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Abstract Biological measurements are a rich source of

information about the biological phenomena that are rep-

resented. For example, time-series dynamic genomic or

metabolic microarray data can be used to construct

dynamic genetic regulatory network models, which can be

used to better understand the interactions among different

genes within the biological system and to design inter-

vention strategies to cure or manage major diseases.

Unfortunately, biological measurements are usually highly

contaminated with errors that mask the important features

in the data and limit their applicability. Therefore, these

noisy measurements need to be filtered to enhance their

usefulness in practice. In this work, various model-based

and model-free data filtering techniques are used to denoise

(or filter) genomic data. In the availability of a dynamic

model representing the biological system, state estimation

techniques, such as extended Kalman filtering (EKF),

unscented Kalman filtering (UKF), and particle filtering

(PF) are used to filter the measured data. When a model is

not available, on the other hand, low-pass as well as mul-

tiscale filtering techniques will be utilized. Low-pass filters

include the mean and exponentially weighted moving

average filters, while the multiscale filters include several

online as well as batch wavelet-based thresholding

techniques. In this paper, the performances of all filtering

techniques will be demonstrated and compared through

their application using simulated time-series metabolic data

contaminated with white noise. The results show clear

advantages for the model-based over the model-free fil-

tering techniques, and that the PF outperforms other model-

based methods. The results also show that in the absence of

a model of the biological system, the model-free filtering

techniques, especially multiscale filtering, can also provide

acceptable performances. Online multiscale (OLMS) fil-

tering is shown to outperform low-pass filtering, and the

batch multiscale methods, i.e., translation invariant (TI)

and boundary corrected TI (BCTI) provide enhanced

smoothness, with improved ability of BCTI over TI at the

edges. From a biological perspective, the model-based and

online model-free filtering techniques can be used when

filtering is needed online, such as within an intervention

framework to cure diseases, while the batch model-free

filtering techniques can be used within a modeling frame-

work to enhance the quality of the estimated biological

models.

Keywords Filtering genomic data � State estimation �
Multiscale filtering � Wavelets

1 Introduction

Recent advances in the DNA sensing technologies allowed

the collection of microarray genomic and metabolic data

from various biological systems. These data are a valuable

source of information about the biological systems they are

collected from. For example, the availability of time-series

dynamic genomic or metabolic data has made it possible to

construct dynamic models that can not only be used to
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characterize the behavior of such biological systems and the

interactions among different genes (Jong 2002; Chou et al.

2006; Gonzalez et al. 2007; Kutalik et al. 2007; Wang et al.

2009, 2010; Meskin et al. 2011; Zhou et al. 2012; Huang

et al. 2009; Qiu and Plevritis 2011; Noor et al. 2012), but

also to design intervention strategies for curing/managing

major disease phenotypes (Ervadi-Radhakrishnan and Voit

2005; Meskin et al. 2011; Nounou et al. 2012; Meskin et al.

2012). Unfortunately, biological data are usually contami-

nated with measurement noise that can greatly degrade the

usefulness of the data (Hulse et al. 2012). For example,

constructing a dynamic genetic regulatory network model

using noisy time-series biological data will not only affect

the accuracy of the estimated model, but also the effective-

ness of any intervention technique that can be developed

based on that model (Kutalik et al. 2007). This means that

measurement errors in biological data need to be filtered to

reduce the noise content and enhance the usefulness of these

data in practice. The applicability of genomic and metabolic

data in modeling and intervention biological phenomena is

schematically illustrated in Fig. 1.

Generally, data filtering techniques can be classified into

three main categories: filtering with a model, filtering with

an empirical model, and filtering without a model. The

model-based filtering techniques rely on minimizing the

error between the measured and filtered data while

requiring the filtered data to satisfy the available model.

Methods in this category include Kalman filtering (Soren-

son 1985), Moving Horizon Estimation, and particle fil-

tering (PF) (Gustafsson et al. 2002; Arulampalam et al.

2002; Rawlings and Bakshi 2006). For nonlinear processes,

different versions of Kalman filters have been developed,

which include the extended Kalman filter (EKF) (Simon

2006; Grewal and Andrews 2008; Julier and Uhlmann

1997; Ljung 1979; Kim and Park 1994) and the unscented

Kalman filter (UKF) (Simon 2006; Grewal and Andrews

2008; Kim and Park 2000, 2001; Kim et al. 2007). In the

EKF, the model describing the system is linearized at every

time sample (to estimate the mean and covariance matrix

of the state vector), and thus, the model is assumed to be

differentiable. Unfortunately, for highly nonlinear or

complex models, the EKF does not usually provide a sat-

isfactory performance. On the other hand, instead of line-

arizing the model to approximate the mean and covariance

matrix of the state vector, the UKF uses the unscented

transformation to improve the approximation of these

moments. In the unscented transformation, a set of samples

(called sigma points) are selected and propagated through

the nonlinear model, which provides more accurate

approximations of the mean and covariance matrix of the

state vector, and thus, results in a more accurate state

estimation. Both EKF and UKF have been used in mod-

eling biological systems and in designing intervention

techniques that can be used in treating diseases (Meskin

et al. 1979, 2011). The PF, on the other hand, is an imple-

mentation of a recursive Bayesian estimator (Gustafsson

et al. 2002; Arulampalam et al. 2002), which relies on

approximating the posterior (which is the density function of

the unobserved state vector given a sequence of the observed

data) as a set of random samples called particles. The

advantage of the PF is that it is not restricted to linear and

Gaussian processes, which makes it applicable in a wide

range of applications. Of course, in all the model-based fil-

tering techniques, the quality of the estimation depends on

the accuracy of the models used.

A major challenge when dealing with biological systems

is that models are not usually available a priori. This is

because of the scarcity and the quality of the available

biological data. In the absence of a fundamental model and

in the case of multivariate filtering, an empirical model that

is extracted from the relationship between the measured

variables can also be used in data filtering. Methods in this

category include Principal Component Analysis (PCA)

(Kramer and Mah 1994). Since accurate process models are

usually not available, the most widely used filtering

methods do not rely on fundamental or empirical models;

instead, they rely on information about the nature of the

errors or the smoothness of the underlying signal. Exam-

ples of model-free filters include the well-known low-pass

filters, such as the Finite Impulse Response (FIR) and

Infinite Impulse Response (IIR) filters (Tham and Parr

1994). Examples of FIR and IIR filters include the mean

filter (MF) and the exponentially weighted moving average

(EWMA) filter, respectively. These are very popular filters

as they are computationally efficient and can be imple-

mented online. However, they are not very effective when

used to filter data containing features with varying contri-

butions over time and frequency. This is because low-pass

Fig. 1 A schematic diagram

illustrating the applicability of

metabolic data in practice
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filters define a frequency threshold above which all features

are considered noise. Therefore, they may eliminate

important features having higher frequencies than the

threshold value and retain noise components that are

changing at lower frequencies than the threshold value. An

example of a high frequency feature is a sharp change in

the data, while an example of low frequency noise is cor-

related (or colored) measurement errors. Thus, filtering the

practical biological data that may contain features spanning

wide ranges in time and frequency requires multiscale fil-

tering algorithms that can account for this multiscale nature

of the data.

Wavelet-based multiscale representation of data has been

widely used in the analysis and investigation of various bio-

logical systems. For example, wavelets have been used to

analyze genomic or DNA sequences to detect specific patterns

(Arneodo et al. 1996, 1998; Dodin et al. 2000; Li 2003;

Huang et al. 2008; Nguyen 2010). Also, wavelets have been

applied to various aspects of protein structural investigations,

including secondary and tertiary structure determination

(Murray et al. 2002), refinement of X-ray crystallography

(Main and Wilson 2000), and drug design and visualization

(Mandell et al. 1998). Moreover, wavelets have been used in

the analysis of microarray data and functional magnetic res-

onance imaging (fMRI) data (Dinov et al. 2005). Other

applications of wavelets in biological systems include the

analysis of 3-D biological shapes using conformal mapping

and spherical wavelets. Wavelet-based filtering has also been

used to denoise biological data. The authors in (Prasad et al.

2008) developed a new thresholding filter to be used in mul-

tiscale denoising of biological signals, and the authors in

(Ustndag et al. 2012) used wavelet analysis and fuzzy thres-

holding in ECG data filtering.

In this work, various model-based as well as model-free

filtering techniques will be compared when applied to filter

time-series biological data representing dynamic metabolic

measurements corresponding to four different genes. The

model-based filtering techniques include the EKF, the

UKF, and the PF. The model-free techniques include var-

ious low-pass filtering as well as several multiscale filtering

techniques. Examples of low-pass filtering methods include

MF and EWMA filtering. Examples of multiscale filtering

methods, on the other hand, include standard multiscale

(SMS) filtering, online multiscale (OLMS) filtering,

translation invariant (TI) filtering, and boundary corrected

TI (BCTI) filtering.

The remainder of this paper is organized as follows. In

Sect. 2, a statement of the model-based filtering problem is

presented followed by descriptions of some of the state

estimation techniques used to solve this filtering problem.

Then, in Sect. 3, a brief description of some of the low-pass

filtering techniques is presented, followed by a description

of multiscale representation of data and some of the

multiscale filtering methods. Then, in Sect. 4, the various

model-based and model-free filtering methods are com-

pared using simulated time-series metabolic data. Finally,

concluding remarks are presented in Sect. 5.

2 Model-based filtering

In this section, a problem statement of model-based fil-

tering of biological data is presented, followed by

descriptions of some the state estimation techniques that

can be used to solve it.

2.1 Problem statement

Let the changes in the concentrations of various metabo-

lites or proteins in a biological system be described by the

nonlinear state space model described below:

_x ¼ gðx; u; h;wÞ;
y ¼ lðx; u; h; vÞ;

ð1Þ

where x 2 R
n is a vector of the state variables

(concentrations of certain metabolite inside the cell),

u 2 R
p is a vector of the input variables (any manipulated

variables that can change the state variables), h 2 R
q is a

known parameter vector, y 2 R
m is a vector of the measured

variables (measured metabolite concentrations), w 2 R
n and

v 2 R
m are process and measurement noise vectors,

respectively, and g and l are nonlinear differentiable

functions that describe the changes in the state variables

over time. Discretizing the state space model (1), the discrete

model can be written as follows:

xk ¼ Fðxk�1; uk�1; hk�1;wk�1Þ;
yk ¼ Rðxk; uk; hk; vkÞ;

ð2Þ

which quantifies the state variables at some time step (k) in

terms of their values at a previous time step (k - 1). In

Eq. (1), the two nonlinear functions F and R are the

equivalent functions to the functions g and l, but for the

discrete model. Let the process and measurement noise

vectors have the following properties: E½wk� ¼
0;E½wkwT

k � ¼ Qk;E½vk� ¼ 0 and E½vkvT
k � ¼ Rk; where Qk

and Rk are the covariance matrices of the process and mea-

surement noise vectors, respectively. The objective here is to

estimate the state vector xk, given the measurements vector

yk. Some of the techniques that can be used to solve this state

estimation (filtering) problem are presented next.

2.2 Description of state estimation techniques

In this section, the formulations as well as the algorithms of

some of the state estimation techniques (which include

EKF, UKF, and PF) will be presented.
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1. Extended Kalman filtering (EKF): As the name indi-

cates, EKF is an extension of Kalman filtering (KF)

(Lee and Ricker 1994), where the model is linearized

to estimate the covariance matrix of the state vector.

As in KF, the state vector xk is estimated by mini-

mizing a weighted covariance matrix of the estimation

error, i.e., E½ðxk � bxkÞMðxk � bxkÞT �; where M is a

symmetric nonnegative definite weighting matrix. If

all the states are equally important, M can be taken as

the identity matrix, which reduces the covariance

matrix to P ¼ E½ðxk � bxkÞðxk � bxkÞT �: Such a mini-

mization problem can be solved by minimizing the

following objective function:

J ¼ 1

2
Tr
�

E½ðxk � bxkÞðxk � bxkÞT �
�

: ð3Þ

subject to the model defined in Eq. (2). To minimize the

above objective function (3), EKF estimates the state vector

using a two-step algorithm: prediction and estimation (or

update), which are described next (refer to Algorithm 1).

In Algorithm 1, Pkjk�1 is the innovation (or residual)

covariance matrix, Kk is the near-optimal Kalman filter gain

matrix, Pkjk is the updated covariance matrix, and bxkjk is the

updated state estimate. In addition, the state transition and

observation matrices are defined to be the following Jaco-

bians, Ak�1 � oF

ox
j
bxk�1jk�1

;Ck�1 � oR
ox
j
bxk�1jk�1

;Gk�1 � oF

o� j�k�1

and Hk � oR
ov
jvk
; which are the matrices of the linearized

system model at every time step.

2. Unscented Kalman filtering: for highly nonlinear

systems, the EKF may not provide a satisfactory

performance because EKF approximates the mean and

covariance matrix of the nonlinear state vector by

linearizing the nonlinear model, which may not

provide good approximations of these moments. To

enhance the estimation of the mean and covariance

matrix of the state vector, the UKF, which relies on the

unscented transformation, has been developed (Simon

2006; Grewal and Andrews 2008; Kim and Park 2000,

2001; Kim et al. 2007). The unscented transformation

is a method for calculating the statistics of a random

variable which undergoes a nonlinear mapping (Julier

and Uhlmann 1997). Assume that a random variable

x 2 R
r with mean mx ¼ E½ðxk � bxkÞMðxk � bxkÞT � and

covariance matrix Px is transformed by a nonlinear

function, y = f(x). To find the statistics of y, 2r ? 1

sigma vectors are defined as follows (Van Der Merwe

et al. 2001):

X0 ¼ x

Xi ¼ xþ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr þ kÞPx

p

Þi i ¼ 1; :::; r

Xi ¼ x� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr þ kÞPx

p

Þi i ¼ r þ 1; :::; 2r

ð4Þ

where, k = e2(r ? k) - r is a scaling parameter and

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr þ kÞPx

p

Þi denotes the ith column of the matrix

square root of ðr þ kÞPx: The constant 10-4 \ e \ 1

determines the spread of the sigma points around x; and

the constant k is a secondary scaling parameter which is

usually set to zero or 3 - r (Julier and Uhlmann 1997).

Then, these sigma points are propagated through the

nonlinear function, i.e.,

Yi ¼ f ðXiÞ i ¼ 0; :::; 2r ð5Þ

and the mean and covariance matrix of y can be

approximated as weighted sample mean and covariance

of the transformed sigma points of Yi as follows:

y �
X

2r

i¼0

W
ðmÞ
i Yi;

and Px �
X

2r

i¼0

W
ðcÞ
i ðYi � yÞðYi � yÞT ;

ð6Þ

where, the weights are given by:

W
ðmÞ
i ¼ k

kþ r
;

W
ðcÞ
0 ¼

k
kþ r

þ ð1� e2 þ nÞ;

and W
ðmÞ
i ¼ W

ðcÞ
i ¼

1

2ðkþ rÞ ; i ¼ 0; :::; 2r:

ð7Þ

The parameter n is used to incorporate prior knowledge

about the distribution of x. It has been shown that for a

Gaussian and non-Gaussian variables, the unscented trans-

formation results in approximations that are accurate up to

the third and second order, respectively (Wan and Van Der

Merwe 2001). Based on this unscented transformation, the

unscented Kalman filtering algorithm can be summarized as

shown in Algorithm 2.
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In Algorithm 2, bx0 is the initial estimate, Px0
is the initial

covariance matrice, bx�k is the predicted state, P�xk is the pre-

dicted covariance matrix, Xk|k-1 is the sigma point, Yk|k-1 is

the projected sigma point through the observation function, byk

is the predicted output, Pyk is the updated output cross-

covariance matrix, Pxk, yk is the state-measurement covari-

ance matrix, Kk is the UKF Kalman filter Gain, bxk is the

updated state vector, and Pxk is the updated covariance matrix.

3. Particle filtering: a PF is an implementation of a

recursive Bayesian estimator (Gustafsson et al. 2002;

Arulampalam et al. 2002). Bayesian estimation relies

on computing the posterior p(xk|y1:k), which is the

density function of the unobserved state vector,

xk, given a sequence of the observed data y1:k �
fy1; y2; � � � ; ykg: However, instead of describing the

required posterior distribution in a functional form, in

PF, it is represented approximately as a set of random

samples of the posterior distribution. These random

samples, which are called the particles of the filter, are

propagated and updated according to the dynamics and

measurement models (Doucet and Johansen 2009;

Arulampalam et al. 2002). The advantage of the PF is

that it is not restricted by the linear and Gaussian

assumptions, which makes it applicable in a wide

range of applications. The basic form of the PF is also

simple, but may be computationally expensive. Thus,

the advent of cheap, powerful computers over the last

decade has been a key to the introduction and

utilization of PF in various applications.

For a given dynamical system describing the evolution

of the states and parameters that we wish to estimate, the

estimation problem can be viewed as an optimal filtering

problem (Andrews et al. 2006), in which the posterior

distribution, p(xk|y1:k), is recursively updated. Here, the

dynamical system is characterized by a Markov state

evolution model, p(xk | x1:k-1) = p(xk | xk-1), and an

observation model, p(yk|xk). In a Bayesian context, the task

of state estimation can be formulated as recursively cal-

culating the predictive distribution p(xk|y1:k-1) and the fil-

tering distribution p(xk|y1:k) as follows,

pðxkjy1:k�1Þ ¼
Z

R
n

pðxkjxk�1Þpðxk�1jy1:k�1Þdxk�1;

and; pðxkjy1:kÞ ¼
pðykjxkÞpðxkjy1:k�1Þ

pðykjy1:k�1Þ
;

where; pðykjy1:k�1Þ ¼
Z

R
x

pðykjxkÞpðxkjy1:k�1Þdxk:

ð8Þ

The state vector xk is assumed to follow a Gaussian

model, xkNðlk; kkÞ: Thus, the marginal state distribution is

obtained by integrating over the mean and covariance

matrix as follows,

pðxkjxk�1Þ ¼
Z

Nðxkjlk; kkÞpðlk; kkjxk�1Þdlkdkk; ð9Þ

where the integration with respect to the covariance matrix

leads to the known class of scale mixture distributions

introduced by Barndorff-Nielsen (1977) for the scalar case.

The nonlinear nature of the system model leads to

intractable integrals when evaluating the marginal state

distribution, p(xk|xk-1). Therefore, Monte Carlo approxi-

mation is utilized, where the joint posterior distribution,

p(x0:k|y1:k), is approximated by the point-mass distribution

of a set of weighted samples (particles) x
ðiÞ
0:k; ‘

ðiÞ
k

n oN

i¼1
; i.e.,:

p̂Nðx0:kjy1:kÞ ¼
X

N

i¼1

‘
ðiÞ
k d

x
ðiÞ
0:k

ðdx0:kÞ
,

X
N

i¼1

‘
ðiÞ
k ; ð10Þ

where d
x
ðiÞ
0:k

ðdx0:kÞ denotes the Dirac function, and N is the

total number of particles. Based on the same set of

particles, the marginal posterior probability of interest,

p(xk|y1:k), can also be approximated as follows:

p̂Nðxkjy1:kÞ ¼
X

N

i¼1

‘
ðiÞ
k d

x
ðiÞ
k

ðdxkÞ
,

X
N

i¼1

‘
ðiÞ
k : ð11Þ

In this Bayesian importance sampling (IS) approach, the

particles xi
0:k

� �N

i¼1
are sampled from the following distribution,
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pðx0:kjy1:kÞ ¼
Z

Nðxkjlk; kkÞpðlk; kkjxk�1Þdlkdkk: ð12Þ

Then, the estimate of the state vector bxk can be

approximated by a Monte Carlo scheme as follows:

bxk ¼
X

N

i¼1

‘
ðiÞ
k x
ðiÞ
k ; ð13Þ

where ‘
ðiÞ
k are the corresponding importance weights, which

are defined as follows:

‘
ðiÞ
k /

pðy1:kjxðiÞ0:kÞpðx
ðiÞ
0:kÞ

pðxðiÞ0:kjy1:kÞ
: ð14Þ

A common problem with the sequential IS-based PF is

the degeneracy phenomenon, where after a few iterations,

all but one particle will have negligible weights. It has been

shown (Yang et al. 2005) that the variance of the

importance weights can only increase over time, and

thus, it is impossible to avoid the degeneracy phenomenon.

This degeneracy implies that a large computational effort is

devoted to update the particles whose contributions to the

approximation of p(xk|y0:k) are almost zero. A suitable

measure of degeneracy of the algorithm is the effective

sample size Neff, which is introduced in (Gustafsson et al.

2002) and (Liu and Chen 1998), and is defined as,

Neff ¼
1

PN
i¼1ð‘

ðiÞ
k Þ

2
ð15Þ

where ‘
ðiÞ
k are the normalized weights obtained using (14).

State estimation using PF can be summarized as shown in

Algorithm 3.

The state estimation techniques described earlier (EKF,

UKF, and PF) utilize a model of the biological system to

filter (or provide better estimates of) the measured meta-

bolic or genomic data. When a model is not available,

however, model-free filtering of these data can be used.

Some of the univariate model-free data filtering techniques

that can be used in this regard are described next.

3 Model-free filtering

In the absence of a model of the biological system, which is

common due to the complexity of biological phenomena,

measured biological data can be filtered using univariate

filtering techniques that rely on information about the

errors or assumptions about the nature of the noise-free

data. Some of these filtering techniques include linear low-

pass filtering and multiscale filtering, which are described

next.

3.1 Linear data filtering

Linear filtering techniques filter the data by computing a

weighted sum of previous measurements in a window of

finite or infinite length. These techniques include FIR and

IIR filters, which are popular because they are computa-

tionally efficient and can be implemented online (Tham

and Parr 1994). A linear filter can be written as follows,

x̂k ¼
X
N�1

i¼0

bixk�i ð16Þ

where, bi is the ith filter coefficient,
P

i bi ¼ 1;N is the

filter length, xk is the measured variable (such as a

metabolite concentration) and x̂k is the filtered value of the

variable. A well-known FIR filter is the MF, where bi ¼ 1
N
:

An example of an IIR filter, on the other hand, is the

EWMA filter, which can be expressed as follows,

x̂k ¼ axk þ 1� að Þx̂k�1 ð17Þ

where, a is a smoothing parameter between 0 and 1, where

a value of one corresponds to no filtering and a value of

zero corresponds to only keeping the first measured data

point. A more detailed discussion of different types of

linear filters is presented in (Strum and Kirk 1989).

In linear filtering, the basis functions representing raw

measured data have a temporal localization equal to the

sampling interval. This means that linear filters are single-

scale in nature, since all the basis functions have the same

fixed time–frequency localization. Consequently, these

methods face a trade-off between accurate representation

of temporally localized changes and efficient removal of

temporally global noise. Therefore, simultaneous noise
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removal and accurate feature representation of the mea-

sured signals cannot be effectively achieved by single-scale

filtering methods (Nounou and Bakshi 1999). Enhanced

denoising can be achieved using multiscale filtering as will

be described next.

3.2 Multiscale data filtering

In this section, several multiscale filtering methods are

described. However, since multiscale filtering relies on

multiscale representation of data using wavelets and scal-

ing functions, a brief introduction to multiscale represen-

tation will be presented first.

(1) Multiscale representation of data: A signal can be

represented at multiple resolutions by decomposing it,

using a family of wavelets and scaling functions. Consider

the time-series measurements of the concentration of a

particular metabolite in a biological system which are

shown in Fig. 2a (see the description of the biological

system in Sect. 4). The signals in Fig. 2b, d, f are at

increasingly coarser scales compared to the original signal

in Fig. 2a, and are called scaled signals. These scaled

signals are determined by projecting the original signal on

a set of orthonormal scaling functions of the form,

/ijðtÞ ¼
ffiffiffiffiffiffiffi

2�j
p

/ð2�jt � kÞ ð18Þ

or equivalently by filtering the signal using a low-pass filter

of length r; hf ¼ h1; h2; ::; hr½ �; derived from the scaling

functions. On the other hand, the signals in Fig. 2c, e, g,

which are called the detail signals, capture the details

between any scaled signal and the scaled signal at the finer

scale. These detailed signals are determined by projecting

the original signal on a set of wavelet basis functions of the

form,

wijðtÞ ¼
ffiffiffiffiffiffiffi

2�j
p

wð2�jt � kÞ ð19Þ

or equivalently by filtering the scaled signal at the finer scale

using a high-pass filter of length r, gf = [g1, g2, .., gr], derived

from the wavelet basis functions. Therefore, the original signal

can be represented as the sum of all detail signals at all scales

and the scaled signal at the coarsest scale as follows,

xðtÞ ¼
X
n2�J

k¼1

aJk/JkðtÞ þ
X

J

j¼1

X
n2�j

k¼1

djkwjkðtÞ ð20Þ

where j, k, J, and n are the dilation parameter, translation

parameter, maximum number of scales (or decomposition

depth), and the length of the original signal, respectively

(Strang 1989; Daubechies 1988; Mallat 1989), and aJk is

the kth scaling coefficient at scale J and djk is the kth

wavelet coefficient at the jth scale.

(2) Standard multiscale (SMS) filtering: Multiscale fil-

tering using wavelets is based on the observation that

random errors in a signal are present over all wavelet

coefficients, while deterministic changes get captured in a

small number of relatively large wavelet coefficients

(Donoho and Johnstone 1994; Donoho et al. 1995; Bakshi

1999; Nounou and Bakshi 2000). Thus, stationary Gaussian

noise may be removed by a three-step method (Donoho

et al. 1995):

1. Transform the noisy signal into the time–frequency

domain by decomposing the signal onto a selected set

of orthonormal wavelet and scaling basis functions.

2. Threshold the wavelet coefficients by suppressing

coefficients smaller than a selected value.

3. Transform the thresholded coefficients back into the

original time domain.

     (c)
First detail
   signal

       (e)
Second detail
      signal

      (g)
Third detail
     signal

   (a)
Original
 signal

       (b)
First scaled
     signal

         (d)
Second scaled
      signal

        (f)
Third scaled
     signal

h

h

h g

g

g

Fig. 2 A schematic diagram of

data representation at multiple

scales
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Donoho and coworkers have studied the statistical

properties of wavelet thresholding and have shown that for

a noisy signal of length n, the filtered signal will have an

error within O(log n) of the error between the noise-free

signal and the signal filtered with a priori knowledge about

the smoothness of the underlying signal (Donoho and

Johnstone 1994).

Selecting the proper value of the threshold is a critical

step in this filtering process, and several methods have been

devised. For good visual quality of the filtered signal, the

Visushrink method determines the threshold as (Donoho

and Johnstone 1994),

tj ¼ rj

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log n
p

ð21Þ

where, n is the signal length and rj is the standard deviation

of the errors at scale j, which can be estimated from the

wavelet coefficients at that scale using the following

relation,

rj ¼
1

0:6745
median djk

�

�

�

�

� �

: ð22Þ

Other methods for determining the value of the threshold

are described in (Nason 1996).

(3) Translation invariant (TI) filtering: In SMS filtering,

when the wavelet basis function used to represent a certain

feature in the signal is not aligned with the feature itself, an

artifact, which is not present in the original signal, can be

created in the filtered signal. TI filtering is one approach that

was proposed in (Coifman and Donoho 1995) to deal with

this problem by shifting the signal several times, filtering it,

and then averaging out all translations to suppress these

artifacts and improve the smoothness of the filtered data (see

Fig. 3). This approach, however, suffers from the creation of

end effects because TI filtering considers the signal to be a

cyclic signal, which results in artificial discontinuities when

the two end points in the signal are very different in mag-

nitude. This disadvantage can be overcome by the BCTI

filtering method, which will be discussed in Sect. 3 (B.5).

(4) OLMS filtering: The standard and TI multiscale fil-

tering techniques described earlier are batch, i.e., they

require the entire data set (which has to be of dyadic

length) a priori, and thus, cannot be implemented online.

When filtering time-series metabolic data, batch filtering

would be acceptable if the filtered data are needed to

estimate the parameters of a genetic regulatory network for

example. However, if the filtered data are used within an

intervention framework, then the metabolic data need to be

filtered online as they are measured. To deal with this

problem, an OLMS filtering algorithm, that is based on

multiscale filtering of data in a moving window of dyadic

length, has been developed (Nounou and Bakshi 1999).

The OLMS algorithm is summarized below:

1. Decompose the measured data within a window of

dyadic length using a causal boundary corrected

wavelet filter.

2. Threshold the wavelet coefficients and reconstruct the

filtered signal.

3. Retain only the last data point of the reconstructed

signal for online use.

4. When new measured data are available, move the

window in time to include the most recent measure-

ment, while maintaining the maximum dyadic window

length (as illustrated in Fig. 4).

Note from Fig. 4 that the moving window always

seeks to keep the largest number of dyadic samples

available, which would provide a more accurate

estimation of the threshold value. Also, note that if a

wavelet filter other than Haar is used in OLMS

filtering, a boundary corrected version of the filter is

needed to avoid inaccuracies at the boundaries. This is

particularly important because OLMS only retains the

last filtered data point from each window.

(5) BCTI Filtering: If all the filtered signals from all

moving windows in OLMS (shown in Fig. 4) are averaged,

a much smoother filtered signal is obtained. This is in fact

similar to TI filtering, but since it does not assume the signal

to be a cyclic list, it overcomes the problem of boundary

effects encountered in TI, and thus, is called BCTI. Another

advantage is that BCTI averages less number of data points

when computing the final estimated signals (compare the

mechanisms of TI and BCTI in Figs. 3 and 4, respectively),

and thus, BCTI is computationally less expensive than TI.

The performances of all filtering techniques are illustrated

and compared through a simulated case study.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Fig. 3 A schematic diagram of the translation mechanism used in TI

filtering

1

1

2

2

2

3

3 4

i ith filtered sample

Fig. 4 A schematic diagram of the moving window mechanism used

in OLMS and BCTI filtering
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4 Case study: filtering of dynamic genomic data

The objective behind this case study is twofold: first,

highlight the applicability of data filtering for biological

data; second, to compare the performances of various

model-based and model-free filtering algorithms (which

were discussed in this paper) through their application

using simulated time-series metabolic data representing the

concentrations of four metabolites that are related by the

branched pathway shown in Fig. 5. These concentrations

are the four dependent variables x1, ..., x4 in the following

S-system (Voit and Almeida 2004), which also involves

one independent variable x5:

_x1 ¼ 0:2x�0:8
3 x1

5 � 0:1x0:5
1

_x2 ¼ 0:08x0:5
1 � 0:03x0:75

2

_x3 ¼ 0:03x0:75
2 � 0:05x0:5

3 x0:2
4

_x4 ¼ 0:02x0:5
1 � 0:06x0:8

4

ð23Þ

The four differential equations shown in model (23),

describe the changes in the concentrations of four different

metabolites within the cell, and thus, quantify the interac-

tions among the genes responsible for producing these

metabolites. We chose to use a biological phenomenon

represented by an S-system model in this simulated exam-

ple because the S-system model has a canonical nonlinear

model structure that can capture the behavior of a large

class of biological systems due to its ability to provide a

good trade-off between accuracy and mathematical flexi-

bility (Voit 1991; Gentilini 2005). The data used in this case

study are generated by first discretizing the S-system (23)

using a sampling time of 3.9 s, and then simulating the

discretized model using the following initial conditions:

x1(0) = 5.6, x2(0) = 3.1, x3(0) = 2.9, and x4(0) = 3.1,

and assuming x5 = 1. The simulated data, which are

assumed to be noise-free, are then contaminated with

additive zero mean Gaussian noise, i.e., the noisy data are

computed simply by adding the noise to the noise-free data.

Two levels (variances) of noise, which correspond to signal-

to-noise ratios (SNR) of 10 and 20, are used to provide a

good comparison between the performances of the different

filtering techniques. The SNR is the ratio of the variance of

the noise-free data to the variance of the added noise.

The model-based filtering techniques used in this case

study include the EKF, the UKF, and the PF. The model-

free filtering techniques, on the other hand, include MF,

EWMA filtering, SMS filtering, TI filtering, and BCTI

filtering. The filter parameters for all model-free filtering

techniques are optimized using cross-validation (Nason

1996), where the data are split into two sets, odd and even.

Then, each set (odd and even) is filtered separately, and

then the following cross-validation mean square error is

minimized to determine the optimum filter parameters:

CVMSE ¼ 1

N=2

X

N=2

k¼1

�xodd;k � xodd;k

� 	2
n

þ �xeven;k � xeven;k

� 	2
o

ð24Þ

where �xodd;k ¼ 1
2

x̂even;kþ1 þ x̂even;k

� 	

;�xeven;k ¼ 1
2

x̂odd;kþ1þ
�

x̂odd;kÞ; and x̂odd;k and x̂even;k are the kth odd and even fil-

tered data samples, respectively, and N is the total number

of data samples. The performances of the various filtering

techniques are compared by computing the mean square

error with respect to the noise-free data, i.e., MSE ¼
1
N

PN
k¼1 x̂k � ~xkð Þ2; where x̂k and ~xk are the kth filtered and

noise-free data samples, respectively.

To make statistically valid conclusions about the per-

formances of all techniques, a Monte Carlo simulation

using 1,000 realizations is performed. The results of the

model-based filtering techniques are summarized in

Table 1 and are illustrated in Fig. 6 for the case, where

SNR = 10. The results of the model-free filtering tech-

niques, on the other hand, are summarized in Table 2 and

are illustrated in Figs. 7 and 8 also for the case, where

SNR = 10. In all figures, x1 is in blue, x2 is in dark green,

x3 is in red, and x4 is in light green.

Table 1 and Fig. 6 show that UKF performs better than

EKF because UKF can provide more accurate estimation of

the mean and covariance matrix of the state vector than

EKF, which estimates these moments using a linearized

model. The results also show that the PF by far outperforms

all other model-based filtering techniques because of its

ability to better handle nonlinear systems than EKF and

Table 1 Comparison between the filtering mean square errors (MSE)

for the model-based filtering techniques

Technique x1 x2 x3 x4

SNR = 10

EKF 0.0039 0.0032 0.0026 0.0028

UKF 0.0029 0.0021 0.0019 0.0016

PF 0.00032 0.00062 0.00015 0.00017

SNR = 20

EKF 0.0014 0.0016 0.0011 0.0014

UKF 0.0011 0.0012 0.0010 0.0011

PF 0.00014 0.00042 0.00005 0.00009

5x 1x

2x

4x

3x
+

-

Fig. 5 Generic branched pathway with four dependent variables

Model-based and model-free filtering of genomic data 117

123



UKF. These model-based filtering techniques can help

within a model-based intervention framework, where a

model is available. On the other hand, the results of the

model-free filtering methods (summarized in Table 2)

show that good noise-removal can still be archived without

a model. The results show that OLMS filtering outperforms

the conventional low-pass filters (MF and EWMA), which

can all be implemented online. This advantage can be

helpful if the filtered data are utilized in model-free inter-

vention, such as fuzzy intervention in biological systems

(Nounou et al. 2012). The advantages of OLMS can be

clearly seen in Fig. 7. If more time is available to filter the

data, other batch multiscale filtering methods can perform

even better. For example, the SMS technique provides a

clear improvement over all online methods, including

OLMS, as demonstrated in Fig. 8. Other batch multiscale

filtering techniques can provide improved smoothness,

such as TI. However, due to the cycle-spinning of the data,

TI results in boundary effects, especially if the two ends of

the data are significantly different in magnitude, such as in

the case of x1 (in blue) and x4 (in light green) in Fig. 8. This

drawback of TI is accounted for in BCTI, which provides

similar smoothness without the boundary effects, and thus,

results in smaller mean square errors as shown in Table 2.

The advantages of these batch multiscale filtering tech-

niques can be helpful if the filtered biological data are used

to enhance the accuracy of biological models which are

estimated from these filtered data.

5 Conclusion

Data filtering is important to enhance the quality and use-

fulness of noisy biological data, which can be used to model

biological phenomena and to design intervention techniques

for treating diseases. This paper presented a comparison

between various model-based and model-free filtering

techniques when used to denoise biological data contami-

nated with measurement errors. The model-based filtering

techniques used in this work include the (EKF, UKF, and

PF). The model-free filtering techniques include various
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Fig. 6 Comparison between the

performances of various model-

based filtering methods for the

case, where SNR = 10 (dashed

lines noise-free, solid lines

filtered)

Table 2 Comparison between the filtering mean square errors (MSE)

for the various model-free (low-pass and multiscale) filtering

techniques

Technique x1 x2 x3 x4

SNR = 10

MF 0.0415 0.0403 0.0119 0.0117

EWMA 0.0416 0.0381 0.0113 0.0117

OLMS 0.0210 0.0270 0.0098 0.0060

SMS 0.0186 0.0223 0.0069 0.0058

TI 0.0320 0.0167 0.0050 0.0086

BCTI 0.0072 0.0087 0.0027 0.0023

SNR = 20

MF 0.0258 0.0231 0.0069 0.0082

EWMA 0.0251 0.0228 0.0067 0.0074

OLMS 0.0131 0.0177 0.0062 0.0039

SMS 0.0121 0.0130 0.0038 0.0039

TI 0.0172 0.0091 0.0029 0.0049

BCTI 0.0043 0.0053 0.0016 0.0015
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low-pass as well as multiscale filtering methods. Examples

of low-pass filters include the MF and the EWMA filter,

while examples of multiscale filters include the OLMS, the

SMS, the TI, and the BCTI filtering techniques. This com-

parison is conducted using simulated time-series biological

data contaminated by white noise. The simulated data

physically represent the concentrations of four metabolites

related by a dynamic model. The results of the comparative

analysis clearly show an advantage of the model-based over

the model-free filtering techniques due to the utilization of

the model, and that the PF by far outperforms the Kalman

filtering techniques, EKF and UKF, due to its ability to

0 100 200 300 400 500
0

2

4

6

N
oi

sy
 D

at
a

0 100 200 300 400 500
0

2

4

6

S
M

S
 F

ilt
er

in
g

0 100 200 300 400 500
0

2

4

6

T
I F

ilt
er

in
g

0 100 200 300 400 500
0

2

4

6

B
C

T
I F

ilt
er

in
g

Fig. 8 Comparison between the

performances of various batch

multiscale filtering methods for

the case, where SNR = 10

(dashed lines noise-free, solid

lines filtered)
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handle highly nonlinear systems. The results also show that

good noise removal is still possible without a model, espe-

cially using multiscale filtering, which has a clear advantage

over the conventional low-pass filters. It is demonstrated that

if filtering has to be implemented online (such as in biolog-

ical intervention), OLMS outperforms the online MF and

EWMA filters. However, if the filtered data are to be used to

model the biological system, where the biological data are

available a priori, the batch multiscale filtering techniques

(SMS, TI, and BCTI) can provide even better performances.

TI and BCTI provide smoother filtered data than SMS

because of the averaging they utilize, while BCTI gives more

accurate filtering at the edges.
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