
Journal of Cryptographic Engineering (2021) 11:417–439
https://doi.org/10.1007/s13389-021-00265-8

REGULAR PAPER

Six shades lighter: a bit-serial implementation of the AES family

Sergio Roldán Lombardía1 · Fatih Balli2 · Subhadeep Banik2

Received: 6 July 2020 / Accepted: 11 May 2021 / Published online: 1 June 2021
© The Author(s) 2021

Abstract
Recently, cryptographic literature has seen new block cipher designs such as PRESENT, GIFT or SKINNY that aim to be more
lightweight than the current standard, i.e., AES. Even though AES family of block ciphers were designed two decades ago, they
still remain as the de facto encryption standard, with AES-128 being the most widely deployed variant. In this work, we revisit
the combined one-in-all implementation of the AES family, namely both encryption and decryption of each AES-128/192/256
as a single ASIC circuit. A preliminary version appeared in Africacrypt 2019 by Balli and Banik, where the authors design a
byte-serial circuit with such functionality. We improve on their work by reducing the size of the compact circuit to 2268 GE
through 1-bit-serial implementation, which achieves 38% reduction in area. We also report stand-alone bit-serial versions of
the circuit, targeting only a subset of modes and versions, e.g., AES-192 and AES-256. Our results imply that, in terms of area,
AES-192 and AES-256 can easily compete with the largermembers of recently designed SKINNY family, e.g., SKINNY-128-256,
SKINNY-128-384. Thus, our implementations can be used interchangeably inside authenticated encryption candidates such
as SKINNY-AEAD/-HASH, ForkAE or Romulus in place of SKINNY.

Keywords AES-128/192/256 · Lightweight cryptography · Bit-serial implementation · Symmetric cryptography

1 Introduction

Lightweight cryptography has become in the past years a
popular research area with new lightweight block ciphers
like PRESENT [1], SKINNY [2] or GIFT [3] being proposed
and studied, primarily with the objective to achieve small
implementations in silicon to work in devices with limited
space. However, AES is still undoubtedly the most widely
used encryption algorithm worldwide, partly due to the fact
that its security claims resisted two decades of cryptanalysis.

The source code of our implementations can be found at https://
github.com/ballifatih/6aes.

B Fatih Balli
fatih.balli@epfl.ch

Sergio Roldán Lombardía
sergio.roldanlombardia@epfl.ch

Subhadeep Banik
subhadeep.banik@epfl.ch

1 Ecole polytechnique fédérale de Lausanne, Lausanne,
Switzerland

2 Security and Cryptography Laboratory (LASEC), Ecole
polytechnique fédérale de Lausanne, Lausanne, Switzerland

Many lightweight implementations target area minimiza-
tion through various optimizations and a reduction of the
data path to obtain small circuits with respect to the gate-
equivalent (GE) metric. This is the approach followed by
Jean et al. [4] that proposes an encryption/decryption circuit
for AES-128 with less than 1600 GE using a 1-bit data path.
These implementations are fit for applications which heavily
prioritize area minimization over latency, and it is natural to
expect that the resulting circuit requires much more than 8
times the clock cycles required by byte-serial implementa-
tions to performanAES encryption/decryption.These include
wearable devices, biometric implants, RFID devices which
have tight space constraints but can make do with low com-
munication bandwidth.

In most real-world applications, AES-128 is the go-to
member of this family. However, with the possible advent
of quantum computers, there is a tendency to move to larger
key sizes, as the claimed security level is challenged by the
Grover’s algorithm in the post-quantum setting. If we take
NIST Post-Quantum Standardization as an example, out of
17 second round post-quantum KEM candidate construc-
tions, 9 candidates use AES in their scheme. Eight of these
candidates prefer AES-256 in counter mode, making it the
clear contender for generating pseudo-randomness.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-021-00265-8&domain=pdf
https://github.com/ballifatih/6aes
https://github.com/ballifatih/6aes


418 Journal of Cryptographic Engineering (2021) 11:417–439

This encourages the research of lightweight implementa-
tion of the longer key siblings of AES family: AES-192 and
AES-256. The work of Balli et al. [5] addresses these con-
cerns by proposing a combined circuit, including encryption
and decryption of the complete AES family using an 8-bit
data path. It also addresses one common structure design
challenge implementing both pipelines in a column-major
fashion, as the standard explicitly recommends [6], in con-
trast to the row-major ordering preferred by some of the
previous implementations [4,7]. Deviating from the standard
and assuming an ad hoc bit ordering always comes with a
price, in the form of latency and area overhead to the sur-
rounding circuit (i.e., the mode of operation that employs a
block cipher), thus we avoid deviating from the standard.

1.1 Previous work

There are already quite some number of works in the lit-
erature whose goal is to reduce the area cost of AES-128
(either encryption only or combined) as ASIC circuit. Satoh
et al. propose a 32-bit-serial architecture with optimized
tower field implementation of the S-box and a combinato-
rial optimization of the MixColumns circuit [8]. The size of
this implementation is around 5400 GE (gate equivalents,
i.e., occupied by an equivalent number of 2-input NAND
gates). The grain of sand implementation [9] by Feldhofer et
al. constructs an 8-bit serialized architecture with circuit size
of around 3400 GE but a latency of over 1000 cycles for both
encryption and decryption. The implementation by Moradi
et al. [10] with size equal to 2400 GE and encryption latency
of 226 cycles is one of the smallest known architectures for
AES-128. This architecture is later improved by Banik et al.
[11] such that the combined encryption and decryption cir-
cuit costs 2060 GE. In [12], the authors report an 8-bit-serial
implementation that takes 1947/2090 GE for the encryp-
tion/decryption circuits, respectively. This implementation
makes use of intermediate register files that can be synthe-
sized in the ASIC flow using memory compilers, instead of
classical flip-flops. Jean et al. proposed an implementation of
AES-128 in a bit-serial way, focusing on area minimization
and obtaining the smallest possible circuit known for this
standard [4]. Their work achieves even further GE optimiza-
tions at the cost of latency.

More recently, Balli and Banik [5] proposed a com-
bined implementation of AES-128/192/256 with an 8-bit
path focusing on addressing security issues related to small
keys in a post-quantum era. This work considers the afore-
mentioned criteria and extends the results from the previous
work for a combined circuit for AES-128/192/256 in a bit-
serial fashion.

1.2 Motivations

One of the main motivations, besides post-quantum trend, to
build the smallest all-in-one AES in hardware is that some
devices are expected to support large number of standards at
the same time. For instance, many smart cards are designed
to support a large variety of both symmetric and asymmetric
cryptographic primitives, including all six functionalities of
AES1. However, the number of protocols that these units can
support is limited due to the tight area budget.Our design pro-
poses an alternative combined solution with little extra area
requirement, which would allow these cryptographic units to
be able to benefit from the use of the full AES family without
sacrificing significantly additional silicon budget. Besides, a
combined implementation provides an upper bound on indi-
vidual implementations of AES-192 and AES-256 that have
not received sufficient attention in the literature.

Another major motivation to develop the combined cir-
cuit is the fact that many newer NIST post-quantum designs
use AES-256 as a sub-primitive in randomness genera-
tion [13,14]. Therefore, it is necessary to have constrained
implementations of AES-256 in hardware without drastically
increasing the area budget.

1.3 Challenges

In our work, the main goal is to combine three versions
AES-128, AES-192, AES-256 into single circuit in 1-bit-serial
fashion. This essentially requires us to build a key pipeline
that can flexibly accommodate variable length key (128, 192
or 256 bits), but still provide 128-bit round key at each round,
similar to [5].

The first challenge we tackle is how to complete a round
operation in 128 clock cycles, i.e., with the minimum latency
possible in 1-bit serial setting. While this paper prioritizes
the area minimization of the circuit, it does not overlook the
latency. For encryption, byte-serial implementations com-
plete a round in 21-24 clock cycles on average [5,10,11],
whereas the previous work bit-sliding completes it in 168
clock cycles [4] (see Table 1 for comparison). In our design,
we find away to scheduleAES state operations so that a round
can be completed in 128 clock cycles, where both state and
key pipelines operate in a non-stop fashion.

A second challenge is to produce 128 fresh bits of round
key in 128 clock cycles. All-in-one AES circuit requires a key
scheduling pipeline that can accommodate varying sizes of
keys.

A previous work by Banik et al. [11] handles the key
scheduling by interrupting large portions of the key pipeline
(by using clock-gating to freeze flip-flops) during predeter-

1 See Infineon jTOP ID SLJ 52GCA150CL Java Card 3.0.4 150K as
an example.

123



Journal of Cryptographic Engineering (2021) 11:417–439 419

mined cycles. This approach is taken in order to efficiently
share some circuit components between two pipelines,
namely S-box. In order to avoid interruptions, we needed
to carefully interweave the scheduling of S-box use between
the state and the key pipelines.

Another challenge is that with longer keys, i.e., 192 and
256 bits, the round function and the key update operations
are not synchronized, because each key update generates 192
(resp. 256) bits of key, whereas each round consumes exactly
128bits. In particular,AES-192only requires 8 full keyupdate
operations to produce enough key material for 12 rounds.
Similarly,AES-256 only requires 7 full key updates to provide
sufficient number of key bits for 14 rounds. Clearly, the syn-
chronization then is no longer 1 round function call per key
update, but 3 round function calls per 2 key updates for AES-
192 and 2 round function calls per key update for AES-256. It
should also be noted that the key update operation itself also
varies based on the key length. The non-synchronization of
AES-192 is especially challenging during decryption, which
will be further explained in Sect. 5.3.

1.4 Organization and contribution

In the following section, we present a bit-serial archi-
tecture that performs AES-128/192/256 encryption and
decryption and produce a circuit that can perform the 6
different functionalities. The circuit complies with the stan-
dard ordering of bits and avoids clock-gating technique.
Both encryption and decryption operations take 1408, 1664
and 1920 clock cycles for AES-128, AES-192 and AES-256,
respectively. The circuit occupies 2268 GE of area in silicon
when synthesized with the standard cell library STM 90-nm
CMOS logic process, which achieves an area reduction of
38% compared to the previous work 6-shades [5] (under the
same technology library).

The organization of the paper is as follows: Sect. 2 reminds
AES internals. Section 3 presents the circuit components and
primitives. Section 4 explains the data path circuit description
and functionality in full details. Section 5 explains the key
path in detail, and finally, the paper is concluded in Sect. 6
with reported area measurements.

2 Background

In this section, we briefly revisit the AES standard. Namely,
these are the state update and key expansion algorithms. It
is assumed that the reader is familiar with AES. For more
complete and detailed information, we refer the reader to the
FIPS publication AES [6].

2.1 Notation and AES overview

AES [6] defines a family of block cipher algorithms capable
of encrypting and decrypting blocks of 128 bits using cryp-
tographic keys of 128, 192 and 256 bits. AES, thus, specifies
six functionalities, or shades, as each direction (i.e., either
encryption or decryption) has fundamentally different oper-
ations at the circuit level. This variation requires us to design
two complementary cores for each shade and combine them
in a modular fashion. Namely, the data pipeline is dependent
on the direction of operation, and the key pipeline is depen-
dent on both the key length and the direction of operation at
the same time.

Depending on the AES variant, let r denote the number of
rounds, l denote the number of key derivation rounds, and b
denote the number of bytes of the initial key. Thus, each AES
variant (or member) is associated with a tuple (r, l, b) with
values (10, 10, 16), (12, 8, 24) and (14, 7, 32) for AES-128,
AES-192 and AES-256, respectively. We use d0, d1, . . . , d127
to denote bits in the state values (or data), which is initial-
ized either from plaintext or ciphertext. Equivalently, 4 × 4
state matrix St is also used to simplify some explanations in
the text. Similarly, k0, k1, . . . , kx−1 for x ∈ {128, 192, 256}
denotes the key. For a bit string d0, d1, . . . , d�, we use
d0:� as shorthand. We also use dx :y to denote its substring
dx , dx+1, . . . , dy for some x < y.

We further assign variables to 1-bit storage elements of the
circuit; namely, FFx refers to theflip-flop identifiedwith num-
ber x . Previous sequence notation is similarly extended, e.g.,
FFx :y denotes the sequence of flip-flops FFx , FFx+1, . . . , FFy .

2.1.1 AES round function

At initialization, the plaintext d0:127 (resp. the key) is encoded
into 4×4 state matrix St in a column-first fashion [6], where
each entry is a byte:

⎡
⎢⎢⎣
St0,0, St0,1, St0,2, St0,3
St1,0, St1,1, St1,2, St1,3
St2,0, St2,1, St2,2, St2,3
St3,0, St3,1, St3,2, St3,3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

d0:7, d32:39, d64:71, d96:103
d8:15, d40:47, d72:79, d104:111
d16:23, d48:55, d80:87, d112:119
d24:31, d56:63, d88:95, d120:127

⎤
⎥⎥⎦

At each round, a series of operations is applied to the state
St in the following order: SubBytes, ShiftRows,MixColumns
and AddRoundKey. Before the first round, an additional
AddRoundKey is executed to initialize the state using the
plaintext and the initial key as inputs, and the last round skips
the MixColumns call.

123



420 Journal of Cryptographic Engineering (2021) 11:417–439

Table 1 Comparison with the
recent work

AES version Serial Area Latency References
(GE) (per round)

128 Enc/Dec 32-bit 5400 5 [8]

128 Enc/Dec 8-bit 2060 23/31 [11]

128 Enc 8-bit 2400 21 [10]

128-192-256 Enc/Dec 8-bit 3672 24/32a [5]

128 Enc/Dec 1-bit 1596 168/248 [4]

128-192-256 Enc/Dec 1-bit 2268 128/128 this paper

192 Enc/Dec 1-bit 1906 128/128 this paper

256 Enc/Dec 1-bit 2004 128/128 this paper

Note that the area measures are taken for the smallest reported area results from each paper. a[5] has different
number of cycles for each round, and hence, the reported figures are computed as average

SubBytes substitutes each byte, according to the Rijndael
S-box [15]. ShiftRows byte-wise rotates the i-th row by i to
the left, for 0 ≤ i ≤ 3. MixColumns multiplies each column
with a predefined matrix M in the finite field GF(28). Finally,
AddRoundKey returns the bit-wise XOR of the state and the
corresponding round key.

2.1.2 AES key expansion

In order to obtain sufficiently long fresh key material for
multiple calls of AddRoundKey operation, AES derives 128
bits of round key for each round by expanding the origi-
nal encryption/decryption key. We recall and emphasize that
for AES-192 and AES-256, the encryption/decryption keys
are actually larger than 128 bits, and hence, each invocation
of key expansion algorithm produces 192, 256 bits of round
keys, respectively. Thismeans that for AES-192, 2 key expan-
sion calls are made for every 3 state rounds, and for AES-256,
1 key expansion call is made for every 2 state rounds.

Let S : {0, 1}8 → {0, 1}8 denote the Rijndael S-box
operation and the sequence RC1, . . . , RC10 ∈ {0, 1}8 be the
round constant bytes, as defined in the specification [6]. We
abuse the key notation, and let k0, . . . , k� denote the sequence
of round key bits derived by scheduling an encryption key
k0, . . . , k8r−1 for a particular choice of AES-128, AES-192 or
AES-256 (where the initial bits of this sequence conveniently
overlap with the key itself). Here, the length of the sequence
is limited to � ∈ {1407, 1663, 1919}, respectively, as these
quantities define the total number of key bits used through-
out encryption. Below, we briefly remind the key scheduling
algorithm.

The key expansion call is made for 10, 8, 7 times for each
version of AES-128, AES-192, AES-256, respectively. These
number of calls generate sufficient number of bits because
each state update consumes exactly 128 bits of round key,
regardless of the key length of the AES version.

In particular, suppose that k0:127 denotes the encryption
key forAES-128. Let i ∈ {128, 256, . . . , 1280}. Then, the full

sequence of key bits k0:1407 is defined through the iteration of
the key expansion algorithm. The subsequences ki :i+31 are
computed by:

⎡
⎢⎢⎣

ki :i+7

ki+8:i+15

ki+16:i+23

ki+24:i+31

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣
ki−128:i−121

ki−120:i−113

ki−112:i−105

ki−104:i−97

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣
S(ki−24:i−17) ⊕ RCi/128

S(ki−16:i−9)

S(ki−8:i−1)

S(ki−32:i−25)

⎤
⎥⎥⎦

and for the remaining subsequences ki+32:i+127, the formula
is simply k j ← k j−128⊕k j−32 for j ∈ {i+32, . . . , i+127}.

In the case of AES-192, the sequence k0:1663 is derived
in a similar fashion from the encryption key k0:191. Let
i ∈ {192, 384, . . . , 1536}. For the subsequences ki :i+31, the
formula is

⎡
⎢⎢⎣

ki :i+7

ki+8:i+15

ki+16:i+23

ki+24:i+31

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣
ki−192:i−185

ki−184:i−177

ki−176:i−169

ki−168:i−161

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣
S(ki−24:i−17) ⊕ RCi/192

S(ki−16:i−9)

S(ki−8:i−1)

S(ki−32:i−25)

⎤
⎥⎥⎦

and for ki+32:i+191, the formula is similarly k j ← k j−192 ⊕
k j−32 for j ∈ {i + 32, . . . , i + 191}.

In the case of AES-256, the key sequence is k0:1991 and the
encryption key is k0:255. Let i ∈ {256, 512, . . . , 1792}. The

123



Journal of Cryptographic Engineering (2021) 11:417–439 421

subsequences ki :i+32 for 1 ≤ i ≤ 14 are derived with:

⎡
⎢⎢⎣

ki :i+7

ki+8:i+15

ki+16:i+23

ki+24:i+31

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣
ki−256:i−249

ki−248:i−241

ki−240:i−233

ki−232:i−225

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣
S(ki−24:i−17) ⊕ RCi/256

S(ki−16:i−9)

S(ki−8:i−1)

S(ki−32:i−25)

⎤
⎥⎥⎦

Additionally, the subsequences ki+128:i+160 are derived
with yet another formula:

⎡
⎢⎢⎣
ki+128:i+135

ki+136:i+143

ki+144:i+151

ki+152:i+159

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣
ki−128:i−121

ki−120:i−113

ki−112:i−105

ki−104:i−97

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣
S(ki+96:i+103)

S(ki+104:i+111)

S(ki+112:i+119)

S(ki+120:i+127)

⎤
⎥⎥⎦

and for ki+32:i+255, the formula is similarly k j ← k j−256 ⊕
k j−32 for j ∈ {i + 32, . . . , i + 255}.

From a serial circuit perspective, these operations can be
easily executed. We simply see all these updates in terms of
two basic operations: sxor (S-box and XOR) and kxor (key
bit and XOR). In the former, a byte value from particular
position is updated by XORing itself with the output of S-
box, where the input of S-box is chosen from the last column.
In the latter, a bit value at particular position only needs to
be XORed with another bit.

3 Bit-serial circuit preliminaries

3.1 Pipelines

At the core of our circuit lies two clearly separated pipelines
that share some components, i.e., mainly S-box. Those
pipelines are initially formed by a series of connected D flip-
flopswithout asynchronous reset or enable signals (whichwe
denote by FF2). Large sequences of flip-flops are employed
in our pipelines, and hence, we use the sequence FF0:�−1

to denote an �-bit pipeline. A pipeline is constructed such
that the output of FF j is connected to the input of FF j−1 for
j ∈ {1, 2, . . . , � − 1}. Therefore, bits enter to the pipeline

2 Some of these D flip-flops are later upgraded to scan flip-flops, which
has the capability of choosing between two inputs.We still refer to them
by the variable FF.

through FF�−1, visit flip-flops in descending order and exit
from FF0. If no operation were to be executed except this nat-
ural shifting, a bit would spend � clock cycles in the pipeline.
The two pipelines of our design are:

Data pipeline: FF0:127 are arranged so that bits move
from right to left in a byte, and column-
wise bottom-to-top fashion.Eachbit enters
the pipeline from FF127 and exits from
FF0, as shown in Fig. 2.

Key pipeline: FF0:255 are arranged in the same byte-
columnar fashion as the data pipeline. As
AES-128 and AES-192 require less than
the 256 flip-flops, we bypass some parts
of the pipeline for AES-128, AES-192.

However, we use the same variables FF for two pipelines,
to which pipeline (either data or key) we refer to will be
clear from the context. Below, we explain how we evolve the
design of the pipeline so that it supports all the operationsAES
requires. They also explain which FF units must be replaced
by a scan flip-flop.

3.2 Primal pipeline operations

– Swap is the basic operation that allows exchanging bits
stored in two flip-flops in a pipeline, if activated. Let us
explain the working mechanism of swaps in more detail.
For the sake of the example, let (a, b) denote a swap
operation in the pipeline. Suppose that bit xa is stored in
FFa , and bit xb is stored in FFb in the current clock cycle. If
the swap operation is inactive, FFa−1 and FFb−1 will store
xa and xb, respectively, in the next clock cycle. However,
ifwe activate the swap operation, then these twoflip-flops
will store xb and xa , respectively (with swapped order).
On the netlist, this can be realized by adding MUXes at
the input of FFb−1 and FFa−1, and wiring the outputs of
FFa and FFb to both MUXes3. One can add many such
swap operations to the pipeline. This idea was introduced
by Banik et al. [16], and we extend the use of Swaps
particularly for all AES versions to perform ShiftRows
operation and column rotation required during the key
expansion.

– Overwriting is an operation primitive that allows to load
a different result to a set of registers during a particular
cycle. In the netlist, this is constructed as a set of MUXes
placed before the inputs of the registers whose value is
to be overwritten by a different signal. Whether or not
the value is overwritten is determined by a selector. For
instance, this operation is used to load the results from
S-box and MixColumns circuits to data pipeline.

3 Alternatively, this can also be done with a scan flip-flop.

123



422 Journal of Cryptographic Engineering (2021) 11:417–439

– Bypassing is an operation primitive that allows to shorten
a pipeline path, skipping a predetermined number of reg-
isters. On the netlist, this is realized by a simple MUX.
This operation will be used to disable large portion of the
key pipeline that is not used during AES-128 and AES-
192.

3.3 Components

Apart from the pipelines, the circuit includes a controller
circuit, a combined circuit for S-box/inv-S-box and three
MixColumns components. We readily borrow the smallest
implementations of these primitives from the state of the art.

The MixColumns circuit we employ is from the Jean et
al. which costs 8 XORs, 8 NANDs and 4 enabled flip-flops
(EFFs) [4] (see Fig. 1). This circuit reads 4-bit input in 1-bit
per row fashion and outputs 4-bit output each clock cycle.
Hence, processing one full column takes 8 clock cycles.

The circuit is designed to operate in a bit-serial fashion
over each column. Note that since the multiplication by 2 (or
3) of any byte in the AES finite field depends on the value of
the most significant bit of the concerned byte, one needs to
store this MSB in a separate flip-flop when performing such
a bit-serial multiplication. To ensure that the circuit operates
seamlessly in the 8 cycles (say numbered from t to t+7), it is
necessary to store theMSBof each byte of the current column
at cycle t−1, when it occupies flip-flops 1, 9, 17 and 25, into
the auxiliary dark green colored flip-flops shown in Fig. 1.
This way from cycle t onward to t+7, the auxiliary flip-flops
always store the MSB of each of the bytes of the column
over which the MixColumns operation is to be performed.
Now, if the single bit signal Poly takes the sequence of values
00011011 (0x1B) and the signal notLSB takes the values
11111110 (0xFE) in each of the cycles t to t + 7, then it is
trivial to see that the circuit faithfully outputs each of the 8
mixcolumn output bits in cycles t to t + 7 serially.

The S-box implementation has been taken fromMaximov
and Ekdahl’s recent work, where the authors give the small-
est known S-box occupying 253.35 GE (bonus of Table 5
of [17]). The circuit includes a combination of S-box and
inverse S-box, the latter of which is required during decryp-
tion in the data path.

Finally, the control logic consists of a 11-bit counter,
whose 4 upper bits are used for determining the round that is
being executed. Since executing a single round takes exactly
128 clock cycles, the lower 7 bits are used to determine
the phases within each round. Then, the controller adminis-
ters every component in the circuit, mainly activating swaps,
overwriting and bypassing operations based on the correct
phase and round values. In total, the circuit on the high-level
view can be seen as combination of 1) the data pipeline (with

Fig. 1 The MixColumns circuit of [4]

built-in MixColumns circuits), 2) the key pipeline, 3) the
shared bidirectional S-box and 4) the controller.

3.4 Hardware API and input formats

The AES architecture we introduce in the following section is
a clocked serial one, having thus a 1-bit data path. We there-
fore have a 1-bit input port for the key input, 1-bit input port
for the data input, a 2-bit selector for the AES version (AES-
128/192/256), a 1-bit selector for the mode (i.e., direction of
encryption/decryption), a clock signal Clk and a synchronous
active-low reset signal Rst. The output consists of a 1-bit data
port DataOut which carries the final result of ciphertext dur-
ing encryption (or plaintext for decryption) and 1-bit control
signal Done which flags that the final result will become
available in the following 128 clock cycles. The latter con-
trol signal allows our design to be immediately used by an
external mode of operation without having to count the num-
ber of clock cycles.

The bit string d denotes either the data (plaintext or the
ciphertext depending on the direction of the operation), and
we parse it as the bit sequence d0, . . . , d127, where d0 corre-
sponds to the leftmost bit of d. The data are always loaded
during the first 128 clock cycles after reset regardless of the
key length. Furthermore, the sequence is loaded in ascend-
ing order, i.e., starting from d0, regardless of direction of the
operation.

We further use the large sequence k0, . . . , k128·r+127 to
denote the whole sequence of key bits derived with the key
expansion algorithm during the complete encryption oper-
ation, where r denotes the number of rounds, i.e., r ∈
{10, 12, 14}. The key always loads in the first 128 (resp.
192, 256) clock cycles for AES-128 (resp. AES-192, AES-
256) regardless of the direction of the operation. However,
the order of loading and the particular subsequence to be

123



Journal of Cryptographic Engineering (2021) 11:417–439 423

Table 2 The order and time for loading key and data bits

Key len. Oper. Bit ordering Cycles

128 Enc k0:127 [0, 127]
192 Enc k0:191 [0, 191]
256 Enc k0:255 [0, 255]
128 Dec k1280:1407 [0, 127]
192 Dec k1536:1663 ‖ k1472:1535 [0, 191]
256 Dec k1792:1919 ‖ k1664:1791 [0, 255]
(all) Enc d0, d1, . . . , d127 [0, 127]
(all) Dec d0, d1, . . . , d127 [0, 127]

loaded depends on the key length and the direction of the
operation. This is given in Table 2.

Each round takes exactly 128 clock cycles to execute, and
therefore, both encryption and decryption operations take
1408, 1664 and 1920 clock cycles for AES-128, AES-192 and
AES-256, respectively. In the last 128 clock cycles, the cipher-
text (for encryption) or plaintext (for decryption) becomes
available and the order in which the output bits are produced
follows the same order as the input.

4 Data pipeline

Before moving on to the full-fledged details of our data
pipeline, let us briefly explain the intuition behind our
pipeline-based design, which similarly applies to the key
scheduling in Sect. 5. We first treat each bit position indi-
vidually and consider the set of operations a particular bit
is supposed to pass through until its next round value is
produced, i.e., each bit needs to execute AddRoundKey,
SubBytes, ShiftRows, MixColumns by carefully interacting
with other bits. It is clear that the combination of operations
depends on the position of the bit, and they are not same for
all. Moreover, MixColumns and SubBytes operations create
dependence among bits, and we have to ensure that the cor-
rect choice of bits is forwarded to these units for executing
together, not separately. For example, SubBytes operates at
byte level (i.e., 8-bit input and 8-bit output) and each individ-
ual bit needs to appear at the correct input port of the S-box,
and also each byte from the S-box output port must bewritten
back into the pipeline in the appropriate fashion. Similarly,
carefully chosen set of bits need to appear at 4-bit ports of
MixColumns at the right time. Hence, the pipeline acts as a
highly flexible storage unit, in which bits are dynamically
moved around and driven into the input ports of each Sub-
Bytes, ShiftRows and MixColumns in 128 clock cycles. In
order to move the bits around cheaply (in terms of extra gates
required), we rely heavily on swap operations.

For our circuit, the data pipeline could be seen as a com-
bination of fundamental operations based on the primal ones
explained above:

– swap-32: Operation that performs a swap between two
bits in adjacent columns (according to the classical state
notation St), with a distance of 32 bits between them
(thus the bits in question are in the same row) in 8 clock
cycles. This operation is used to perform the ShiftRows
for the second and fourth rows, where we have a rotation
by one and by three bytes, respectively. For example, if
Sti, j (i, j ∈ [0, 3]) denotes the i, j-th byte in the 4 ×
4 state matrix, then the shiftrow operation on the 2nd
row essentially requires the byte sequence St1,0, St1,1,
St1,2, St1,3 shifts to St1,1, St1,2, St1,3, St1,0. Three swap-
32 operations execute the required transformation in the
following manner:

[St1,0, St1,1, St1,2, St1,3] swap32→
[St1,1, St1,0, St1,2, St1,3]

swap32→ [St1,1, St1,2, St1,0, St1,3] swap32→
[St1,1, St1,2, St1,3, St1,0]

– swap-64: Operation that performs a swap between two
bits in columns with a distance of 64 bits between them.
This operation is used to perform the ShiftRows for the
third and fourth rows, where we have a rotation by two
and by three positions, respectively. For example, in the
third row, two swap-64 operations execute the transfor-
mation in the following manner:

swap64→ [St2,2, St2,1, St2,0, St2,3]
swap64→ [St2,2, St2,3, St2,0, St2,1]

– swap-96: Operation that performs a swap between two
bits in columns with a distance of 96 bits between them.
This operation is used to perform the ShiftRows for the
fourth row, where we have a rotation by three positions.
The fourth row operation is executed thus:

[St3,0, St3,1, St3,2, St3,3] swap96→
[St3,3, St3,1, St3,2, St3,0]

swap64→ [St3,3, St3,0, St3,2, St3,1] swap32→
[St3,3, St3,0, St3,1, St3,2]

– S-box: Operation that performs the S-box of an input byte
and overwrites the output to flip-flops with the resulting
byte. When the input flip-flops are chosen as FFa:a+7 for
some a, the output is written back to FFa−1:a+6 so that

123



424 Journal of Cryptographic Engineering (2021) 11:417–439

the pipeline rotation is taken into account. It is used to
perform the SubBytes operation when applied to each
byte in the data pipeline, applying once each 8 cycles.

– MixColumns: Operation that performsMixColumns of a
given column taking two adjacent bits at a time to pro-
duce 4 output bits per cycle. It is used to perform the
MixColumns of each of the four columns during an state
update round and requires 8 cycles per columns to do so.

In what follows, we present the complete data path circuit
for AES encryption and decryption.

4.1 Encryption

Let round denote the 4-bit counter for the number of rounds
currently executed. We further use 7-bit counter count for
the number of clock cycles executed from the beginning of
each round. Namely, round is set to 0 at the beginning of
the operation, and count is set to 0 at the beginning of each
round. The round signal is incremented, and the count signal
is reset after count reaches 127.

4.1.1 The S-box operation

Note that plaintext is pushed bit-wise into the circuit via the
DataIn port, where it is XORed to the whitening key and
loaded into the pipeline through FF127. Thereafter, the first
operation to be performed each round is SubBytes. For this
purpose, S-box is used in the data pipeline every eighth cycle
during count ≡ 7 mod 8. The S-box operation required in
the key schedule function is used in a different cycle, that is
	≡ 7 mod 8; therefore, this component can be shared between
the data and key pipelines without any interruption, which
will be further explained in Sect. 5. The elements involved
in this operation can be seen in light green color in Fig. 2,
including S-box and the 8 scan flip-flops involved in the pro-
cess. The S-box reads the input from FF121:127‖(s⊕k) (where
s ⊕ k denotes the input wire of FF127 as shown in Fig. 2),
and the output of the S-box is overwritten to FF120:127 in the
following clock cycle. This operation is executed 16 times in
each round to compute the entire SubBytes layer.

4.1.2 The ShiftRows operation

Note that each bit flowing out from FF120 has already
undergone the S-box operation. Naturally, we now turn our
attention to the ShiftRows operation.

ShiftRows is performed using the three swap operations
as described above. Among them, swap-32 is located at
(64, 96), i.e., swaps the contents of FF64, FF96 and loads them
into FF95, FF63, respectively, in the following clock cycle. It
is active during cycles count ∈ [8, 15]∪[24, 31]∪[72, 79]∪

[104, 111] to perform the four adjacent swaps required dur-
ing encryption. One might wonder why this works. Note that
at cycle count = 72, the flip-flops FF64:71 store the interme-
diate value of the state byte St1,0 and the flip-flops FF96:103
store the intermediate value of the state byte St1,1. Thus, acti-
vating swap-32 over cycles count ∈ [72, 79] simply helps
execute the swap St1,0 ↔ St1,1. The following swap-32
operations are also executed in the given cycles:

1. count ∈ [104, 111] executes the swap St1,0 ↔ St1,2.
2. count ∈ [8, 15] of the next round executes the swap

St1,0 ↔ St1,3. This completes the ShiftRows operation in
the 1st row.

3. count ∈ [24, 31] of the next round executes the swap
St3,1 ↔ St3,2 required in the 3rd row.

4. This indicates that swap-32 is not executed in count ∈
[8, 15] and ∈ [24, 31] of the very first round and only
begins executing from count = 72 of the current round
and ends at count = 31 of the next round. To capture
this idea symbolically, we introduce the notation that
swap-32 is actually executed over the cycles count ∈
[72, 79]∪[104, 111]∪[8, 15]+++ ∪[24, 31]+++. Here,+++ sym-
bol indicates that execution of the operation overflows into
the next round in the timetable.

This tells us an interesting fact: that a part of the ShiftRows
operation of the current round is executed in the circuit
in the numerically subsequent round. The challenge, there-
fore, from an engineering point of view, is to manage other
operations like MixColumns and AddRoundKey, given that
the ShiftRows operations are narrowly timed. Let us give
the remaining two swap operations to complete ShiftRows.
The swap-64 is located at (32, 96) and is active in cycles
count ∈ [112, 119] ∪ [16, 31]+++. The swap-96 is located at
(25, 121) and is active in cycles count ∈ {127}∪[0, 6]+++. It is
not difficult to verify that these swaps faithfully execute the
ShiftRows operation. These swaps are represented in purple,
red and light blue colors, respectively, in Fig. 2.

As a final note, one might interpret our description above
as if swap-96 (uses the bit stored at FF121) is being exe-
cuted before S-box (overwrites its result to FF120). In order
to correctly encrypt according to the AES specification,
clearly SubBytesmust precede ShiftRows. This dependence
between the two operations is resolved in a rather subtle way,
by ensuring that the swap operation actually takes its input
from the output of the MUX placed at the input of FF120
(instead of the value stored at FF121). By doing so, it is guar-
anteed that the swapped bit comes from the output of the
S-box, and the correct ordering between the operations Sub-
Bytes and ShiftRows is satisfied.

123



Journal of Cryptographic Engineering (2021) 11:417–439 425

Fig. 2 The data pipeline circuit. Note that each colored FF denotes a scan flip-flop (or equivalently flip-flops with a MUX at input). The flip-flops
with multiple color indicate that there are multiple MUXes connected at their input

4.1.3 TheMixColumns operation

We now turn our attention to MixColumns. Note that this
component has been scheduled and placed near the cir-
cuit exit in order to leave as many cycles as possible for
the previous operations to execute. In our circuit, the Mix-
Columns operation of the current round also takes place in

the subsequent round. The first such operation takes place
in cycles count ∈ [0, 7] of next round, where the MSB is
stored to the internal flip-flops of the MixColumns circuitry
in count = 127 of the current round as explained in Sect.
3.3. It is not difficult to see why these cycles are chosen. At
cycle 0 of the next round, three bytes in the 1st column of
the AES state have already had the ShiftRows operation per-

123



426 Journal of Cryptographic Engineering (2021) 11:417–439

formed on them. This is because in the following cycles of
the current round:

1. count ∈ [72, 79] executes the swap St1,0 ↔ St1,1
2. count ∈ [112, 119] executes the swap St2,0 ↔ St2,2
3. At count = 127, the swap between the MSBs of St3,0 ↔

St3,3 takes place between FF25 and FF121. As a result, at
count = 127, the MSB of St3,3 is available at the out-
put of the MUX before FF24, and so stored in the internal
flip-flop of the MixColumns circuitry as required. There-
after, at every cycle count ∈ [0, 6] of the subsequent
round, each following bit of St3,0 and St3,3 is swapped in.
This ensures that at cycles count ∈ [0, 7], all the appro-
priate bits of St3,3 occupy the FF24:25. Since the entire
bytes St0,0, St1,1, and St2,2 are already correctly placed
in FF0:7, FF8:15 and FF16:23 at count = 0 of the next round,
this ensures the MixColumns operation is faithfully exe-
cuted, even though the entire byte St3,3 is never actually
stored in FF24:31 during count ∈ [0, 7].

It is a matter of a simple arithmetic exercise to see that at
count ∈ [32, 39] ∪ [64, 71] ∪ [96, 103], the other 3 Mix-
Columns operations for the remaining columns of the state
matrix are also faithfully executed.

Now, let usmake an observation on the locationswhere the
MixColumns output is written back into the pipeline. Three
of the output bits are naturally introduced into the pipeline
at FF7, FF15 and FF23, which is in line with the continuously
evolving nature of the pipeline. The most significant Mix-
Columns output bit is introduced into the multiplexer after
FF0, through which it becomes available at the s wire at
the bottom right corner of Fig. 2. At this particular point,
AddRoundKey is performed using the key bit produced by
the key pipeline. Assuming that the key pipeline is able to
produce the appropriate next round key bit at this cycle, the
output of key XOR is written back in to the data pipeline
at FF127 and so the AES round operations can be executed
seamlessly. We will see in Sect. 5 how the key pipeline is
engineered to produce key bits as required.

A cycle-by-cycle description of data pipeline encryption
can be found in Fig. 4 following the above explanation. Note
that the last AES round is arranged such that theMixColumns
operation is skipped. The ciphertext bits are extracted from
the port in the last 128 of the 1408 cycles used for encryption.
Also, note that the data pipeline operations are the same for
all 3 variants of AES, and the difference only arises from how
the key pipelines are operated for each of them.

4.1.4 Alternate interpretation

To further explain the operations from the point of view
of individual bits in the pipeline that are finally trans-
formed through the MixColumns operation, please see Fig.

3. If we take St to be the state after S-box layer, then
the output of MixColumns of the 1st column is essentially
2St0,0+3St1,1+St2,2+St3,3,where St0,0 = [b0, b1, . . . , b7],
St1,1 = [b40, b41, . . . , b47], St2,2 = [b80, b81, . . . , b87] and
St3,3 = [b120, b121, . . . , b127]. Note thatMixColumns is per-
formed on the flip-flops FF0:31 at cycles 0–7 of the next round.
So the essential engineering in the encryption data path is to
ensure that these aforementioned state bits arrive at these
flip-flops in the above time frame after having been through
the AddRoundKey and S-box layers. Note that each bit bi
enters the pipeline after AddRoundKey operation and is sent
through the S-box at the next possible count cycle which is
7 mod 8. After this, each bit has to go through one swap at a
fixed time so that it is realigned in the pipeline and these bits
are placed in the same column for the MixColumns oper-
ation. In the figure, we can see that the swap32, swap64,
swap96 operations have been used on each set of bits judi-
ciously so that this is possible. The reader can check that all
the swap operations have been scheduled so that this align-
ment is achieved for all columns of the state in Fig. 4.

4.2 Decryption

Our decryption circuit is slightly more complicated than the
circuit of Jean et al. [4] on account of the fact that the authors
used clock-gating to freeze the pipeline to gain extra cycles,
allowing further reuse of circuit components. Therefore, the
circuit in [4] requires almost the double number of clock
cycles to performAES decryption compared to ours, i.e., 2512
cycles instead of 1408, for all the three versions of AES.

Decryption requires us to perform the inverse operations
in the reverse order. This change makes us move the S-box
from the very beginning to the very end of the pipeline and
also forces the inverseMixColumns tomove from the left part
of the circuit to the right part of it. Bothmodifications require
us to place new swaps, because some of the previous posi-
tions cannot be reused. Inverse MixColumns is performed
using the property that applying this operation four times
results in the identity matrix [15]. Thus, we apply forward
MixColumns three times, which will result in the inverse
of the operation. Therefore, we add two new MixColumns
logic components to the circuit. The paper [4] uses only one
MixColumns circuit. As a result, to achieve the inverse Mix-
Columns operation, each column has to be operated upon by
this circuit a total of 3 times, which in turn increases circuit
latency. Sincewe aim to keep the latency fixed at 1408 cycles,
we employ this hardware redundancy, i.e., using 2 additional
MixColumns logic circuit.

This results in an overhead of around 120 GE compared
to bit-sliding circuit [4], but saves more than 1000 cycles
for the decryption operation, which taking into consideration
latency seems a reasonable trade-off.

123



Journal of Cryptographic Engineering (2021) 11:417–439 427

Fig. 3 Another way to visualize the encryption data path from the point of view of the individual bits

Fig. 4 Cycle-by-cycle description of the data pipeline in encryption
mode. The diagram only shows required activation cycles to obtain the
correct output

4.2.1 Inverse ShiftRows operation

Initially, the ciphertext bits are again pushed into the pipeline
through the DataIn port, where it is XORed with the decryp-
tion key and reintroduced into the pipeline through FF127.
Thereafter, the first operations to be performed are the inverse
ShiftRows (since the first decryption round does not execute
inverse MixColumns), which involves rotating the i-th row
toward the left by 4 − i bytes for i = 1, 2, 3. Thus, the only
difference with the forward ShiftRows is that the 1st row is
rotated left by the 3 bytes instead of 1 and the 3rd row is
rotated left by 1 byte instead of 3. (The second row is rotated
by 2 bytes in both operations.) Thus, the 1st and 3rd rows are
transformed in the following manner:

[St1,0, St1,1, St1,2, St1,3] swap96→
[St1,3, St1,1, St1,2, St1,0]

swap64→ [St1,3, St1,0, St1,2, St1,1] swap32→
[St1,3, St1,0, St1,1, St1,2]

[St3,0, St3,1, St3,2, St3,3] swap32→
[St3,1, St3,0, St3,2, St3,3]

swap32→ [St3,1, St3,2, St3,0, St3,3] swap32→
[St3,1, St3,2, St3,3, St3,0]

The individual swaps are executed as follows:

123



428 Journal of Cryptographic Engineering (2021) 11:417–439

1. swap-32 at cycle count ∈ [88, 95]∪[120, 127]∪[8, 15]+++
∪[24, 31]+++,

2. swap-64 at cycle count ∈ [112, 119] ∪ [8, 23]+++,
3. swap-96 at cycle count ∈ {127} ∪ [0, 6]+++. In order to

accommodate swap-96, we do not use the same locations
from the encryption. Instead, we define a new location
as (9, 105), i.e., swaps FF9 and FF105. The reason will
become clear as we describe the remaining parts of the
pipeline. Again it is not difficult to work out, by follow-
ing the same logic described for the forward ShiftRows,
that the above sequence of swaps correctly executes the
inverse ShiftRows.

4.2.2 Inverse S-box operation

The S-box circuit that we use is also equipped to execute
the inverse S-box operation, and so it fits seamlessly into
our decryption data path. FF1:8 serve as the input ports, and
the result is written back into FF0:7 in the following clock
cycles. This operation is activated in cycles count ≡ 7 mod 8
(represented in dark green in Fig. 2). Note that this does
not create a conflict, because we ensure that the data bits
entering FF8 have all been processed by the inverse ShiftRows
operation.

4.2.3 InverseMixColumns operation

The data that leave the pipeline through FF0 are again added
to the next decryption round key bit and reintroduced into the
pipeline through FF127. This time, however, the first opera-
tion to be performed is the inverse MixColumns. From the
explanation provided in Sects. 3.3 and 4, the following facts
can be established:

– If the MixColumns operation is to be executed from
cycles count ∈ [t, t + 7], then the most significant bits
of the bytes in each column need to be stored in auxiliary
flip-flops at clock cycle t − 1.

– For theMixColumns circuit to produce the correct output
bits at any cycle t0 ∈ [t, t + 7], it is not necessary for
all the bytes of the current column to be in place in the
respective flip-flops. In fact the only condition that needs
to be satisfied is that only 8 bits (2 bits from each byte)
that are connected toMixColumns circuit must be ready.

The second fact allows us to implement 3 successiveMix-
Columns operations in only 12 clock cycles in a cascaded
manner. The idea is to use the locations FF102:103, FF110:111,
FF118:119, FF126:127 as inputs to the 1st MixColumns circuit.
This circuit is operated at count ∈ [26, 33], and the out-
puts are written into FF101, FF109, FF117, FF125. We place
the 2nd MixColumns circuit at a 2-bit distance with inputs
FF100:101, FF108:109, FF116:117, FF124:125, with outputs FF99,

FF107, FF115, FF123 such that it operates at count ∈ [28, 35].
Similarly, we place the 3rdMixColumns circuit at another 2-
bit distance with inputs FF98:99, FF106:107, FF114:115, FF122:123
, with outputs FF97, FF105, FF113, FF121 such that it oper-
ates at count ∈ [30, 37]. It is easy to see that for all the
3 MixColumns circuits, the 2 most significant bits are in
place during all the cycles they are executed. After that, it
is really elementary to see that this executes the inverseMix-
Columns operation on the first column correctly. For the
remaining columns, the operations are executed in count
∈ [58, 69] ∪ [90, 101] ∪ [122, 127] ∪ [0, 5]+++. A cycle-by-
cycle description of data pipeline decryption can be found
in Fig. 5 following the above explanation. To further explain

Fig. 5 Cycle-by-cycle description of the data pipeline in decryption
mode. The diagram only shows required activation cycles to obtain the
correct output

123



Journal of Cryptographic Engineering (2021) 11:417–439 429

Fig. 6 As described in Fig. 3, this figure represents an alternate way to visualize the decryption data path from the point of view of the individual
bits that are passed through the first inverse-MixColumns layer

the operations from the point of view of individual bits in the
pipeline that are finally transformed through theMixColumns
operation, please see Fig. 6.

5 Key pipeline

The key pipeline is in charge of producing a continuous
stream of bits that will be consumed by the data pipeline,
namely 1 bit of key each clock cycle, thus 128 bits each
round. This must be fulfilled regardless of which functional-
ity the circuit is executing.

Following the footsteps of Balli et al. [5], our key pipeline
also consists of 256 flip-flops, denoted as a sequence FF0:255.
The bits enter to pipeline through FF255 and exit from FF0.
During AES-256, all flip-flops are active, but for AES-192
(resp. AES-128), we disable 64 (resp. 128) flip-flops so that
the effective length of the pipeline matches the length of the
key. This optionally disabled set of flip-flops is highlighted
with gray background in Fig. 7. During initialization, the
sequence of key bits is loaded starting from FF255.

Before giving the full cycle-by-cycle explanation of key
pipeline, we first summarize our approach. During encryp-
tion operations, we are running the key schedule in the
forward direction, i.e., the encryption key is loaded and the
key expansion algorithm is run as defined. In contrast, during
decryption, we start with the last round key (which we refer
to as decryption key) and run the key scheduling in back-
wards. Therefore, it is clear that the pipeline should be able
to perform key scheduling algorithm in both directions.

Let us first begin by explaining the forward key schedul-
ing by using AES-128 as an example. As stated in Sect. 2.1.2,
we can think key scheduling in terms of two operations: kxor
and sxor. We follow the same notation and use k0:1407 to rep-

resent the concatenation of all round keys in AES-128. For
computing the second round key k128:255 from the encryp-
tion key k0:127, the first 32 bits k128:159 require sxor and the
remaining 96 bits k160:255 require kxor operation.

We execute sxor operation 8-bit at a time as it uses S-
box, which in turn is realized as 8-bit input, 8-bit output
combinatorial circuit. Therefore, we perform sxor 4 times
per key scheduling call, i.e., during 4 clock cycles per 128
clock cycles. More concretely, let us look at computation
of k128:159 from k0:127 to understand what additional circuit
is required. As far as the very first invocation of the key
expansion is concerned, the equations listed in Sect. 2.1.2
lend themselves to:

k128:135 ← k0:7 ⊕ S-box(k104:111)
k136:143 ← k8:15 ⊕ S-box(k112:119)
k144:151 ← k16:23 ⊕ S-box(k120:127)
k152:159 ← k24:31 ⊕ S-box(k96:103)

One can notice that the terms with the same colors corre-
spond to bits of the same position from the previous and next
round keys, if we consider keys in terms of 128-bit blocks.
This essentiallymeans that, in order to derive those bits of the
next round key, all we need to do is to XOR a byte itself with
the output of S-box, while ensuring that the input of S-box is
correctly wired to receive values k104:111, k112:119, k120:127,
k96:103, respectively. In Fig. 8, the update XOR circuitry is
positioned at the input ports of FF15:22, and the S-box inputs
are read from FF248:255. Except the last of the four equations
given above, the additional byte inputs naturally appear at
FF248:255, while the updated byte resides in FF216:223. There-
fore, S-box receives its input from FF248:255. In order to
temporarily relocate the last byte k96:103 into FF248:255 (which

123



430 Journal of Cryptographic Engineering (2021) 11:417–439

Fig. 7 Key pipeline circuit

123



Journal of Cryptographic Engineering (2021) 11:417–439 431

would otherwise be located at FF216:223, while k24:31 is stored
in FF16:23), we use swap operations. Yet another swap opera-
tion is introduced to revert back to the original ordering after
S-box operation is complete.

Thedetails regarding the bitswith kxor operation aremuch
simpler, as they only require XORing bits. For instance, if
we take a look at one of the updates (out of 96 bits), k160 ←
k32 ⊕ k128, it is clear that, similar to sxor operation, two
bits sharing the same position between different round keys
are connected with XOR of another value. This extra value
always resides by a distance of 32. Therefore, when a bit that
needs an update arrives to the exit of the pipeline, i.e., FF0,
then the required extra bit resides in FF32. Therefore, a single
XOR gate at the input of FF31 is sufficient to perform this
operation as marked with red in Fig. 7. And lastly, the round
constant addition is performed through a lookup table.

For decryption, we will execute the key scheduling in
the reverse order, which also means that we need the swap
the order of execution between sxor and kxor. For sxor, we
will use the same circuitry, but for kxor, we introduce few
additional gates and refer to this operation with inv-kxor.
Unlike kxor, inv-kxor must be executed in parallel (in 32
clock cycles), in order to ensure that the values required by
S-box become available.

In what follows, we present the cycle-by-cycle details of
key expansion circuit and the corresponding explanations for
each version and mode in an incremental fashion from AES-
128 encryption to AES-256 decryption.

In order to simplify the explanation, we first introduce
two additional artificial counters. Let roundkey denote the
4-bit counter for the number of key expansion calls made
during AES execution. Let countkey be an 8-bit counter for
the number of clock cycles passed during the expansion.
These two counters are slightly different than those round
and count introduced in Sect. 4.1, because the former pair
is synchronized with key scheduling, whereas the latter pair
is synchronized with the encryption/decryption rounds. In
circuit, these counters are computed with a combinatorial
circuit from (round, count) instead of using extra registers.
Note that countkey counts up to 128, 192, 256 for AES-128,
AES-192 and AES-256, respectively.

5.1 AES-128 Encryption

For AES-128 encryption and decryption, countkey (counts
up to 127) and roundkey (counts up to 10) match count
and round precisely. The four middle columns, from FF64
to FF191, are wired out of the pipeline, utilizing the light blue
wiring in Fig. 7, so that only half of the available flip-flops
are active. In other words, the output bit of FF192 is wired to
the input of FF63 through a MUX.

Fig. 8 Cycle-level description of AES-128 key scheduling during
encryption

At thebeginning, both counters are set to 0.AddRoundKey
operation already uses the key that is already being loaded
for the first 128 clock cycles.

The S-box is activated four times per roundon clock cycles
0, 8, 112 and 120. It uses the flip-flops FF248:255 as input, and
the result of S-box(FF248:255) ⊕ FF16:23 is stored in FF15:22
in the next clock cycle. The round constant is added in a
bit-wise fashion through an extra XOR gate at the input of
FF23 before S-box, and it computed through a lookup table.
XOR gates belonging to S-box operation are represented in
dark green in Fig. 7. The XOR gate that handles the round
constant addition is represented in light green. The positions
for S-box operation are chosen as FF15:22 so that we can
execute this operation as early as possible, i.e., as soon as
the additional byte appears at FF248:255. The only exception
is the last execution of S-box operation (for each round).
During clock cycles countkey ∈ [0, 7], we use the swap-32
to temporarily relocate the byte k96:103 into FF248:255 so that
S-box can get its input from FF248:255. This repositioning is
reverted at clock cycle countkey ∈ [16, 23] using yet another
swap-32. Both swaps are represented in Fig. 7 in dark and
light pink, respectively.

During clock cycles countkey ∈ [0, 95] of each round, the
kxor operation is active and computes the last 96 bits of the
new round key on the fly. This is done XORing the output
bit of the pipeline to the input of FF31. The full timetable of
operations is given for AES-128 in Fig. 8.

5.2 AES-128 Decryption

For decryption, we perform the key scheduling in the
reverse order. Similarly, we use two counters countkey

123



432 Journal of Cryptographic Engineering (2021) 11:417–439

(counts up to 127) and roundkey (counts up to 10). The coun-
ters are reset to 0 just before the key loading starts.

During decryption, the gates belonging to kxor operation
are idle, aswe introduce new set ofXORgates to perform inv-
kxor. The last 96 bits of the previous round key are computed
during cycle count ∈ [96, 127] using the two darkest and
the lightest purple inv-kxor represented in Fig. 7. These are,
namely the three XOR gates, at the inputs of FF63, FF223,
FF255, where the additional values to these gates come from
the outputs of FF32, FF192, FF224, respectively. This allows
us to perform the whole operation in 32 cycles instead of
96 and more importantly lets us compute the necessary byte
values for the S-box operation beforehand without changing
its original position, namely FF248:255 as input to S-box and
FF15:22 for storing the result.

Similarly, the round constant is added before FF22 through
a lookup table.

Finally, rxor cycles are reversed to apply the XOR in the
opposite order. The rest of the operations remain unchanged
and similar toAES-128 encryption. A cycle-by-cycle descrip-
tion of key pipeline for AES-128 can be found in Fig. 9
following the above explanation in Fig. 10.

5.3 AES-192 Encryption

For AES-192 encryption, countkey counts up to 191 in order
to match the key length, and roundkey counts up to the num-
ber of key expansion calls/rounds (i.e., up to 9).

For 192-bit key scheduling, 64 flip-flops are wired out,
from FF128 to FF191, denoted as dark wiring component in
the circuit in Fig. 7. In other words, the output of FF192 is
wired to FF127. Because the key expansion algorithms treat

Fig. 9 Cycle-level description of AES-128 key scheduling during
decryption

Fig. 10 Combined cycle-by-cycle description of the key pipeline for
AES-192. kxor (resp. inv-kxor) is active only during encryption (resp.
decryption), whereas swap-32 and sxor are active in both

key blocks regardless of their original size, e.g., 128 to 256,
the same operations that we defined are readily usable in this
version too.

At initialization, both counters are reset to 0. The next 192
clock cycles are used for loading the key into the pipeline. For
this version, the S-box is active on clock cycles countkey ∈
{0, 8, 176, 184}.With this operation, 32 bits of the next block
of key are derived. The round constant is added through a
lookup table as before.

The kxor operation is active for the rest of the bits in the
block. This essentially takes 160 clock cycles to complete.
Therefore, countkey ∈ [0, 159] produces these remaining
bits. The repositioning operations, i.e., swap-32 and the
restoring swap-32, remain unmodified, following the same
idea in AES-128 encryption. In summary, the difference
between AES-128 and AES-192 is handled through chang-
ing how the key counters are computed. As stated before, the
round keys, which are 128-bit blocks, are continuously con-
sumed by the data pipeline. The combined (both encryption
and decryption) timetable of operations is given in Fig. 8.
The full timetable of operations is given in Fig. 10.

5.4 AES-192 Decryption

AES-192 decryption presents the most challenging part of the
key pipeline, because this mode and version suffer the most
from the lack of synchronization between the data path and
the key path. The counter countkey counts up to 191, and
roundkey counts up to 9 as before.

123



Journal of Cryptographic Engineering (2021) 11:417–439 433

Our main approach is similar to AES-128 decryption in
that 1) we reuse S-box operations and a lookup table for
round constant addition and 2) add necessary inv-kxor gates
to handle the rest. The latter operation must be completed
before we can move on to sxor, because of the dependency
between the key bits.

The inv-kxor operation must be applied for the remain-
ing 160 bits of key. For this, we use three different time slots
and gate combinations. First, during countkey ∈ [32, 63], the
two inv-kxor circuitries compute FF224⊕FF192 and k⊕FF224
(with k being the pipeline input) and load them into FF223 and
FF255 in the following clock cycle, respectively. Secondly,
during countkey ∈ [96, 127], the two inv-kxor circuitries
compute FF96 ⊕ FF64 and FF192 ⊕ FF96 and load them into
FF95 and FF127 in the following clock cycle, respectively.
And lastly, during countkey ∈ [160, 191], the single inv-
kxor circuitry computes FF64 ⊕ FF32 and loads it into FF63
in the following clock cycle. The gates and connections
related to inv-kxor are marked with dark purple color in
Fig. 7.

Key desynchronization requires that we also change the
output port for receiving the round key bits. Namely, every
128 clock cycles, we shift among FF0, FF192 and FF64,
in given order, for reading the key bit into AddRound-
Key. This is realized through a MUX, which is not shown
in Fig. 7. The full timetable of operations is given in
Fig. 10.

5.5 AES-256 Encryption

For AES-256 variant, countkey counts up to 255, and
roundkey counts up to 8. All flip-flops in the pipeline are
active. Performing AES-256 key scheduling is quite similar
to AES-128, with the exception that sxor operation needs to
be applied 8 times instead of 4.

The sxor operation is active on clock cycles countkey ∈
{0, 8, , 240, , 248} ∪ {112, 120, 128, 136}. Here, the second
set corresponds to the key update in the fifth column of 256-
bit key block, as explained in Sect. 2.1.2. In the first set,
we compute S-box(FF248:255) ⊕ FF16:23 and load the result
into FF15:22 in the following clock cycle, as done in AES-128
and AES-192. However, for the second set, we need to take
into account that there is not column rotation, and hence, the
value to be loaded into FF15:22 becomes S-box(FF240:247) ⊕
FF16:23. We handle this by an additional 8-bit MUX in front
of S-box, so that we can choose which input is used by S-
box. The round constant is again computed through a lookup
table.

The kxor operation works exactly same and is repeated
for the remaining 192 bits, in two disjoint sets [32, 127] ∪
[160, 255]. The combined timetable of operations is given in
Fig. 11.

Fig. 11 Combined cycle-by-cycle description of the key pipeline for
AES-256. kxor (resp. inv-kxor) is only run during encryption (resp.
decryption), while other operations are active in both directions

5.6 AES-256 Decryption

The backwards key scheduling of AES-256 is quite similar to
AES-128 decryption case, where the counter countkey counts
up to 255, and roundkey counts up to 8.

We again readily use the sxor operation from AES-256
encryption variant. Namely, the 8 invocations of sxor remain
exactly same.

The inv-kxor operation is active during countkey ∈
[96, 127] ∪ [224, 255]. This operation computes the values
FF128 ⊕ FF96, FF96 ⊕ FF64 and FF64 ⊕ FF32 and loads them
into FF127, FF95 and FF63, respectively, in the following clock
cycles. These gates are also marked in dark purple in Fig. 7.
The combined timetable of operations canbe found inFig. 11.

6 Results and discussion

The circuit was first modeled in Python for preliminary
testing and later implemented directly at register-transfer
level (RTL) with a hardware description language (i.e.,
VHDL). This HDL implementation was initially tested using
Mentor Graphics Modelsim simulation software against pre-
computed test vectors, which only verifies the functional
correctness. We then synthesized the circuit as ASIC by
instructing Synopsys Design Compiler to do all-in-one opti-
mization through compile_ultra setting against five
different CMOS technology libraries, namely STM 90 nm,
UMC 90 nm, TSMC 90 nm, Nangate 15 nm and Nangate
45 nm. We further verified the post-synthesis correctness of

123



434 Journal of Cryptographic Engineering (2021) 11:417–439

each implementation and library configuration with timing
simulation by Synopsys VCS MX Compiler Simulator at two
frequencies: 10 MHz and 100 KHz. The switching activity
of each gate of the circuit was collected, and the average
reported power measurements in Tables 3, 4 are obtained
with Synopsys Power Compiler.

We outline some of the essential lightweight metrics of
this paper’s architecture in Table 3. To the best of our knowl-
edge, this is the smallest implementation of the all-in-one
AES, which according to STM 90nmmeasurements achieves
about 38% reduction in area compared to the previous work
[5]. We further report the smallest stand-alone AES-192 and
AES-256 versions in Table 4. The circuit offers flexibility to
designers who might favor higher levels of security in this

pre-quantum era by increasing the key size, at a reduced area
cost. For example, since it has the same key length, our stand-
alone implementation of AES-256 can be used to directly
replace SKINNY-128-256 in recently proposed authenticated
encryption candidates such as Romulus and SKINNY-AEAD
from NIST LWC [18,19]. One should notice that (under the
same library UMC90nm) although AES-256 (2197GE, 1920
clock cycles) is slightly larger than SKINNY-128-256 (1937
GE, 8448 clock cycles [4]), it clearly has a marginal gain
when it comes to latency. If we compare our combined AES-
128/192/256 circuit to the one produced by bit-sliding [4],
we can see that our circuit occupies a 36% more of area in
GE but provides encryption and decryption for AES-192 and
AES-256 which doubles the key path and increases consid-

Table 3 The area, power,
throughput and latency
measurements of our combined
AES-128/192/256 architecture

Library Area Power (μW) Area TPmax Latency
(GE) @10MHz @100KHz μm2 (Mbps) (cycles)

stm90 2268 153.60 2.80 9957.43 10.86 1408/1664/1920

umc90 2851 104.30 22.68 8940.74 11.56 1408/1664/1920

tsmc90 2905 75.23 1.73 8199.07 13.61 1408/1664/1920

nan45 3401 244.47 181.46 2714.26 36.36 1408/1664/1920

nan15 3835 29.08 10.52 753.99 259.31 1408/1664/1920

TPmax denotes the maximum throughput when the circuit is executing AES-128 encryption. Latency is given
for all AES shades ordered by key length ascending order. Nangate 15nm/45nm and TSMC 90nm standard cell
libraries are denoted with mnemonics nan15/nan45 and tsmc90. The STM 90nm and UMC 90nm libraries
are denoted with mnemonics stm90/umc90

Table 4 The area, power,
throughput and latency
measurements of our
stand-alone AES-192 and
AES-256 implementations

Stand-alone Library Area Power (μW) Area TPmax Latency
(GE) @10MHz @100KHz μm2 (Mbps) (cycles)

AES-256 e stm90 1702 113.10 2.11 7472.46 12.53 1920

umc90 2179 86.71 17.54 6832.56 12.60 1920

tsmc90 2263 71.43 1.52 6387.80 16.02 1920

nan45 2725 195.61 139.74 2174.82 47.50 1920

nan15 3125 25.37 8.50 614.45 312.39 1920

AES-256 e/d stm90 2004 151.30 2.65 8798.36 11.35 1920

umc90 2551 101.40 20.64 8000.72 12.51 1920

tsmc90 2622 74.78 1.66 7401.04 13.87 1920

nan45 3086 223.41 161.74 2462.89 40.30 1920

nan15 3528 28.12 9.74 693.58 276.23 1920

AES-192 e stm90 1511 100.10 1.87 6634.99 12.77 1664

umc90 1924 74.54 15.53 6034.45 13.11 1664

tsmc90 1981 60.43 1.30 5589.76 16.16 1664

nan45 2372 170.14 122.43 1892.86 42.90 1664

nan15 2715 21.81 7.45 533.74 323.23 1664

AES-192 e/d stm90 1906 145.50 2.52 8368.10 9.14 1664

umc90 2331 88.78 18.69 7310.02 11.23 1664

tsmc90 2439 63.89 1.46 6883.13 10.41 1664

nan45 2806 202.73 148.54 2239.19 30.93 1664

nan15 3157 24.81 8.76 620.69 266.74 1664

Encryption only mode is denoted as Enc, and Encryption–Decryption mode is denoted with Enc/Dec

123



Journal of Cryptographic Engineering (2021) 11:417–439 435

erably the control logic. Additionally, the latency is reduced
17% for encryption and 41 % for decryption in AES-128.

In Table 4, we provide multiple results for different stand-
alone versions of our circuit: AES-192 and AES-256, for
encryption and decryption. To the best of our knowledge,
each stand-alone version presented provides the first aim to
produce a serial way circuit for this version, focusing on area
minimization. To further give an idea of the circuit, in Table
5, we tabulate the number of standard cells that each circuit
comprises of.

In Fig 12, we give a breakdown of the area occupied by
individual components in the circuit when constructed with
Nangate 15 nm standard cells. Note that the area reported in
the figure is 902.67 μm2, whereas Table 3 reports the area of
the same circuit as 753.99μm2. Note that the circuit reported
in the table was constructed using the compile_ultra
directive. Using this directive, the circuit synthesizer per-
forms an additional optimization step to reduce the circuit
area, but in the process it does not respect the boundaries
between the individual components of the circuit. Hence,
it is not possible to partition the final netlist so that each
segment pertains to one particular module in the AES algo-

rithm.However, if we do not direct the synthesizer to perform
the additional optimization step, it returns a netlist that is
sub-optimal in terms of area but “partitionable.” It is this
circuit that is reported in Fig 12. In our experience, this
also represents approximately the area occupied by the indi-
vidual components in the optimal circuit obtained using
compile_ultra.

6.1 Power variations

Table 3 reports wide variations of power results between
two clock frequencies for different cell libraries. To under-
stand the reason for this, let us recap some basic facts about
power consumption in CMOS transistors. There are 2 prin-
cipal sources of power consumption in a CMOS circuit

1. Static:This ismainly causeddue to the sub-threshold leak-
age current, which is the drain–source current in a CMOS
gate when the transistor is OFF. This figure is becoming
increasingly important as the technology is scaling down
making the sub-threshold leakage more significant. Note
that this component of the power consumption is inde-

Table 5 Tabulation of the cell
counts using the Nangate 15 nm
library for each of the circuits

Cells
circuit AES-128/192/256 AES-192 e AES-192 e/d AES-256 e AES-256 e/d

INV 141 56 113 63 101

AND2 163 62 92 54 96

AND3 14 2 7 2 3

AND4 14 3 5 5 5

OR2 254 141 218 143 210

OR3 9 4 9 2 4

OR4 6 6 6 4 2

NAND2 153 59 90 47 91

NAND3 14 2 7 2 3

NAND4 14 3 5 5 5

NOR2 147 88 116 85 115

NOR3 8 4 9 2 3

NOR4 5 6 6 4 2

MUX2 1 0 0 0 0

XOR2 102 50 96 53 85

XNOR2 61 51 57 41 64

AOI21 50 14 25 15 34

OAI21 57 19 42 23 34

OAI22 30 12 20 16 29

FA 3 0 0 0 0

HA 4 0 0 0 0

DFFSNQ 408 336 344 400 408

Note that DFFSNQ stands for D flip-flop with asynchronous reset. FA/HA stands for full/half adder, respec-
tively. AOI21 represents the and-or-inverse gate A ∨ (B ∧ C). Similarly, OAI21 is the or-and-invert gate
A ∧ (B ∨ C) and OAI22 similarly represents the gate (A ∨ B) ∧ (C ∨ D). GATEx represents the corre-
sponding gate with x bits of input and a single bit output. Further information can be found in [20]

123



436 Journal of Cryptographic Engineering (2021) 11:417–439

Fig. 12 Breakdown of area occupied by individual components con-
structed using the Nangate 15nm cell library (using simple compiler
directive)

pendent of the frequency at which the input clock of the
circuit is operated.

2. Dynamic: This is the power dissipated for charging and
discharging the capacitive load of a gatewhen output tran-
sitions occur. This is essentially the total power consumed
due to the combined effect of glitches and logic switching
across all the nodes of the circuit. Note that this compo-
nent is directly proportional to the clock frequency.

We have synthesized our circuit with different cell
libraries, each of which are constructed with CMOS transis-
tors of varying feature sizes, which in turn consume varying
amounts of static power. Figure 13 gives a breakup of dif-
ferent components of power over the two clock frequencies
100 KHz and 10 MHz. Note that the static power is same
for both the frequencies for any given cell library. And
for all cell libraries, the dynamic power consumed at 10
MHz is around 100 times the dynamic power consumed
at 100 KHz, which follows from the fact that the dynamic
component of power varies directly as the clock frequency.
For example, using the STM 90nm library the circuit con-
sumes 2.8 μW at 100 KHz which is basically the sum
of the static component 1.28 μW and the dynamic com-
ponent 1.52 μW at 100 KHz. However, at 10 MHz the
total power consumed is 153.6 μW = 1.28 μW (static) +
152.32 μW (the dynamic component at 10 MHz). All the
power variations in the table can be decomposed as per the
figures in Fig 13. In addition, there are also large differences
in maximum throughput. This is mainly due to the fact that
circuits constructed using CMOS transistors of lower fea-
ture length have naturally much lower signal delay across
source to drain, and so the total critical path for these circuits
is much less. Thus, circuits with smaller feature size cells
like Nangate 15/45 nm can be operated at much higher clock
frequency and hence have larger throughput.

6.2 Comparison with FPGA implementations

Designing for FPGAs is indeed vastly different from design-
ing for ASICs. On an ASIC platform, for the purpose of
mapping a given logic into silicon, a circuit synthesizer usu-
ally has the liberty of choosing the best possible combination

Fig. 13 Breakdown of the static power and dynamic power consumed
by the circuit at different frequencies in each of the cell libraries. Note
that the y-axis is scaled logarithmically. All figures are in μW units

from a variety of standard cells already present in a library.
Furthermore, this choice may change given the type of opti-
mization required. For example, the area-optimized circuit
of a given algorithm may vastly differ from its latency-
optimized circuit, etc. However, this is not the case for
FPGAs. Each FPGA device is composed of a finite num-
ber of logic elements called slices, each of which contain a
predefined selection of gates. The challenge for designing for
FPGAs is to make effective use of the resources offered by
each slice.

There have been several papers that have attempted to
reduce the size of AES on FPGAs [21–24]. The paper [25]
contains a very nice introductory tutorial of how to optimize
the AES circuit for the Spartan 6 FPGA family. FPGAs are
reconfigurable hardware devices consisting of configurable
logic blocks (CLB). In modern Xilinx FPGAs, each CLB
is further subdivided into two slices that each contains four
lookup tables (LUTs), eight registers and additional carry
logic [26]. Each LUT can be used either to design one 6
variable Boolean function or two 5 × 1 Boolean functions
provided they are defined on the same input variables.

It is easy to see that an optimal FPGA implementation of
the AES S-box requires 32 LUTs in eight slices, as each of its
eight coordinate functions is an 8-to-1 mapping. Each 8-bit
Boolean function requires four 6-to-1 LUTs to construct, and
hence, the result follows. It was pointed out in [25] that there
was no obvious way to reduce this number, as every linear
combination of coordinate functions maintains the maximal
algebraic degree of seven and depends on all eight input bits.
Most of the area-optimized AES S-boxes in ASIC that are
reported in the literature (i.e., the S-box of Maximov/Ekdahl
that we use or the Canright S-box [27]) are not suited for
FPGA implementation on Spartan 6 devices as they use tower
field decomposition ofGF(28).As a result, theyperforma lot
of operations onGF(2)/GF(4) that lead to under-utilization
of the 6-to-1 LUTs.

In [25], the authors found an ingeniousway to fit the S-box
in less number of slices. It is well known that the if the input

123



Journal of Cryptographic Engineering (2021) 11:417–439 437

byte is interpreted as an element of GF(28) represented in
the polynomial basis x8 + x4 + x3 + x + 1, then the AES
S-box can be expressed as the inverse function x254 followed
by an affine mapping. However, if the input is represented in
any normal basis β, β2, β22 , . . . , β27 , then each coordinate
of x254 can be computed by applying the same function S∗
over bit-rotated versions of the input. So to compute the S-
box, we would need the following:

a: An implementation of the 8-bit Boolean function S∗,
which requires four 6-to-1 LUTs and therefore one slice.

b: A logic circuit p2n to change the input from the polyno-
mial to a suitable normal basis. This is an 8-to-8 linear
function.

c: A logic circuit n2p to change the output from the nor-
mal to the polynomial basis and compute the subsequent
affine map. This is another 8-to-8 linear function.

d: A rotating register R1 that rotates the output of p2n that
is input to S∗ to compute each coordinate of the inverse
function, and another rotating register R2 that stores this
output.

The authors searched GF(28) exhaustively for a suitable
element β to construct the normal basis so that the logic for
p2n, n2p, R1 and R2 can fit in 3 slices, which makes the total
S-box fit in 4 slices. Although this is one half of a straightfor-
ward 8-slice implementation based on a lookup table, note
that this construction actually takes 8 cycles to compute the
S-box as opposed to the single cycle taken by the 8-slice
implementation. We implemented our AES circuit on the
same Spartan 6 device 6slx4, and we present the synthesis
reports in Table 6. Note that although our implementation is
better in terms of latency, in terms of area, area-wise, it is
nowhere close to the circuit presented in [25] that is specifi-
cally optimized for this FPGA device.

6.3 Protected implementation

We further introduce some ideas of how to adapt our cir-
cuit for a protected implementation of AES. Since a full
description of the protected circuit is out of scope, let us
introduce a small discussion as to how one could implement
such a circuit. The only protected bit-serial S-box for AES
was proposed in [25], and given that area size is one of the
optimization goals, we feel that this architecture is best suited
to be implemented with the data and key pipeline we have
proposed. Note that the protected S-box in [25] only imple-
ments the forward S-box, but the inverse S-box can also be
implemented with some minor modifications.

The formula for computing the S-box can be written as
Affine(x254).4 The inverse S-box operation can therefore be
written as (Affine−1(x))254. Since the core nonlinear opera-
tion is still the inverse function x254 overGF(28), the inverse
S-box is thus obtained by computing the Affine−1 operation
just before the protected x254 function.

In [25], the authors give a step-by-stepdescriptionof howa
threshold implementation (TI) of the bit-serialized S-box can
be implemented. Although it was implemented on a FPGA
device, the same principle can be applied on ASIC circuits.
For the purpose of this discussion, we mention the salient
points of their construction here. Note that in the previous
subsection, we had mentioned that if the input is represented
in any normal basis, then each coordinate of x254 can be
computed by applying the same function S∗ over bit-rotated
versions of the input. Now, the same is true for any power
functionmapping overGF(28). The algebraic degree of S∗ is
7, and since it ismore difficult to construct TI of higher degree
functions, the authors decompose the original power map
into two cubic power maps x254 = (x26)49. Since x26 and
x49 are both power maps, they can be computed by repeated
application of some Boolean function F∗ (resp. G∗) over
rotated versions of the input bits when presented in a suitable
normal basis. Moreover, since the Hamming weight of both
26 and 49 is 3, from elementary theory of power mappings
we know that the algebraic degrees of both F∗,G∗ are 3, and
so it is much easier to construct protected circuits for these
Boolean functions.

The functions F∗,G∗ are further decomposed into func-
tions F∗ = F A + FB and G∗ = GA +GB , so that each can
be shared using the (3, 1)-matrix sharing method [25, Eqn
1,2,4]. Each of F A, FB,GA,GB can be shared using 2 input
and 8 output shares for first-order security. So each F∗,G∗
is implemented using 2 input and 16 output shares. These 16
shares are then sent to a register bank where they are com-
pressed back to 2 shares by XORing individual shares in the
next clock cycle.

Therefore, the entire circuit will have the following com-
ponents:

• An initial affine function: for the forward S-box, this is
simply the function that converts from polynomial to nor-
mal basis. For the inverse S-box, it is the combination of
the Affine−1 function and the polynomial to normal map.

• A shared implementation of F∗: this needs two rotating
8-bit registers R1A, R1B to rotate the 2 input shares,
the shared circuit for F∗, another bank of 16 registers

4 Note that theAffine(x254) notation is a simplified one for the purposes
of better understanding, and not strictly mathematically correct. This is
because the x254 is carried out over GF(28), and the affine function is a
matrix multiplication operation done by treating the output of the x254

operation as an 8-bit vector over GF(2).

123



438 Journal of Cryptographic Engineering (2021) 11:417–439

Table 6 The synthesis reports
for the Xilinx Spartan device
6slx4tqg144-2

Design # LUTS # FFs # Slices # Cycles f †max
Circuit in [25] 68 39 17 5538 109 MHz

AES-128/192/256 475 137 161 1408/1664/1920 51.2 MHz

AES-192 e 244 76 85 1664 64.3 MHz

AES-192 e/d 374 118 128 1664 53.9 MHz

AES-256 e 220 77 72 1920 76.8 MHz

AES-256 e/d 374 127 124 1920 59.7 MHz

† : Note that fmax is generated from the post-PAR simulation

to store the output shares, a compression layer to XOR
the 16 intermediate shares back to 2 shares and another
two rotating registers S1A, S1B to store the output shares
after compression.

• A shared implementation of G∗: this needs two rotating
8-bit registers R2A, R2B to rotate the 2 input shares,
the shared circuit for G∗, another bank of 16 registers
to store the output shares, a compression layer to XOR
the 16 intermediate shares back to 2 shares and another
two rotating registers S2A, S2B to store the output shares
after compression.

• An final affine function: for the forward S-box, this is the
function that converts from normal to polynomial basis
combined with Affine. For the inverse S-box, it is simply
the function and the normal to polynomial map.

In the original paper, it took 26 cycles to compute one
S-box function on the Spartan 6 device, and we think on
ASIC platforms we could possibly do the same using some
optimization. For example, R1A and R2A can be chosen to
be some register FFx :x+7 and FFx+8:x+15 in the data pipeline,
with some extra logic to insure that it can perform the circular
internal rotation function.Wewould need additional registers
for R1B, R2B. Similarly, R2A and R2B can simply be used
as the output registers S1A and S1B of the F∗ layer. It takes
8 cycles for each byte to be shifted into R1A/B. Each output
bit of F∗,G∗ takes 2 cycles to generate due to the additional
compression layer. Hence, by effective pipelining the output
bits of F∗ can be generated in cycles 9 to 17 and the same
for G∗ is cycles 18-26. The initial and final affine layers can
be done on the fly in cycles 9 and 26, making the entire S-
box calculable in 26 cycles. To accommodate this into the
entire data pipeline using minimum cycles is a challenging
problem in the engineering sense and indeed subject of our
future investigations.

Acknowledgements Fatih Balli and SubhadeepBanik are supported by
the Swiss National Science Foundation (SNSF) through the Ambizione
Grant PZ00P2_179921.

Funding Open Access funding provided by EPFL Lausanne.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann,
A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An
Ultra-Lightweight Block Cipher. In: CHES, vol. 4727, pp. 450–
466. Springer (2007). https://doi.org/10.1007/978-3-540-74735-
2_31

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T.,
Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY Family of Block
Ciphers and its Low-Latency Variant MANTIS. IACR Cryptol.
ePrint Arch. p. 660 (2016). http://eprint.iacr.org/2016/660

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo,
Y.: GIFT: A Small Present - Towards Reaching the Limit of
Lightweight Encryption. In: CHES, vol. 10529, pp. 321–345.
Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_16

4. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic
technique for bit-serial implementations of SPN-based primitives
- applications to AES, PRESENT and SKINNY. In: CHES, vol.
10529, pp. 687–707. Springer (2017). https://doi.org/10.1007/978-
3-319-66787-4_33

5. Balli, F., Banik, S.: Six shades of AES. In: AFRICACRYPT, vol.
11627, pp. 311–329. Springer (2019). https://doi.org/10.1007/978-
3-030-23696-0_16

6. FIPS, P.: 197, advanced encryption standard (aes), national institute
of standards and technology, (2001)

7. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes: A com-
pact implementation of the AES encryption/decryption core. In:
O. Dunkelman, S.K. Sanadhya (eds.) Progress in Cryptology -
INDOCRYPT 2016 - 17th International Conference on Cryptology
in India, Kolkata, India, December 11-14, 2016, Proceedings, Lec-
ture Notes in Computer Science, vol. 10095, pp. 173–190 (2016).
https://doi.org/10.1007/978-3-319-49890-4_10

8. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijn-
dael hardware architecture with s-box optimization. In: C. Boyd
(ed.) Advances in Cryptology - ASIACRYPT 2001, 7th Interna-
tionalConference on theTheory andApplication ofCryptology and

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
http://eprint.iacr.org/2016/660
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-030-23696-0_16
https://doi.org/10.1007/978-3-030-23696-0_16
https://doi.org/10.1007/978-3-319-49890-4_10


Journal of Cryptographic Engineering (2021) 11:417–439 439

Information Security, GoldCoast, Australia, December 9-13, 2001,
Proceedings, Lecture Notes in Computer Science, vol. 2248, pp.
239–254. Springer (2001). https://doi.org/10.1007/3-540-45682-
1_15

9. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: Aes implementation
on a grain of sand. IEE Proceedings - Information Secur. 152(1),
13–20 (2005)

10. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing
the limits: A very compact and a threshold implementation of AES.
In: K.G. Paterson (ed.) Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings, Lecture Notes in Computer Science, vol.
6632, pp. 69–88. Springer (2011). https://doi.org/10.1007/978-3-
642-20465-4_6

11. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes v2.0. Cryptol-
ogy ePrint Archive, Report 2016/1005 (2016). https://eprint.iacr.
org/2016/1005

12. Mathew, S., Satpathy, S., Suresh, V.B., Anders, M., Kaul, H., Agar-
wal, A., Hsu, S., Chen, G.K., Krishnamurthy, R.: 340 mv-1.1 v,
289 gbps/w, 2090-gate nanoaes hardware accelerator with area-
optimized encrypt/decrypt GF(2 4) 2 polynomials in 22 nm tri-gate
CMOS. J. Solid-State Circuits 50(4), 1048–1058 (2015). https://
doi.org/10.1109/JSSC.2014.2384039

13. Barker, Elaine B., J.M.K. : Recommendation for random number
generation using deterministic random Bit generators. Tech. rep.
(2015). https://doi.org/10.6028/NIST.SP.800-90Ar1

14. NIST: Post-Quantum Cryptography Standardization (2020).
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-
Quantum-Cryptography-Standardization

15. Daemen, J., Rijmen, V.: Rijndael for AES. In: The Third AES Can-
didate Conference, pp. 343–348. National Institute of Standards
and Technology, (2000). https://doi.org/10.1007/0-387-23483-
7_358

16. Banik, S., Balli, F., Regazzoni, F., Vaudenay, S.: Swap and rotate:
lightweight linear layers for spn-based blockciphers. IACR 2020,
1212 (2019)

17. Maximov, A., Ekdahl, P.: New circuit minimization techniques for
smaller and faster AES sboxes. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019(4), 91–125 (2019). https://doi.org/10.13154/
tches.v2019.i4.91-125

18. Iwata, T., Khairallah,M.,Minematsu,K., Peyrin, T.: Romulus v1.2.
NIST Lightweight Cryptography Project (2019). https://csrc.nist.
gov/Projects/lightweight-cryptography/round-2-candidates

19. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin,
T., Sasaki, Y., Sasdrich, P., Sim, S.M.: Skinny-aead. NIST
lightweight cryptography project (2019). https://csrc.nist.gov/
Projects/lightweight-cryptography/round-2-candidates

20. Martins,M.,Matos, J.M., Ribas, R.P., Reis, A., Schlinker,G., Rech,
L., Michelsen, J.: Open cell library in 15nm freepdk technology.
In: Proceedings of the 2015 Symposium on International Sympo-
sium on Physical Design, ISPD ’15, p. 171–178. Association for
Computing Machinery, New York, NY, USA (2015). https://doi.
org/10.1145/2717764.2717783

21. Bulens, P., Standaert, F., Quisquater, J., Pellegrin, P., Rouvroy, G.:
Implementation of the AES-128 on virtex-5 fpgas. In: Progress
in Cryptology - AFRICACRYPT 2008, First International Confer-
ence on Cryptology in Africa, Casablanca, Morocco, June 11-14,
2008. Proceedings, pp. 16–26 (2008). https://doi.org/10.1007/978-
3-540-68164-9_2

22. Chu, J., Benaissa, M.: Low area memory-free FPGA implementa-
tion of the AES algorithm. In: 22nd International Conference on
Field Programmable Logic and Applications (FPL), Oslo, Norway,
August 29-31, 2012, pp. 623–626 (2012). https://doi.org/10.1109/
FPL.2012.6339250

23. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of
the AES algorithm. In: Cryptographic Hardware and Embedded
Systems - CHES 2003, 5th International Workshop, Cologne, Ger-
many, September 8-10, 2003, Proceedings, pp. 319–333 (2003).
https://doi.org/10.1007/978-3-540-45238-6_26

24. Sasdrich, P., Güneysu, T.: A grain in the silicon: Sca-protected
AES in less than 30 slices. In: 27th IEEE International Conference
on Application-specific Systems, Architectures and Processors,
ASAP 2016, London, United Kingdom, July 6-8, 2016, pp. 25–
32 (2016). https://doi.org/10.1109/ASAP.2016.7760769

25. Wegener, F., Meyer, L.D., Moradi, A.: Spin me right round
rotational symmetry for fpga-specific AES: extended version.
J. Cryptol. 33(3), 1114–1155 (2020). https://doi.org/10.1007/
s00145-019-09342-y

26. Xilinx spartan-6 fpga configurable logic block user guide,
available at https://www.xilinx.com/support/documentation/user_
guides/ug384.pdf

27. Canright, D.: A very compact s-box for AES. In: J.R. Rao, B. Sunar
(eds.) Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 3659, pp. 441–455. Springer (2005). https://doi.org/10.
1007/11545262_32

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/978-3-642-20465-4_6
https://eprint.iacr.org/2016/1005
https://eprint.iacr.org/2016/1005
https://doi.org/10.1109/JSSC.2014.2384039
https://doi.org/10.1109/JSSC.2014.2384039
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/0-387-23483-7_358
https://doi.org/10.1007/0-387-23483-7_358
https://doi.org/10.13154/tches.v2019.i4.91-125
https://doi.org/10.13154/tches.v2019.i4.91-125
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1007/978-3-540-68164-9_2
https://doi.org/10.1007/978-3-540-68164-9_2
https://doi.org/10.1109/FPL.2012.6339250
https://doi.org/10.1109/FPL.2012.6339250
https://doi.org/10.1007/978-3-540-45238-6_26
https://doi.org/10.1109/ASAP.2016.7760769
https://doi.org/10.1007/s00145-019-09342-y
https://doi.org/10.1007/s00145-019-09342-y
https://www.xilinx.com/support/documentation/user_guides/ug384.pdf
https://www.xilinx.com/support/documentation/user_guides/ug384.pdf
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32

	Six shades lighter: a bit-serial implementation of the AES family
	Abstract
	1 Introduction
	1.1 Previous work
	1.2 Motivations
	1.3 Challenges
	1.4 Organization and contribution

	2 Background
	2.1 Notation and AES overview
	2.1.1 AES round function
	2.1.2 AES key expansion


	3 Bit-serial circuit preliminaries
	3.1 Pipelines
	3.2 Primal pipeline operations
	3.3 Components
	3.4 Hardware API and input formats

	4 Data pipeline
	4.1 Encryption
	4.1.1 The S-box operation
	4.1.2 The ShiftRows operation
	4.1.3 The MixColumns operation
	4.1.4 Alternate interpretation

	4.2 Decryption
	4.2.1 Inverse ShiftRows operation
	4.2.2 Inverse S-box operation
	4.2.3 Inverse MixColumns operation


	5 Key pipeline
	5.1 AES-128 Encryption
	5.2 AES-128 Decryption
	5.3 AES-192 Encryption
	5.4 AES-192 Decryption
	5.5 AES-256 Encryption
	5.6 AES-256 Decryption

	6 Results and discussion
	6.1 Power variations
	6.2 Comparison with FPGA implementations
	6.3 Protected implementation

	Acknowledgements
	References




