attack point [34]. In the implementation here, the
look up table is not non-linear, and is used to both speed up
and ensure constant time syndrome decoding bymapping the
decoding error into memory. These errors are sparse vectors
and, similar to the linear operation stage, the reduced num-
ber of different observable traces should prevent any power
or EM-based SCA. Under these restrictions, simple power
analysis (SPA) attacks using only a single or few traces, are
likely infeasible.
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6.2 Leakage resilient authenticated decryption

We designed our leakage resilient authenticated decryp-
tion scheme following the principle described in [32]. As
shown in Fig. 4, we rely on an initial “leak-free” stage using
a LR-PRF that is protected against SCA. It establishes a
pseudo-random intermediate state ( ˆIVof b and ˆIVgmac) that
is unknown to the attacker and allows us to use unprotected
decryption and authentication for the actual workload. Inter-
nally, the LR-PRF consists of a so-called GGM tree PRF [9]
and optionally one or more length-doubling pseudorandom
generators (2-PRGs) as described in [45]. Both the PRF and
the (one or more) 2-PRG stages are implemented using the
same hardwareAES core that is also used in the stream cipher
module. This means we only need to instantiate one AES
core that is then time-shared between the different modules.
The number of 2-PRG stages is a design choice that allows
to compensate entropy loss after successful side-channel
attacks on the very first AES execution which inevitably has
to operate on public inputs. The required number of stages
depends on the leakage behavior of the device and can be
determined through laboratory analysis. Each stage adds a
fresh 128-bit key to increase the remaining entropy within
the internal secret state. We opted for one 2-PRG stage and
thus require two 128-bit keys, k2prg and k. k2prg is used only
in the initial 2-PRG stage, k in the rest of the construction.

The side-channel security of the LR-PRF is based on two
principles: limited data complexity (i.e., the number of oper-
ations with the same key, but different inputs that an attacker
can observe) and algorithmic noise from parallel S-boxes.
As pointed out in [45], a laboratory analysis is mandatory to
assess the security level. We implemented the LR-PRF using
an AES core with parallel S-boxes on the Xilinx Zynq-7020
device and placed the AES as dense as possible as shown in
the floorplan in Fig. 6. Following the method described in
[45] we conducted a localized EM analysis using a near-field
EM probe placed on the decapsulated die. We first identi-
fied the locations of the S-boxes through a grid scan and then
ran template attacks on them usingmeasurements from those
locations. For each S-boxwe collected 400,000 traces for the
profiling and 100,000 traces for the attack at its respective
location. More traces typically lead to better results but the
number of traces that can be used is limited by the acquisition
time. However, during our experiments we found this num-
ber to be sufficient and that an increase in either the profiling
or the attack set did not demonstrably improve the attack.

Usually, attacks with limited data complexity do not suc-
cessfully recover all key bytes directly. Instead, some brute
force effort is required to combine the most probable can-
didates for each key byte into full keys and then test each
key candidate for its correctness. An evaluator that knows
the correct key can use a key rank estimation algorithm [8]
to determine the brute force effort even in cases where an

Fig. 6 Placement of the AES core for the SCA

actual enumeration of all candidates up to the correct key is
not computationally feasible. The security level is then given
as the brute force effort after running the template attack,
i.e., the number of combined keys an attacker has to try
until reaching the correct key. The natural attack vector in
our case is the initial execution of the first 2-PRG stage, as
this is the only stage where the AES is encrypting public
plaintexts. However, this operation only encrypts two dif-
ferent plaintexts; the data complexity is 2. We found that
the remaining security level after an attack on this 2-PRG
stage is still 2120, or 120 bits. This is significantly higher
than the results reported on the Xilinx Spartan 6 platform in
[45] where the security level was only 248 and we attribute
this difference to the smaller feature size (28nm compared to
45nm) and the different placement strategy.As shown in [44],
the countermeasure is more effective if the placement of the
parallel S-boxes is denser so that individual signals cannot
easily be resolved by the EM probes. A smaller feature size
allows for higher integration density (and consequentially
shorter connections on the metal layers which are the main
source of electromagnetic emanations) which should hinder
localized EM attacks. Note that these results were achieved
with a standalone design and not the entire system.We expect
that the increased noise generated by the full design will only
make attacks harder.

This means that the LR-PRF provides sufficient remain-
ing guessing entropy after an attack even if we use the GGM
tree directly without the additional 2-PRG stage and key
upstream6. Nevertheless, we opted to keep the 2-PRG and
second key to increase the security margin in case of more
sophisticated, as yet unknown, attacks. The hardware over-
head is minimal since we re-use the existing AES engine and

6 The LR-PRF is then identical to the construction in [27] with data
complexity 2.
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Table 2 Overview of system security

Threat vector Mitigation

Stage 0. BootROM

Load malicious FSBL Integrity check of FSBL using RSA

Stage 1. FSBL and static FPGA configuration

Learning the PUF Key reproduction triggered by FSBL, following which PUF is locked

Recovery of PUF secret Key enrollment in the field is blocked

Readout encryption key Key is directly transferred to LR-AEAD

Stage 2. U-boot

Loading unauthenticated configuration FIFO is used to buffer configuration

thus only pay for this added security with latency and “key
storage” in the form of a larger PUF.

After the LR-PRF stage, we use AES in OFB mode for
the actual decryption of the bitstream. We opted for the OFB
mode, instead of e.g., GCM mode, because the plain- and
ciphertext is not directly an input to the block cipher. As long
as an attacker does not know both plain- and ciphertext, the
in- and outputs to the block cipher remain secret and provide
no surface for side channel attacks. Even partial knowledge,
as is the case in counter modes where the initial counter value
may be unknown but the increment of the counter is known,
can be sufficient to mount an attack [17]. If on any platform
portions of the plaintext are known, e.g., because they are
all zeros, we propose not encrypting those parts and instead
adding them to the additional authenticated data (AAD). An
open question remains considering the effect of plaintexts
that are unknown, but not uniformly random because they,
e.g., consist of opcodes or addresses that do not utilize the
entire value space.We are not aware of any published attacks
that exploit such a scenario and imagine such an attack to be
hard, nevertheless it remains as an interesting topic for future
research.

6.3 Overall system security

The security evaluation of the building blocks, namely PUF
and leakage resilient authenticated decryption cores, were
presented in Sects. 6.1 and 6.2 respectively. However, the
integration of the individual blocks can give rise to new attack
vectors. Nowwe review the overall system security by recall-
ing the boot process and listing the different threat vectors
post-integration together with the implemented mitigation
techniques. A summary of the findings for each boot stage is
listed in Table 2.

Load malicious FSBL or U-boot: An adversary may
attempt to bypass the implemented security mechanism by
replacing the boot images with malicious ones. This is pre-
vented by using the manufacturer-provided RSA signature
verification. After power-up, the BootROM verifies the sig-

nature of the FSBL, only after successful verification of the
signature is the control handed off to the FSBL. This check
is enabled by burning an eFuse and cannot be disabled. Sub-
sequently, the FSBL checks the signature of the U-boot.
An adversary trying to forge any of those signatures would
require the private key which is not stored on the device.

Learning the PUF: In our proof of concept implementa-
tion we use an identity-generator type PUF hence modeling
attacks are out of scope. As well as ensuring that the PUF
output is only ever combined with the helper data in order to
generate the secret key, we also built in a mechanism to limit
the access and interface to the PUF. Following the loading of
the static bitstream by the FSBL, the FSBL is allowed to trig-
ger a PUF key reproduction only once. After the successful
reproduction of the key, the PUF is locked by the hardware
and is not accessible until the next power-up.

Recovery of the PUF secret: As can be seen in Fig. 3,
the helper data that is generated during key enrollment is an
XOR combination of the encoded encryption key and the
PUF secret. If an attacker could enroll his own keys, then it
is trivial to calculate the PUF secret from the retrieved helper
data. This is prevented by only allowing authorized FSBL
code to be executed on the device. No authenticated code for
key enrollment exists in the deployed device however (the
respective code is executed before setting an authenticated
code only configuration). The locking of the PUF after key
reproduction also disables the ability to enroll keys during
runtime.

Readout of the encryption key:An attacker may attempt
to corrupt the bitstream so as to include additional lines to
readout the key. This however is prevented by verifying the
integrity (at the same time as its authenticity) of the bitstream
before it is loaded. Thus, what remains is to attempt to read
out the key at run-time, e.g., via existing shared interfaces. To
protect the key from being read by an unauthorized entity, the
reproduced key is directly transferred to the LR-AEAD core.
The key never leaves the FPGA fabric and is not transferred
over any shared resources of the FPGASoC, this ensures that
no other entity has access to the key.
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Load unauthenticated data to FPGA: Authenticated
encryption is used to protect confidentiality and integrity of
the partial bitstreams where the decryption and authentica-
tion are performed in parallel. As the authentication tag can
only be checked at the end, an adversary can send unau-
thentic data and it will be decrypted before the invalid tag
is noticed. If the switch boxes and LUTs of the FPGA are
falsely configured, it could result in short-circuits in the fab-
ric and thereby destroying parts of the device. To prevent
decrypted data from being directly transferred to the PR con-
troller before the authenticity can be verified, the bitstream is
divided into segments. Each segment has its own verification
tag and is buffered after decryption until it has been success-
fully authenticated. Only after the successful verification of
a segment, are the buffered contents transferred to the PR
controller.

7 Generalization

While we target a Xilinx Zynq-7020 FPGA SoC for our
proof-of-concept, the method is agnostic to a specific FPGA
manufacturer/family as long as it provides certain common
functionalities. We now discuss the portability of the pre-
sented design to other platforms and the additional steps that
need to be taken. The two key requirements to port this design
are that the target provides:

1. Authentication and integrity checking of the static bit-
stream using public key cryptography

2. Partial reconfiguration

In the initial boot step, an authenticity and integrity check
of the static bitstream containing the custom cryptographic
cores is necessary.We used signature verification with public
key cryptography on the Xilinx Zynq-7020 device to achieve
this. Public key cryptography for this purpose is a widely
adopted feature and is present in the majority of FPGA SoCs
that are currently available. The benefit of using public key
cryptography is that no additional secret key material is nec-
essary and the operation does not need to be protected against
key-recovery attacks.

PR is necessary to reconfigure parts of the FPGA fab-
ric at run-time with user cores that were decrypted by our
protected engine. This feature is supported by the leading
manufacturers of FPGA SoCs such as Xilinx and Intel (for-
merly Altera). Thus this design can be ported to these devices
with low effort.

As the Xilinx Zynq-7000 series devices do not provide
any user key storage (only 32 bits of general purpose eFuses
are available), we opted to use a PUF for key storage. Newer
devices, however, often provide user accessible secure key
storage. Some devices like the Xilinx Zynq Ultrascale+ and

Stratix 10 from Intel even include hard-core PUFs and allow
secure boot using these PUFs. In such cases the custom PUF
can be omitted if the key storage is trusted to be secure. If
a custom PUF is used on a different platform, it needs to
be re-evaluated to ensure that the key has sufficient entropy.
Additionally, when porting the design to a different technol-
ogy the leakage behavior of the decryption core can change
and the side-channel security should also be re-evaluated as
shown in [45]. Considering the large security margin that
we found on the Xilinx Zynq-7020 device, we do not expect
any issues on other comparable or newer technologies as a
smaller feature size makes localized attacks harder.

8 Alternative leakage resilient decryption
schemewith a smaller hardware footprint

In Sect. 6.2, we propose a LR-AEAD scheme that uses a
LR-PRF and AES in OFB mode for decryption and GMAC
for authentication. This choice was motivated by results of
Unterstein et al. [45] that demonstrate that on FPGAs, it is
possible to recover the key of an AES implementation in a
side channel attack even if only two different operations can
be observed (the case of data complexity 2). However, the
remaining security level after such attacks is dependent on
the layout and manufacturing process of the device, where
smaller feature sizes usually make localized EM attacks
harder. In the security evaluation on the Xilinx Zynq-7020
device we found, that our AES implementation resists local-
ized EM attacks in case of data complexity 2 and retains a
high security level of 120-bit. As was already mentioned in
Sect. 6.2, this makes the extra 2-PRG stage obsolete on our
target platform, but this also allows us to deploy an alterna-
tive construction that is easier to implement and requires less
hardware resources.

8.1 Architecture

In this second implementation option, we drop the 2-PRG
stage inside the LR-PRF, therefore we now require only a
128-bit key for the LR-PRF. We also replace the stream
cipher part, i.e., the AES in OFB mode, and the GMAC
authentication. Instead, we implement a LR-AEAD scheme
based on the results of Krämer and Struck [21] who propose
that a LR-AEAD scheme can be built using a LR-PRF, a
leakage resilient PRG (LR-PRG) and a hash function. In ref-
erence to the introduction of this scheme in [5] we refer to
it as FGHF ′-based LR-AEAD and to our original scheme
as AES-OFB-based LR-AEAD. Figure 7 shows the hard-
ware/software partitioning and the building blocks for the
proposed FGHF ′-based LR-AEAD scheme. The left side
describes the software implementation in pseudo code and
makes references to the hardware on the right whenever
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Fig. 7 Alternative side-channel hardened authenticated decryption

data is transferred between the two partitions. The right side
describes the dataflow in the hardware implementation in a
way similar to Fig. 4. Note that there is still only one hard-
ware instance of the LR-PRF and that the (one) AES core
used in the LR-PRG part is shared with the LR-PRF. The
construction uses a single IV and two 128-bit keys, kmac and
kenc.

Interestingly, the hash function in this construction does
not need to be protected against side-channel attacks as it
only processes public inputs and no secrets. Therefore, the
authentication part of the scheme can be split between hard-
ware and software. First, a hash function, here SHA-256,
calculates the hash of the IV, AAD and ciphertext. This
is implemented in software as part of U-boot. The hash is
truncated to 128 bits and processed by the LR-PRF with
key kmac to calculate the tag. For this side-channel critical
operation, the evaluation of the LR-PRF, we still rely on a
protected hardware engine. The tag is now calculated over
the entire bitstream at once and checked before decryption
is started instead of calculating tags for multiple segments
of the bitstream separately. This is different to our previous
construction, where authentication and decryption are calcu-
lated in parallel hardware and require a hardware FIFO to
buffer the plaintext until the tag is verified. This was neces-
sary to avoid the performance penalty of a two-pass scheme
that has to transfer the entire bitstream over the bus twice. In
this new scheme, only the 128-bit hash is sent to the hard-
ware during authentication. As the tag of the entire bitstream
is now verified before decryption, the FIFO in front of the
ICAP is not necessary and the decrypted bitstream can be
directly configured.

Decryption of the bitstream is still implemented in hard-
ware. If the tag is correct, the IV is processed by the LR-PRF
using a second key, kenc. The result is used as key for

a LR-PRG which produces the key stream to decrypt the
ciphertext. The LR-PRG is based on AES and consists of a
concatenation of 2-PRG stages. Within each stage, an all-
zero plaintext p0 and an all-one plaintext p1 are encrypted
with the same key, and the results are used as the key for
the next iteration and as part of the key stream, respec-
tively.

8.2 Side-channel security

In Sect. 6.2 we give results of a side-channel attack with
data complexity 2 on a 2-PRG, specifically results of tem-
plate attacks on an AES core which encrypts two distinct
plaintexts. For the new construction we identify two attack
vectors which we show to be equivalent to the case in
Sect. 6.2:

Side-channel attack on the LR-PRF: Keys kmac or kenc
can be targeted in an attack on the LR-PRF. Since we are
not using the 2-PRG stage in front of the GGM tree PRF, the
relevant attack vector is the first iteration of the GGM tree. In
the context of an attack, this iteration behaves identically to
the 2-PRG stage: it consists of an AES encryption that uses
either all-zeros or all-ones as plaintext input.

Side-channel attack on theLR-PRG:TheLR-PRGcon-
sists of multiple 2-PRG stages and changes the key between
the stages. It is initialized with a key that is derived from
the IV of the bitstream. Hence, an attack can only recover
the ephemeral key to decrypt one specific bitstream, and not
one of the long-term keys kmac or kenc. An attack on the
LR-PRG can be mounted targeting any 2-PRG iteration, i.e.,
any intermediate key. However, in all cases the attack is lim-
ited to data complexity 2.

Both attack vectors are identical to the case investigated
in Sect. 6.2. Therefore, we can apply the results of the side-
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channel evaluation of the 2-PRG to this construction. As a
result, the remaining entropy after a side-channel attack on
kmac, kenc and the ephemeral LR-PRG keys is 120-bits per
key. Since there is no meaningful way to combine the results
of attacks on the different keys, the security level of the entire
construction is thus 120-bits.

8.3 Resource utilization and performance

By using this scheme and moving part of the authentication
to software, it is possible to significantly reduce the hardware
overhead. The FGHF ′-based LR-AEAD hardware requires
3137LUTsand1779 slices, compared to a total of 4667LUTs
and 2934 registers for the AES-OFB-based LR-AEAD and
FIFO combined. This is a reduction of 33% and 39%, respec-
tively. The LR-AEAD hardware also does not now require
any BRAMblocks as no buffering is required (previously the
FIFO used one RAM36 block). In addition, the size of the
encrypted bitstream is slightly reduced because only one tag
for the entire bitstream is stored instead of one tag per seg-
ment. The requirement in order to deploy this variant is that
the AES resists side-channel attacks with data complexity 2.
On platforms where this is not the case, such as the example
in [45], the AES-OFB based LR-AEAD must be used.

As the performance, i.e., the latency when decrypting one
partial bitstream, is dependent on the concrete implemen-
tation parameters, we only provide an informal discussion.
For the AES-OFB based LR-AEAD, decryption of one par-
tial bitstream requires two initial LR-PRF executions and one
initial AES encryption. The subsequent decryption of each
128-bit block of data requires one AES encryption. Since the
decrypted bitstream has to be buffered in a FIFO, it is poten-
tially split up into multiple segments if it exceeds the size of
the buffer. For each new segment, an additional evaluation of
the LR-PRF and an AES encryption is required. The dura-
tion of one LR-PRF evaluation is significant and depends
on the configuration, as explained in [45]. Depending on the
hardware platform, it can consist of up to 130 AES encryp-
tions. How many LR-PRF evaluations the AES-OFB based
LR-AEAD actually requires depends on the size of the FIFO
and length of the partial bitstream.

For the FGHF ′-based LR-AEAD, initially the hash has
to be calculated in software and the LR-PRF is evaluated
twice. Then for each 128-bit block of data two AES encryp-
tions are necessary. Hence, the FGHF ′-based LR-AEAD
requires double the AES encryptions per 128-bit data block,
but potentially less LR-PRF evaluations. Nevertheless, we
expect that reconfiguration on such systems is a task that is
most probably performed only once per boot. Therefore, we
suspect that designers will aim for lower hardware footprint
instead of lower latency.

9 Toward software encryption and runtime
security

Our proposal is currently limited to bitstream decryption.
User software is authenticated but not encrypted. For many
applications this is sufficient, since rarely is the entire soft-
ware stack confidential. If full confidentiality is desired
for software, this usually goes hand in hand with runtime
integrity protection and encryption of chip external RAM,
which are hard problems on their own. However, if our
AES-OFB based core is to be used for software decryption,
the OFB mode of operation might not be the best choice and
could lead to new attack vectors. The side-channel security
of the decryption core relies on the fact that an attacker does
not know the inputs to the underlying block cipher. In OFB
mode this holds, as long as the attacker cannot observe both
plain- and ciphertext. Otherwise, the XOR of both reveals
the output of the block cipher. With that information a reg-
ular DPA on the last round of the cipher becomes possible.
For the case of bitstream encryption, the decrypted bitstream
is directly sent to the PR controller, i.e., the plaintext never
leaves the hardware and is not exposed to the attacker. For
software decryption, this is hard to guarantee since the plain-
text is transferred back to the CPU and potentially ends up
in external RAM.

A straightforward mitigation is to use key whitening to
hide the in- and outputs to the cipher from the attacker. XEX
[35] and XTS [15] are modes of operation that achieve this.
However, there are several published side-channel attacks
on those constructions. Luo et al. show an attack on the
tweaking function of XTS that exploits the simple structure
of the Galois field multiplication by 2 [23]. This attack can
be prevented by using XEX which uses multiplications with
arbitrary values. In contrast, Unterluggauer et al. attacked the
AES in such a scenario directly by concatenatingDPAattacks
on the last two rounds [43]. This attack is feasible irrespec-
tive of the tweaking function but it requires the attacker to
change the input while keeping the IV constant (e.g., writing
the same sectormultiple times in the case of disk encryption).
Whether or not this is a relevant attack vector depends on the
application.

In cases where the second proposed LR-AEAD core is
applicable, this attack vector is prevented by the LR-PRG
that is used instead of AES-OFB. Similar to AES-OFB, each
block of ciphertext is decrypted byXORingwith one block of
the keystream. However, themain difference is that in case of
theLR-PRG the key changes fromblock to block. Thismeans
that the attacker cannot mount DPA attacks even if multiple
plain- and ciphertext pairs are known because for every key,
only one encryption is observable. This corresponds to an
attack with data complexity 1, which is effectively an SPA
attack. Since we defined that the AES implementation has
to resist attacks with data complexity 2 in a side-channel
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evaluation, this attack is not feasible as it is even harder for
the attacker.

We conclude, that only the LR-AEAD core based on a
LR-PRG is capable of protecting firmware decryption where
we expect that the attacker can guess large parts of the plain-
text. Nevertheless, protecting the confidentiality of software
demands much more than only secure decryption. For exam-
ple, external memory is vulnerable to cold-boot attacks [12]
and code can be reverse engineered by observing its behav-
ior [37]. To provide a sound solution for software encryption,
these issues need to be addressed and, depending on the spe-
cific use case, additional measures have to be taken which
are out of the scope of this work.

10 Conclusion

Side-channel attack resistant cryptographic cores and PUF-
based key storage are now available in the newest generation
of devices of leading vendors Xilinx, Intel and Microsemi.
However, all of them are closed-source and none are updat-
able; hence it is usually not feasible to upgrade already
deployed devices to a new hardware platform. As a step
toward a vendor agnostic solution, we present a SCA secure
and fully updatable mechanism to securely configure the
FPGA logic starting from power-up until the whole sys-
tem is booted and running. To achieve this, we leverage the
PR options of FPGAs, in conjunction with a PUF-generated
device intrinsic key and a leakage resilient authenticated
decryption core to securely load hardware IP cores. The pre-
sented work, to the best of our knowledge, is the first that
allows side-channel secure field updates of user IP cores and
the decryption engine without relying on any manufacturer-
provided secret key storage. The concept requires very
limited trust in the manufacturer and provides the neces-
sary flexibility if demands change or new attacks arise. This
approach is orthogonal to upgrading to newer and more
expensive feature-rich devices, and is also suited to retro-fit
older devices as it uses features that are already widespread
in current hardware.
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