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Abstract The image segmentation problem is to delineate, or segment, a salient
feature in an image. As such, this is a bipartition problem with the goal of separating the
foreground from the background. An NP-hard optimization problem, the Normalized
Cut problem, is often used as a model for image segmentation. The common approach
for solving the normalized cut problem is the spectral method which generates heuristic
solutions based upon finding the Fiedler eigenvector. Recently, Hochbaum (IEEE
Trans Pattern Anal Mach Intell 32(5):889–898, 2010) presented a new relaxation
of the normalized cut problem, called normalized cut′ problem, which is solvable
in polynomial time by a combinatorial algorithm. We compare this new algorithm
with the spectral method and present experimental evidence that the combinatorial
algorithm provides solutions which better approximate the optimal normalized cut
solution. In addition, the subjective visual quality of the segmentations provided by
the combinatorial algorithm greatly improves upon those provided by the spectral
method. Our study establishes an interesting observation about the normalized cut
criterion that the segmentation which provides the subjectively best visual bipartition
rarely corresponds to the segmentation which minimizes the objective function value
of the normalized cut problem. We conclude that modeling the image segmentation
problem as normalized cut criterion might not be appropriate. Instead, normalized cut′
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not only provides better visual segmentations but is also solvable in polynomial time.
Therefore, normalized cut′ should be the preferred segmentation criterion for both
complexity and good segmentation quality reasons.

Keywords Image segmentation · Normalized cut · Network flow · Combinatorial
algorithm · Spectral method

Mathematics Subject Classification 90-08 Computational methods · 90B10
Network models, deterministic · 90C27 Combinatorial optimization

Introduction

Image segmentation is fundamental in computer vision (Shapiro and Stockman 2001).
It is used in numerous applications, such as in medical imaging (Pham et al. 2000;
Dhawan 2003; Hosseini et al. 2010; Roobottom et al. 2010), and is also of independent
interest in clustering (Coleman and Andrews 1979; Pappas 1992; Wu and Leahy 1993;
Shi and Malik 2000; Xing and Jordan 2003; Tolliver and Miller 2006). The image
segmentation problem is to delineate, or segment, a salient feature in an image. As
such, this is a bipartition problem with the goal of separating the foreground from the
background. It is not obvious how to construct a quantitative measure for optimizing
the quality of a segmentation. The common belief is that normalized cut (NC) criterion
(Shi and Malik 2000) is a good model for achieving high-quality image segmentation
and it is often used.

The normalized cut criterion uses similarity weights that quantify the similarity
between pairs of pixels. These weights are typically set to be a function of the dif-
ference between the color intensities of the pixels. Such functions are increasing with
the perceived similarity between the pixels. Even though the use of normalized cut is
common, it is an NP-hard problem (Shi and Malik 2000) and heuristics and approxi-
mation algorithms have been employed (Shi and Malik 2000; Xing and Jordan 2003;
Dhillon et al. 2004; Tolliver and Miller 2006; Dhillon et al. 2007). The most frequently
used method for obtaining an approximate solution for the normalized cut problem is
the spectral method that finds the Fiedler eigenvector (Shi and Malik 2000).

Hochbaum (2010) presented a new relaxation of the normalized cut problem,
called the normalized cut′ problem (NC′). The normalized cut′ problem was shown in
Hochbaum (2010) to be solved in polynomial time with a combinatorial (flow-based)
algorithm. In addition, Hochbaum (2010, 2012) introduces a generalization of nor-
malized cut, called the q-normalized cut problem (q-NC). For the q-normalized cut
problem, there are, in addition to the similarity weights, also pixel weights. The pixel
weights could be a function of some pixel’s feature other than color intensity. The
combinatorial algorithm that solves the normalized cut′ problem was shown to gener-
alize, with the same complexity, to a respective relaxation problem q-normalized cut′
(q-NC′) (Hochbaum 2010, 2012). It is also shown in Hochbaum (2012) that the spec-
tral method heuristic for the normalized cut problem extends to a respective heuristic
for q-normalized cut.

Unlike the combinatorial algorithm’s solution, the spectral method’s solution is a
real eigenvector, rather than a discrete bipartition. In order to generate a bipartition, a
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method, called the threshold technique, is commonly used. For a given threshold value,
all pixels that correspond to entries of the eigenvector that exceed this threshold are
set in one side of the bipartition, and the remaining pixels constitute the complement
set. For further improvement, the spectral sweep technique selects, among all possible
thresholds, the one that gives a smallest objective value for the respective normalized
cut objective. A different technique, utilized by Yu and Shi (2003) and Cour et al.
(2011), generates a bipartition from the Fiedler eigenvector which is claimed to give a
superior approximation to the objective value of the respective normalized cut problem.
This different method will be referred to as Shi’s code in the remainder of the paper.
Our experimental study implements both the spectral sweep technique and the Shi’s
code for the spectral method.

In this paper, we provide a detailed experimental study comparing the combinatorial
algorithm to the spectral method, in terms of approximating the optimal value of both
the normalized cut and the q-normalized cut criteria, quality of visual segmentation,
and in terms of running times in practice.

To compare the approximation quality, we evaluate the objective functions of the
normalized cut and q-normalized cut problems for the solutions resulting from solving
the normalized cut′ problem and the spectral method. These solutions are bipartitions,
and hence feasible solutions for the normalized cut and q-normalized cut problems.

To evaluate visual quality, we view the feature(s) that are delineated by the
bipartition solutions. The evaluation is inevitably subjective. The manner in which
we evaluate the visual quality is explained in detail in “Visual segmentation quality
evaluation”.

For running time comparisons, we test the methods not only for the benchmark
images given in 160 × 160 resolution but also for higher image resolutions.

The main findings of the experimental study presented here are:

1. The combinatorial algorithm solution is a better approximation of the optimal
objective value of the normalized cut problem than the solution provided by the
spectral method. This dominance of the combinatorial algorithm holds for both the
spectral sweep technique and the Shi’s code’s. This is discussed in “Quantitative
evaluation for objective function values”.

2. The discretizing technique used in Shi’s code to generate a bipartition from the
eigenvector is shown here to give results inferior to those of the spectral sweep
technique, in terms of approximating the objective value of the respective nor-
malized cut problem. This is displayed in “Comparing approximation quality of
SWEEP and COMB”.

3. The visual quality of the segmentation provided by the combinatorial algorithm
is far superior to that of the spectral method solutions, as presented in “Visual
segmentation quality evaluation”.

4. Shi’s code includes a variant that uses similarity weights derived with intervening
contour (Leung and Malik 1998; Malik et al. 2001). The visual quality result-
ing from segmentation with the intervening contour code is much better than
the other spectral segmentations. Yet, the combinatorial algorithm with standard
similarity (exponential similarity) weights delivers better visual results than Shi’s
code with intervening contour (“Visual segmentation quality evaluation”). The
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combinatorial algorithm does not work well with intervening contour similarity
weights since these weights tend to be of uniform value. A detailed discussion of
this phenomenon is provided in “Comparing instances with intervening contour
similarity weights: comparing SHI-NC-IC with COMB-NC-IC and SHI-qNC-IC
with COMB-qNC-IC”.

5. Our study compares the visual quality of segmentations resulting from the
q-normalized cut′ criterion with those resulting from the normalized cut′ criterion
in “Visual segmentation quality evaluation”. (We use entropy for pixel weights
in the q-normalized cut′ instances.) The results show that q-normalized cut′ often
provides better visual segmentation than normalized cut′. Therefore, for appli-
cations such as medical imaging, where each pixel is associated with multiple
features, these features can be used to generate characteristic node weights, and
q-normalized cut′ would be a better criterion than normalized cut′.

6. Over the benchmark images of size 160 × 160, the combinatorial algorithm runs
faster than the spectral method by an average speedup factor, for the normalized cut
objective, of 84. Furthermore, the combinatorial algorithm scales much better than
the spectral method: the speedup ratio provided by the combinatorial algorithm
compared to the spectral method grows substantially with the size of the image,
increasing from a factor of 84 for images of size 160 × 160 to a factor of 5,628 for
images of size 660 × 660. The details are discussed in “Running time comparison
between the spectral method and the combinatorial algorithm”.

7. For normalized cut′ we get a collection of nested bipartitions as a bi-product of
the combinatorial algorithm (Hochbaum 2010, 2012). The best visual bipartition
and the best normalized cut objective value bipartition are chosen among these
nested bipartitions. Our study results show that in most cases the best visual bipar-
tition does not coincide with the bipartition that gives the best objective value of
the normalized cut (or q-normalized cut) problem. (The details are discussed in
“Visual segmentation quality evaluation”) Therefore, normalized cut, in spite of
its popularity, is not a good segmentation criterion. Normalized cut′ improves on
normalized cut not only in complexity (from NP-hard to polynomial time solvable
problem) but also in segmentation quality delivered.

The paper is organized as follows: “Notations and problem definitions” presents
the notations employed. The detailed settings of the experiment are discussed in
“Experimental setting”. In “Assessing quality of seed selection methods of COMB”,
we first evaluate the effect of different selection of seeds—an important compo-
nent of the combinatorial algorithm—in approximating the optimal objective val-
ues of the normalized cut and q-normalized cut problems. Then in “Running time
comparison between the spectral method and the combinatorial algorithm”, we
evaluate and compare the running times of the spectral method and the combi-
natorial algorithm. In “Quantitative evaluation for objective function values”, we
present the quantitative evaluation of the spectral method and the combinatorial
algorithm, in terms of the quality of approximation to the optimal objective val-
ues of the normalized cut and q-normalized cut problems. “Visual segmentation
quality evaluation” provides a comparison of the visual results for the spectral
method versus the combinatorial algorithm followed by concluding remarks in
“Conclusions”.
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Notations and problem definitions

In image segmentation an image is formalized as an undirected weighted graph G =
(V, E). Each pixel in the image is represented as a node in the graph. A pair of pixels is
said to be neighbors if they are adjacent to each other. The common neighborhoods used
in image segmentation are the 4-neighbor and 8-neighbor relations. In the 4-neighbor
relation, a pixel is a neighbor of the two vertically adjacent pixels and two horizontally
adjacent pixels. The 8-neighbor relation adds also the four diagonally adjacent pixels.
Every pair of neighbors i, j ∈ V is associated with an edge [i, j] ∈ E . Each edge
[i, j] ∈ E has a weight wi j ≥ 0 representing the similarity between pixel node i and
j . We adopt the common notation that n = |V | and m = |E |.

For two subsets V1, V2 ⊆ V , we define C(V1, V2) = ∑
[i, j]∈E,i∈V1, j∈V2

wi j . A

bipartition of a graph is called a cut, (S, S̄) = {[i, j] ∈ E |i ∈ S, j ∈ S̄}, where
S̄ = V \S is the complement of set S. The cut capacity is C(S, S̄). Each node has a
weight d(i) = ∑

[i, j]∈E wi j which is the sum of the weights of its incident edges. For
a set of nodes S, d(S) = ∑

i∈S d(i). A node may have also an arbitrary nonnegative
weight associated with it, q(i). For a set of nodes S ⊆ V , q(S) = ∑

i∈S q(i).
Let D be a diagonal n × n matrix with Di i = d(i) = ∑

[i, j]∈E wi j . Let W be the
weighted node–node adjacency matrix of the graph, where Wi j = W j i = wi j . The
matrix L = D − W is called the Laplacian of the graph.

The mathematical formulations of the normalized cut and q-normalized cut
problems are:

Normalized cut (Shi and Malik 2000):

NCG = min
∅⊂S⊂V

C(S, S̄)

d(S)
+ C(S, S̄)

d(S̄)
, (1)

q-Normalized cut (Hochbaum 2012):

q-NCG = min∅⊂S⊂V

C(S, S̄)

q(S)
+ C(S, S̄)

q(S̄)
. (2)

A relaxation of these problems, introduced by Hochbaum (2010, 2012), omits the
second term in the objective value. We call these relaxations normalized cut′ and
q-normalized cut′ problems, respectively:

Normalized cut′ (Hochbaum 2010):

NC′
G = min

∅⊂S⊂V

C(S, S̄)

d(S)
, (3)

q-Normalized cut′ (Hochbaum 2010, 2012):

q-NC′
G = min∅⊂S⊂V

C(S, S̄)

q(S)
. (4)
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It is shown in Hochbaum (2010, 2012) that

min
∅⊂S⊂V

C(S, S̄)

C(S, S)
(5)

defined in Sharon et al. (2006) is equivalent to (3) in that both have the same optimal
solution. Problem (5) is a criterion characterizing a good image bipartition by two
goals. One requires the salient region segmented to be dissimilar from the rest of the
image, or formally to have a small value for C(S, S̄). The second goal is to have the
pixels in the segmented region as similar to each other as possible. This second goal
is to have a large value for C(S, S).

The normalized cut and q-normalized cut problems are NP-hard (Shi and Malik
2000; Hochbaum 2012). The combinatorial algorithm presented in Hochbaum (2010)
solves the normalized cut and q-normalized cut problems approximately by solving
their relaxations, normalized cut′ and q-normalized cut′ problems, respectively. Both
the normalized cut′ and the q-normalized cut′ problems are polynomial time solvable
by the combinatorial algorithm.

A bound on the relation between the spectral method solution and NCG

The bounds on the Fiedler eigenvalue were developed for a problem closely associated
with normalized cut. This problem, devised by Cheeger (1970) and called the Cheeger
constant problem (e.g., Chung 1997), is a “half-version” of normalized cut. If the
balance constraint d(S) ≤ d(V )/2 is added, the formulation of the Cheeger constant
problem is

hG = min∅⊂S⊂V,d(S)≤d(V )/2

C(S, S̄)

d(S)
, (6)

where hG is called the Cheeger constant of the graph G. Like the normalized cut
problem, the Cheeger constant problem is also NP-hard (e.g., Chung 1997). For any
(undirected) graph G, the Cheeger inequality states that its Cheeger constant hG is
bounded by the second smallest eigenvalue of the (normalized) Laplacian of G, the
Fiedler eigenvalue λ1: λ1

2 ≤ hG ≤ √
2λ1 (Cheeger 1970; Chung 1997). In addi-

tion, the solution resulting from applying the spectral sweep technique to the Fiedler
eigenvector evaluated by the objective of the Cheeger constant problem is of value at
most 2

√
hG (Chung 2007). On the other hand, it is easily shown that hG and NCG

satisfy: 1
2 NCG ≤ hG ≤ NCG (e.g., Hochbaum 2012). These (approximation) bounds

for the Cheeger constant (with respect to λ1 and the sweep solution) can be easily
transformed to corresponding bounds for the normalized cut objective. Therefore, the
spectral method approximately solves the normalized cut (and the Cheeger constant
and q-normalized cut) problem by finding the Fiedler eigenvector (Cheeger 1970;
Donath and Hoffman 1973; Fiedler 1975; Alon and Milman 1985; Alon 1986; Shi and
Malik 2000; Hochbaum 2012).
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Experimental setting

Edge and node weights

Similarity edge weights

The benchmark images used here consist of grayscale images. A color intensity value
is associated with every pixel, represented as an integer in [0, 255] in MATLAB. This
is normalized and mapped to [0, 1]. The similarity weight between a pair of pixel
nodes is a function of the difference of their color intensities. For pi and p j the color
intensities of two neighboring pixel nodes i and j , the exponential similarity weight
is defined as

wi j = e−α|pi −p j |, (7)

where α can be viewed as amplifying the dissimilarity between two pixels based on
the color intensity difference. If α is too small, then the dissimilarity is not significant
enough to reflect the color intensity difference. On the other hand, setting the value
of α to be too large results in all pairs of pixels very dissimilar and therefore color
intensity differences are not sufficiently informative. We tested several settings for α

values and found α = 100 works well. In all experiments prepared here α is set to
100.

Another similarity weight is intervening contour introduced in Leung and Malik
(1998) and Malik et al. (2001). Intervening contour uses the contour information
in an image to characterize the (local) similarity between two pixels that are not
necessarily neighboring. If two pixels are on the two different sides of a boundary,
their similarity should be small as they are more likely to belong to different segments.
In the experiment, we use the intervening contour similarity weight generated by
Shi’s code. Since Shi’s code with intervening contour is considered to generate good
segmentation, we compare it to the combinatorial algorithm.

Node weights

For q-normalized cut, the entropy of a pixel is used as its weight. The entropy of
an image is a measure of randomness in the image that can be used to characterize
the texture of an image. In MATLAB, by default the local entropy value of a pixel is
the entropy value of the 9-by-9 neighborhood around the pixel. In our experiment, the
entropy of a pixel is computed directly via the MATLAB built-in function entropyfilt.

Image database

We select 20 benchmark images from the Berkeley Segmentation Dataset and
Benchmark (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
segbench/). See Fig. 6 in Appendix. The 20 benchmark images are chosen to cover
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Table 1 Three seed
selection rules

Method no. One seed node

1 Manual

2 Max entropy

3 Max group luminance

various segmentation difficulties and have been resized to be 160 × 160 for testing
since it is the default size in Shi’s code.

Implementation of the combinatorial algorithm

Seed selection

The combinatorial algorithm requires to designate a node as a seed in one set and a
node as a seed in the other set to guarantee that both sets are nonempty (Hochbaum
2010). On the other hand, the delineation of foreground versus background depends on
the interpretation of what is the main feature. This is not self evident and the purpose
of the seeds is to have one seed indicating a pixel in the foreground and the other seed
indicating a pixel in the background.

Theoretically, in order to obtain the optimal solutions to the normalized cut′ and
q-normalized cut′ problems, all possible pairs of seed nodes should be considered.
This increases the complexity of the combinatorial algorithm by a factor of O(n).
To avoid this added complexity we devise a test for automatically choosing the seed
nodes.

Two automatic seed selection rules are introduced here. The first rule is to select
the pixel with the maximum entropy as a seed node in one set. The second rule is
to select the pixel with the maximum group luminance value as a seed node in one
set. The group luminance value is defined for pixels not on the boundary. For every
pixel i , the group luminance value of pixel i is the average of color intensities of the
nine neighboring pixels in the 3 × 3 region centering at i . Intuitively, if a pixel has a
greater group luminance value, that pixel and its surrounding pixels are more likely
to be in the same segment. The other seed node is any arbitrarily selected node in
the complement region to the one occupied by the first seed node. We compare the
two automatic seed selection methods with a manual selection of both seed nodes
(Table 1).

For each pair of seed nodes, the combinatorial algorithm is run twice where in the
second run the two seed nodes are exchanged between the two sets. Therefore, for
each image the combinatorial algorithm is executed six times, for the three different
seed selection rules.

Nested cuts

Each run of the combinatorial algorithm for a pair of seed nodes, to either the nor-
malized cut or the q-normalized cut problem, produces a series of nested cuts. This
is because the combinatorial algorithm uses a parametric minimum cut solver as a
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subroutine (Hochbaum 2010, 2012). The parametric minimum cut problem can be
solved efficiently. Theoretically, it is shown in Gallo et al. (1989) and Hochbaum
(2008) that the running time to solve the parametric minimum cut problem is only
a small constant factor of the time to solve a single instance of the minimum cut
problem. We implement Hochbaum’s pseudoflow algorithm in Hochbaum (2008) as
the parametric minimum cut solver. The implementation is described in Chandran
and Hochbaum (2009) and the code is available online at Chandran and Hochbaum
(2012).

The number of the nested cuts is typically 5–15. The combinatorial algorithm stores
the visual segmentations by all the nested cuts, which enables to choose the one that is
deemed (subjectively) best visually. The combinatorial algorithm also automatically
selects the bipartition which gives the smallest objective values of the normalized cut
or q-normalized cut problem among the nested cuts.

Implementation of the spectral method

The eigenvector solver subroutine of Shi’s code, named eigs2, is based on the MAT-
LAB built-in eigenvector solver eigs with some modifications. Shi’s code applies the
following two operations to the Laplacian matrix L = D − W:

1. Sparsifying operation: It rounds to 0 small values of wi j where the “small” is
determined by some threshold value. The default threshold value in Shi’s code is
10−6.

2. Offset operation: It adds a constant (1 by default) to Di i = d(i) (i = 1, . . . , n).
It also adds a value to each diagonal entry of the W matrix. This value for entry
Wi i is 0.5 plus a quantity that estimates the round-off error for row i, e(i) =
d(i) − ∑n

j=1 wi j .

In our experiment, we exclude the above two operations in Shi’s code to com-
pare it with the combinatorial algorithm, which contains no any sparsifying or offset
operations.

The spectral sweep technique uses the Fiedler eigenvector from Shi’s code (without
the two operations) and then chooses the best bipartition threshold as described in
“Introduction”.

Algorithm, optimization criterion, and similarity classifications and nomenclatures

Each experimental set is characterized by the choice of algorithm, the choice of opti-
mization objective, and the choice of similarity weight definition. For the algorithm, we
choose among the combinatorial algorithm, COMB, Shi’s code, SHI and the spectral
sweep technique, SWEEP. For the optimization objective, we choose among normal-
ized cut, NC, and q-normalized cut, qNC. For the similarity weight definition, we
choose among the exponential similarity weights, EXP, and the intervening contour
similarity weights, IC. The format of Algorithm-Criterion-Similarity is used to repre-
sent an experimental set.
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For each choice of optimization objective and similarity weight definition, the
combinatorial algorithm outputs a series of nested cuts for a pair of seeds (see “Nested
cuts”), among which the cut that gives the smallest objective value of NC or q-NC
is selected. The pairs of seeds are selected according to the automatic seed selection
criterion, including both the maximum entropy criterion and the maximum group
luminance criterion, described in “Seed selection”. The numerically best cut is selected
among the four series of corresponding nested cuts. The segmentation of the selected
cut is considered as the output of the combinatorial algorithm and the objective value
of NC or q-NC of the selected cut is considered as the objective value output by the
combinatorial algorithm.

We test the following experimental sets:

COMB-NC-EXP
COMB-qNC-EXP
COMB-NC-IC
COMB-qNC-IC
SHI-NC-EXP
SHI-qNC-EXP
SHI-NC-IC
SHI-qNC-IC
SWEEP-NC-EXP
SWEEP-qNC-EXP
SWEEP-NC-IC
SWEEP-qNC-IC.

Assessing quality of seed selection methods of COMB

In this section, we evaluate the three seed selection methods introduced in “Seed
selection” for the combinatorial algorithm in terms of approximating the objective
values of NC and q-NC. We evaluate the objective values of NC and q-NC for each
of the solutions provided by the three seed selection methods and count the number
of images on which each seed selection method gives the smallest objective values of
NC and q-NC. Table 2 gives the percentage of the number of images, out of the 20
images, in which each method gets the best values for NC and q-NC, respectively. The
exponential similarity weight is used in both cases.

Table 2 Portions of each seed selection method in yielding the smallest NC and q-NC objective values

Method 1
(manual) (%)

Method 2
(max-entropy) (%)

Method 3
(max-group luminance) (%)

NC 33.33 37.04 29.63

q-NC 26.09 47.83 26.09

123



Evaluating performance of image segmentation criteria and techniques 165

The results given in Table 2 show that method 2 (max entropy) is best for NC and
q-NC. This indicates that the maximum entropy is a good seed selection method for
image segmentation.

Since method 3 (max group luminance) is automatic, and also works well, we derive
an automatic seed selection method which combines methods 2 and 3. This is done
by running the combinatorial algorithm for the pairs of seeds generated by methods
2 and 3, and the output is the one corresponds to the best of these four values. The
automatic seed selection method is best 66.67 % of the time for NC and 73.92 % of
the time for q-NC. This improves a great deal on method 1, where the two seeds are
selected manually.

As a result of the comparison, in the following comparisons the cut that gives the
smallest objective values of NC or q-NC of COMB is selected from the four series of
nested cuts corresponding to the four pairs of seeds selected according to the automatic
seed selection method defined above.

Running time comparison between the spectral method and the combinatorial
algorithm

In order to provide a fair comparison of the running times of the two algorithms,
we disregard the input and output processing parts of each algorithm. We run both
algorithms on a 2010 Apple MacBook Pro Laptop (2.4GHz Intel Core 2 Duo processor
and 4GB of 1067 MHz DDR3). The running times of the two algorithms over all the
20 benchmark images with size 160 × 160 are reported in Table 3. The exponential
similarity weights are used and both NC and q-NC objectives are applied.

Table 3 shows that the combinatorial algorithm runs much faster than the spectral
method for the NC objective by an average speedup factor of 84. For the q-NC objec-
tive, in most cases the combinatorial algorithm is still faster. The same comparison
results also apply to the case of intervening contour similarity weights. It is not clear
why the spectral method runs so much faster for q-NC than NC. We note, however,
that the results delivered by the spectral method for q-NC are dramatically inferior
to those provided by the combinatorial algorithm, both in terms of approximating the
optimal objective value of q-NC (Figs. 2, 4), and in terms of visual quality (“Visual
segmentation quality evaluation”).

We further evaluate the scalability of the two algorithms by creating input sequences
of images each based on one image at increasing resolutions: we employ six different
image sizes: 160 × 160, 260 × 260, 360 × 360, 460 × 460, 560 × 560 and 660 × 660.
For every image size we run the two algorithms on 5 of the 20 benchmark images
(Images 4, 8, 12, 16 and 20) and average the running times over the five images.
The running times of the spectral method and the combinatorial algorithm with these
different image sizes are plotted in Fig. 1.

Figure 1 shows that as the input size increases, the running time of the spectral
method grows significantly faster than that of the combinatorial algorithm, with an
average speedup factor increasing from 84 for images of size 160 × 160 to 5,628 for
images of size 660 × 660. The running time of the combinatorial algorithm appears
insensitive to changes in the input size. Interestingly, we observe that the running time
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Table 3 Running times of SHI/SWEEP-NC-EXP, COMB-NC-EXP, SHI/SWEEP-qNC-EXP and
COMB-qNC-EXP

Time(s) SHI/SWEEP-NC-EXP COMB-NC-EXP SHI/SWEEP-qNC-EXP COMB-qNC-EXP

Image 1 19.5905 0.468 0.67045 0.595

Image 2 20.5193 0.029 0.56141 0.047

Image 3 19.9446 0.090 0.34875 0.208

Image 4 19.0059 0.186 0.79889 0.287

Image 5 20.4605 0.526 0.32494 0.810

Image 6 19.2924 0.138 0.95232 0.543

Image 7 20.4066 0.214 0.65428 0.505

Image 8 17.6540 0.390 0.82868 0.440

Image 9 17.5387 0.150 0.36554 0.241

Image 10 17.3702 0.119 0.37487 0.206

Image 11 19.6832 0.024 0.34565 0.162

Image 12 17.7123 0.226 0.39409 0.468

Image 13 17.3662 0.034 0.58339 0.046

Image 14 17.5793 0.456 0.54604 0.615

Image 15 18.9113 0.376 0.35412 0.617

Image 16 19.9957 0.125 0.78376 0.329

Image 17 19.6383 0.068 0.53126 0.073

Image 18 17.5165 0.263 0.56119 0.430

Image 19 20.3009 0.455 0.54215 0.575

Image 20 22.3611 0.227 0.54404 0.267

Fig. 1 Running times of SHI/SWEEP-NC-EXP and COMB-NC-EXP for images with increasing
resolutions

of the combinatorial algorithm does not increase with the size of the image. This is
because for these images in higher resolutions, the number of breakpoints is smaller and
therefore there are fewer updates required between consecutive breakpoints Hochbaum
(2012).
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Quantitative evaluation for objective function values

In this section, we compare the performance of the spectral method and the combina-
torial algorithm in terms of how well they approximate the optimal objective values of
the normalized cut and q-normalized cut problems. In “Comparing approximation
quality of SHI and COMB”, we compare SHI with COMB and in “Comparing
approximation quality of SWEEP and COMB”, we compare SWEEP with COMB.
Both exponential similarity weights and intervening contour weights are used in the
comparisons.

In order to compare the performance of the spectral method, either SHI or SWEEP,
with COMB in approximating the optimal objective value of NC or q-NC, we com-
pute a ratio of the objective value of NC or q-NC generated by the spectral method
to the corresponding objective value generated by COMB. If the ratio is greater
than 1, it indicates that COMB performs better than the spectral method, while
the ratio smaller than 1 is indicative of the spectral method having better perfor-
mance. If the ratio is smaller than 1, its reciprocal characterizes the improvement of
the spectral method on COMB in approximating the optimal objective value of NC
or q-NC.

Comparing approximation quality of SHI and COMB

Comparing instances with exponential similarity weights: comparing SHI-NC-EXP
with COMB-NC-EXP and SHI-qNC-EXP with COMB-qNC-EXP

Tables 4 and 5 show the ratios over the 20 benchmark images using exponential similar-
ity weights. Tables 4 and 5 present the ratios with respect to NC and q-NC, respectively,
for SHI versus COMB.

As seen in Table 4, for every case COMB yields smaller NC objective values than
SHI, with the mean improvement factor exceeding 2.3 × 106. For q-NC the results in
Table 5 show that COMB not only yields smaller objective values than SHI, but these
improvements are dramatically larger than those for NC, with a mean improvement
factor exceeding 9.2 × 1011. We conclude that the relative performance of SHI is

Table 4 The ratios of the NC objective values of SHI-NC-EXP to COMB-NC-EXP

Image 1 Image 2 Image 3 Image 4 Image 5

10.034375 34.945958 228.88261 1.0776067 522467.35

Image 6 Image 7 Image 8 Image 9 Image 10

45242414 757898.1 800.08425 7.1908952 357.12512

Image 11 Image 12 Image 13 Image 14 Image 15

11514.768 125.05640 4.8974465 1340.9285 233.03002

Image 16 Image 17 Image 18 Image 19 Image 20

11.050608 16.897142 345.39787 471.05938 6.5424435
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Table 5 The ratios of the q-NC objective values of SHI-qNC-EXP to COMB-qNC-EXP

Image 1 Image 2 Image 3 Image 4 Image 5

257689.45 3599904.9 654763.23 5261971.8 1418996100

Image 6 Image 7 Image 8 Image 9 Image 10

1.8295880 × 1013 1.6418361 × 1011 92852128 10836.986 63071852

Image 11 Image 12 Image 13 Image 14 Image 15

6835417700 5388176 431894.04 3397368.9 2755701700

Image 16 Image 17 Image 18 Image 19 Image 20

13524963 1440666.1 14317766 5203545.6 681058.90

Fig. 2 Bar chart for the ratios in Tables 4 and 5. The darker bars represent ratios for NC (Table 4) and the
lighter bars represent ratios for q-NC (Table 5)

Table 6 The mean and median values of the improvements of COMB-NC-EXP on SHI-NC-EXP and
COMB-qNC-EXP on SHI-qNC-EXP

Mean of improvements Median of improvements

NC 2326914.4 230.95632
q-NC 9.2356417 × 1011 5325073.9

noncompetitive for NC and worse still for q-NC. Figure 2 is a bar chart for the ratios
in Tables 4 and 5. (Note that the bar chart ratios are given in log scale, and same for
the rest bar charts.) Table 6 displays the mean and median values of the ratios in Tables
4 and 5. They demonstrate the extent of the improvement of COMB over SHI.

123



Evaluating performance of image segmentation criteria and techniques 169

Table 7 Illustrating why COMB favors unbalanced cut with intervening contour similarity weights

(a)

(b)

Comparing instances with intervening contour similarity weights: comparing
SHI-NC-IC with COMB-NC-IC and SHI-qNC-IC with COMB-qNC-IC

For the intervening contour similarity weights, we observe that the graph has nodes
of (roughly) equal degrees. The edge weights are almost the same value close to 1.
Hence, the cut separating a small set of nodes consists of fewer edges, and thus smaller
capacity, than those cuts that separate sets of roughly equal sizes. Consequently, COMB
favors unbalanced cuts with a small number of nodes on one side of the bipartition.
This phenomenon is illustrated for Image 8 in Table 7.

The bipartition (S8, S̄8) obtained by COMB-NC-EXP in Table 7a has the back-
ground pixels all black and the foreground pixels unmodified. In this particular biparti-
tion the background is the sky. Thus, the similarity weights of edges in the cut (S8, S̄8)

should be small. We compute the capacity of cut (S8, S̄8), C(S8, S̄8), with respect to
exponential weights and intervening contour weights.

For the exponential and intervening contour similarity weights, the maximum sim-
ilarity value is 1. Note, however, that the average intervening contour edge weight in
cut (S8, S̄8) is 0.67385345, which is quite close to 1. This is not the case for exponen-
tial similarity weights where the average exponential edge weight in cut (S8, S̄8) is
0.0000018360302. This demonstrates that intervening contour similarity weights are
almost uniform and close to 1 throughout the graph.

We now select a single pixel v (highlighted with the square) in the back-
ground (sky), which implies that it is highly similar to its neighbors, and consid-
ers the cut ({v}, V \{v}). For exponential similarity weights the capacity of this cut,
C({v}, V \{v}), is 3.9985 and therefore substantially higher than the capacity of the
cut (S8, S̄8). For intervening contour similarity weights, however, the capacity of the
cut ({v}, V \{v}) is 8, which is far smaller than the capacity of the cut (S8, S̄8).

Therefore, intervening contour similarity weights do not work well and produce
unbalanced cuts with algorithms that consider the cut capacity such as COMB.
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Table 8 The ratios of the NC objective values of SHI-NC-IC to COMB-NC-IC

Image 1 Image 2 Image 3 Image 4 Image 5

0.0059191506 3.013586 × 10−5 2.0904086 × 1016 1 7.42769

Image 6 Image 7 Image 8 Image 9 Image 10

0.0026249997 0.00019634185 2.8444556 0.0047000578 0.014255762

Image 11 Image 12 Image 13 Image 14 Image 15

0.0053146160 0.0086205694 0.0071974529 9.7893761 × 10−6 1.5935882

Image 16 Image 17 Image 18 Image 19 Image 20

0.0015875799 0.0045286429 2.0502743 0.00040627891 0.033866313

Table 9 The ratios of the q-NC objective values of SHI-qNC-IC to COMB-qNC-IC

Image 1 Image 2 Image 3 Image 4 Image 5

426.94051 0.49236168 51.416438 1291202.2 10270.311

Image 6 Image 7 Image 8 Image 9 Image 10

44.623615 0.64894629 110933.38 1.5971419 0.68595629

Image 11 Image 12 Image 13 Image 14 Image 15

0.61131118 1.1039278 1.1031171 1.3381326 3497.6627

Image 16 Image 17 Image 18 Image 19 Image 20

11.839168 0.50931088 34866.574 165.89208 307.61301

Tables 8 and 9 show the ratios over the 20 benchmark images using intervening
contour similarity weights. Table 8 demonstrates the ratios with respect to NC objective
values and Table 9 for q-NC objective values, for SHI versus COMB.

For the NC results shown in Table 8, there are 5 images where COMB gives better
approximations while for the rest 15 images SHI performs better. In most of the cases
among the 15 images, COMB just favors an unbalanced cut.

For q-NC, as can be seen from the ratios displayed in Table 9, COMB performs
much better than SHI. There are 15 images where COMB gives better approximations
to q-NC than SHI. Furthermore, for q-NC, the improvements of COMB on SHI are
very significant. Table 10 shows the average improvements of COMB on SHI with
respect to NC and q-NC with intervening contour similarity weights. They are the mean
and median values of the ratios that are greater than 1 in Table 8, for NC, and Table 9,
for q-NC, respectively. We also display the average improvements of SHI on COMB
for NC and q-NC with intervening contour similarity weights in Table 11. For all the
ratios in Tables 8 and 9 that are smaller to 1, the corresponding reciprocals characterize
the improvements of SHI. We take the mean and median values of these reciprocals
from Table 8, for NC, and Table 9, for q-NC, respectively, to produce Table 11. We
display the ratios of Tables 8 and 9 in bar chart Fig. 3. The bars extending to the right
(the ratios are greater than 1) indicate the improvements of COMB on SHI while the
bars extending to the left (the ratios are smaller than 1) indicate the improvements of
SHI on COMB.
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Table 10 The mean and median values of the improvements of COMB-NC-IC on SHI-NC-IC and
COMB-qNC-IC on SHI-qNC-IC

Mean of improvements Median of improvements

NC 4.1808173 × 1015 2.8444556
q-NC 96785.570 165.89208

Table 11 The mean and median values of the improvements of SHI-NC-IC on COMB-NC-IC and
SHI-qNC-IC on COMB-qNC-IC

Mean of improvements Median of improvements

NC 9669.7517 212.76334
q-NC 1.7258142 1.6358281

Fig. 3 Bar chart for the ratios in Tables 8 and 9. The darker bars represent ratios for NC (Table 8) and the
lighter bars represent ratios for q-NC (Table 9)

Comparing approximation quality of SWEEP and COMB

In general, SWEEP should perform better than just taking the eigenvector with some
predetermined procedure for bipartition. Let NCSWEEP be the normalized cut objective
value generated by SWEEP. By the analysis in “A bound on the relation between the
spectral method solution and NCG”, it can be shown that NCSWEEP ≤ 4

√
NCG .

Therefore, one may expect that SWEEP will improve on SHI in approximating the
optimal objective value of NC. We illustrate the potential improvement of SWEEP
over SHI for Image 6, where the gap between the approximation of COMB-NC-EXP
and the approximation of SHI-NC-EXP is largest among the 20 images, as shown in
Table 4. From the original data, the approximate objective value of NC achieved by
COMB is NCCOMB = 3.8129621 × 10−11. Therefore, the optimal NC objective of
Image 6, NCG , is less than or equal to the value of NCCOMB. If we use NCCOMB as
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Table 12 The ratios of the NC objective values of SWEEP-NC-EXP to COMB-NC-EXP

Image 1 Image 2 Image 3 Image 4 Image 5

0.0066413908 0.030815693 1.7318891 0.25438092 1.021992

Image 6 Image 7 Image 8 Image 9 Image 10

32.769017 151053.5 1.0124601 0.65635751 16.970223

Image 11 Image 12 Image 13 Image 14 Image 15

3229.7642 1.7051154 0.59025832 0.073415316 13.387584

Image 16 Image 17 Image 18 Image 19 Image 20

0.025636729 1.2725133 1.6439209 0.56137852 0.22995850

an estimation to NCG , then we obtain an upper bound for NCSWEEP:

NCSWEEP ≤ 4
√

NCG ≤ 4
√

NCCOMB = 4
√

3.8129621 × 10−11

= 2.4699675 × 10−5. (8)

However, our original data show that the objective value of NC achieved by SHI for
Image 6 is 1.7250761 × 10−3. Since NCSWEEP can only be smaller than the upper
bound 2.4699675×10−5, the objective value of NC achieved by SWEEP improves by
at least a factor of 70 on the objective value generated by SHI. Indeed, the experimental
results match the theoretical prediction that SWEEP does better than SHI for NC. But
still, COMB is better than SWEEP with exponential similarity weights.

In addition to the improvement of SWEEP over SHI or fixed threshold bipartition
of the Fiedler eigenvector, SWEEP can improve on COMB for intervening contour
similarity weights. As discussed in “Comparing instances with intervening contour
similarity weights: comparing SHI-NC-IC with COMB-NC-IC and SHI-qNC-IC with
COMB-qNC-IC”, COMB tends to provide unbalanced bipartitions for intervening
contour similarity weight matrices. For SWEEP this is not an issue, because each
threshold bipartition is considered, and the best threshold will obviously correspond
to a balanced bipartition. Therefore, we expect SWEEP to do better than COMB for
intervening contour similarity weights.

In the following, we display the comparisons of approximation quality of SWEEP-
NC-EXP with COMB-NC-EXP and SWEEP-qNC-EXP with COMB-qNC-EXP.

Tables 12 and 13 show the ratios over the 20 benchmark images using exponential
similarity weights for SWEEP versus COMB. Tables 12 and 13 present the ratios with
respect to NC and q-NC, respectively.

For the NC results shown in Table 12, there are 11 out of the 20 benchmark images
where COMB gives a better approximation than SWEEP and the improvements of
COMB over SWEEP are smaller than those over SHI. For the q-NC results displayed
in Table 13, COMB dominates SWEEP and gives better approximations in every
case. The results establish that while SWEEP delivers better results than SHI, COMB
is still dominant, and gives better results in most cases. We display the mean and
median values of the improvements of each method to the other in Tables 14 and 15,
respectively. Table 14 is for the average improvement of COMB on SWEEP, while
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Table 13 The ratios of the q-NC objective values of SWEEP-qNC-EXP to COMB-qNC-EXP

Image 1 Image 2 Image 3 Image 4 Image 5

44415.346 295255 222060.29 4827.1580 26524576

Image 6 Image 7 Image 8 Image 9 Image 10

20416303000 16686194000 248921.64 5306.5587 23558163

Image 11 Image 12 Image 13 Image 14 Image 15

2097520100 1344474.1 80934.898 921433.37 25749626

Image 16 Image 17 Image 18 Image 19 Image 20

54403.132 216141.34 1191186.4 2289243 70300.882

Table 14 The mean and median values of the improvements of COMB-NC-EXP on SWEEP-NC-EXP
and COMB-qNC-EXP on SWEEP-qNC-EXP

Mean of improvements Median of improvements

NC 14032.252 1.7318891

q-NC 1964141900 608344.19

Table 15 The mean and median values of the improvements of SWEEP-NC-EXP on COMB-NC-EXP

Mean of improvements Median of improvements

NC 27.658703 4.3486107

Notice that for q-NC, there is no improvement of SWEEP-qNC-EXP on COMB-qNC-EXP

Table 15 is for the average improvement of SWEEP on COMB. The mean and median
values are obtained from the ratios in Tables 12 and 13 for NC and q-NC, respectively,
using the same method introduced in “Comparing instances with intervening contour
similarity weights: comparing SHI-NC-IC with COMB-NC-IC and SHI-qNC-IC with
COMB-qNC-IC”. The ratios in Tables 12 and 13 are displayed as a bar chart in
Fig. 4.

Visual segmentation quality evaluation

In this section, we first evaluate the visual segmentation quality among the three
methods: COMB, SHI and SWEEP. Then we compare the criteria NC′ and q-NC′
to NC and q-NC, respectively, to see which is a better criterion to give good visual
segmentation results. Since visual quality is subjective, we provide a subjective assess-
ment, which may not agree with the readers’ judgement.

In some of the comparisons made in this section, we select for COMB the
cut which gives the visually best segmentation among the four series of nested
cuts corresponding to the four pairs of seeds selected according to the automatic
seed selection criterion, as the output of COMB. This visually best cut is often
not the numerically best cut that gives the smallest value for NC or q-NC objec-
tives. When the visually best cut is chosen as the output of COMB, we use
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Fig. 4 Bar chart for the ratios in Tables 12 and 13. The darker bars represent ratios for NC (Table 12) and
the lighter bars represent ratios for q-NC (Table 13)

the experimental set notation COMB(NC′)-Similarity or COMB(qNC′)-Similarity.
Here, the (NC′) or (qNC′) is used to denote which optimization objective that
COMB actually solves, and the -Similarity choice can be either exponential or
intervening contour similarity weights. Notice that COMB(NC′)-Similarity repre-
sents a different experimental set from COMB-NC-Similarity introduced in “Algo-
rithm, optimization criterion, and similarity classifications and nomenclatures”, since
the former experimental set uses the visually best cut while the latter experimental
set uses the numerically best cut. So are COMB(qNC′)-Similarity and COMB-qNC-
Similarity.

For SHI and SWEEP, since each of them outputs a unique cut as the solution,
there is no distinction between the numerically and visually best cuts. We still
use the experimental set notations defined in “Algorithm, optimization criterion,
and similarity classifications and nomenclatures” for experimental sets of SHI and
SWEEP.

SHI uses a discretization method to generate a bipartition from the Fiedler eigen-
vector (Yu and Shi 2003) which is considered to give good visual segmentations.
Hence, when comparing SHI with COMB, we use the visually best cut as the
output of COMB. We conduct the following four comparisons between SHI and
COMB:

SHI-NC-EXP and COMB(NC′)-EXP
SHI-qNC-EXP and COMB(qNC′)-EXP
SHI-NC-IC and COMB(NC′)-IC
SHI-qNC-IC and COMB(qNC′)-IC.
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Table 16 Visual comparison results

Experimental set 1 Experimental set 2 1 
v 2 2 
v 1 1 �v 2

SHI-NC-EXP COMB(NC′)-EXP 2 14 4

SHI-qNC-EXP COMB(qNC′)-EXP 0 20 0

SHI-NC-IC COMB(NC′)-IC 10 5 5

SHI-qNC-IC COMB(qNC′)-IC 0 5 15

SWEEP-NC-EXP COMB-NC-EXP 2 8 10

SWEEP-qNC-EXP COMB-qNC-EXP 3 8 9

COMB(NC′)-EXP COMB(qNC′)-EXP 0 7 13

COMB-NC-EXP COMB(NC′)-EXP 0 14 6

COMB-qNC-EXP COMB(qNC′)-EXP 0 13 7

When comparing SWEEP with COMB, we use the numerically best cut as the output
of COMB. This is because SWEEP outputs the cut that gives the smallest objective
value of NC or q-NC among all potential threshold values. Hence, we conduct the
following two comparisons between SWEEP and COMB:

SWEEP-NC-EXP and COMB-NC-EXP
SWEEP-qNC-EXP and COMB-qNC-EXP.

We assess the visual quality of segmentations generated by COMB to com-
pare the performance of different optimization criteria in producing visually good
segmentation results. We compare the visual segmentation quality of COMB(NC′)-
EXP with COMB(qNC′)-EXP to determine which criterion, NC′ or q-NC′, works
better visually. We then compare NC with NC′ and q-NC with q-NC′ by comparing
the visual segmentation quality of the following two pairs of experimental sets:

COMB-NC-EXP and COMB(NC′)-EXP
COMB-qNC-EXP and COMB(qNC′)-EXP.

For each of the above comparisons of two experimental sets, namely experimental
set 1 and experimental set 2, we classify each of the 20 benchmark images into the
following three categories:

1. Experimental set 1 gives a better visual segmentation result than experimental set
2. This is denoted as 1 
v 2, where the subscript “v” stands for “visual” and same
for the rest.

2. Experimental set 2 gives a better visual segmentation result than experimental set
1. This is denoted as 2 
v 1.

3. Both experimental set 1 and experimental set 2 give segmentations of similar
visual quality. It includes both cases where the segmentations generated by the
two experimental sets are either both good or both bad. This is denoted as 1 �v 2.

For each of the above visual comparisons, we count how many benchmark images
belong to each category. The results are summarized in Table 16.
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Fig. 5 The visual segmentations of SHI-NC-IC (-SHI) and COMB(NC′)-EXP (-COMB), and their
respective original image (-Ori)
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Based on the data in the first six rows of Table 16, we find that with exponential
similarity weights, in general, the visual quality of segmentations generated by COMB
is superior to both SHI and SWEEP. If the q-NC (or q-NC′) optimization objective is
applied, the visual superiority of COMB over SHI and SWEEP is dominant. Based on
the data in the seventh row of Table 16, we find that q-NC′ works better visually than
NC′. According to the data in the last two rows of Table 16, we find that the criteria
NC or q-NC are not good segmentation criteria. Since the visually best segmentations
are obtained through solving NC′ or q-NC′, they should be preferred segmentation
criteria, for good visual segmentation quality and their tractability.

We find from Table 16 that, in general, SHI-NC-IC delivers best visual segmenta-
tions among all the experimental sets using method SHI or SWEEP. That is, SHI works
better with intervening contour similarity weights. We also find that COMB(NC′)-EXP
provides better visual results than COMB(NC′)-IC, meaning that COMB works better
with exponential similarity weights.

We provide here the images and their segmentations for the two leading meth-
ods, SHI-NC-IC and COMB(NC′)-EXP. The segmentation is displayed by setting
all the pixels in the background part to be black. For each of the 20 benchmark
images shown, we give the segmentations generated by SHI-NC-IC and COMB(NC′)-
EXP in Fig. 5. Notice that for Images 1, 2, 10, 12, 19 and 20, the segmentations
generated by SHI-NC-IC are almost entirely black. This is because the segmen-
tations of these images by SHI-NC-IC have almost all pixels in the background
parts.

Our judgment is that for Image 1, Image 2, Image 5, Image 10, Image 12,
Image 13, Image 14, Image 15, Image 16, Image 17, Image 19 and Image 20,
COMB(NC′)-EXP gives visually better segmentations than SHI-NC-IC; for Image
3 and Image 6, SHI-NC-IC is visually better than COMB(NC′)-EXP; for Image 4,
Image 7, Image 8 and Image 18, both SHI-NC-IC and COMB(NC′)-EXP gener-
ate visually good segmentations of similar quality; for the rest two images, Image
9 and Image 11, neither COMB(NC′)-EXP nor SHI-NC-IC gives visually good
segmentations.

Conclusions

We report here on detailed experiments conducted on algorithms for the normalized
cut and its generalization as quantity normalized cut applied to image segmentation
problems. We find that, in general, the combinatorial flow algorithm of Hochbaum
(2010, 2012) outperforms the spectral method both numerically and visually. In most
cases, the combinatorial algorithm yields tighter objective function values of the two
criteria we test. Furthermore, we find that the combinatorial algorithm almost always
produces a visual segmentation which is at least as good as that of the spectral method,
and often better.

Another important finding in our experiments is that, in contrary to prevalent belief,
the normalized cut criterion is not a good model for image segmentation, since it does
not provide good quality solutions, in terms of visual quality. Moreover, the normalized
cut problem is NP-hard. We conclude that instead of modeling the image segmentation
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problem as the normalized cut problem, it is more effective to model and solve the
problem as the polynomial time solvable normalized cut′ problem.

For future research, we plan on investigating other methods of solving image seg-
mentation and other clustering problems, such as the k-means clustering method dis-
cussed in Dhillon et al. (2004, 2007).

Acknowledgments The authors wish to express their thanks to Arnaud CARUSO for his contribution to
this project, and in particular, to the development of the automatic seed selection method.

Appendix

Benchmark images

Figure 6 contains all the 20 benchmark images we use in the experiment. We sequen-
tially name them from Image 1 to Image 20.

Fig. 6 The 20 benchmark images
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