
Journal of Cryptographic Engineering (2023) 13:443–460
https://doi.org/10.1007/s13389-023-00315-3

REGULAR PAPER

A side-channel attack on a masked and shuffled software
implementation of Saber

Kalle Ngo1 · Elena Dubrova1 · Thomas Johansson2

Received: 12 June 2022 / Accepted: 28 February 2023 / Published online: 25 April 2023
© The Author(s) 2023

Abstract
In this paper, we show that a software implementation of IND-CCA-secure Saber key encapsulation mechanism protected by
first-order masking and shuffling can be broken by deep learning-based power analysis. Using an ensemble of deep neural
networks trained at the profiling stage, we can recover the session key and the secret key from 257×N and 24×257×N traces,
respectively, where N is the number of repetitions of the same measurement. The value of N depends on the implementation
of the algorithm, the type of device under attack, environmental factors, acquisition noise, etc.; in our experiments N = 10 is
sufficient for a successful attack. The neural networks are trained on a combination of 80% of traces from the profiling device
with a known shuffling order and 20% of traces from the device under attack captured for all-0 and all-1 messages. “Spicing”
the training set with traces from the device under attack helps us minimize the negative effect of inter-device variability.

Keywords Public-key cryptography · Post-quantum cryptography · Saber KEM · LWE/LWR-based KEM · Side-channel
attack · Power analysis

1 Introduction

Public-key cryptographic schemes used today depend on
the intractability of certain mathematical problems such as
integer factorization or the discrete logarithm. However, if
large-scale quantum computers become a reality, it will be
possible to solve these problems in polynomial time using
Shor’s algorithm [51]. Even though it will take many years
to construct a large-scale quantum computer, the need for
long-term security makes it urgent to investigate new solu-
tions.

To address this need, the National Institute of Standards
and Technology (NIST) started in 2016 a process for stan-
dardization of post-quantum cryptographic primitives, NIST
PQC. Candidate primitives rely on problems that are not

B Kalle Ngo
kngo@kth.se

Elena Dubrova
dubrova@kth.se

Thomas Johansson
thomas.johansson@eit.lth.se

1 KTH Royal Institute of Technology, Stockholm, Sweden

2 Lund University, Lund, Sweden

known to be targets for a quantum computer, such as lattices
problems and decoding problems in Hamming metric.

In rounds 1 and 2 of the NIST PQC process, security
and implementation aspects were the main priority in assess-
ment of the candidates. In round 3, the focus has shifted to
side-channel attack resistance. Lattice-based schemes have
received a particular attention because, among the finalists of
the round 3 for the primitive key encapsulation mechanism
(KEM), three out of four were lattice-based: NTRU-based
scheme NTRU [15]; Learning With Errors (LWE)-based
scheme Kyber [4]; and the LearningWith Rounding (LWR)-
based scheme Saber [18]. The hardness in these problems
comes from inserting unknown noise into otherwise linear
equations.

At present the NIST PQC process has entered its fourth
round. The resistance to side-channel attacks remains an
important criterion for evaluating the candidates. Side-
channel attack is considered as a main security threat to
implementations of cryptographic algorithms, in particular
for applications in embedded devices.

Side-channel attackswere introducedbyKocher et al. [30].
They exploit information obtained from physically mea-
surable, non-primary channels. The most basic form is
the timing channel which is exploited by measuring the
execution time of software implementations of the cryp-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-023-00315-3&domain=pdf
http://orcid.org/0000-0002-9842-2038

444 Journal of Cryptographic Engineering (2023) 13:443–460

tographic algorithms [31]. The general protection method
against timing attacks is to make implementations such that
all instructions are executed in constant time, a standard
assumption for software implementations. The timing chan-
nel can be extended to consider cache-timing attacks [11],
where time variation due to memory management in the exe-
cuting device is considered. A typical example of an exploit
is the use of look-up tables.

Even with constant time implementations and avoiding
implementationweaknesses such as the use of look-up tables,
a software implementation is still vulnerable to attacks if
the power consumption or electromagnetic (EM) emissions
from the CPU can be measured [1, 30]. In such cases, more
advanced countermeasures are required. The main tools are
techniques such as masking [14], shuffling [56], insertion
of random delays through dummy operations [16], constant-
weight encoding [33] and code polymorphism [7].

Differential side-channel analysis pioneered by Kocher et
al. [30] was the first breakthrough in the area. The second
major advance was the introduction of deep learning-based
side-channel analysis. Apart from improving the differential
attacks’ effectiveness (e.g., four instead of 400 power mea-
surements are needed to extract a key from a USIM [10]),
the latter enabled non-differential message/key recovery
attacks on NIST PQC candidates [40, 52, 54], as well as
attacks of true random number generators [39] and Phys-
ical Unclonable Functions [63]. Deep learning-based side-
channel attacks can overcome traditional countermeasures,
including Boolean masking [40], jitter [12] and code poly-
morphism [34].Our contributions In this paper, an extension
of ASHES’21 [41], we present the first side-channel attack
on a masked and shuffled implementation of CCA-secure
Saber KEM. Additionally, in this extension, we delve deeper
into the workings of neural network models and pinpoint the
specific assembly instructions that leak information, thereby
identifying potential areas for future protection.

Until now, these countermeasures combined togetherwere
believed to provide an adequate protection against power and
EM analysis.

We show how to recover the session key and the long-
term secret key by deep learning-based power analysis from
257 × N and 24 × 257 × N traces, respectively, captured
using the execution of the decapsulation algorithm, where N
is the number of repetitions of the same measurement. The
value of N depends on the implementation, environmental
factors, acquisition noise, etc.; in our experiments, N = 10
is enough for a successful attack without any enumeration.

Similarly to the attack on a first-order masked Saber [40],
our deep neural networks learn a higher-ordermodel directly,
without explicitly extracting random masks at each execu-
tion. However, since we attack an implementation in which
the message bits are shuffled, it is not possible to directly
recover the message from a single trace, as in [40]. Only

the message Hamming weight (HW) can be derived. To find
the order of message bits, traces for 256 additional decap-
sulations have to be captured and analyzed for each chosen
chiphertext (hence ×257).

We quantify the success rate of the message HW recov-
ery as a function of the success rate of a single message bit
recovery and show that the latter should be of the order of
0.999 to recover the message HW with a high probability.
To increase the success rate of a single message bit recovery,
we introduce a novel approach for training neural networks
which uses a combination of traces from the profiling device
with a known shuffling order and traces from the device under
attack captured for all-0 and all-1 messages. We also use an
ensemble of models to increase the success rate of message
recovery from the derived HWs.

The remainder of this paper is organized as follows. Sec-
tion3 gives the necessary background onSaber algorithmand
profiled side-channel attacks. Section4 describes the imple-
mentation of masked and shuffled Saber KEMwhich is used
in our experiments. Section5 presents equipment for trace
acquisition. Section6 showshowpoints of interest are located
in side-channel measurements. Sections7 and 8 describe the
profiling and the attack stages, respectively. Section9 sum-
marizes the experimental results. Section10 concludes the
paper and describes future work.

2 Previous work

In this section, we describe previous work on implementa-
tions and attacks of the NIST PQC lattice-based candidates.

2.1 Implementations

The first side-channel protected implementation of a lattice-
based cryptosystem was presented in [49] followed by [48],
based on masking. Masking involves doing linear operations
twice, whereas nonlinear operations need more complex
solutions decreasing the speed substantially. The implemen-
tation approach in [49] increases the number of CPU cycles
on an ARM Cortex-M4 by a factor more than 5 compared to
a standard implementation, see [6, p. 2].

These protected implementations focus on Chosen-
Plaintext Attack (CPA)-secure lattice schemes, but more
relevant are secure primitives designed to withstand Chosen-
Ciphertext Attacks (CCA). CCA-secure primitives are usu-
ally obtained from a CPA secure primitive using a transform,
such as the Fujisaki-Okamoto (FO) transform or some vari-
ation of it [28]. The CCA-transform is itself susceptible to
side-channel attacks and should be protected [47]. Examples
of recent masked implementations are: [42] of a KEM simi-
lar to NewHope; and [5, 22, 35] being lattice-based signature
schemes.

123

Journal of Cryptographic Engineering (2023) 13:443–460 445

At the time the work presented in this paper was carried
out, only one of the round 3 finalists of the NIST PQC, Saber,
had a protected software implementation available [6]. The
implementation utilizes a first-order masking of the Saber
CCA-secure decapsulation algorithm with an overhead fac-
tor of only 2.5 compared to an unmasked implementation.
This side-channel secure version can be built with relatively
simple building blocks compared to other candidates, result-
ing in a small overhead. Themasked implementation of Saber
is based on masked logical shifting on arithmetic shares and
a masked binomial sampler. The work includes experimental
validation of the implementation to confirm it on the Cortex-
M4 general-purpose processor.

2.2 Attacks

Early side-channel attacks on NIST PQC project candi-
dates targeted unprotected implementations. In [52] message
recovery attacks on the unprotected encapsulation part of
round 3 candidates CRYSTALS-Kyber and Saber and round
3 alternate candidate FrodoKEM using a single power trace
were described. In [47], near-field EM side-channel assisted
chosen ciphertext attacks applicable to six round 2 candidates
were presented. In [62], unprotected Kyber was attacked as a
case study using near-field EM side-channels. A way of turn-
ing a message recovery attack to a secret key recovery attack
was proposed using, e.g., 184 traces for 98% success rate.
In [55] another power/EM-based secret key recovery attack
on some round 3 candidates KEMs based on FO transform
and its variant was presented. In [25], similar ideas were
used for timing attacks. The resistance of an unprotected
Saber to amplitude-modulated EM emanations was investi-
gated in [60] and [59].

In [45], the authors improve the key recovery attacks on
unprotected implementations of three NIST PQC finalists,
including Saber. They also discuss how to attack masked
implementations by attacking shares individually. However,
no actual attack on masked Saber was carried out. The first
attack on a first-order masked implementation of the IND-

CCA-secure Saber KEM was demonstrated in [40]. The
attack recovers both the session key and the secret key using
a deep neural network trained at the profiling stage. The
chosen ciphertext-based secret key recovery attack requires
24 traces. The ciphertexts are constructed using a novel
error-correction code-based method which allows for cor-
recting single-bit errors an detecting double-bit errors in the
recovered messages. This waves the requirement for a per-
fect message recovery, making the attack more realistic. An
attack applying the method of [40] to a first-order masked
implementation of Kyber was presented in [58], targeting
the message encoding vulnerability found in [52].

More recently, in [8], side-channel attacks on two imple-
mentations of masked polynomial comparison were demon-
strated on the example of Kyber. Polynomial multiplication
is also a target of the attacks on unprotected implementations
of all lattice-based NIST PQC finalists presented [37], where
Correlation Power Analysis is used.

3 Background

This section describes Saber and profiled side-channel
attacks. A more detailed description of Saber can be found
in [18].

3.1 Saber design description

Saber is a package of cryptographic algorithms whose
security relies on the hardness of the Module Learning
With Rounding problem (Mod-LWR) [18]. It contains a
CPA-secure public key encryption scheme, Saber.PKE and
a CCA-secure key encapsulation mechanism, Saber.KEM,
based on a post-quantum version of the Fujisaki-Okamoto
transform [21].

Pseudo-codes of Saber.PKE and Saber.KEM are shown in
Figs. 1 and 2, respectively. We follow the notation of [40].

Fig. 1 Description of Saber.PKE from [18]

123

446 Journal of Cryptographic Engineering (2023) 13:443–460

Fig. 2 Description of Saber.KEM from [18]

Table 1 Proposed parameters of round 3 Saber

l n q p T μ Security pfail

LightSaber 2 256 213 210 23 10 NIST-I 2−120

Saber 3 256 213 210 24 8 NIST-III 2−136

FireSaber 4 256 213 210 26 6 NIST-V 2−165

Let Zq be the ring of integers modulo q and Rq be the
quotient ring Zq [X]/(Xn + 1). The rank of the module is
denoted by l. The rounding modulus is denoted by p.

The notation x ← χ(S) stands to denote sampling x
according to a distribution χ over a set S. The uniform dis-
tribution is denoted by U . The centered binomial distribution
with parameter μ is denoted by βμ, where μ is an even posi-
tive integer. The term βμ(Rl×k

q ; r) generates amatrix in Rl×k
q

where the coefficients of polynomials in Rq are sampled in
a deterministic manner from βμ using seed r .

The functions F , G and H are SHA3-256, SHA3-512
and SHA3-256 hash functions, respectively. The gen is an
extendable output function which is used to generate a pseu-
dorandom matrix A ∈ Rl×l

q from seedA. It is instantiated
with SHAKE-128.

The bitwise right shift operation is denoted by “�”. It is
extendable to polynomials and matrices by performing the
shift coefficient-wise. To allow for an efficient implemen-
tation, Saber design uses power-of-two moduli q, p, and
T , namely q = 2εq , p = 2εp and T = 2εT . In order to
implement rounding operations by a simple bit shift, three
constants are used: polynomials h1 ∈ Rq and h2 ∈ Rq

with all coefficients being 2εq−εp−1 and 2εp−2 −2εp−εT −1 +
2εq−εp−1, respectively, and a constant vector h ∈ Rl×1

q in
which each polynomial is equal to h1.

In the round 3 Saber document [18], three sets of param-
eters are proposed for the security levels of NIST-I, NIST-III
and NIST-V: LightSaber, Saber and FireSaber, respectively
(See Table 1). All results presented in this paper are for Saber,
but it is trivial to extend them to the other versions. Saber uses
n = 256, l = 3, q = 213, p = 210, T = 24 and μ = 8. Its
decryption failure probability is bounded by 2−136.

3.2 Profiled side-channel attacks

Side-channel attacks can be carried out in two settings: pro-
filed and non-profiled. Profiled attacks first learn a leakage
profile of the targeted cryptographic algorithm’s implemen-
tation using a device similar to the device under attack, called
profiling device. The profiling can be done by creating a tem-
plate [3, 13, 27], or training a neural network model [10,
12, 29, 32]. Then, the resulting template/model is used to
recover the secret variable, e.g., the key, from the device
under attack [32]. Non-profiled attacks attack directly [53].

Profiled side-channel attacks typically assume that:

(1) The attacker has at least one profiling device similar to
the device under attack which runs the same implemen-
tation.

(2) The attacker has full control over the profiling device.
(3) The attacker has direct physical access to the device

under attack to measure side-channel signals for chosen
inputs.

4 Implementation of masked and shuffled
Saber KEM

All experiments presented in this paper are performed on
a first-order masked and shuffled implementation of Saber
which we created ourselves. To the best of our knowledge,
no implementations of Saber protected by both masking and
shuffling countermeasures are available at present.

We used the first-order masked implementation of Saber
presented in [6] as a base and added shuffling on the top as
described Sect. 4.2.

4.1 Masking

Masking is a well-known countermeasure against power/EM
analysis [14]. First-order masking protects against attacks
leveraging information in the first-order statistical moment.
A first-order masking partitions any sensitive variable x into
two shares, x1 and x2, such that x = x1 ◦ x2, and executes all

123

Journal of Cryptographic Engineering (2023) 13:443–460 447

Fig. 3 The masked implementation of Saber.PKE.Dec() from [6] (left) and the presented masked and shuffled implementation of Saber.PKE.Dec()
(right)

operations separately on the shares. Theoperator “◦” depends
on the type of masking, e.g., it is “+” in arithmetic masking
and “⊕” in Boolean masking.

Carrying out operations on the shares x1 and x2 prevents
leakage of side-channel information related to x as compu-
tations do not explicitly involve x . Instead, x1 and x2 are
linked to the leakage. Since the shares are randomized at
each execution of the algorithm, they are not expected to
contain exploitable information about x . The randomization
is usually done by assigning a random mask r to one share
and computing the other share as x−r for arithmeticmasking
or x ⊕ r for Boolean masking.

A challenge in masking lattice-based cryptosystems is
the integration of bitwise operations with arithmetic mask-
ing which requires methods for secure conversion between
masked representations. Saber can be efficiently masked due
to specific features of its design: power-of-two modulo q, p

and T , and limited noise sampling of LWR. Due to the for-
mer, modular reductions are basically free. The latter implies
that only the secret key s has to be sampled securely. In con-
trast, LWE-based schemes also need to securely sample two
additional error vectors.

Masking duplicates most linear operations, but requires
more complex routines for nonlinear operations. The first-
order masked implementation of Saber presented [6] uses
a custom primitive for masked logical shifting on arith-
metic shares, called poly_A2A(), and an adapted masked
binomial sampler from [50]. Particular attention is devoted
in [6] to the protection of the decapsulation algorithm
since it involves operations with the long-term secret key
s. At its first step (see Saber.KEM.Decaps() in Fig. 2), the
decapsulation algorithm calls Saber.PKE.Dec() to decrypt
the input ciphertext c. Figure3 shows the implementa-

123

448 Journal of Cryptographic Engineering (2023) 13:443–460

tion of Saber.PKE.Dec() from [6] called indcpa_kem_
dec_masked().

To perform masked logical shifting, the authors of [6]
recognize that, for power-of-two moduli, the conventional
method of first performing an A2B conversion and then
shifting subsequently the Boolean shares is wasteful. This
is because the lower bits are first computed only to be imme-
diately discarded by shifting them out. Their novel primitive,
poly_A2A() (see Fig. 3), avoids computing the Boolean
sharing of the lower bits completely, leading to reduced com-
putational and memory overheads.

4.2 Shuffling

Shuffling is another well-known countermeasure against
power/EM analysis [56]. We use the modernized version
of the Fisher-Yates (FY) algorithm [20] which generates
a random permutation of a finite sequence. The generated
sequence is used as the loop iterator to index the inner loop
function’s data processing. This effectively scrambles the
order in which the elements of an array are processed as
opposed the linear sequence of a non-shuffled loop. Shuffling
makes power analysis and neural network training signifi-
cantly more difficult as this removes the linear correlation of
index sequence with time.

Figure 3 shows our masked and shuffled implementa-
tion of the decryption algorithm Saber.PKE.Dec(), called
indcpa_kem_dec_ masked_and_shuffled(). We
implement bitwise shuffling of a 256-bit message in the
primitive poly_A2A() by calling the FY_Gen() function
to randomly permute a list of the same length (see poly_
A2A_shuffled()). The shuffled values (in the range from
0 to 255) are then subsequently referenced at the start of every
loop iteration, resulting in randomized execution order.

Figure 4a and b compares the inner loops of the assembly
code of poly_A2A procedure before and after adding shuf-
fling on the top of masking. One can see that the inclusion
of FY_Gen() function has a minimal effect. It changes the
lines that reference the store/load offsets only. Therefore, the
side-channel leakage which is not related to FY index gen-
eration is expected to be similar in both implementations.

We also implement bytewise shuffling of a message in the
procedure POL2MSG() (see POL2MSG_shuffled()) by
calling the FY_Gen() to randomly permute a list of the
length equal to the number of bytes, 32.

4.3 Known vulnerabilities

In previous work, a number of vulnerabilities were discov-
ered in the non-maskedLWE/LWR-basedPKE/KEMs [2, 37,
44–47, 52, 52, 55]. One is Incremental-Storage vulnerability
resulting from an incremental update of the decrypted mes-
sage inmemory duringmessage decoding [45]. The decoding

Fig. 4 Assembly code ofmasked poly_A2A inner loop before and after
adding shuffling on the top

function iteratively maps each polynomial coefficient into a
corresponding message bit, thus computing the decrypted
message one bit at a time.

It was further observed in [45] that a non-masked imple-
mentation of the decoding function contains two points with
exploitable Incremental-Storage vulnerability. The first one
is where the message bits are computed and stored in a 16-bit
memory location in an unpacked fashion. Since the memory
location can take only two possible values, 0 or 1, an attacker
can recover the message bit by distinguishing between 0 and
1. The second point is in POL2MSG() procedure where the
decodedmessage bits are packed into a byte array inmemory.
There has been many attacks put forth against the Fujisaki-
Okamoto (FO) transform commonly found in lattice-based
KEMs, such as [26, 54] aswell as [9] which targets amasked
version of the FO’s comparison operation through a collision
attack.

In [40], it was demonstrated that, despite partitioning the
message into two shares in a first-order masked implemen-
tation of Saber, the leakage point in POL2MSG() procedure
can still be exploited. In addition, a new leakage point in
poly_A2A() procedure was discovered (highlighted in red

123

Journal of Cryptographic Engineering (2023) 13:443–460 449

Fig. 5 Equipment for trace acquisition

in Fig. 3). The attacks presented in this paper are based on the
corresponding point in poly_A2A_shuffled()) (high-
lighted in red in Fig. 3).

5 Equipment for trace acquisition

The equipment we use for trace acquisition consists of the
ChipWhis- perer-Lite board, the CW308UFO board and two
CW308T-STM32F4 target boards (see Fig. 5).

The ChipWhisperer is a hardware security evaluation
toolkit based on a low-cost open hardware platform and an
open-source software [38]. It can be used to measure power
consumption and to make communication between the tar-
get device and the computer easier. Power is measured over
a shunt resistor connected between the power supply and the
target device. ChipWhisperer-Lite employs a synchronous
capture method, which greatly improves trace synchroniza-
tion while also lowering the required sample rate and data
storage.

The CW308 UFO board is a general-purpose platform for
evaluating multiple targets [17]. The target board is plugged
into a dedicated U connector.

The target board CW308T-STM32F4 contains a 32-bit
ARMCortex-M4 CPUwith STM32F415-RGT6 device. The
board operates at 24 MHz and it is sampled at 24 MHz, i.e.,
1 point per clock cycle.

In our experiments, the Cortex-M4 CPU is programmed
with themasked and shuffledSaber implementationdescribed
in the previous section. The implementation is compiled with
arm-none-eabi- gcc at the highest level of compiler
optimization -O3 (recommended default) which is typically
the most difficult to break by side-channel analysis [52].

6 Locating points of interest

The attacks on unprotected implementations of LWE/LWR-
based KEMs [47, 52] typically locate leakage points in side-
channel measurements using techniques such as Test Vector
Leakage Assessment (TVLA) [24], or Correlation Power
Analysis (CPA). However, such a method is not applicable
to a protected implementation sincemasked implementations
change randommasks for each execution and shuffled imple-
mentations change shuffling order for each execution.

In this section, we describe our method for locating
points of interest in a masked and shuffled implementa-
tion of Saber. Figure6a shows a power trace obtained by
averaging 50K measurement made during the execution of
Saber.KEM.Decaps() for random ciphertexts.We can clearly
see different blocks with different structure. Our aim is
poly_A2A() procedure which processes 256 message bits
one-by-one. The segment of Fig. 6a marked by two red lines
is a possible candidate. By zooming in, see Fig. 6b and c, one
can verify that the number of repeating peaks is indeed 256.

By measuring the distance between the peaks, we can
find that the processing of one bit by poly_A2A() takes
51 points. This parameter is referred to as bit_offset in the
sequel. Since for poly_A2A() the shares A[i] and R[i]
are processed immediately following each other (see line 4
of poly_A2A() in Fig. 3), bit_offset contains both shares.

By locating the first peak, we can find the starting point
of poly_A2A() procedure. This parameter is referred to as
offset. Note that we do not need to know neither the value of
a random mask, nor the shuffling order to compute the offset
and bit_offset.

7 Profiling stage

The aim of profiling is to construct a neural network model
capable of distinguishing between themessage bit values “0”
and “1.” At the attack stage, we use this model to count the
number of “1”s in the message in order to determine its HW.

We use neural networks with a multilayer perceptron
(MLP) architecture shown in Table 2. It is the same as the
one in [40] except for the input size. This architecture was
selected using the grid search algorithm [23] which trains a
model for every joint specification of hyperparameter values
in the Cartesian product of the set of values for each individ-
ual hyperparameter.

During training, we use Nadam optimizer[19], which is
an extension of RMSprop with Nesterov momentum, with

123

450 Journal of Cryptographic Engineering (2023) 13:443–460

(a)

1 bit

(c)

(d)

(b)

Fig. 6 a A power trace representing the execution of the first
step of Saber.KEM.Decaps() (average of 50K measurements sampled
with decimation 15); b An interval containing poly_A2A(v1,v2),
POL2MSG(v1,m1) and POL2MSG(v2,m2); c A detailed view of
poly_A2A(v1,v2) (sampled with decimation 1); d The first 15 bits
of poly_A2A(v1,v2)

a learning rate of 0.001 and a numerical stability constant
epsilon=1e-08. Binary cross-entropy is used as a loss func-
tion. The training is run for a maximum of 100 epochs, with
a batch size of 128 and an early stopping. 70% of the training
set is used for training, and 30% is used for validation.

Unlike [40] where eight models were trained, one for each
bit position of a byte, we train a single model capable of
recovering allmessage bits. This is accomplished by compos-
ing the training set as a union of trace intervals corresponding
to individual bit processing. As a result, we get a universal
model which has “learned” features for all 256 bits. Using
a cut-and-join technique like this, we can increase the size
of the training set by a factor of 256 without having to cap-
ture 256 times as many traces. For example, the 2M training
set used in our experiments is composed from 7.8K captured
traces. On an ARM Cortex-M4 running at 24MHz, it takes

Table 2 The MLP architecture

Layer type (Input, output) shape # Parameters

Batch Normalization 1 (90, 90) 360

Dense 1 (90, 128) 11648

Batch Normalization 2 (128, 128) 512

ReLU (128, 128) 0

Dense 2 (128, 32) 4128

Batch Normalization 3 (32, 32) 128

ReLU (32, 32) 0

Dense 3 (32, 16) 528

Batch Normalization 4 (16, 16) 64

ReLU (16, 16) 0

Dense 4 (16, 1) 17

Softmax (1, 1) 0

Total parameters 17,385

Trainable parameters 16,853

less than 17min to capture the latter and 3 days to capture
the former.

The cut-and-join technique is applicable topoly_A2A()
leakage point because poly_A2A() procedure processes
all message bits in the same way during their storage
in memory. Thus, traces representing the execution of
poly_A2A() appear identical for all message bits except
the first and last, as we can see from Fig 7. Because of the
Cortex-M4’s three-stage pipeline, the next instruction begins
before the previous instruction has finished. As a result, the
power consumed during the processing of the first and the last
bits differs from the power consumed during the processing
of other bits.

Similarly to [40], we defeat masking by training models
on traces containing the bits of both shares labeled by the
value of the corresponding message bit. Thus, the models
are capable of recovering the message bits directly, without
explicitly extracting the mask. However, since the message
bits are also shuffled in our case, we cannot train on traces
captured from the device under attack for random messages,
as in [40] because the order of bits (and thus training labels)
is unknown. Instead, we train on a combination of traces
from the profiling device running an implementation with
deactivated shuffling, and traces from the device under attack
captured for all-0 and all-1messages. Obviously, the labels of
all bits are the same for all-0 and all-1messages. In the experi-
mental results section,we show that such a combined strategy
helps us minimize the negative effect of device variability on
model’s classification accuracy. We also show that training
on 100% of traces from the device under attack captured for
all-0 and all-1 messages is not the best choice because traces
of all-0 and all-1messages do not allow the neural network to

123

Journal of Cryptographic Engineering (2023) 13:443–460 451

Fig. 7 Average power traces representing the processing of message
bits 0, 1 and 255 by poly_A2A() (for 10Kmeasurements). Traces for
the remaining bits look similarly to the trace of bit 1

learn all possible features due to the above-mentioned impact
of the previous and next instructions on power consumption.

The effect of device variability on the shape of traces is
illustrated in Fig. 8. Figure8 shows two plots obtained by
averaging 10K traces captured from the profiling device DP

(blue) and the device under attack DA (orange) during the
processing of the message by poly_A2A(). The blue plot
is difficult to see because it is covered by the orange plot to
a large extent. Figure9 shows Welch’s t-test [61] results for
the same 10K trace sets from DP and DA computed as:

t = μP − μA√
σ 2
P

nP
+ σ 2

A
nA

,

where μP/μA, σA/σP and nP/nP are the mean, standard
deviation and the size of the trace sets from DP/DA. We can
see that there are noticeable differences between traces. The
bottom peak corresponds to the point 51. Later, we show that
side-channel data in the interval around this point is crucial
for accurate class prediction.

The pseudo-code of the profiling algorithm is shown in
Fig. 10. TrainModel() takes as input the number of traces
to be captured, τ , the neural network’s input size, in_size,
and a parameter k ∈ I, I = {x ∈ R | 0 ≤ x ≤ 1}, which
defines which fraction of traces is captured from the profiling
device, DP . For example, k = 0.8 means that 80% of traces
are from DP . The rest of traces is captured from the device
under attack, DA, for all-0 and all-1 messages in equal parts,
r = (1 − k)/2.

At step 1, ComposeTrainingSet() procedure is called to
create a set of training traces, T , and the corresponding set
of labels, L. In ComposeTrainingSet(), k × τ messages are

Fig. 8 Comparison of average power traces of DP and DA

Fig. 9 T -test result for 10K trace sets from DP and DA. The peaks
represent the points in which the difference between traces is most
noticeable

selected at random and encrypted by a fixed public key.1 The
profiling device DP , which is running an implementation
with deactivated shuffling, is used to decapsulate the resulting
set of ciphertexts. During its execution, the power traces are
captured.

Similarly, τ × r all-0 and τ × r all-1 messages are gen-
erated and encrypted. The device under attack DA is used to
decapsulate the resulting ciphertexts, and the power traces
are captured (step 4–8).

Next, the initial offset, offset, and the distance between the
message bits inT ′, bit_offset, are determined as described in
Sect. 6. Finally, the cut-and-join technique is used to divide
T ′ into intervals representing individual message bit pro-
cessing and to generate the set of labels L containing the
corresponding message bit values.

1 It is also possible to train with different keys. This does not affect the
outcome.

123

452 Journal of Cryptographic Engineering (2023) 13:443–460

Fig. 10 Profiling algorithm

8 Attack stage

To defeat the combined masked and shuffled countermea-
sures, we make use of the existing key and message recovery
techniques presented in [40] and [45] for masked-only and
shuffled-only LWE/LWR-based KEMs, respectively, and
introduce two new algorithms.

In this section, we outline the main steps of the proposed
secret and session key recovery approaches, then describe
the key and message recovery techniques from from [40]
and [45], and finally present the new algorithms.

8.1 Secret key recovery

The secret key is recovered as follows:

(1) Construct 24 chosen ciphertexts c1, . . . , c24 as described
in Sect. 8.2.

(2) For each ci , i ∈ {1, . . . , 24}, construct 256 cipher-
texts ci0 , . . . , ci255 such that ci j decrypts to m′

i j
=

Saber.PKE.Dec(s, ci j) which is equal to the message
m′

i = Saber.PKE.Dec(s, ci) with the j th bit is flipped,

for j ∈ {0, . . . , 255}. The procedure is described in
Sect. 8.3.

(3) For each of 24 × 257 resulting ciphertexts, acquire a
power trace during the decapsulation of the ciphertext by
the device under attack. Repeat N times for each cipher-
text.

(4) Use the acquired 24 × 257 × N power traces to recover
the messages m′

i contained in the ciphertexts ci , for all
i ∈ {1, . . . , 24}, using RecoverMessage() algorithm pre-
sented in Sect. 8.4.

(5) Derive the secret key from the 24 recovered messages
m′

1, . . . , m
′
24 as described in Sect. 8.2.

Session key recovery Assume that the adversary has a
properly generated ciphertext c which is decapsulated by the
device under attack. The adversary follows the steps (2)–
(5) of the secret key recovery algorithm described above to
extract the message m′ contained in c from 257 × N power
traces. Given m′, he/she computes (K̂ ′, r ′) = G(pkh,m′)
and gets the session key as K = H(K̂ ′, c).

8.2 Chosen ciphertext construction

In [40], an approach based on error-correcting codes (ECC)
was introduced to recover the secret key from masked Saber.
We use the same chosen ciphertexts as in [40] for recovering
the secret key from masked and shuffled Saber.

The ciphertexts are constructed as c j = (cm,b′) where
cm = k0

∑255
i=0 x

i ∈ RT and

b′ =

⎧⎪⎪⎨
⎪⎪⎩

(k1, 0, 0) ∈ R3×1
p for j = {1, . . . , 8},

(0, k1, 0) ∈ R3×1
p for j = {9, . . . , 16},

(0, 0, k1) ∈ R3×1
p for j = {17, . . . , 24},

where the pairs (k0, k1) are listed in Table 3. In this table, the
i th coefficient of the secret key s, s[i], is mapped into a code-
word of the [8, 4, 4]2 extended Hamming code composed
from the eight message bits. The first 256 secret key coeffi-
cients are derived from messages recovered from c1, . . . , c8,
the second 256 coefficients—from c9, . . . , c16 and the last
256 coefficients—from c17, . . . , c24.

The approach in [40]works because decryption of (cm,b′)
yields the message

m′ = ((b′T (s mod p) + h2 − 2εp−εT cm) mod p)

� (εp − 1) ∈ R2,

whose i th bit, m′[i], is a function of the triple (k0, k1, s[i]):

m′[i] = ((k1 · (s[i] mod p) + H − 2εp−εT k0) mod p)

� (εp − 1), (1)

123

Journal of Cryptographic Engineering (2023) 13:443–460 453

Table 3 Pairs (k1, k0) which are
used to derive secret key
coefficients s[i] from eight
message bits [40]

s[i] The message bit value for the pair (k1, k0)

(186,0) (293,7) (311,7) (615,2) (613,2) (890,4) (903,4) (199,0)

−4 0 1 1 1 1 0 0 0

−3 1 1 1 0 0 0 0 1

−2 1 0 0 1 1 0 0 1

−1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0

1 0 0 0 1 1 1 1 0

2 1 0 0 0 0 1 1 1

3 1 1 1 1 1 1 1 1

4 1 1 0 1 0 0 1 0

where H = 2εp−2 −2εp−εT −1 +2εq−εp−1. Thus,m′[i] leaks
information about s[i].

8.3 Bit-flip technique

In [45], a technique called bit-flip was introduced to recover
the message m′ contained in ciphertext c which is decap-
sulated by the device under attack implementing a shuffled
LWE/LWR-based KEM algorithm.We use a “fuzzy” version
of this technique, presented in Sect. 8.4, for recovering mes-
sages contained in 24 chosen ciphertexts which are decapsu-
lated by the device under attack implementing masked and
shuffled Saber.

Given a ciphertext c = (cm,b′), the bit-flip technique [45]
constructs 256 ciphertexts c j , j ∈ {0, . . . , 255}, in which
the value of the center of the integer ring Zq is subtracted
from the j th coefficient of cm. Since the message polyno-
mial is only additively hidden within the ciphertext, this
results in a ciphertext decrypting m′

j which is equal m′ =
Saber.PKE.Dec(s, c) with j th bit flipped.

For c and each c j , a side-channel HW classifier is applied
to find the HW of m′ and each m′

j , for j ∈ {0, . . . , 255}.
In [45], the HW classifier is constructed by the template
approach. From the obtained HWs, the message m′ is recov-
ered bit-by-bit as follows:

m′[i] =
{
0 if HW(m′

j [i]) = HW(m′[i]) + 1
1 if HW(m′

j [i]) = HW(m′[i]) − 1.
(2)

8.4 Message HW recovery algorithm

In this section, we present the algorithmRecoverHW()which
we use to recover HW of messages contained in 24 chosen
ciphertexts and their bit-flipped versions. Its pseudo-code is
shown in Fig. 11.

RecoverHW() takes as input the neural network trained
at the profiling stage, NN , the neural network’s input size,
in_size, the initial offset, offset, the distance between the bits,

Fig. 11 Message HW recovery algorithm

bit_offset, the ciphertext c for which the message HW has to
be recovered and the degree of repetition of the same mea-
surement, N .

First, N trials are performed to recover the HW of the
message m′ contained in c. The device under attack is used
to decapsulate c, and a power trace T̂i is captured during its
execution (step 2). The interval corresponding to the process-
ing of b in T̂i is located based on offset and bit_offset for each
of the 256-bit positions b ∈ {0, 1, . . . , 255} (representing the
message bits in an unknown shuffled order) (steps 5–6). This
interval is fed into the neural network NN trained during
the profiling stage to determine whether the message bit in
position b has a value of “0” or “1.” If the resulting score sb
is greater than 0.5 (i.e., “1” has a higher probability), the HW
is incremented. Otherwise, the HW is not changed.

The HW is then determined by first removing the outliers
and then computing the median of the remaining HWs (steps
13–14). An outlier is defined as a HW that differs from the
median HW by more than 10%. We explored a variety of
combining methods. The one we present consistently out-
performs others in our experiments.

123

454 Journal of Cryptographic Engineering (2023) 13:443–460

Fig. 12 Message recovery algorithm

8.5 Message recovery algorithm

In this section, we present a “fuzzy” version of the bit-flip
technique, RecoverMessage(). We construct 256 ciphertexts
containing bit-flipped messages in the same way as in the
original method [45]. However, we take a different approach
to deciding the final message bit values. We also quantify the
success rate of message HW recovery as a function of the
success rate of single-bit recovery.

The pseudo-code is shown in Fig. 12. RecoverMessage()
takes as input the same parameters as RecoverHW() algo-
rithm. First, the HW of m′ contained in c is recovered by
calling RecoverHW(). Then, the following loop is repeated
256 times: For each i ∈ {0, . . . , 255}, the ciphertext ci is
constructed using BitFlip(), i.e., the value of the center of
Zq is subtracted from the i th coefficient of c. The HW of
m′

i contained in ci is recovered by calling RecoverHW(). If
HW(m′

i) > HW(m′), the i th bit of m′ is assigned “0.” If
HW(m′

i) < HW(m′), the i th bit of m′ is assigned “1.” Oth-
erwise the i th bit of m′ is assigned ‘2’ to indicate that the bit
is not recovered correctly. In the experiments, we call this
case a detectable error.

Next we quantify the probability to recover the message
HW as a function of the probability to recover the single
message bit. The property below assumes that the message
is balanced, i.e., has equal number of “1”s and “0”s.

Property 1 Let m be a balanced n-bit binary message. If
p is the success rate of single-bit recovery and bit errors
are mutually independent events, then the success rate of
message HW recovery is given by:

pHW =
n/2∑
i=0

(
n/2

i

)2

pn−2i (1 − p)2i (3)

Table 4 Success rate of 256-bit
message HW recovery

p pHW

0.99 0.279883

0.999 0.879911

0.9999 0.987280

0.99999 0.998719

Proof The proof is based on the fact that, if, for any 0 ≤ k ≤
n/2, k message bits change as 0 → 1 and other k message
bits change as 1 → 0, then themessageHWdoes not change.

A n-bit balanced binary message has n/2 “0”s and n/2
“1”s. There are

(n/2
k

)
choices to select k elements from a set

of size n/2. Thus, for a fixed k, the number of possible 2k-bit
errors in which k bits flip in one direction and the rest of

bits flip in another direction is
(n/2

k

)2
. Since the probability

of a 2k-bit error in an n-bit message is pn−2k(1 − p)2k , we
get (3).

Using Property 1, we can estimate the success rate of
single-bit recovery required to recover the message HW.
Table 4 lists some examples. According to the table, the suc-
cess rate of single-bit recovery should be of the order of 0.999
to recover the message HW with a high probability.

9 Experimental results

In the experiments, we use two identical CW303 ARM
devices, DP and DA. DP is the profiling device. We have
complete control over DP , which means we can reload it
with a different implementation, change its secret key, etc.
DA is the device that is being attacked.We use DA to capture
traces for key recovery and a part of traces for training.

9.1 Message recovery

In this section, we evaluate the impact of training set com-
position on the success rate of RecoverMessage() algorithm.
We also justify why the use of an ensemble of a set of models
can further improve the success rate.

We trained MLP models on trace sets of size 2M with
varying proportions of DP and DA traces, denoted by DP :
DA. We tried five cases: DP : DA = {0:100, 20:80, 50:50,
80:20, 100:0}. The notation x : y means that x% of traces
are from DP and y% are from DA. Recall from Sect. 7 that
traces from DP are captured for random messages, while
traces from DA are captured for all-0 and all-1 messages in
equal proportion. DP runs an implementation with deacti-
vated shuffling.

123

Journal of Cryptographic Engineering (2023) 13:443–460 455

Table 5 The impact of training set composition on message recovery success rate

N Training set # Detected (d) and undetected (u) errors in the test set i ∈ {0, . . . , 9}
0 1 2 3 4 5 6 7 8 9 Average

DP : DA d u d u d u d u d u d u d u d u d u d u d u

0:100 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0.1 0.4

20:80 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0.3 0.2

20 50:50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.2 0.1

80:20 0

100:0 2 5 0 2 0 2 4 3 0 0 0 3 0 7 3 0 3 5 2 7 1.4 3.4

0:100 1 0 0 0 0 2 0 2 0 3 1 2 0 2 2 1 0 0 0 2 0.4 1.3

20:80 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0.5 0.4

15 50:50 3 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 2 0.3 0.4

80:20 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0.2 0.3

100:0 3 8 1 3 1 1 1 6 0 1 1 3 0 8 2 1 2 7 4 13 1.5 5.1

0:100 2 3 1 1 0 3 3 2 8 3 1 1 2 5 3 2 0 1 0 3 2.0 2.4

20:80 4 6 0 1 0 1 1 0 1 4 0 0 1 4 0 4 0 0 1 5 0.8 2.5

10 50:50 5 3 0 1 0 1 0 0 1 2 0 0 1 0 0 2 0 0 3 8 1.0 1.7

80:20 1 4 0 0 1 2 0 1 1 0 0 0 0 1 0 2 0 0 4 2 0.7 1.2

100:0 3 18 3 4 3 7 3 8 6 5 3 6 5 7 1 4 4 9 3 14 3.4 8.2

For each fraction DP : DA = x : y, we trained ten
models with the architecture in Table 2 using TrainModel()
with input parameters τ = 2M and k = x/100 and selected
the best.

We tested the models on ten different ciphertexts created
by encrypting a random message with a randomly selected
public key. To recover the message, 257 × N = 5140 traces
from DA were captured for each ciphertext, for N = 10, 15
and 20.

Table 5 lists the number of detected and undetected errors
for each of the ten test sets. Recall that detected errors are
those for which RecoverMessage() returns “2” as the mes-
sage bit value. The ability to detect errors is very useful since
e detected bit errors can be handled by enumerating 2e pos-
sible choices, computing (K̂ ′, r ′) = G(pkh,m′) and then
checking if c = Saber.PKE.Enc(pk, m′; r ′).

We can see fromTable 5 that themodel trained on a combi-
nation of 80% of traces from DP and 20% of traces from DA

produces the best results. Including traces from the device
under attack into the training set helps mitigating the nega-
tive effect of device variability on classification accuracy.

We can also see that training on 100% of traces from the
device under attack captured for all-0 and all-1 messages
is not the best choice. As we mentioned in Sect. 7, due to
the Cortex-M4’s three-stage pipeline, the power consumed
during the processing of a givenmessage bit depends not only
on the value of that bit, but also on values of previous bits.
Therefore, traces of all-0 and all-1 messages do not allow the
neural network to learn all possible features.

Training on 100% of traces from the profiling device is
the worst option. One could argue that such an option has
the advantage of allowing profiling to be completed prior to
the attack. However, thanks to the cut-and-join technique,
we only need to capture 1.5K traces from DA to contribute
20% of traces to the 2M training set, which takes less than 4
min. As a result, composing the training set as 80:20 has no
significant effect on the time required to physically access
DA.

Table 5 also shows that, for N = 15 and lower, all models
have some undetected errors. It is possible to improve the
success rate by increasing the value of N , however, a larger N
increases capture time for attack traces, which is undesirable.
Thus, in the experiments that follow, rather than increasing
N , we use an ensemble of a set of k models to improve the
success rate of message recovery. The ensemble approach
increases training time, but this is not as critical as increasing
access time to DA.

It is known [23] that, on average, an ensemble of a set
of models performs at least as well as any of its members.
Furthermore, if the members make independent errors, then
the ensemble performs considerably better than its members.
This can be justified as follows. Suppose that each model
makes an error εi on each test example, and the errors are
drawn from a zero-mean multivariate normal distribution
with variances E[ε2i] = v and covariances E[εiε j] = c.
Then, the error made by the average prediction of all the
ensemble models is 1

k

∑
i εi . So, the expected squared error

of the ensemble predictor is given by [23]:

123

456 Journal of Cryptographic Engineering (2023) 13:443–460

Table 6 Success rate of key recovery (average for 10 tests)

N k # Errors Attack time

d u Capture Message rec. Key enum.

5 0 0 23.10 min 0s

20 3 2.6 0 5.6h 9.15 min 3.66 s

1 76.6 8.3 3.05 min –

5 0.2 0 11.34 min 0.02 s

15 3 2.5 0 4.2h 7.15 min 2.93 s

1 94.4 12.6 2.20 min –

5 1.2 0 8.12 min 0.17 s

10 3 9.3 0 3.2h 4.89 min 104.69 days

1 95.0 16.7 1.68 min –

E

⎡
⎣

(
1

k

∑
i

εi

)2
⎤
⎦ = 1

k2
E

⎡
⎣∑

i

⎛
⎝ε2i +

∑
i
= j

εiε j

⎞
⎠

⎤
⎦

= v

k
+ (k − 1)c

k
.

From the above we can conclude that, if the errors are depen-
dent and c = v, then the expected squared error of the
ensemble is v, i.e., the ensemble brings no improvement.
In contract, if the errors are independent and c = 0, then the
expected squared error of the ensemble reduces to v

k , i.e., it
is inversely proportional to the ensemble size k.

The ensemble approach helps us in practice because dif-
ferent models typically do not make all the same errors on
the test set, as we can see from the results in Table 5. This
might due to differences in models parameters after training.
In Sect. 9.3, we present an example illustrating these differ-
ences.

9.2 Secret key recovery

To evaluate the success rate of the secret key recovery attack,
we captured ten test sets of 24×257×N traces representing
the decapsulation of ciphertexts constructed following steps
1–3 of the procedure in Sect. 8.1, for N = 10, 15 and 20.
Each test set was captured for a different secret key.

To recover the secret messages contained in the cipher-
texts, we use an ensemble of best models obtained during
training. The ensemble method is known to be useful in
side-channel analysis [43, 57]. Table 6 shows the results for
ensembles of size up to 5 for different N . The k models
in the ensemble are trained on the same training set with
DP : DA = 80 : 20.

The output of an ensemble of k models is obtained as
follows. For each j ∈ {0, 1, . . . , 255}, models that result in
m′[j] = 2 (i.e., detected error) are excluded from voting,
and then the mean of the m′[j]s produced by the remaining

models is computed. If the mean is ≤ 0.5, the j th message
bit is set to “0”; otherwise it is set to “1.” Finally, the secret
key is derived from the 24 recovered messages as described
in Sect. 8.2.

Since we use the ECC-based method [40] which is able
to correct single errors and detects one additional error in
the recovered message, we can mark the positions of the
detected incorrect key coefficients for later enumeration.
With d detected incorrect key coefficients, 9d enumerations
are required to find the true key. For example, for N = 10
and k = 5, 91.2 ≈ 14 enumerations are required.

Undetected errors are positions that are not handled by the
ECC. We determine them by comparing the recovered key
to the true key. One can see from Table 6 that, for N ≥ 10
and k ≥ 3, there are no undetected errors. Certainly, the val-
ues of N and k may vary depending on the implementation,
environmental conditions, acquisition method, etc.

The last three columns of Table 6 show the time required
for capturing traces and message recovery, as well as the
average key enumeration time on a PC with a 16 core pro-
cessor running at 4.3 GHz and 64 GB of RAM (simple single
threaded implementation). The sign “-” means that key enu-
meration is not feasible. Note that capture requires physical
access to the device under attack, whereas post-processing
steps do not.

9.3 Analysis of neural networkmodels

It is challenging to explain how neural network models take
their decisions. However, making an attempt is important
because it could help in locating and fixing vulnerabilities in
the implementation under attack. It might also aid in model
optimization.

9.3.1 Feature analysis

To assess the significance of various input features for the
models, we use two techniques:

(1) weight analysis, and
(2) stuck-at-0 fault injection.

Both methods have been shown effective in previous attacks
of lattice-based PKE/KEMs [60].

Figure 13c shows the gamma, γ , parameters of the input
Batch Normalization layer of five MLP models in Table 5
after training. The model trained on the dataset composed as
DP : DA = x : y is referred to as DP_x_DA_y.h5 in the leg-
end. Recall that Batch Normalization first standardizes the
input values X of the layer using their respective mean, μ,
and standard deviation, σ , Xnorm = (X − μ)/σ , and then
applies the scaling, γ (gamma) and offset, β (beta), parame-
ters to the result, X ′ = (γ ∗ Xnorm) + β. The parameters γ

123

Journal of Cryptographic Engineering (2023) 13:443–460 457

Fig. 13 a and b The average prediction accuracy of the models DP_80_DA_20.h5 and DP_100_DA_0.h5, respectively, for the case when a given
data point is stuck to 0; c Gamma parameters of the input Batch Normalization layer of five models

and β are learned by the model during the training process.
More specifically, the backpropagation algorithm is adjusted
to operate on the transformed inputs, and error is used to
update the new scaling and offset parameters learned by the
model. Thus, a higher value of γ indicates the higher impor-
tance of the corresponding input feature in the decision taken
by themodel.We can see that there are substantial differences
in the weights of different trace points.

The contribution of each feature becomes even more
clear after the stuck-at-0 fault injection analysis. Figure13a
and b shows how the prediction accuracy of the models
DP_80_DA_20.h5 and DP_100_DA_0.h5, respectively, is
affected by setting each single point p of a test trace to 0
before making inference (implying that the model takes its
decision without the data sampled at that point). If the pre-
diction accuracy drops to the random guess accuracy of 0.5,
the point p is important.

In Fig. 13a and b, we can see that there are points in the
interval [45:53] whose removal drops the accuracy to the ran-
domguess. It shows that themost important input features for
the model’s decision are located there. This, in turn, implies
that the computations performed by the implementation of
Saber during the corresponding clock cycles leak exploitable
side-channel information. By doing a clock cycle accurate
analysis of the assembly code of poly_A2A_shuffled() in
Fig. 4b, one can link these computations to the store regis-
ter halfword instructions strh.w r3, [r4, r1, lsl 1] and strh.w
r2, [r5, r1, lsl 1] which store a halfword from a register to
memory. These instruction implement the line 6 the C code
of poly_A2A_shuffled() marked in red in Fig. 3.

9.3.2 Model comparison

Figure 13 also illustrates that different models can be non-
equally “sensitive” to the same point of data. This may result

123

458 Journal of Cryptographic Engineering (2023) 13:443–460

in thesemodelsmaking different inference errors on the same
test set.

By comparing Fig. 13a and b, we can see that the dele-
tion of some points may affect themodels DP_80_DA_20.h5
and DP_100_DA_0.h5, differently. For example, the dele-
tion of the point 42 decreases the prediction accuracy of
the model DP_80_DA_20.h5 to 87% only, while for the
model DP_100_DA_0.h5 the reduction is to 65%. Contrary,
the deletion of the point 54 drops the prediction accuracy
of the model DP_80_DA_20.h5 to 56% while the accu-
racy of the model DP_100_DA_0.h5 reduces only to 89%.
While all models follow a similar “pattern” of weights in
Fig. 13c, for some data points their values differ. This also
applies to the parameters of the follow up layers, caus-
ing the avalanche effect. As a result, the same data point
might contribute non-equally to the decisions of different
models. According to Table 5, the model DP_80_DA_20.h5
is more successful than DP_100_DA_0.h5 in making cor-
rect predictions. Thus, apparently the weights learned by
DP_80_DA_20.h5 are closer to the optimal than the ones
learned by DP_100_DA_0.h5.

10 Conclusion

We demonstrated that it is possible to break a masked
and shuffled implementation of Saber KEM using deep
learning-based power analysis. Earlier itwas believed that the
masked and shuffled countermeasures, when combined, pro-
vide adequate protection against side-channel attacks. The
presented message and key recovery attacks are not specific
to Saber and might be applicable to other LWE/LWR-based
PKE/KEMs, including CRYSTALS-Kyber [4] which has
been recently selected for standardization by NIST [36].

The traces, models and scripts, along with video demon-
stration of the attack are publicly available at https://drive.
google.com/drive/folders/1NBf1oLO81UTSf_Z4HRRScb-
RMIRzRNzc

Future work includes designing stronger countermeasures
for LWE/LWR-based PKE/KEMs.

Acknowledgements This work was supported in part by the Swedish
Civil Contingencies Agency (Grants No. 2020-11632), the Swedish
Research Council (Grants No. 2018-04482 and 2019-04166) and the
Swedish Foundation for Strategic Research (Grant No. RIT17-0005).

Funding Open access funding provided by Royal Institute of Technol-
ogy.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM
side-channel(s). In: Cryptographic Hardware and Embedded Sys-
tems, pp. 29–45 (2003)

2. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.:Defeating
NewHopewith a single trace. In: International Conference on Post-
QuantumCryptography, pp. 189–205. Springer (2020). https://doi.
org/10.1007/978-3-030-44223-1_11

3. Archambeau, C., Peeters, E., Standaert, F.X., Quisquater, J.J.: Tem-
plate attacks in principal subspaces. In: Cryptographic Hardware
and Embedded Systems, pp. 1–14 (2006)

4. Avanzi, R.M., Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J.M., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS-Kyber algorithm specifications and supporting docu-
mentation (2020)

5. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.-A., Grégoire, B.,
Rossi, M., Tibouchi, M.: Masking the GLP lattice-based signature
scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology - EUROCRYPT 2018, pp. 354–384. Springer Inter-
national Publishing, Cham (2018)

6. Beirendonck,M.V., D’Anvers, J-P., Karmakar, A., Balasch, J., Ver-
bauwhede, I.: A side-channel resistant implementation of SABER.
Cryptology ePrint Archive, Report 2020/733 (2020). https://eprint.
iacr.org/2020/733

7. Belleville, N., Courousse, D., Heydemann, K., Charles, H.-P.:
Automated software protection for themasses against side-channel
attacks. ACM Trans. Archit. Code Optim. 16(4), 1 (2018)

8. Bhasin, S., D’Anvers, J-P., Heinz, D., Pöppelmann, T., Van Beiren-
donck, M.: Attacking and defending masked polynomial compar-
ison for lattice-based cryptography. Cryptology ePrint Archive,
Paper 2021/104 (2021). https://eprint.iacr.org/2021/104

9. Bhasin, S., D’Anvers, J-P., Heinz, D., Pöppelmann, T., Van Beiren-
donck, M.: Attacking and defending masked polynomial compari-
son for lattice-based cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 3, 334–359 (2021). https://doi.org/10.46586/tches.
v2021.i3.334-359

10. Brisfors, M., Forsmark, S., Dubrova, E.: How deep learning helps
compromising USIM. In: Proceedings of the 19th Smart Card
Research and Advanced Application Conference (CARDIS’2020)
(2020)

11. Brumley, B.B., Hakala, R.M., Nyberg, K., Sovio, S.: Consecutive
S-box lookups: a timing attack on SNOW 3G. In: Soriano, M.,
Qing, S., López, J. (eds.) Information and Communications Secu-
rity, pp. 171–185. Springer, Berlin, Heidelberg (2010)

12. Cagli, E, Dumas, C., Prouff, E.: Convolutional neural networks
with data augmentation against jitter-based countermeasures. In:
Cryptographic Hardware and Embedded Systems - CHES 2017,
pp. 45–68 (2017)

13. Camurati, G., Poeplau, S., Muench, M., Hayes, T., Francillon, A.:
Screaming channels: when electromagnetic side channels meet
radio transceivers. In: Proceedings of the 2018ACMSIGSACCon-
ference on Computer and Communications Security, pp. 163–177
(2018)

14. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound
approaches to counteract power-analysis attacks. In: Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology

123

https://drive.google.com/drive/folders/1NBf1oLO81UTSf_Z4HRRScb-RMIRzRNzc
https://drive.google.com/drive/folders/1NBf1oLO81UTSf_Z4HRRScb-RMIRzRNzc
https://drive.google.com/drive/folders/1NBf1oLO81UTSf_Z4HRRScb-RMIRzRNzc
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-44223-1_11
https://doi.org/10.1007/978-3-030-44223-1_11
https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2021/104
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i3.334-359

Journal of Cryptographic Engineering (2023) 13:443–460 459

Conference,USA, vol. 1666, pp. 398–412. Springer (1999). https://
doi.org/10.1007/3-540-48405-1_26

15. Chen, C., Danba, O., Stein, J., Hülsing, A., Rijneveld, J., Schanck,
J.M., Schwabe, P., Whyte, W., Zhang, Z.: NTRU algorithm spec-
ifications and supporting documentation (2020). https://csrc.nist.
gov/projects/postquantum-cryptography/round-3-submissions

16. Coron, J., Kizhvatov, I.: An efficient method for random delay
generation in embedded software. In: Clavier, C., Gaj, K. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2009,
pp. 156–170. Springer, Berlin, Heidelberg (2009)

17. CW308 UFO Target. [n.d.]. https://wiki.newae.com/CW308_
UFO_Target. Accessed 2022

18. D’Anvers, J., et al.: SABER algorithm specifications and
supporting documentation (2020). https://csrc.nist.gov/projects/
postquantum-cryptography/round-3-submissions

19. Dozat, T.: Incorporating nesterov momentum into adam (2016)
20. Durstenfeld, R.: Algorithm 235: random permutation. Commun.

ACM 7(7), 420 (1964). https://doi.org/10.1145/364520.364540
21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and

symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013).
https://doi.org/10.1007/s00145-011-9114-1

22. Gérard, F., Rossi, M.: An efficient and provable masked imple-
mentation of qTESLA. In: International Conference on Smart Card
Research and Advanced Applications, pp. 74–91. Springer (2019)

23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press (2016). http://www.deeplearningbook.org

24. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodol-
ogy for side-channel resistance validation. In: NIST Non-Invasive
Attack Testing Workshop, vol. 7, pp. 115–136 (2011)

25. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack
on post-quantum primitives using the Fujisaki-Okamoto transfor-
mation and its application on FrodoKEM. In: Micciancio, D.,
Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020,
pp. 359–386. Springer International Publishing, Cham (2020)

26. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack
on post-quantum primitives using the Fujisaki-Okamoto trans-
formation and its application on FrodoKEM. In: Advances in
Cryptology - CRYPTO 2020: 40th Annual International Cryptol-
ogy Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17–21, 2020, Proceedings, Part II. Santa Barbara, CA, USA, pp.
359-386. Springer, Berlin, Heidelberg (2020). https://doi.org/10.
1007/978-3-030-56880-1_13

27. Hoffman, C., Gebotys, C., Aranha, D.F., Cortes, M., Araújo, G.:
Circumventing uniqueness of XOR Arbiter PUFs. In: 2019 22nd
Euromicro Conference on Digital System Design (DSD), pp. 222–
229 (2019). https://doi.org/10.1109/DSD.2019.00041

28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of
the Fujisaki-Okamoto transformation. In: Theory of Cryptography:
15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12–15, 2017, Proceedings, Part I, Baltimore, USA, pp.
341-371 Springer, Berlin, Heidelberg (2017). https://doi.org/10.
1007/978-3-319-70500-2_12

29. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make
some noise. Unleashing the power of convolutional neural net-
works for profiled side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019(3), 148–179 (2019)

30. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual
International Cryptology Conference, pp. 388–397. Springer
(1999)

31. Kocher, P.C.: Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.)
Advances in Cryptology — CRYPTO ’96, pp. 104–113. Springer,
Berlin, Heidelberg (1996)

32. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic
implementations using deep learning techniques. In: Security,

Privacy, and Applied Cryptography Engineering. Springer Inter-
national Publishing (2016)

33. Maghrebi, H., Servant, V., Bringer, J.: There is wisdom in harness-
ing the strengths of your enemy: customized encoding to thwart
side-channel attacks. In: Peyrin, T. (ed.) Fast Software Encryption,
pp. 223–243. Springer, Berlin, Heidelberg (2016)

34. Masure, Loïc., Belleville, N., Cagli, E., Cornelie,M-A., Couroussé,
D., Dumas, C., Maingault, L.: Deep learning side-channel analysis
on large-scale traces - a case study on a polymorphic AES. Cryp-
tology ePrint Archive, Paper 2020/881 (2020). https://eprint.iacr.
org/2020/881

35. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P-A.: Masking
dilithium. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung,
M. (eds.) Applied Cryptography and Network Security, pp. 344–
362. Springer International Publishing, Cham (2019)

36. Moody, D.: Status report on the third round of the NIST post-
quantum cryptography standardization process. Nistir 8309, pp.
1–27 (2022). https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.
8413.pdf

37. Mujdei, C., Beckers, A., Mera, J.M.B., Karmakar, A., Wouters,
L., Verbauwhede, I.: Side-channel analysis of lattice-based post-
quantum cryptography: exploiting polynomial multiplication.
Cryptology ePrint Archive, Paper 2022/474 (2022). https://eprint.
iacr.org/2022/474

38. NewAE Technology Inc. [n.d.]. ChipWhisperer. https://newae.
com/tools/chipwhisperer. Accessed 2022

39. Ngo, K., Dubrova, E.: Side-channel analysis of the random number
generator in STM32 MCUs. In: Proceedings of the Great Lakes
Symposium on VLSI (GLSVLSI ’22) (2022). https://doi.org/10.
1145/3526241.3530324

40. Ngo,K.,Dubrova, E.,Guo,Q., Johansson, T.:A side-channel attack
on a masked IND-CCA secure saber KEM implementation. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 676–707 (2021).
https://doi.org/10.46586/tches.v2021.i4.676-707

41. Ngo, K., Dubrova, E., Johansson, T.: Breaking Masked and Shuf-
fled CCA Secure Saber KEM by Power Analysis, pp. 51-61,
Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3474376.3487277

42. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical
CCA2-secure andmasked ring-LWE implementation. IACRTrans.
Cryptogr. Hardw. Embed. Syst. 2018(1), 142–174 (2018). https://
doi.org/10.13154/tches.v2018.i1.142-174

43. Perin, G., Chmielewski, Ł, Picek, S.: Strength in numbers: improv-
ing generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(4), 337–364 (2020)

44. Primas, R., Pessl, P.,Mangard, S.: Single-trace side-channel attacks
on masked lattice-based encryption. In: Fischer, W., Homma,
N. (eds.) Cryptographic Hardware and Embedded Systems -
CHES2017, pp. 513–533. Springer International Publishing,Cham
(2017)

45. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting
message leakage in (few) NIST PQC candidates for practical mes-
sage recovery and key recovery attacks. Cryptology ePrint Archive,
Report 2020/1559 (2020). https://eprint.iacr.org/2020/1559

46. Ravi, P., Deb, S., Baksi, A., Chattopadhyay,A., Bhasin, S.,Mendel-
son, A.: on threat of hardware trojan to post-quantum lattice-based
schemes: a key recovery attack on saber and beyond. In: Batina,
L., Picek, S., Mondal, M. (eds.) Security, Privacy, and Applied
Cryptography Engineering, pp. 81–103. Springer International
Publishing, Cham (2022)

47. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-
channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 307–335
(2020). https://doi.org/10.13154/tches.v2020.i3.307-335

123

https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://wiki.newae.com/CW308_UFO_Target
https://wiki.newae.com/CW308_UFO_Target
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://doi.org/10.1145/364520.364540
https://doi.org/10.1007/s00145-011-9114-1
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1109/DSD.2019.00041
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://eprint.iacr.org/2020/881
https://eprint.iacr.org/2020/881
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/474
https://newae.com/tools/chipwhisperer
https://newae.com/tools/chipwhisperer
https://doi.org/10.1145/3526241.3530324
https://doi.org/10.1145/3526241.3530324
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.1145/3474376.3487277
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.13154/tches.v2018.i1.142-174
https://eprint.iacr.org/2020/1559
https://doi.org/10.13154/tches.v2020.i3.307-335

460 Journal of Cryptographic Engineering (2023) 13:443–460

48. Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Ver-
bauwhede, I.: Additively homomorphic ring-LWE masking. In:
Post-Quantum Cryptography, pp. 233–244. Springer (2016)

49. Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Amasked
ring-LWE implementation. In: International Workshop on Crypto-
graphic Hardware and Embedded Systems, pp. 683–702. Springer
(2015)

50. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently
masking binomial sampling at arbitrary orders for lattice-based
crypto. In: Public-Key Cryptography – PKC 2019, pp. 534–564.
Springer International Publishing (2019)

51. Shor, PeterW.: Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAMRev. 41(2),
303–332 (1999)

52. Sim, B-Y, Kwon, J., Lee, J., Kim, I-J., Lee, T., Han, J., Yoon, H.,
Cho, J., Han,D-G.: Single-trace attacks on themessage encoding of
lattice-based KEMs. Cryptology ePrint Archive, Report 2020/992
(2020). https://eprint.iacr.org/2020/992

53. Timon, B.: Non-profiled deep learning-based side-channel attacks.
Cryptology ePrint Archive, Paper 2018/196 (2018). https://eprint.
iacr.org/2018/196

54. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma,
N.: Curse of re-encryption: a generic power/EM analysis on post-
quantum KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2022(1), 296–322 (2021). https://doi.org/10.46586/tches.v2022.
i1.296-322

55. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma,
N.: Curse of re-encryption: a generic power/EM analysis on post-
quantum KEMs. Cryptology ePrint Archive, Report 2021/849
(2021)

56. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F-
X.: Shuffling against side-channel attacks: a comprehensive study
with cautionary note. In: Wang, X., Sako, K. (eds.) Advances in
Cryptology – ASIACRYPT 2012, pp. 740–757. Springer, Berlin,
Heidelberg (2012)

57. Wang, H., Dubrova, E.: Tandem deep learning side-channel attack
against FPGA implementation of AES. In: Proceedings of IEEE
International Symposium on Smart Electronic Systems (iSES), pp.
147–150 (2020)

58. Wang, J., Cao, W., Chen, H., Li, H.: Practical side-channel attack
on masked message encoding in latticed-based KEM. Cryptol-
ogy ePrint Archive, Paper 2022/859 (2022). https://eprint.iacr.org/
2022/859

59. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on
LWE / LWR-based PKE / KEMs using amplitude-modulated EM
emanations (2022)

60. Wang, R., Ngo, K., Dubrova, E.: Side-channel analysis of Saber
KEM using amplitude-modulated EM emanations. In: 2022 25th
Euromicro Conference on Digital System Design (DSD), pp.
488–495. IEEE (2022). https://doi.org/10.1109/DSD57027.2022.
00071

61. Welch, B.L.: The generalization of ’student’s’ problem when
several different population variances are involved. Biometrika
34(1-2), 28–35 (1947). http://www.jstor.org/stable/2332510

62. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.:
Magnifying side-channel leakage of lattice-based cryptosystems
with chosen ciphertexts: the case study of kyber. Tech. Rep. (2020).
https://doi.org/10.1109/TC.2021.3122997

63. Yu, Y., Moraitis, M., Dubrova, E.: Why deep learning makes it
difficult to keep secrets in FPGAs. In: Proceedings ofWorkshop on
DYnamic andNovelAdvances inMachineLearning and Intelligent
Cyber Security (DYNAMICS ’20) (2020). https://doi.org/10.1145/
3477997.3478001

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://eprint.iacr.org/2020/992
https://eprint.iacr.org/2018/196
https://eprint.iacr.org/2018/196
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://eprint.iacr.org/2022/859
https://eprint.iacr.org/2022/859
https://doi.org/10.1109/DSD57027.2022.00071
https://doi.org/10.1109/DSD57027.2022.00071
http://www.jstor.org/stable/2332510
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1145/3477997.3478001
https://doi.org/10.1145/3477997.3478001

	A side-channel attack on a masked and shuffled software implementation of Saber
	Abstract
	1 Introduction
	2 Previous work
	2.1 Implementations
	2.2 Attacks

	3 Background
	3.1 Saber design description
	3.2 Profiled side-channel attacks

	4 Implementation of masked and shuffled Saber KEM
	4.1 Masking
	4.2 Shuffling
	4.3 Known vulnerabilities

	5 Equipment for trace acquisition
	6 Locating points of interest
	7 Profiling stage
	8 Attack stage
	8.1 Secret key recovery
	8.2 Chosen ciphertext construction
	8.3 Bit-flip technique
	8.4 Message HW recovery algorithm
	8.5 Message recovery algorithm

	9 Experimental results
	9.1 Message recovery
	9.2 Secret key recovery
	9.3 Analysis of neural network models
	9.3.1 Feature analysis
	9.3.2 Model comparison

	10 Conclusion
	Acknowledgements
	References

