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Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected almost all countries. The 
unprecedented spreading of this virus has led to the insurgence of many variants that impact protein sequence and structure 
that need continuous monitoring and analysis of the sequences to understand the genetic evolution and to prevent possible 
dangerous outcomes. Some variants causing the modification of the structure of the proteins, such as the Spike protein S, 
need to be monitored. Protein contact networks (PCNs) have been recently proposed as a modelling framework for protein 
structures. In such a framework, the protein structure is represented as an unweighted graph whose nodes are the central 
atoms of the backbones (C-� ), and edges connect two atoms falling in the spatial distance between 4 and 7 Å. PCN may also 
be a data-rich representation since we may add to each node/atom biological and topological information. Such formalism 
enables the possibility of using algorithms from graph theory to analyze the graph. In particular, we refer to graph embed-
ding methods enabling the analysis of such graphs with deep learning methods. In this work, we explore the possibility of 
embedding PCN using Graph Neural Networks and then analyze in the embedded space each residue to distinguish mutated 
residues from non-mutated ones. In particular, we analyzed the structure of the Spike protein of the coronavirus. First, we 
obtained the PCNs of the Spike protein for the wild-type, � , � , and � variants. Then we used the GraphSage embedding 
algorithm to obtain an unsupervised embedding. Then we analyzed the point of mutation in the embedded space. Results 
show the characteristics of the mutation point in the embedding space.

1 Introduction

Proteins play a prominent role in many biological pro-
cesses. The molecular structure determines the function of 
each protein. Structural data about each protein are usually 
determined from experiments (e.g. X-ray crystallography 
or NMR; Petrey and Honig 2005). More recently, a set of 
computational prediction methods (e.g., Jumper and Pritzel 
2021; Kukic et al. 2014; Palopoli et al. 2009; Gu et al. 2022) 
predicting protein structure has been introduced. Protein 
structures are finally stored in publicly available databases 
such as the Protein Databank (PDB) (Bittrich et al. 2022). 
Such data are also useful to unravel many biologically rele-
vant problems, such as the structure-to-function relationship 
and the interaction among proteins (Eswar et al. 2003). The 
so-far introduced analysis requires the use of appropriate 

computational models to represent structures and enable the 
development of novel algorithms.

Protein contact networks (PCNs) emerged as a relevant 
paradigm for the analysis of protein molecular structures 
(Di Paola et al. 2013). PCN are networks whose nodes rep-
resent the C − � atoms of the backbone of proteins, while 
edges represent a relative spatial distance among 4 and 
8 Å. Figure 1 depicts an example of a protein structure and 
fragment of the resulting graph. Topological descriptors 
of PCNs, such as centrality measures, are used to discover 
protein properties, even at the sub-molecular level. Protein 
modularity, for instance, is specifically suited to identify 
modular domains in a structure, whose mutual interactions 
are responsible for allosteric regulation, i.e., the protein 
structure adaptation to environmental cues (Khan and Ghosh 
2015; Das et al. 2021). Existing approaches use spectral 
clustering to identify network modules that correspond to 
allosteric regions (Tasdighian et al. 2014).

Despite the relevance, these approaches are based 
only on network structure. Thus, they cannot gather bio-
logical and biochemical information broadly available 
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for both nodes and edges. Moreover, classical clustering 
approaches are inherently transductive since they need to 
re-analyze all the networks in the presence of modification 
in both nodes and edges.

Many approaches have recently demonstrated that graph 
structures may be efficiently mapped into latent spaces and 
then analyzed using deep learning and data-mining meth-
ods. Such processes, known as embedding methods, map 
graph nodes into a so-called embedding space, and the 
transformation preserves node-similarity (Hamilton et al. 
2017b). There exist different node-embedding methods. 
A large class of methods were based only on the analy-
sis of the topology of the input graph [such as node2vec 
(Grover and Leskovec 2016), deep walk (Perozzi et al. 
2014)]. These methods had two main drawbacks: (i) the 
impossibility of including information related to nodes; 
(ii) the need to recalculate the whole embedding in case of 
graph changes. Subsequent methods overcame these limi-
tations by leveraging the computational power of an ad-
hoc-developed neural network. GraphSage (Hamilton et al. 
2017b) is a general framework that can leverage node fea-
tures (e.g. attributes associated with each node) to generate 
node embeddings. It is based on an inductive process, so 
it can generate node embedding for unseen nodes without 
requiring the analysis of the whole graph again. It is based 
on learning a function that generates embeddings by the 
analysis of the neighbourhood of each node aggregating 
the features. It has been used for node classification and 
clustering tasks with good performances.

Here we integrate the previous methods into a single 
framework of analysis. Our framework is based on the inte-
gration of existing software modules for the whole process 
of the analysis: Creation of the Protein Contact Network 
Embedding and analysis of the network Visualization of the 
results

We apply the framework by presenting a case study of the 
analysis of the structure of the Spike protein of SARS-CoV-2 
(Guzzi et al. 2020; Ortuso et al. 2021). SARS-CoV-2, which 
caused the recent pandemic, presents many sequence muta-
tions that impact its protein structure. Among the others, 
mutations of Spike protein are particularly of interest since 
they impact the transmission of the virus. To the best of our 
knowledge, existing work does not face the analysis of such 
mutation on the embedding space.

The aims of this work are:

• Providing a mechanicist framework for the analysis of 
the structure of PCN in general;

• applying the framework to study structures of the variants 
of the Spike protein;

• contributing to elucidating the differences among vari-
ants of the SARS-CoV-2 proteins.

Therefore we first consider protein structures of the wild-
type (i.e. unmutated) Spike protein and the structures of 
main variants: alpha, beta, delta, and omicron (Eskandar-
zade et al. 2022; Gordon et al. 2020; Kumar Das et al. 2021; 
Ortuso et al. 2022). Then we obtain the PCN representation 
for each structure. Finally, we map each structure into the 
embedding space using GraphSage and analyze the differ-
ences between mutated and unmutated residues. We train an 
unsupervised learning model, aiming to distinct in the topo-
logical space points of mutation from other points. Results 
evidence that PCN of variants are globally different, while 
more investigation needs to be performed to characterise 
these points better.

The paper is structured as follows: Sect. 2 introduces the 
Protein Interaction Network formalism. Section 3 discusses 
briefly the state-of-the-art approaches for node embed-
ding. Then, Sect. 4 presents the proposed framework, its 

Fig. 1  Figure shows an example 
of a PCN. On the right part of 
the figure, the spatial structure 
of the 7sbk protein is depicted. 
After the structure analysis, a 
graph, as represented on the 
right, is obtained
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architecture and main modules. Finally, Sect. 5 concludes 
the paper.

2  Protein interaction networks

A protein structure can be represented as a complex three-
dimensional object, formally defined by its atoms’ coordi-
nates in 3D space. Despite the large availability of protein 
molecular structures data, there are yet many problems 
regarding the relationship between protein structures and 
their functions. For this reason, it is necessary to define 
simple descriptors that can describe protein structures with 
few numerical variables. Structure and function are based 
on the complex network of inter-residue interactions, where 
residues are identified by aminoacids sequences (Di Paola 
et al. 2013). Therefore, the residues interactions are used 
to define protein interaction networks. Protein interaction 
networks are thus used to study protein functions. The most 
simple choice to define networks is to represent the protein 
structure using �-carbon location. The spatial position of C

�
 

is still reminiscent of the protein backbone, allowing us to 
highlight the three-dimensional structure’s most important 
characteristics. Starting from the C

�
 spatial distribution, a 

distance matrix d is evaluated where each di,j represents the 
Euclidean distance in the 3D space between the i-th and j-th 
residues, defined as

where (xi, yi, zi) and (xj, yj, zj) respectively are the Cartesian 
coordinates of residue i and j. Matrix d is used to define a 
Protein Contact Network concept, which is an alternative 
and different representation of using graph-based models 
to represent protein structures. A graph is the most natural 
structure to represent proteins, where nodes (or vertices) are 
the protein residues and links (or edges) between the i-th and 
the j-th nodes (residues) represent residue contacts. In the 
graph representation, there exists a link between two resi-
dues i and j if the distance between two residues (i.e., di,j ) is 
higher than 4 and lower than 8 Å. The lower end excludes 
all covalent bonds, which are not sensitive to environment 
change (so to protein functionality). In contrast, the upper 
end removes weaker non-covalent bonds (so not significant 
for protein functionality). At this point, it is possible to build 
up adjacency matrix A, whose generic element is defined as:

A graph’s adjacency matrix is unique regarding the ordering 
nodes. In the case of proteins, in which the order of nodes 
(residues) corresponds to the residues sequence (primary 

(1)di,j =

√

((xi − xj)
2) + ((yi − yj)

2) + (zi − zj)
2)

(2)Aij =

{

1 if 4Å ≤ dij ≤ 8Å

0 otherwise.

structure) it can be said that its corresponding network 
is unique: this establishes a one-to-one correspondence 
between protein and its network.

3  Graph embeddings

Graph embedding approaches represented an answer to the 
primary challenge within machine learning: finding a way 
to represent or encode graph structure so that the machine 
learning model can easily exploit it. These approaches, 
that are usually referred to as graph representation learn-
ing or graph-embedding, automatically learn to encode 
graph structure into low-dimensional embeddings, using 
techniques based on deep learning and nonlinear dimen-
sionality reduction (Hamilton et al. 2017a; Agapito et al. 
2019; Guzzi and Zitnik 2022). The main purpose of graph 
embedding methods is to encode nodes in a latent vector 
space which means packaging the properties of each node 
into a vector with a smaller size. The embeddings learned 
can also support graph analysis much faster and more accu-
rately compared to the direct execution of such tasks in the 
domains of complex high-dimensional graphs. Considering, 
for instance, node embedding, the aim of the mapping is to 
associate each node (and the associated features) to a low-
dimensional vector.

These vector spaces correspond to a notion of similarity 
by preserving a graph’s inherent properties and structure, 
i.e., similar nodes in the original graph space will be closer 
to each other in latent vector space. The generated embed-
dings reflect a network’s updated features that carry the non-
linear graph information.

Node embedding techniques generate low-dimensional 
vectors by solving an optimization problem that follows 
an unsupervised learning schema. Based on the approach 
to generate embeddings, node embedding methods can be 
categorized into three major categories: (1) Matrix-Factori-
zation, (2) Random walks, and (3) Graph Neural Networks. 
Embedding methods that fall under the matrix factorization 
and random-walk category are known as shallow embed-
ding methods. They are hard-engineered, transductive and 
often fail to capture node attribute information. In contrast, 
the graph neural network-based embedding methods are 
known as deep graph encoders as they produce better rep-
resentations by specifically involving in deep, multilayered 
approach for learning or training mechanisms.

In particular, the Random Walks-based approaches to 
learn node embeddings described over a walk with a suc-
cessive number of random steps in a network. The Random 
Walks incorporate local and higher-order topological neigh-
bourhood information of a network. The key idea is to derive 
the similarity between two nodes based on the co-occurrence 
of nodes in the respective random walks by observing that 
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two similar nodes have a greater chance of having similar 
random walks.

Different methods based on random walks have been 
developed depending on the strategy used to calculate 
similarity (e.g. the way to simulate random walks). Deep-
Walk (Perozzi et al. 2014) introduces unsupervised feature 
learning on graph data by incorporating truncated random 
walks to learn latent representations. The method exploits 
structural regularities and processes random walks equiva-
lent to sentences in neural language modelling. Node2Vec 
(Grover and Leskovec 2016), which is a modified version 

of Deepwalk, samples the sequence of random walk based 
on DFS (depth-first-search) and BFS (Breadth-FirstSearch) 
strategies. LINE (Tang et al. 2015) can embed networks of 
large sizes and arbitrary types: undirected, directed, and 
weighted. The model carefully designs an objective function 
that optimizes and preserves both the local and the global 
structural information of graphs by testing the performance 
on word analogy, text classification, and node classifica-
tion. Struct2vec (Ribeiro et al. 2017) model learning latent 
representations for classification task. The representations 
are generated via a biased random walk to produce node 

Fig. 2  Architecture of the proposed framework

Fig. 3  t-sne visualisation of 
node embeddings obtained by 
GraphSAGE for Spike protein 
of the alpha variant. Red dots 
represent site of mutation (col-
our figure online)
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sequences. All the proposed approaches have two main 
limitations: (i) they do not take into account data related to 
nodes (i.e. node features); (ii) they are inherently transduc-
tive, so they need to recalculate the whole embedding in 
case of any graph modification (e.g. node/edge insertion or 
removal). A set of different approaches have been introduced 
to overcome these limitation. The first method presented 
in literature is GraphSAGE (Hamilton et al. 2017a), which 
uses Graph Convolutional Networks to learn the mappings. 
GraphSAGE is based on an inductive framework that lever-
ages node feature information (e.g., text attributes), so it 
can gather such information during the embeddings and 
efficiently generate node embeddings for previously unseen 
data without analysing the whole graph. For each node i of 
the graph, GraphSage can learn the embedding by analyzing 
the neighbours’ information, e.g. all the nodes at a distance 
K = 2. After the determination of the neighborhood for each 
node, it use two functions for generating the embedding, 
aggregation, and concatenation. Aggregation functions 
accept a neighbourhood as input and combine each neigh-
bour’s embedding with weights to create a neighbourhood 
embedding. The aggregation function use weights that are 

shared among all the node of the graph, and such weights 
are either learned or fixed.

4  The proposed approach

4.1  Framework architecture

The proposed framework is based on some main modules, 
as represented in Fig. 2. Users may insert the input pro-
tein data, encoded as a PDB file through a Graphical User 
Interface. The GUI is responsible for invoking the building 
of the Protein Contact Network at first. The PCN-Creation 
module is realized by wrapping the PCN-Miner libraries 
(Guzzi et al. 2022a, b; Gu et al. 2022). After creating the 
network, the user may leverage embedding and subsequent 
mining libraries to analyse the embeddings. Both libraries 
are included in our framework by wrapping the Stellar Graph 
library (Data61 2018).

The StellarGraph library offers state-of-the-art algorithms 
for machine learning on graphs. It provides algorithms of 
representation learning for nodes and edges; Classification 
of nodes and edges, and link prediction. StellarGraph is built 

Fig. 4  t-sne visualisation of 
node embeddings obtained by 
GraphSAGE for Spike protein 
of the Delta variant. Red dots 
represent site of mutation (col-
our figure online)
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on TensorFlow 2 and its Keras high-level API, as well as 
Pandas and NumPy.

The framework is implemented in the Python Program-
ming Language.

The first step is the creation of a Protein Contact Network 
from structural data. The PCN-Creation module is responsi-
ble for this task. It reads a Protein Data Bank File, and it can 
build a PCN. For each atom of the C-� backbone the module 
adds a node into the PCN. Then, all the pairwise distances 
are calculated. Finally, for each distance among two atoms 
i, j that fall into the range 4–8 Å, the module adds an edge 
among nodes i, and j into the network. This step adds to 
each node the information about the centrality values of the 
node itself. The PCN-enrichment module is responsible for 
this task. Currently, we calculate closeness, eigenvector, and 
betweenness centrality (Guzzi and Milenković 2018). These 
values are a set of node features we add to each node through 
the networkX library.

Finally, we learn the representation of each PCN through 
Graphsage in an unsupervised mode. GraphSAGE learns 
node embeddings in this modality by solving a classification 
task: nodes are subdivided into positive and negative groups. 
Positive nodes are generated from the analysis of simulated 
random walks (i.e. nodes that frequently co-occur in random 
walks), while negative nodes are randomly selected pairs. 

The binary classifier predicts the likelihood of co-occurrence 
in a random walk performed on the graph. The classification 
task is used to learn an inductive mapping from attributes of 
nodes and their neighbours to node embedding.

We downloaded three protein structures, specified with 
a code (PDB code), from the Protein Data Bank (PDB 
https:// www. rcsb. org/), an archive of 3D structure data: 
7FET (variant alpha), 7SBK (variant Delta), and 7WK2 
(variant Omicron). Coordinates of the Carbon −� atoms 
were used to get PCNs. Starting from 3D structure, we 
obtained the corresponding PCN for each structure using 
PCN-Miner. This tool (Zitnik et al. 2018) allows to import 
the structure in .pdb format, to extract structural informa-
tion and to build the corrispective PCN. Protein network 
nodes are built to represent single residues. Links between 
nodes (residues) are defined if the distance between cor-
responding residues lies between 4 and 8 Å. This thresh-
old, that PCN-miner allows to set, is chosen to map con-
nections only for relevant non-covalent intra-molecular 
interactions. Then we calculated for each node following 
centrality measures: Degree, Eigenvector, Closeness and 
Betweenness. We then apply GraphSAGE with the stand-
ard parameters and we these points using t-sne transfor-
mation. Figures 3, 4, and 5, depict the embedding of the 
alpha, delta, and omicron variant. Each point on the figure 

Fig. 5  t-sne visualisation of 
node embeddings obtained by 
GraphSAGE for Spike protein 
of the Omicron variant. Red 
dots represent site of mutation 
(colour figure online)

https://www.rcsb.org/
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represent a residue. Red dots evidences points in which a 
mutation has been occurred.

The analysis of each map reveals that there is a substantial 
difference in the PCN of variants. Conversely, there are no 
appreciable differences in the topological parameters of the 
mutated variants with respect to those that are preserved. 
Hence, more deep investigations need to be performed.

5  Conclusion

Protein contact networks (PCNs) are a modelling frame-
work for protein structures. In such a framework, the 
protein structure is represented as an unweighted graph. 
Graph embedding methods enable to map of nodes into a 
latent space, including a set of information to each node, 
and then to analyze such graph with deep learning meth-
ods. In this work, we proposed a framework to perform 
such analysis and to study the mutation of the S protein 
of SARS-CoV-2.
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