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Abstract—The advances of Internet of Things (IoT) have had a fundamental impact and influence in sharping our rich living experiences.
However, since IoT devices are usually resource-constrained, lightweight block ciphers have played a major role in serving as a building block for
secure IoT protocols. In CHES 2015, SIMECK, a family of block ciphers, was designed for resource-constrained IoT devices. Since its
publication, there have been many analyses on its security. In this paper, under the one bit-flip model, we propose a new efficient fault analysis
attack on SIMECK ciphers. Compared to those previously reported attacks, our attack can recover the full master key by injecting faults into only
a single round of all SIMECK family members. This property is crucial, as it is infeasible for an attacker to inject faults into different rounds of a
SIMECK implementation on IoT devices in the real world. Specifically, our attack is characterized by exercising a deep analysis of differential trail
between the correct and faulty immediate ciphertexts. Extensive simulation evaluations are conducted, and the results demonstrate the
effectiveness and correctness of our proposed attack.

Index Terms—SIMECK Ciphers, Lightweight Cryptography, Cryptanalysis, Differential Fault Analysis, Bit-flip Model.
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1 Introduction

O ne of the key technologies transforming our living experiences
into much smarter ones is the Internet of Things (IoT).

However, since IoT devices are usually resource-constrained, it is
pressing to design lightweight block ciphers as building blocks to
secure IoT protocols, i.e., providing basic security requirements
including confidentiality, data integrity, and source authentication
for IoT devices.

By now, there have been numerous lightweight block ciphers
introduced. A statistic performed by researchers of the University of
Luxembourg 1 lists 36 lightweight block ciphers proposed by 2016.
In order to evaluate and standardize lightweight cryptographic algo-
rithms, NIST is supporting a Lightweight Cryptography project. By
now, 32 candidates have been selected and are evaluating in Round
2. Readers can find more information about the project in this link
https://csrc.nist.gov/projects/lightweight-cryptography.

In CHES 2015, Yang et al. [1] introduced SIMECK, which is a
family of lightweight block ciphers based upon Feistel structure and
combines the good design principles of the SIMON and SPECK
block ciphers [2]. Precisely, SIMECK consists of three members
with block sizes of 32, 48, and 64, and the corresponding key sizes
are 64, 96, and 128, respectively. As demonstrated in [1], SIMECK
allows a smaller and more efficient hardware implementation in
comparison to SIMON. Due to its nice property in efficiency,
SIMECK has been significantly analyzed since its publication.

As is known to all, fault analysis is a very efficient implementa-
tion attack against cryptographic protocols, which essentially tries
to influence the behavior of a cryptographic device and determine
sensitive information by examining the effects. Today, there have
been several mechanisms to inject faults into microprocessors.
Examples include changes in the power supply, the clock fre-
quency [3], or intensive lighting of the circuit [4]. In most cases,
injecting faults will force a change in the data located in one of the
registers. The first fault attack against RSA-CRT implementation
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was reported in a Bellcore press in 1996 and subsequently ana-
lyzed by Boneh, DeMillo and Lipton in [5]. Concretely, Boneh et
al. [5] showed that many implementations of RSA signatures and
other public-key algorithms are vulnerable to a certain transient
fault occurring during the processing phase, and the RSA-CRT
implementation is at extreme risk to be compromised by using one
erroneous result. After that, Biham and Shamir [6] introduced the
Differential Fault Analysis (DFA) against symmetric cryptosystems
such as the DES [6]. They assume that an attacker can disturb
DES computations by using the same - but unknown - plaintext
at the last (three) DES round(s). The wrong ciphers provide a
system of equations for the unknown last round key bits that finally
reveals the correct key value. Since then, there have been many DFA
attacks carried out on other block ciphers, including attacks against
AES [7], [8], Triple DES [9], IDEA [10], SIMON and SPECK [11],
[12] or KLEIN lightweight block ciphers [13]. These attacks are
performed on the key schedule [8], S-box [13], or intermediate
inputs [11]. They are also carried out under various fault models
(see more details in Section 2.3.2).

In 2016, Nalla et al. [14] presented two fault analysis attacks
against SIMECK ciphers. While the former is under the one bit-
flip fault model, the latter is under the random byte fault model.
Both of the two attacks aim at recovering the last round key by
injecting faults into the second last round. In this paper, we would
like to present an improved fault analysis attack against SIMECK
block ciphers under the one bit-flip model, which is more practical
than Nalla et al.’s attacks. Specifically, the main contribution of this
paper is three-fold.

• First, we show that the whole master key of SIMECK block
ciphers could be recovered by injecting faults into a single
round of the ciphers, which makes our attack more practical
than Nalla et al.’s attacks [14], as their attacks require faults
from 4 different rounds.

• Second, by deducing more key bits with one fault, our attack
also requires fewer faults than those previously reported
attacks.

• Third, we conduct extensive simulation evaluations, and the
results demonstrate the effectiveness and correctness of our
attack.
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The remainder of this paper is organized as follows. Section 2
briefly recalls SIMECK ciphers, security analyses, and differential
fault analysis on this family of ciphers. Section 3 discusses some
facts and observations that will be used in our attack. Section 4
describes our differential fault analysis under the one bit-flip model.
Then, we present our simulation evaluations in Section 5. Finally,
we draw our conclusions in Section 6.

2 Preliminaries
In this section, we briefly recall the specification of the SIMECK
family of lightweight block ciphers and differential fault analysis on
this family of ciphers. For the sake of consistency, we make use of
the following notations listed in Table 1 in the rest of the paper. In
principles, we use capital letters for vectors or strings while small
letters are used to represent individual bits.

TABLE 1
Definition of Notations

Notation Definition

T the total number of rounds of the cipher.
(Xi,Y i) input of round i, i = 0, 1, . . . ,T − 1.
(XT ,YT ) ciphertext.
(X̂i, Ŷ i) faulty input of round i, i = 0, 1, . . . ,T − 1.
(X̂T , ŶT ) faulty ciphertext.
Xi + Y i ‘XOR’ operation of Xi and Y i.
XiY i ‘AND’ operation of Xi and Y i.
(xi

j, y
i
j) variables denoting bit j of the input of the round i, i =

0, 1, . . . ,T , j = 0, 1, . . . , n − 1.
(x̂i

j, ŷ
i
j) variables denoting bit j of the faulty input of the round i,

i = 0, 1, . . . ,T , j = 0, 1, . . . , n − 1.
xi

j + yi
j bitwise ’XOR’ operation of xi

j and yi
j.

xi
jy

i
j bitwise ’AND’ operation of xi

j and yi
j.

Ki the round key in round i, i = 0, 1, . . . ,T − 1.
ki

j jth, 0 ≤ j ≤ n − 1 bit round key of round i.
∆i the difference between correct and faulty left inputs of

round i, where 0 ≤ i < T .
δi

j the difference at bit j of ∆i, where 0 ≤ i < T , and 0 ≤ j < n.
S a(X) Circular left rotation of a n bit word X by a bits.

2.1 SIMECK Specification

The SIMECK family of lightweight block ciphers was introduced in
CHES 2015 [1] and was optimized for hardware implementations.
Similar to SIMON, SIMECK is based on a typical Feistel design
and comprises three simple operations, namely, the bit-wise ‘AND’,
‘rotation’ and ‘XOR’ operations. Let n denote the word size. Then,
SIMECK2n/4n refers to perform encryptions or decryptions on 2n-
bit message blocks using a 4n-bit key, where n = 16, 24 or 32 is
called the word size of SIMECK2n/4n.

Fig. 1 shows a round function of SIMECK. Basically, the design
of this family is based on the balanced Feistel network. There
are in total 32, 36 and 44 encryption rounds for SIMECK32/64,
SIMECK48/96, an SIMECK64/128, respectively. In the following,
let us consider encrypting a plaintext P. At each round i, the input
message is divided into two words Xi and Y i, where P = X0||Y0 is
the 2n-bit plaintext. The round function of SIMECK is defined as
follows:

(Xi+1,Y i+1) = (Y i + F(Xi) + Ki, Xi) (1)

where F(X) = X · S 5(X) + S 1(X), Ki is the round key at the round i,
and S a denotes a circular left rotation by a bits. Let (xi

n−1, . . . , x
i
0),

Fig. 1. One round of SIMECK block cipher

and (yi
n−1, . . . , y

i
0) denote the input of round i for 0 ≤ i ≤ T − 1. The

following relations hold for any j = 0, . . . , n − 1:

xi+1
j = f (xi

j) + yi
j + ki

j,

yi+1
j = xi

j, (2)

where f (xi
j) = (xi

j & xi
( j−5) mod n) + xi

( j−1) mod n. As all indices
are computed modulo n, in what follows, xi

j will denote xi
j mod n,

xi
jx

i
j′ will denote xi

j mod n & xi
j′ mod n, and xi

j + xi
j′ will denote

xi
j mod n + xi

j′ mod n.

Key Schedule: In SIMECK ciphers, the round key is generated
from the master K as follows. Firstly, the master is segmented into
four words K = (K3,K2,K1,K0), then for i ≥ 0:

Ki+4 = Ki + F(Ki+1) + C + (z j)i,

where C is a constant value defined by C = 2n − 4, (z j)i denotes
the i-th bit of the sequence z j. SIMECK32/64 and SIMECK48/96
use the same sequence z0, which can be generated by the primitive
polynomial X5 + X2 + 1 with the initial state (1, 1, 1, 1, 1), whereas
SIMECK64/128 uses the sequence z1, which can be generated
by the primitive polynomial X6 + X + 1 with the initial state
(1, 1, 1, 1, 1, 1). Compared to SIMON ciphers, SIMECK ciphers are
more efficient and compact hardware implementation due to its
reuse of the round function with the round constant C + (z j)i in
the key scheduling algorithm.

2.2 Security Analysis on SIMECK Ciphers

Since SIMECK is based on SIMON and SPECK ciphers [2], the
security level of SIMECK ciphers is expected to be comparable to
the those of SIMON ciphers.

Since their publication, there have been a number of academic
works analyzing the security of SIMECK ciphers [15]–[21]. We
briefly recall a few attacks in this section. Kolbl and Roy [16]
performed differential and linear cryptanalysis 2 [22], [23], the
two most widely used attacks on block ciphers. They managed
to break up to 19/32, 26/36, and 33/44 rounds of SIMECK32/64,
SIMECK48/96, and SIMECK64/128 ciphers, respectively, with

2. Differential cryptanalysis is a chosen-plaintext attack that studies how
differences in input can affect the resultant difference at the output. Linear
cryptanalysis is a known-plaintext attack in which the attacker studies proba-
bilistic linear relations (called linear approximations) between parity bits of the
plaintext, the ciphertext, and the secret key.
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higher probability. These results cover more rounds compared to
those against SIMON ciphers (see [16, Table 6]). Then, an improved
differential attack using the dynamic key-guessing technique [17]
was able to break up to 22, 28, and 35 rounds of SIMECK32/64,
SIMECK48/96, and SIMECK64/128 ciphers. Even better, using the
same technique with linear hull cryptanalysis, Qin et al. [18] were
able to break 1 or 2 more rounds compared to results in [17].

2.3 Differential Fault Analysis (DFA) on SIMECK Ciphers
2.3.1 Differential Fault Analysis
The Differential Fault Analysis or DFA was first proposed by Biham
and Shamir in [6]. Unlike the statistical attacks mentioned above
such as differential and linear attacks, which requires a large amount
of data to perform an attack, a DFA attack is able to recover the full
master key by using just a few pair of plaintexts/ciphertexts.

In the Biham-Shamir’s DFA attack against DES block ci-
pher [24], an attacker will inject a fault in some rounds when
executing a cryptographic implementation to obtain a faulty cipher-
text. By analyzing the difference between the correct and faulty
ciphertexts, the last round key could be revealed. Then, with the
knowledge of the last round key, the attacker decrypts the correct
ciphertext to obtain the input of the last round, which is the
output of the second last round. After that, the attacker repeats this
procedure to obtain more round keys until the master key can be
deduced by the key schedule. Subsequently, various DFA attacks on
block ciphers have also been carried out, including attacks against
AES [7], Triple DES [9], IDEA [10], SIMON and SPECK [11],
[12], and SIMECK [14].

2.3.2 Fault Models
There exist various techniques to inject a fault into a computing
device during its execution. Low-cost techniques include power
glitch, clock tempering, or temperature variation [3], [5]. Kommer-
ling and Kuhn reported that glitch attacks at the external power and
clock supply lines are the most useful in practice [3]. High-cost
techniques include light/laser injections or electromagnetic (EM)
disturbances [4], [25].

These techniques allow specific control of a single register, a
bus, or memory.

The fault characteristics resulting from a fault injection are
commonly captured in a fault model. A fault model will indicate
the following characteristics: the location of the fault, the number
of bits affected by the fault, and the fault types. In [26], Riviere et
al. classified fault models as follows:

• Bit-wise models: in which faults will manipulate a single
bit. There are five types of bit-wise fault models: bit-set,
bit-flip, bit-reset, stuck-at, and random-value.

• Byte-wise models: in which faults will modify a byte at
once. There are three types of byte-wise fault models: byte-
set, byte-reset, or random-byte.

• Wider models: in which faults will manipulate an entire
word that can be from 8 to 64 bits depending on the given
architecture.

Theoretical works often assume that the attacker has a precise
control on both timing and location, i.e., he knows the attacked bit
as well as the attacked operation. In practice, it would be more
challenging to inject a fault into a precise bit. In this paper, we
consider the bit-flip model in which a single bit will be flipped to
its complementary value, either from 0 to 1 or from 1 to 0. We
also assume that the location of the flipped bit is unknown to the
attacker.

2.3.3 DFA attacks on SIMECK block cipher
In the following, we briefly review differential fault analysis against
SIMECK cipher in the bit-flip and random byte fault models.

In [14], Nalla et al. presented the first differential fault analysis
against SIMECK ciphers. Specifically, they demonstrated two DFA
attacks. The former makes use of the bit-flip fault model and could
recover the n-bit last round key using n/2 bit faults. The latter
makes use of the random byte fault model that is more practical
and could retrieve the last round key using n/8 faults. The process
could be repeated four times to recover 4 round keys that are
enough to recover the full master key.

Basically, their attacks mainly exploit the information leaked
by the ‘AND’ operation, which is the only non-linear function of
SIMECK. Specifically, the attacker injects a fault in the intermedi-
ate left half ciphertext XT−2, where T is the number of rounds of
SIMECK. If one of the two input bits of the ‘AND’ operation is
0, then flipping the other input bit does not affect the output bit of
XT−1 = YT . From the following equation, we can observe that one
can deduce the last round key KT−1 if the value XT−2 is known.

KT−1 = XT−2 + F(YT ) + XT (3)

Suppose that the jth bit of XT−2 was flipped, one is able to
deduce the value of ( j − 5)th and ( j + 5)th bits of XT−2, and thus
recover the corresponding bits of KT−1 using Eq. (3). In other
words, 2 bits of KT−1 will be disclosed with every bit flipped in
XT−2. Therefore, by assuming that one could control the injected
fault location, it requires n/2 faulty ciphertexts to retrieve the n-bit
key. However, if the attacker has no control over the location of the
flipped bit, the average number of faults required is approximately
double, namely, around n faults.

3 Preliminary Observations and Facts
In this section, some facts and observations that can be used to
analyze faults on SIMECK block ciphers will be discussed. First,
we consider the following lemma.
Lemma 3.1. Let Xt = {xt

0, x
t
1 . . . , x

t
n−1} and X̂t = {x̂t

0, x̂
t
1, . . . , x̂

t
n−1} be

the correct and faulty left inputs respectively of the intermediate
t-th round, 0 ≤ t < T . Let δt

j = xt
j + x̂t

j, for 0 ≤ j < n, be the
differential representation of two correct and faulty bits xt

j and
x̂t

j. We have:

(4)δt+1
j = δt

jx
t
j−5 + δt

j−5xt
j + δt

jδ
t
j−5 + δt

j−1 + δt−1
j

Proof From Eq. (2), we have:

xt+1
j = xt

jx
t
j−5 + xt

j−1 + yt
j + kt

j, and

x̂t+1
j = x̂t

j x̂
t
j−5 + x̂t

j−1 + ŷt
j + kt

j

Note that yt
j = xt−1

j . Then, summing up the two above equations
gives:

δt+1
j = xt

jx
t
j−5 + x̂t

j x̂
t
j−5 + δt

j−1 + δt−1
j

We have:

xt
jx

t
j−5 + x̂t

j x̂
t
j−5

= (xt
j + x̂t

j)(xt
j−5 + x̂t

j−5) + x̂t
jx

t
j−5 + xt

j x̂
t
j−5

= δt
jδ

t
j−5 + (x̂t

jx
t
j−5 + xt

jx
t
j−8) + (xt

j x̂
t
j−5 + xt

jx
t
j−8)

= δt
jδ

t
j−5 + δt

jx
t
j−5 + δt

j−5xt
j



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 2
Differential trail for the left half of the last 7 rounds of SIMECK32/64 when flipping the least significant bit 0 at the round 27. The notation ∗ denotes a

non-linear expression that would not be used in our attack.

Bit 0 1 2 3 4 5 6

∆26 0 0 0 0 0 0 0
∆27 1 0 0 0 0 0 0
∆28 x27

11 1 0 0 0 x27
5 0

∆29 ∗ x28
12 + x27

11 1 0 0 ∗ x28
6 + x27

5
∆30 ∗ ∗ x29

13 + x28
12 + x27

11 1 0 ∗ ∗

∆31 ∗ ∗ ∗ x30
14 + x29

13 + x28
12 + x27

11 ∗ ∗ ∗

∆32 Known values

Bit 7 8 9 10 11 12 13 14 15

∆26 0 0 0 0 0 0 0 0 0
∆27 0 0 0 0 0 0 0 0 0
∆28 0 0 0 0 0 0 0 0 0
∆29 0 0 0 ∗ 0 0 0 0 0
∆30 x29

7 + x28
6 + x27

5 0 0 ∗ ∗ 0 0 0 ∗

∆31 ∗ x30
8 + x29

7 + x28
6 + x27

5 0 ∗ ∗ ∗ 0 0 ∗

∆32 Known values

As a result, δt+1
j = δt

jx
t
j−5 + δt

j−5xt
j + δt

jδ
t
j−5 + δt

j−1 + δt−1
j .

Lemma 3.1 tells us that each bit δt+1
j can be represented in terms

of intermediate plaintext bits and input differences in the previous
rounds. More particular, the value of δt+1

j depends on 2 bits of the
intermediate input Xt, 3 bits of the input difference ∆t, and one
bit of ∆t−1. This allows us to construct a differential trail table to
record and trace the δi

j values. Table 2 shows the differential trail of
SIMECK32/64 when we inject faults into the round 27. The other
trail tables are listed in Fig. 2.

Fig. 2. Differential Trails of SIMECK Ciphers. Without loss of generality, we
suppose that a fault will be injected into the bit 0. The notation ∗ denotes for a
complex non-linear expression of variables that is non-trivial to deduce their
values.

SIMECK48/96

∆31 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
∆32 : (x31

19, 1, 0, 0, 0, x31
5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆33 : (∗, x32
20 + x31

19, 1, 0, 0, ∗, x32
6 + x31

5 , 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0)

∆34 : (∗, ∗, x33
21 + x32

20 + x31
19, 1, 0, ∗, ∗, x33

7 + x32
6 + x31

5 , 0, 0, ∗, ∗, 0, 0, 0,
∗, 0, 0, 0, 0, 0, 0, 0, 0)

∆35 : (∗, ∗, ∗, x34
22 + x33

21 + x32
20 + x31

19, 1, ∗, ∗, ∗, x34
8 + x33

7 + x32
6 + x31

5 , 0, ∗,
∗, ∗, 0, 0, ∗, ∗, 0, 0, 0, ∗, 0, 0, 0)

∆36 : (∗, ∗, ∗, ∗, x35
23+x34

22+x33
21+x32

20+x31
19, ∗, ∗, ∗, ∗, x35

9 +x34
8 +x33

7 +x32
6 +x31

5 ,
∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, 0, 0, ∗, ∗, 0, 0)

SIMECK64/128

∆39 : (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0)

∆40 : (x39
27, 1, 0, 0, 0, x39

5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0)

∆41 : (∗, x40
28 + x39

27, 1, 0, 0, ∗, x40
6 + x39

5 , 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆42 : (∗, ∗, x41
29 + x40

28 + x39
27, 1, 0, ∗, ∗, x41

7 + x40
6 + x39

5 , 0, 0, ∗, ∗, 0, 0, 0,
∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆43 : (∗, ∗, ∗, x42
30 + x41

29 + x40
28 + x39

27, 1, ∗, ∗, ∗, x42
8 + x41

7 + x40
6 + x39

5 , 0, ∗,
∗, ∗, 0, 0, ∗, ∗, 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∆44 : (∗, ∗, ∗, ∗, x43
31+x42

30+x41
29+x40

28+x39
27, ∗, ∗, ∗, ∗, x43

9 +x42
8 +x41

7 +x40
6 +x39

5 ,
∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, 0, 0, ∗, ∗, 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0)

Input differences at the round T − 2. Let T be the number of
round of a SIMECK cipher, given the left input differences at the

rounds T − 1 and T (i.e., ∆T−1 and ∆T , resp.), and the left input
of the round T − 1, i.e., XT−1, then the left input differences of the
round T − 2 could be computed as follows:

∆T−2 = ∆T−1S 5(XT−1) + S 5(∆T−1)XT−1 (5)

+ ∆T−1S 5(∆T−1) + S 1(∆T−1) + ∆T

Eq. (5) can be easily obtained because from Eq. (4) we have:

δT−2
j = δT−1

j xT−1
j−5 + δT−1

j−5 xT−1
j + δT−1

j δT−1
j−5 + δT−1

j−1 + δT
j

Once an attacker obtains the correct ciphertext C = (XT ,YT )
and the faulty ciphertext Ĉ = (X̂T , ŶT ), s/he first computes values:
XT−1 = YT , X̂T−1 = ŶT , ∆T = XT + X̂T , and ∆T−1 = XT−1 + X̂T−1.
Then, s/he is able to deduce the value of ∆T−2 via Eq. (5).
Observation 1 (Fault Propagation). For each presence of fault in

the round t at the bit position j, i.e., δt
j = 1, it will affect into 3

left input differences in the next round t + 1, they are values of
δt+1

j , δt+1
j+1, and δt+1

j+5.

From Lemma 3.1, we have:

δt+1
j = δt

jx
t
j−5 + δt

j−5xt
j + δt

jδ
t
j−5 + δt

j−1 + δt−1
j

δt+1
j+1 = δt

j+1xt
j−4 + δt

j−4xt
j+1 + δt

j+1δ
t
j−4 + δt

j + δt−1
j+1

δt+1
j+5 = δt

j+5xt
j + δt

jx
t
j+5 + δt

j+5δ
t
j + δt

j+4 + δt−1
j+5.

The values are dependent on the value of δt
j. From Table 2, it

can be seen that if one injects a fault at the bit position 0 of the
round 27, that is, δ27

0 = 1, then three bit positions 0, 1 and 5 at the
round 28 will be affected, they are δ28

0 , δ28
1 , and δ28

5 . These faults
continue propagating into the next round in the same way.
Lemma 3.2. Suppose that a fault is injected into the left input of the

round t and one-bit flipped at the position ` is made, i.e., δt
` = 1

and δt
j = 0 for j , `. Then, for i ≥ 1,

1) δt+i
`+i = 1 for i ≤ min{4, n

5 }

2) δt+i
`+ j = 0 for 1 ≤ i ≤ 3, and i < j ≤ 4

3) δt+i
`+ j = 0 for 2 ≤ i ≤ 4, and i + 5 ≤ j ≤ i + 8

4) δt+i
j = 0 for ` + 5i < j < n + `.

Proof This lemma can be easily proved due to Eq. (4). It can
be seen that that the bit-flipped fault δt

` will affect to three input
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TABLE 3
Differential trail for the left half of the last 6 rounds of SIMECK48/96 and SIMECK64/128 when a fault injected at the round T − 5 causing one bit flipped. The

notation ∗ denotes an algebraic expression of immediate input bit variables.

SIMECK48/96 Left Input Differences (Bit position)
Round 0–7 8–15 16–23

∆31 10000000 00000000 00000000
∆32 *1000*00 00000000 00000000
∆33 **100**0 00*00000 00000000
∆34 ***10*** 00**000* 00000000
∆35 ****1*** *0***00* *000*000
∆36 ******** ******0* **00**00

SIMECK64/128 Left Input Differences (Bit position)
Round 0–7 8–15 16–23 24–31

∆39 10000000 00000000 00000000 00000000
∆40 *1000*00 00000000 00000000 00000000
∆41 **100**0 00*00000 00000000 00000000
∆42 ***10*** 00**000* 00000000 00000000
∆43 ****1*** *0***00* *000*000 00000000
∆44 ******** ******0* **00**00 0*000000

differences in the next round, that is, δt+1
` , δt+1

`+1 and δt+1
`+5. Bits at the

position j, where j ∈ [0, `) and j ∈ (` + 5, n) will not be affected,
i.e., δt+1

j = 0. Furthermore, δt+1
`+1 = δt

` = 1 and δt+1
`+ j = 0, for 2 ≤ j ≤ 4

due to Lemma 3.1. Likewise, the rightmost bit position ` + 5 at the
round t + 1 will propagate faults into three bits in the next round
t + 2 (i.e., δt+2

`+5, δt+2
`+6 and δt+2

`+10) and δt+2
`+2 = δt+1

`+1 = 1. The process
will continue in the next round and so on.

Observation 2. From Lemma 3.1, we have:

If δt
j = 1 & δt

j−5 = 0, then xt
j−5 = δt+1

j + δt
j−1 + δt−1

j

If δt
j = 0 & δt

j−5 = 1, then xt
j = δt+1

j + δt
j−1 + δt−1

j

TABLE 4
Recover xt

j−5 and xt
j from Observation 2

δt
j δt

j−5 δt−1
j xt

j−5 xt
j

0 0 known/unknown unknown unknown
0 1 known unknown δt+1

j + δt
j−1 + δt−1

j
0 1 unknown unknown unknown
1 0 known δt+1

j + δt
j−1 + δt−1

j unknown
1 0 unknown unknown unknown
1 1 known/unknown unknown unknown

Table 4 shows the possibility to recover two bits xt
j−5 and xt

j based
on the relation of δt

j and δt
j−5.

4 Differential Fault Analysis on SIMECK ciphers
This section will describe our DFA attack against SIMECK
lightweight block ciphers in the bit-flip model. Specifically, there
will be one bit flipped when a fault is injected. Given a plaintext
P, the SIMECK encryption function outputs the corresponding
ciphertext C. Assume that a fault is injected into the input Xt of
an intermediate round t and causes a bit-flip at the position `.

Let X̂t be the fault value, so Xt and X̂t will be different at the `th

bit and identical everywhere else. In other words, if (xt
0, . . . , x

t
n−1)

and (x̂t
0, . . . , x̂

t
n−1) are n-bits of Xt and X̂t, respectively, then xt

j =

x̂t
j + 1 for j = ` and xt

j = x̂t
j for j , `.

4.1 Attack Description

We aim at recovering the full master key K (equivalent to 4 round
keys) by injecting faults into a single round only. Faults will be
injected at the round T − 5 and we try to obtain 4 round keys
KT−1,KT−2,KT−3 and KT−4. For instance, in order to retrieve 4
round keys of SIMECK32/64 (K28, K29, K30, and K31), we will

inject faults into the round 27. Our analytic attack based on the
differential trail works as follows (Algorithm 1):

Algorithm 1: DFA attack on SIMECK ciphers

Step 1: Choose a random plaintext P to feed into the SIMECK
encryption function, and get a ciphertext C as return.

Step 2: Re-run encryption with the above input P, and then
inject a fault into the left input at the round T − 5. Without loss of
generality, we suppose that this fault flips the least significant bit
xT−5

0 .
Step 3: Find input differences of the subsequent rounds T − 5 <

t < T , i.e., ∆t = Xt + X̂t. These input differences can be determined
due to Lemma 3.1 and could be represented by 0, 1 or algebraic
expressions of other input variables. (as shown in Table 2). The
differences for SIMECK32/64 when the bit x27

0 flipped are listed in
Table 2. Such differences for SIMECK48/96 and SIMECK64/128
are listed in Fig 2. It can be seen that each round contains 2 linear
expressions to express the differences between correct and faulty
intermediate ciphertexts.

Step 4: Deduce bits of XT−2,

• From linear expressions: As ∆T ,∆T−1, and ∆T−2 are known,
the attacker can deduce two bits of XT−2 by summing up
linear equations in two round T − 2 and T − 1. For example,
if a fault was injected into the position 0 at the round 27
of SIMECK32/64, as shown in Table 2, the attacker can
obtain the values of x30

8 and x30
14 by summing up δ31

8 + δ30
7 ,

and δ31
3 + δ30

2 , respectively. Let ` be the fault position at the
round T −5. As the fault will propagate to the position `+ 3
at the round T − 2, the attacker will be able to deduce two
bits xT−2

`−2 and xT−2
`+8 .

• From Observation 2: The attacker knows ∆T−1, ∆T−2 and
some bits of ∆T−3 according to Lemma 3.2. Thus, if
δT−2

j = 1 and δT−3
j = 0 (resp., δT−3

j+5 = 0), then thanks to
Observation 2 the attacker can deduce two bits xT−2

j−5 (and
xT−2

j+5 , resp.).

Step 5: After obtaining bits of XT−2, the attacker can retrieve the
corresponding bits of the last round key KT−1 due to Eq. (3). He/she
repeats steps 2–4 with different flipped bit position to recover the
full round key KT−1.

Step 6: Decrypt the last round using KT−1 to get (XT−1,YT−1)(=
(XT−1, XT−2)) and (X̂T−1, ŶT−1) = ((X̂T−1, X̂T−2)). Again, as the
values ∆T−1, ∆T−2, and XT−2 are known, the attacker could compute
∆T−3 due to Eq. (4). He/she then repeats steps 4 and 5 to obtain the
round key KT−2. The attacker continues this process to retrieve two
more round keys KT−3 and KT−4.
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TABLE 5
Comparisons of the Fault analysis attacks on SIMECK ciphers

SIMECK2n/4n
Nalla et al. [14] Our work

Locations of faults to No of faults * Locations of faults to No of faults No of faults
recover master key (Last round key) recover master key (Last round key) (Master key)

SIMECK32/64 30, 29, 28, 27 28.32 27 12.12 25.78
SIMECK48/96 34, 33, 32, 31 41.44 31 22.88 43.56
SIMECK64/128 42, 41, 40, 39 57.06 39 30.14 89.51

Step 7: With 4 round keys, the attacker could deduce the master
key K of a SIMECK block cipher by the key schedule.

From Step 4, it can be seen that for each bit 1 of ∆T−2, the
attacker may recover 2 bits of XT−2 (corresponding to two bits of
KT−1). Likewise, once KT−1 is recovered, that attacker knows ∆T−2,
∆T−3 and some bits of ∆T−4, he then may be able to recover two
bits of XT−3 (corresponding to two bits of KT−2) with each bit 1 of
∆T−3 and so on.

4.2 Fault Position

In this section, we will discuss how the attacker determines the
position of a fault.

4.2.1 Determining fault position in SIMECK64/128.
A fault will be injected into the round 39 at the position `, that is,
δ39
`

= 1. An attacker will use on the following facts to deduce the
value of `:

• From Lemma 3.2, the input differences at the round 42 will
have 16 consecutive zeros (see Table 3).

• The fault position ` will be propagated and shifted right
three positions at the round 42, that is δ42

`+3 = 1.
• There is a pattern 10 ∗ ∗ ∗ 00 ∗ ∗000 ∗ 00 . . . 0︸  ︷︷  ︸

16 digits

, where the

value of ∗ could be 1 or 0. The position of the first 1 in this
pattern will be ` + 3. This pattern consists of 29 digits out
of 32 digits of ∆42.

4.2.2 Determining fault position in SIMECK48/96.
A fault will be injected into the round 31 at the position `, that is,
δ31
`

= 1. Likewise, an attacker will use on the following facts to
deduce the value of `:

• From Lemma 3.2, the input differences at the round 34 will
have 8 consecutive zeros (see Appendix 2).

• The fault position ` will be propagated and shifted right
three positions at the round 34, that is δ34

`+3 = 1.
• There is a pattern 10 ∗ ∗ ∗ 00 ∗ ∗000 ∗ 00 . . . 0︸  ︷︷  ︸

8 digits

, where the

value of ∗ could be 1 or 0. The position of the first 1 in this
pattern will be ` + 3. This pattern consists of 21 digits out
of 24 digits of ∆34.

4.2.3 Determining fault position in SIMECK32/64.
As there is no consecutive bit zero determined by Lemma 3.2,
determining the fault position for SIMEC 32/64 is challenging.
However, we still have this pattern 10 ∗ ∗ ∗ 00 ∗ ∗000 in 16 bits
of ∆30, where the value of ∗ could be 1 or 0. The first 1 in this
pattern will be ` + 3, where j is the fault position injected at the
round 27.

Based on the above facts and given that ∆T−2 is known, the
attacker also can deduce the fault position ` at the round T − 5 with
high confidence.

5 Experiments
5.1 Setup

To verify our proposed attack, we implemented a software simula-
tion against all three SIMECK family members in C programming
language3. In this simulation, we suppose that the attacker cannot
control the position of the faults. He thus may inject faults into the
same position many times until fully recovering one round key or
the master key. Once a random fault is injected into the left input of
the round i at the bit j, only the differential input δi

j will be equal to
one, differential inputs at other positions will be zero. The positions
of the faults were generated randomly and independently.

For each cipher member, we repeat the experiment 10,000 times
and report the average number of faulty ciphers required to recover
the last round key KT−1 and the whole master key (corresponding
to the last 4 round keys KT−1, KT−2, KT−3, and KT−4). The only
purpose of recovering the last key is to compare our attacks to the
ones in [14].

5.2 Simulation Results

Fig. 3 shows a histogram of the number of fault injections to obtain
the last round key and the full master key of all three variants of
SIMECK block cipher. The horizontal axis represents the number
of faults, and the vertical axis represents the frequency experiments
requiring that number of faults. The total number of experiments is
10,000, as mentioned in the previous section. As seen in Fig. 3, all
histograms are right-skewed. In order to recover the last round key
in SIMECK32/64, it requires from a few fault injections to about
70 fault injections. However, most of the experiments only required
around 9-13 fault injections. Likewise, the maximum number of
fault injections required to recover the full master key is about 90;
however, most of the experiments only required around 19-25 fault
injections.

Table 5 compares the round locations, in which faults are
induced, the number of faults required between our attacks, and
Nalla et al.’s attack under the one bit-flip model. From Table 5,
it can be seen that our fault analysis attack requires much fewer
faults than Nalla et al.’s attack to recover the last round key for
all three members of SIMECK. Even more, our attack to recover
the whole master key of SIMECK32/64 also requires fewer faults
than theirs for only the last round key. Last but not least, in order
to recover the whole master key, while our attack injects the faults
into a single round only, Nalla et al.’s attack has to inject faults into

3. The source code could be found in the link https://github.com/dple/DFA
Simeck

https://github.com/dple/DFA_Simeck
https://github.com/dple/DFA_Simeck
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Fig. 3. Histogram of the number of faults required to recover keys. The number of samples is 10,000. Frequency density is represented on the vertical axis
and the number of fault injections is represented on the horizontal axis.

4 different rounds of a SIMECK cipher. As a result, our attack is
more practical.

5.3 Discussions

The proposed attack is based on an analytic method, which analyzes
the differential trail between the correct and faulty ciphertexts to
deduce the intermediate inputs, and then round keys. The key
point in this method is to find the differential trail that is not
too complicated to analyze. Compared to theoretical attacks [15],
[17], [19], [20], this method is more straightforward, but we
demonstrated that the attack is effective. In this paper, we use
only linear expressions to analyze, however, non-linear expressions
(e.g., quadratic expressions denoted as ∗ in Table 2 and Fig. 2)
may be useful for more-in-depth analyses. Block ciphers with more
complicated round functions would be resistant to the proposed
attack, e.g., using a non-linear S-box. However, this will trade-off

with the performance of the implementation.

6 Conclusion
In this paper, we have proposed an improved fault attack on the
SIMECK lightweight block ciphers under the one bit-flip model.
In this model, we assume that a single bit will be flipped to its

complementary value once a fault was successfully injected. We
also assume that the attacker has no control over the location of
the flipped bit. The advantage of our attack is that not only it
requires less number of faults, but also faults need to be injected
into only a single round of the ciphers in order to recover the whole
master key. As a result, it makes our attack more practical. We
demonstrated the effectiveness of our attack by simulating in C for
all three members of SIMECK ciphers. Our experimental results
over 10, 000 times showed that the attack requires 25.78, 43.56,
and 89.51 faults on average to recover the full master key of the
SIMECK32/64, SIMECK48/96, and SIMECK64/128, respectively.
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