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Abstract In this work, we extend the standard single-layer
probabilistic Latent Semantic Analysis (pLSA) (Hofmann
in Mach Learn 42(1–2):177–196, 2001) to multiple layers.
As multiple layers should naturally handle multiple modal-
ities and a hierarchy of abstractions, we denote this new
approach multilayer multimodal probabilistic Latent Seman-
tic Analysis (mm-pLSA). We derive the training and inference
rules for the smallest possible non-degenerated mm-pLSA
model: a model with two leaf-pLSAs and a single top-level
pLSA node merging the two leaf-pLSAs. We evaluate this
approach on two pairs of different modalities: SIFT features
and image annotations (tags) as well as the combination of
SIFT and HOG features. We also propose a fast and strictly
stepwise forward procedure to initialize the bottom–up mm-
pLSA model, which in turn can then be post-optimized by
the general mm-pLSA learning algorithm. The proposed
approach is evaluated in a query-by-example retrieval task
where various variants of our mm-pLSA system are com-
pared to systems relying on a single modality and other
ad-hoc combinations of feature histograms. We further
describe possible pitfalls of the mm-pLSA training and ana-
lyze the resulting model yielding an intuitive explanation of
its behaviour.
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1 Introduction

Many content-based image retrieval systems either solely
rely on visual features or on text features to derive a rep-
resentation of the image content. This is especially true for
systems using topic models based on probabilistic Latent
Semantic Analysis (pLSA) [7,16,22]. There are good reasons
why pLSA is applied to unimodal data: The straightforward
application of pLSA to multimodal data by subsuming all
words of the various modes (which are generally derived
from appropriate features of the respective modality) into one
large word set (called vocabulary) frequently does not lead
to the expected improvement in retrieval performance. Even
mixing words derived from different kinds of features within
one domain such as different kinds of visual salient point
descriptors (e.g., SIFT [23], SURF [2], Geometric blur [3], or
self-similarity feature [28]) using different sampling strate-
gies (e.g., dense versus sparse sampling) does not work sat-
isfactorily with this obvious application of pLSA.

Thus, we propose a multilayer multimodal pLSA model
(referred to as mm-pLSA) that can handle different modal-
ities as well as different features within a mode effectively
and efficiently. This model utilizes not just a single layer of
topics or aspects, but a hierarchy of topics. We introduce
the overall approach by using the smallest possible non-
degenerated mm-pLSA model: a model with two separate
sets of (leaf-)topics for data from two different modes and
a set of top-level topics that merges the knowledge of the
two sets of leaf-topics. This approach resembles somewhat
the computation of two independent leaf-pLSAs from two
different data modalities, whose topics in turn are merged by
a single top-level pLSA node, and thus lends the proposed
approach its name: mm-pLSA. From this derivation, it is obvi-
ous how to extend the learning and inference rules to more
modalities and more layers. We also propose a fast and strictly
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stepwise forward procedure to initialize the bottom–up mm-
pLSA model that leads to much better learning results of the
mm-pLSA learning algorithm compared to random initial-
ization.

The paper is organized as follows. Section 2 summarizes
related work. In Sect. 3, we first describe the model of the
standard pLSA algorithm (Sect. 3.1) as well as how to learn a
pLSA model in general (Sect. 3.2) and specifically from the
visual features (Sect. 3.3) and tag features (Sect. 3.5). Clas-
sification of a new image or text document is also addressed.
Then, Sect. 4 presents the core novelty of our work in detail:
the multilayer multimodal probabilistic Latent Semantic
Analysis model (mm-pLSA). It starts in Sect. 4.1 with a moti-
vation and a detailed explanation of the model, before we
derive the training and inference steps in Sect. 4.2. A heuris-
tic for fast and good initialization of the multilayer multi-
modal pLSA model is presented in Sect. 4.3 and carefully
evaluated in Sect. 5 on a large-scale database consisting of
10 million images downloaded from Flickr. Our proposed
mm-pLSA-based image retrieval system is compared to sys-
tems relying solely on visual features [22] or tag features as
well as to a pLSA-based system with the combined vocabu-
lary set from the visual and tag domain. Moreover, we com-
pare the mm-pLSA based image retrieval system on multiple,
same domain features to systems based on a single feature
and other ad-hoc combinations of these. In addition, further
insights of the resulting model are presented before Sect. 6
concludes the paper.

2 Related work

Topic models have been used in several previous works
to derive a low-dimensional image description suitable for
large-scale image retrieval. For example, [22] uses proba-
bilistic Latent Semantic Analysis (pLSA [16]) based mod-
els, [18] applies Latent Dirichlet Allocation (LDA [6]) to
derive a topic representation, and [13] adopts the Correlated
Topic Model (CTM [4]). However, all of the previous men-
tioned works build their image representation solely on visual
features.

In [1,5,24], the authors propose topic models to model
annotated image databases. They use the models to automat-
ically annotate images and/or image regions. One key differ-
ence of our work to those previous works is that we build an
image retrieval system instead of annotating images. More-
over, the image database we use for learning and retrieval is a
real-world, large-scale, 10 million images’ database in con-
trast to the small and almost noise-free COREL data-base
that was used in the above works for learning and testing.
Thus, in our case the tags associated with an image do not
necessarily refer to the visual content shown. For example,
they may also denote the time, date, place, or circumstances

under which the picture was taken. This makes models, which
try to associate image regions directly with tags, difficult to
learn and apply.

Our approach uses a hierarchical model as we have more
than one topic layer. In [29], the authors adapt the Hierar-
chical Latent Dirichlet Allocation (hLDA) model, which has
been developed originally for the unsupervised discovery of
topic hierarchies in text, to the visual domain. They use the
model for object classification and segmentation. However
their model only accounts for one modality: visual features.
Moreover, appropriate initialization of the complex model is
difficult. Another example of a hierarchical model for image
content are deep networks [15,17] with which—on a very
high-level point of view—we share the stepwise forward ini-
tialization and subsequent optimization.

The multi-feature pLSA [32] is somewhat similar to our
approach, but uses only a single topic layer that models the
co-occurrence of visual features of two different types at
once.

This article is a substantial extension of our previous pub-
lished work [21], which much more thoroughly analysis the
strengths and weaknesses of our proposed mm-pLSA model.

3 Standard pLSA

3.1 Motivation and model

The pLSA was originally devised by Hofmann [16] in the
context of text document retrieval, where words constitute
the elementary parts of documents. Applied to images, each
image represents a single visual document. pLSA can be
applied directly to image tags, as tags are simply words. How-
ever, for our visual features we need comparable elementary
parts called visual words. For the moment we assume that all
features we computed in a given mode are somehow mapped
to words in that mode. Details of the mapping from the visual
features to the mode-specific words are given in Sect. 3.3. For
now we just assume that we have words.

The key concept of the pLSA model is to map the high-
dimensional word distribution vector of a document to a
lower dimensional topic vector (also called aspect vector).
Therefore, pLSA introduces a latent, i.e. unobservable topic
layer between the documents (i.e. images here) and the
observed words. It is assumed that each document consists
of a mixture of multiple topics and that the occurrences of
words (i.e., visual words in the images or tags of images,
respectively) is a result of the topic mixture. This generative
model is expressed by the following probabilistic model:

P(di , w j ) = P(di )
∑

K

P(zk |di )P(w j |zk) (1)
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Fig. 1 Standard pLSA-model

Fig. 2 Term-document matrix

where P(di ) denotes the probability of a document di of the
database to be picked, P(zk |di ) the probability of a topic zk

given the current document, and P(w j |zk) the probability
of a visual word w j given a topic. The model is graphically
depicted in Fig. 1. Ni denotes the number of words of which
document di consists. In total we assume M documents. It is
important not to confuse Ni , the number of words in docu-
ment di , with N , the number of words in the vocabulary.

Once a topic mixture P(zk |di ) is derived for each doc-
ument di , a high-level representation has been found based
on the respective mode to which the words belong. At the
same time, this representation is of low dimensionality as we
commonly choose the number of concepts in our model to be
much smaller than the number of words. The K -dimensional
topic vector can be used directly in a query-by-example
retrieval task, if we measure document similarity by com-
puting the L1, L2, or cosine distance between topic vectors
of different documents.

3.2 Training and inference

Computing a term-document matrix of the training corpus is
a prerequisite for deriving a pLSA model (see Fig. 2). Each
entry in row i and column j of the term-document matrix
[n(di , w j )]i, j specifies the absolute count with which word
w j (also called a term) occurs in document di . The terms are
taken from a predefined dictionary consisting of N terms. The
number of documents is M . Note that by normalizing each
document vector to 1 using the L1-norm, the document vec-
tor (n(di , w1), . . . , n(di , wN )) of di becomes the estimated
mass probability distribution P(w j |di ).

We learn the unobservable probability distributions
P(zk |di ) and P(w j |zk) from the observable data P(w j |di )

and P(di ) using the Expectation-Maximization algorithm
(EM-Algorithm) [8,16]:

E-Step:

P(zk |di , w j ) = P(w j |zk)P(zk |di )∑K
l=1 P(w j |zl)P(zl |di )

(2)

M-Step:

P(w j |zk) =
∑M

i=1 n(di , w j )P(zk |di , w j )∑N
j=1

∑M
i=1 n(di , w j )P(zk |di , w j )

(3)

P(zk |di ) =
∑N

j=1 n(di , w j )P(zk |di , w j )

n(di )
(4)

Given a new test image dtest, we estimate the topic prob-
abilities P(zk |dtest) from the observed words. The sole dif-
ference between inference and learning is that the K learned
conditional word distributions P(w j |zk) are never updated
during inference. Thus, only Eqs. (2) and (4) are iteratively
updated during inference.

3.3 Visual pLSA-model

The first step in building a bag-of-words representation for
the visual content of images is to extract visual features from
each image. In our case, we apply dense sampling with a
vertical and horizontal step size of 10 pixels across the image
pyramid created with a scale factor of 1/

4
√

2 in order to extract
local image features at regular grid points. SIFT descriptors
[23] computed over a local region of 41 × 41 pixels are used
to describe the grayscale image regions around each grid
point in an orientation invariant fashion. Although we use
SIFT features in this work, any other feature could be used
instead.

Next, the 128-dimensional real-valued local image fea-
tures have to be quantized into discrete visual words to
derive a finite vocabulary. Quantization of the features into
visual words is performed using a flat vocabulary derived by
k-means clustering [30]. In contrast to our previous work we
use a flat vocabulary rather than a vocabulary tree [25] as the
hierarchical k-means clustering of the feature space has been
shown to be inferior to standard or approximate k-means in
previous works [26]. Also, speed is not a big issue with a
vocabulary size of 10,000 visual words, which we will use
in our experiments.

Once a visual vocabulary of size N v is determined, we
map all descriptor vectors of an image to their closest visual
words and build the document vector that holds the counts
of the visual word occurrences in the corresponding image
by incrementing the associated word count. Note that this
very popular image description does not preserve any spatial
relationship between the occurrences of the visual words.
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The image is simply modeled as a histogram (bag) of its
visual words.

The document vectors (also called co-occurrence vectors)
of randomly selected training images are then used to train a
pLSA model. Once a pLSA model is learned, it can be applied
to all images in the database and hence derive a vector repre-
sentation for each image, where the vector elements denote
the degree to which an image depicts a certain visual topic.
Given a query image and its topic distribution the retrieval
then works by finding the top r images with the closest topic
distribution to the query topic distribution in the database.

3.4 Fusion of multiple visual features

In this work, we also evaluate how the proposed multilayer
multimodal approach is able to combine different visual fea-
tures. In this particular case, we use the mm-pLSA to combine
SIFT and HOG features.

The basis for our 2 × 2 HOG features are the improved,
31-dimensional HOG cell features of [12] (see [12] for
details). Each individual HOG cell has a side length of 8
pixels, and these cell features are densely computed across
several scales with a scale factor of 1/

√
2. We combine 2×2

adjacent cell features into a block feature yielding a single
124-dimensional local image feature that can be quantized
into a visual HOG word. Each block is formed by computing
the histograms for the individual cells first and then aggre-
gating the cell histograms of blocks. Blocks are overlapping,
as a new block starts at every HOG cell.

The description of the image content by HOG blocks is
carried out analogous to that by SIFT features. HOG block
features of an image are quantized into 10,000 discrete visual
words using a flat visual vocabulary created with k-means
clustering. The computed term-document vectors then serve
as regular input to the topic models.

Note although HOG block features and SIFT features are
on one side very much alike as both are effectively histograms
of oriented gradients, they are on the other side also quite
different with respect to the strictness with which they encode
the spatial pattern of a local image region. SIFT encodes
the spatial layout of gradients within a rigid 4 × 4 spatial
grid, while in our case HOG employs a 2 × 2 spatial grid.
Moreover, the gradients of each HOG cell are normalized by
the gradient energies of surrounding cells. As a result SIFT
is often used to identify patterns of specific objects such as
of a specific landmark, a specific painting, etc. In contrast,
HOG is usually used to identify object categories such bikes,
people, cars, table, and a like.

Figures 3 and 4 show several examples of image patches
that are described by the same visual words of SIFT features
and HOG block features, respectively. Each row pair depicts
sample patches of a different specific visual word.

Fig. 3 Sample patches associated with four different visual word clus-
ters of SIFT features derived from a vocabulary of 10,000 visual words

Fig. 4 Sample patches associated with four different visual word clus-
ters of HOG block features derived from a vocabulary of 10,000 visual
words. Note although HOG features are computed from color images,
they effectively behave like grayscale features. Also they are not rotation
invariant

3.5 Tag-based pLSA-model

Besides the visual description of an image we also con-
sider tags as an additional modality. Tags are free-text anno-
tations provided by the image authors or image owners.
A tag can be single word as well as a phrase or a sentence.
While Flickr stores the original form of an annotation such
as “Golden Gate Bridge” in (here three) separate words, it
further provides a generated raw tag like “goldengatebridge”
that directly encodes the relationship of a particular word
combination. In this work we treat each of these generated
raw tags of the image annotations as one single word disre-
garding if it is a natural word or an artifically generated one.
Thus, in the following the term tag denotes a single word
derived from the raw tags and is used interchangeably with
“word” and “term”.

As we use Flickr images to evaluate our multilayer mul-
timodal pLSA model, it is important to note that these tags
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Table 1 The vocabulary size
before and after each filtering
step. TminOcc has been set to
1000 occurrences and TminUsers
has been set to 500 users

Number of images 10080251

Number of images with tags 9109593 (90.4%)

Number of Flickr users 852697

Vocabulary size after filtering step

Number of all tags (unfiltered) 1691336

Removal of tags with length less than 2 1690029

Removal of tags that occur in less than TminOcc images 6681

Removal of tags that contain numbers 6500

Removal of stop words 6467

Removal of tags used by less than TminUsers different Flickr users 3158

Final vocabulary size 3158

#Images with tags within vocabulary 8803834 (87.3%)

Vocabulary words present in Wordnet 2483 (78.6%)

reflect the photographer/author’s personal view with respect
to the uploaded image. Thus, in contrast to carefully anno-
tated image databases traditionally used for learning com-
bined image and tag models [1], these image tags from
Flickr are in many cases subjective, ambiguous, and do not
necessarily describe the image content shown [20,22]. This
makes it difficult to use the tags directly for retrieval purposes
and thus some preprocessing is required. Even worse, some
images do not have tags at all. In fact about 13% of all
Flickr images lack annotations. In this case, textual infor-
mation is not available for retrieval and a fallback strategy
is needed. This underlines the importance of using a multi-
modal approach when exploiting user-generated content for
image retrieval.

First a finite vocabulary needs to be defined, before a pLSA
model can be applied to tags. Building the vocabulary starts
with listing all tags that have been used more than TminOcc

times and by at least TminUsers different users. This heuristics
enforces that all rarely used tags are neglected. Note that a tag
is also rarely used if only a few users have used it independent
of the actually count. We further filter the list by discarding
all tags that contain numbers. Table 1 shows the vocabulary
sizes before and after filtering the available tags.

Once the tag vocabulary is defined, a co-occurrence table
(i.e. a the term-document matrix) is built by counting the
tag occurrences for each image. On average for annotated
images the number of tags per images in our database is 7.7
(not counting tag-free images). For some images, however,
the number of tags is unreasonably large as users have labeled
images with whole sentences or phrases.

In our previous work [21], we used Wordnet [11] to expand
the available image annotations. Wordnet is a lexical data-
base of English that provides access to links and relation-
ships between words. For each image we queried Wordnet
for the semantic parents of the tags specified by the author.

However, Wordnet is limited to English, and more than 20%
of the words in our final vocabulary are not part of Wordnet
(see Table 1). This may be caused by the use of different lan-
guages, slang words and abbreviations for annotations as well
as the generation of raw tags that describe a specific location
or scene. However, these annotations may carry very specific
and meaningful information for correct retrieval. Therefore
we do not restrict the annotations to plain English words.
As the automatic expansion of textual words e.g. with hyper-
nyms may also introduce additional noise to the annota-
tions, we do not use Wordnet throughout this work and focus
on the plain annotations provided by the image uploaders
themselves.

In our experiments, we set the thresholds for the mini-
mum number of occurrences TminOcc = 1000 and for the
minimum number of distinct users TminUsers = 500 resulting
in a vocabulary size of 3158 words. A larger tag vocabulary
would be beneficial for a retrieval that is based solely on
tags or other textual information. However, the training of
the pLSA model is performed by sampling a subset of the
whole database as training set (in this work 10,000 images).
Thus, tags that do not occur within the set of training doc-
uments are not used for learning the pLSA model. In other
words, tags that should be handled by the topic model need
to be sufficiently frequent across all images in order to be
included when (randomly) sampling the training set. This is
the reason, why we chose this relatively small vocabulary for
tags.

4 Multilayer multimodal pLSA

4.1 Motivation and model

In recent years, pLSA has been applied successfully to uni-
modal data such as text [16], image tags [24], or visual
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Fig. 5 The new multilayer multimodel pLSA model illustrated by
combining two modalities

words [19]. However, combining two modes such as visual
words and image tags is challenging. The obvious approach
of simply concatenating the two associated term-document
matrices NM×N v and NM×N t into NM×(N v+N t ) and then
applying standard pLSA usually does not lead to the desired
retrieval improvements. One reason is the difference in the
order of magnitude with which words occur in the respective
mode. For instance, a few thousand to 10,000 features per
image are usually computed from images that are resized to
having roughly the same number of dense samples while pre-
serving the image’s aspect ratio. In contrast, most images are
annotated with fewer than 20 tags. Compensating between
the differences in the order of the magnitude by some kind
of normalization is possible, but will require a lot of testing
to determine an appropriate weighting factor between the
different modes since the actual importance of each mode
must also be taken into account. Another reason may be the
difference in the size of the respective vocabularies. In con-
trast, a well-founded mathematical approach with top-level
topics will solve this issue effectively and efficiently. Some
empirical evidence for these claims will be given in Sect. 5.

Our basic idea is to apply pLSA in a first step to each mode
separately, and in a second step concatenate the derived topic
vectors of each mode to learn another pLSA on top of that (see
Fig. 7). While we describe this layering of multiple pLSAs
only for two leaf-pLSAs and a node pLSA, it is obvious that
the proposed pLSA layering can be extended to more than
two layers and applied to more than just two leaf-pLSAs.

The smallest possible multilayer multimodal pLSA model
(mm-pLSA) consisting of two modes with their respective
observable word occurrences and hidden topics as well as
a single top-level of hidden aspects is graphically depicted
in Fig. 5. Every word of mode x (here: x ∈ {v, t} with v

standing for visual and t for text) occurring in document di

is generated by an unobservable document model:
• Pick a document di with prior probability P(di )

• For each visual word in the document:

– Select a latent top-level concept ztop
l with probability

P(ztop
l |di )

– Select a visual topic zv
k with probability P(zv

k |ztop
l )

– Generate a visual word wv
m with probability

P(wv
m |zv

k )

• For each tag associated with the document:

– Select a latent top-level concept ztop
l with probability

P(ztop
l |di )

– Select a tag topic zt
p with probabilityP(zt

p|ztop
l )

– Generate a tag wt
n with probability P(wt

n|zt
p)

Thus, the probability of observing a visual word wv
m or a

tag wt
n in document di is

P(di , w
v
m) =

L∑

l=1

K∑

k=1

P(di )P(ztop
l |di )P(zv

k |ztop
l )P(wv

m |zv
k )

(5)

P(di , w
t
n) =

L∑

l=1

P∑

p=1

P(di )P(ztop
l |di )P(zt

p|ztop
l )P(wt

n|zt
p).

(6)

An important aspect of this model is that every image con-
sists of one or more part aspects in each mode, which in turn
are combined to one or more higher-level aspects. This is
very natural, since images consist of multiple objects parts
and multiple objects. The multilayer multimodal pLSA can
model this fact effectively—much better than a single layer
pLSA. Furthermore, this model is in better correspondence
with current belief to model the brain as a hierarchical recur-
rent network [14].

4.2 Training and inference

Given our word generation model (see Fig. 5) with its implicit
independence assumption between generated words, the like-
lihood L of observing our database consisting of the observed
pairs (di , w

v
m) and (di , w

t
n) from both modes is given by

L =
M∏

i=1

⎡

⎣
N v∏

m=1

P(di , w
v
m)n(di ,w

v
m )

N t∏

n=1

P(di , w
t
n)n(di ,w

t
n)

⎤

⎦ .

(7)

Taking the log to determine the log-likelihood l of the
database

l =
M∑

i=1

[
N v∑

m=1

n(di , w
v
m) log P(di , w

v
m)

+
N t∑

n=1

n(di , w
t
n) log P(di , w

t
n)

⎤

⎦ (8)
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and plugging Eqs. (5) and (6) in to Eq. (8), it becomes appar-
ent that there is a double sum inside of both logs making
direct maximization with respect to the unknown probability
distributions difficult. Therefore, we learn the unobservable
probabilities distribution P(ztop

l |di ), P(zv
k |ztop

l ), P(zt
p|ztop

l ),
P(wv

m |zv
k ) and P(wt

n|zt
p) from the data using the EM-Algo-

rithm [8]. Introducing the indicator variables

�clk =
⎧
⎨

⎩

1 if the pair (di , w
v
m) was generated

by ztop
l and zv

k
0 otherwise

�dlp =
⎧
⎨

⎩

1 if the pair (di , w
t
p) was generated

by ztop
l and zt

p
0 otherwise

the complete data likelihood Lc, that is the data likelihood
assuming that di , wz

n , wv
m , �clk , and �dlp are observable, is

given by

Lc =
M∏

i=1

⎡

⎣
N v∏

m=1

P(di , w
v
m ,�c)n(di ,w

v
m )

N t∏

n=1

P(di , w
t
n,�d)n(di ,w

t
n)

⎤

⎦

with

�c = (�c11, . . . ,�c1K , . . . ,�cL K ) (9)

�d = (�d11, . . . ,�d1K , . . . ,�dL P ) (10)

P(di , w
v
m,�c)

=
L∏

l=1

K∏

k=1

P(di )P(ztop
l |di )P(zv

k |ztop
l )P(wv

m |zv
k )

�clk (11)

P(di , w
t
n,�d)

=
L∏

l=1

P∏

p=1

P(di )P(ztop
l |di )P(zt

p|ztop
l )P(wt

n|zt
p)

�dlp (12)

Unlike in Eq. (8), we now only have product terms in the
complete likelihood Lc, thus its log-likelihood can easily be
termined and maximized,1 resulting in the following expec-
tation (E-step) and maximization (M-step) solution:

E-Step:

We estimate the unknown indicator variables �clk condi-
tioned on the observable variables di and wv

m by computing
their expected value:

1 A complete derivation of the EM-update equation for this mul-
tilayer multimodel pLSA model can be found at http://www.
multimedia-computing.de/wiki/mm-pLSA

cim
lk := E(�clk |di , w

v
m)

= P(�clk = 1|di , w
v
m) · 1 + P(�clk = 0|di , w

v
m) · 0

= P(�clk = 1|di , w
v
m) · 1

= P(di , w
v
m,�clk = 1)

P(di , wv
m)

= P(di )P(ztop
l |di )P(zv

k |ztop
l )P(wv

m |zv
k )∑L

l=1
∑K

k=1 P(di )P(ztop
l |di )P(zv

k |ztop
l )P(wv

m |zv
k )

.

(13)

Analogously, we estimate the unknown indicator variables
�dlp conditioned on the observable variables di and wt

n by
computing their expected value:

din
lp := E(�dlp|di , w

t
n)

= P(di )P(ztop
l |di )P(zt

p|ztop
l )P(wt

n|zt
p)

∑L
l=1

∑K
k=1 P(di )P(ztop

l |di )P(zt
p|ztop

l )P(wt
n|zt

p)

(14)

M-Step:
For legibility of the M-step estimates, we set

γ im
lk := n(di , w

v
m)cim

lk (15)

δin
lp := n(di , w

t
n)din

lp (16)

which is the expected probability of observing a pair (di , w
v
m)

multiplied with the actual number of occurrences and get:

P(di )
new =

∑N v

m=1n(di , w
v
m) + ∑N t

n=1n(di , w
t
n)

∑M
i=1

(∑N v

m=1n(di , wv
m) + ∑N t

n=1n(di , wt
n)

)

(17)

P(ztop
l |di )

new =
∑N v

m=1
∑K

k=1γ
im
lk + ∑N t

n=1
∑P

p=1δ
in
lp

∑L
l=1

(∑N v

m=1
∑K

k=1γ
im
lk + ∑N t

n=1
∑P

p=1δ
in
lp

)

(18)

P(zv
k |ztop

l )new =
∑M

i=1
∑N v

m=1γ
im
lk∑K

k=1
∑M

i=1
∑N v

m=1γ
im
lk + ∑P

p=1
∑M

i=1
∑N t

n=1δ
in
lp

(19)

P(zt
p|ztop

l )new =
∑M

i=1
∑N t

n=1δ
in
lp

∑K
k=1

∑M
i=1

∑N v

m=1γ
im
lk + ∑P

p=1
∑M

i=1
∑N t

n=1δ
in
lp

(20)

P(wv
m |zv

k )
new =

∑M
i=1

∑L
l=1γ

im
lk∑N v

m=1
∑M

i=1
∑L

l=1γ
im
lk

(21)

P(wt
n|zt

p)
new =

∑M
i=1

∑L
l=1δ

in
lp

∑N t

n=1
∑M

i=1
∑L

l=1δ
in
lp

(22)

Clearly, Eq. (17) is constant across all iterations and must
not be recomputed.
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Given a new test image dtest, we estimate the top-level
aspect probabilities P(ztop

l |dtest) with the same E-step equa-

tions as for learning and Eq. (18) for P(ztop
l |dtest) as the

M-step. The probabilities of P(zv
k |ztop

l ), P(zt
p|ztop

l ), P(wv
m |zv

k )

and P(wt
n |zt

p) have been learned from the corpus and are kept
constant during inference.

Remark 1 Normalization Before starting the mm-pLSA the
document vectors of different modalities, i.e. the entries
n(di , w

v
m) and n(di , w

t
n) should be normalized to equal scale,

e.g. such that the sums over each modality separately are
equal. This is crucial if one modality has document vectors
on a very different scale than the other modality, e.g. com-
pare the highly populated histograms of visual features to
very sparse tag histograms. In that case the mm-pLSA on
unnormalized feature histograms is dominated by the visual
domain and the probabilities P(zt

p|ztop
l ) would be close to

zero. Note that this normalization does not mean that e.g.
visual and textual modality have the same weight within the
mm-pLSA as the constraint for the conditional probabilities
of the subtopics given the supertopics is given by

K∑

k=1

P(zv
k |ztop

l ) +
P∑

p=1

P(zt
p|ztop

l ) = 1

In fact we noticed that the mm-pLSA on SIFT features and
tags determines a higher weight for the textual domain. See
Sect. 5.4 for further details.

Remark 2 Training The training itself must only consider
documents that have non-zero document vectors for both
domains. With missing co-occurrences across the modalities
the model training is useless. However, the inference still is
able to derive a topic distribution even if one modality (e.g.
annotations) is not available for an image.

Remark 3 Training Furthermore the training procedure
should sample training documents such that basically all
visual and textual aspects that appear in the database are also
present in the training set. However the number of images for
a certain class or category may vary. Therefore we pseudo-
randomly pick training samples by selecting documents at
certain intervals from the whole list of documents starting
at a random offset. This guarantees that the whole database
is used when drawing samples disregarding the actual lay-
out and order. Training documents of a certain category are
drawn with a probability corresponding to its size.

4.3 Fast initialization

More complicated probabilistic models always come with an
explosion in required training time. This issue is becoming
more severe, the more layers and the more pLSAs are aggre-
gated into higher-level pLSAs. Thus, we suggest to compute
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Fig. 6 The fast initialization of the multilayer multimodal pLSA model
computed in two separate steps

a decent initial estimation of the conditional probabilities in a
strictly stepwise forward procedure (see Fig. 7) as proposed
in [27].

For the smallest two-leaf high-level aspect model this pro-
cedure first computes an independent pLSA for each mode on
the lowest level. The aspects are only linked through the doc-
uments, ie., the same images (see Step 1 in Fig. 6). Next the
computed aspect of all modes are taken as the observed words
at the next higher level (see Step 2 in Fig. 6). This procedure
can continue until the top-level aspect vector is learned. The
final representation, the top-level aspect distribution for each
document, describes each image as a “distribution over topic
distributions” and thereby fuses the visual pLSA model and
the tag pLSA model. An overview of such an image retrieval
system based on this idea is shown in Fig. 7.

As we will show in the experimental results, this fast ini-
tialisation already produces a decent model. It can be fur-
ther be improved by appying the EM-algorithm as stated in
Sect. 4.2 to the complete model after initializing it with the
strictly forward computed solution. This will further improve
the solution.

Figure 8 shows the development of the complete data log-
likelihood along the increasing number of iterations. One can
observe that the mm-pLSA training converges much faster
when initialized with the former multimodal standard pLSA
solution over random initialization.

5 Experimental evaluation

5.1 Setup

For each of the visual features (SIFT, HOG) and the tag fea-
tures we learned a 50-topic pLSA model. The fast initializa-
tion of the mm-pLSA mapped the two 50-dimensional image
representations computed by the two base models (based on
visual features and tags) to a multimodal topic distribution
over 50 “super” topics. The randomly initialized mm-pLSA
and its optimized version with the general mm-pLSA learn-
ing algorithm directly computed a model with 50 topics.
The number of iterations used during training and infer-
ence varied. All models were computed using 500 iterations,
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Fig. 7 Schematic overview of the retrieval system based on our fast
initialization strategy. Given the fast initialization the subsequent full
mm-pLSA optimizes all three steps at once

Fig. 8 Log-likelihood over training data when learning the mm-pLSA
model. The mm-pLSA initialized by the strictly stepwise forward mul-
timodal pLSA converges much faster than the model starting from a
random initialization. The upper image shows the log-likelihood when
the mm-pLSA is applied for SIFT features and tags, the lower image
shows the log-likelihood for SIFT and HOG block features

except the mm-pLSA with the fast initialization method. In
this case the model was computed using 50 iterations, since
we already had a good starting point. Each pLSA model,
independent of whether a conventional unimodal or a mul-
tilevel multimodal pLSA model was trained with 10,000
images.

The only probability distribution computed during infer-
ence was the probability distribution P(ztop

l |di ) of the top-
level topics given the document. Therefore the EM-algorithm
converged faster than during training and the number of iter-
ations was reduced. For the inference of these topic distrib-
utions we used 200 iterations with the visual-based pLSA,
the tag-based pLSA, the concatenated topic-based pLSA, the
fast initialization of the mm-pLSA. 50 iterations were used
for the inference of the mm-pLSA models both on visual fea-
tures and tags and for all modes (either randomly initialized
or using the fast initialization).

We evaluated all the systems in a query-by-example task
and evaluated the results by a user study with 9 users. 80
query images were selected and the L1 distance was used to
find the most similar images. The query images are associated
with their original tags, while we only kept queries where the
original annotation roughly correspond to the image content.
The participants were asked to rate the 19 closest results to
each of our query images. Note that we always showed the
images without their associated tags as we evaluated a query-
by-image-example system. We used the following scoring
to get a quantitative performance measure: An image con-
sidered being similar received 1 point, an image considered
somewhat similar received 0.5 points. All other images got
0 points. A mean score was calculated for each user; the
mean over all users’ means yielded the final score of the sys-
tem being evaluated. Two example queries and the topmost
retrieved images are shown in Fig. 13.

As we also evaluate one system that is based solely on
tags, it happens that there are several hundreds up to thou-
sands of images that have the same distance to the query
image. This is due to the fact that images annotated with the
same words will yield the same topic distribution disregard-
ing the image content. For an unbiased evaluation the images
in the result list need to be sorted by ascending distance
(as usual) with an additional randomization step for images
with equal distances. That is, images with equal distance to
the query are randomized in their order while the ascending
order of distances is still maintained for the whole list. This
procedure eliminates any bias introduced by the order, in
which similar images are found when scanning through the
database (Table 2).

We further impose two additional constraints:

– Any retrieved image from the same Flickr user who
uploaded the query image will be ignored.
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Table 2 Example categories in Flickr-10M

Landmarks Scenes Objects

Abu Simbel, Allianz arena, Angel falls, Arc
de Triomphe, Church of Saviour Blood,
Ayers Rock, Banaue Rice Terrace, Basilica
de Notre Dame, Berlin Wall, Big Ben,
Bilbao Gugenheim Museum, Biosphere
Montreal, ...

Beach, Carnival, Christmas, City, Desert,
Forest, Portrait, Street, Sunset, Wedding

Aircraft, Bicycle, Bird, Boat, Bottle,
Building, Bus, Butterfly, Car, Cat, Chair,
Cow, Dog, Fish, Flower, Horse, ...

Activities National Parks Stars

Aikido, Archery, Arm wrestling, Ax
throwing, Badminton, Ballett, Baseball,
Basketball, Belly dance, Billards, BMX,
Bowling, Boxing, ...

Abel Tasman, Acadia, Addo Elephant,
Algonquin, Ayuittuq, Bandhavgarh, Banff,
Bromo Tenger, Cuc Phuong, Gran Paradiso,
...

Alice Cooper, Angenlina Jolie, Ashley
Olsen, Audey Hepburn, Barack Obama,
Ben Stiller, Bill Clinton, Bill gates,
Bono, Brad Pitt, Britney Spears, Bruce
Willis, Bryan Adams, ...

Total number of images (without duplicates ) 10,080,251

The full list is available at http://www.multimedia-computing.de/wiki/Flickr-10M

– Any Flickr user may only contribute a single image to the
result set. This is the one with the smallest distance, other
retrieved images of that specific user will be ignored.

These restrictions minimize the impact of image series uploa-
ded by a single user to the evaluation.

5.2 Dataset

We have created a new publicly available dataset called
“Flickr-10M”2 to evaluate the proposed retrieval method-
ology on a large real-world image database. This data set
consists of 10 million images downloaded from Flickr.

We aimed to make this dataset as diverse as possible to
allow the evaluation of greatly varying retrieval approaches.
Therefore we collected images that were annotated with spe-
cific tags, which indicate a variety of landmarks, scenes,
cities, stars as well as objects. Geotags were explicitly not
used to download images for two reasons: In most cases, the
number of images that actually have been geo-tagged is very
small even for popular landmarks. Furthermore many land-
marks are photographed from the far distance. In that case the
geo-tagged location may be far from the position of the land-
mark itself. Also, for many categories like cities or national
parks geotags are relatively meaningless despite narrowing
down the number of available images. Therefore, we focused
on tags and image descriptions. In cases a certain category
did not yield a sufficient number of images (e.g. several thou-
sands) we performed a full-text search for the query term in
the image description to select the downloaded images (See
Table 2 for examples).

This size of the dataset is beyond most datasets targeting a
specific domain like scenes (e.g. SUN database [31]), objects
(e.g. PASCAL VOC [10]), or landmarks (e.g. Oxbuild [26]).

2 The dataset and additional material are available at http://www.
multimedia-computing.de/wiki/Flickr-10M

It is comparable in its size to Imagenet [9] and orders of
magnitudes bigger than datasets that were previously used
for image retrieval evaluations like Oxbuild or Corel.

This dataset consists of JPEG images with their associ-
ated metadata. This includes tags, titles, descriptions, and
other user-generated content as well as other information
stored with the photos (e.g. EXIF data if available). There
are 852,697 different Flickr users that contribute at least one
photo to our dataset. In total there are more than 300 different
categories yielding a total of 10,080,251 images.

The database has not been cleaned or post-processed.
Thus, it includes all kinds of content, e.g. from high-quality
to low-quality photographs with and without annotations in
all kinds of languages. In short, we believe this database is
a representative sample of the real data that is uploaded and
shared on community websites and social networks on a daily
basis.

5.3 Results

First, we evaluate the fusion of the visual domain (repre-
sented by SIFT features) with the image annotations. The
results of this experiment are shown in Fig. 9. The first
two experiments measure the performance of the systems
based solely on visual features or tags and are labeled “pLSA
on SIFT” and “pLSA on tags”, respectively. “Concatenated
pLSA” denotes the model computed from merging the words
from the visual domain as well as the tag domain into a single
feature vector. The straight-forward approach of applying a
third pLSA model on top of the two base models is termed
“mm-pLSA (fast init only)”, while the mm-pLSA that is ini-
tialized randomly or with the outcome of the fast initialization
is denoted as “mm-pLSA (random init)” or “mm-pLSA (fast
init)”, respectively.

It can be seen that the system relying solely on tags per-
forms worse than the system relying solely on visual features.
This is somewhat unexpected as in previous work tags were
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Fig. 9 Scores for our different retrieval systems based on SIFT features
and tags. Vertical bars mark the standard deviation between the users’
means

shown to outperform the visual features alone (see [21] for
details). The third system, aiming to fuse the modalities by
simply concatenating the (normalized) occurrence counts,
performs better than the unimodal systems but worse than
than any mm-pLSA model.

Both mm-pLSA models with fast initialization only and
with optimizing the already good initialization outperform
the unimodal modals which confirms the expected superior
performance of multimodal models. However, the mm-pLSA
models with global optimization (either random initialization
or fast initialization strategy) perform slightly worse than the
model that only performs the fast initialization. This is unex-
pected and somewhat contradictory to previous works [21].
We suspect that the global optimization drifts too towards the
textual domain. Given the poor performance of tags alone the
overall performance then suffers. Another possible reason is
that the global optimization is unable to optimize the solu-
tion from the fast initialization strategy any further. Figure 8
shows that the log-likelihood of that model does hardly
increase. This may be caused by too much noise on image
annotations or a too small number of training documents.

The randomly initialized mm-pLSA model performs
worse than the mm-pLSA with fast initialization strategy.
This is in line with our expectations: we expected a ran-
dom initialized model to perform inferior to its well initial-
ized counterpart. It should be noted that as the EM-algorithm
already starts from a relatively good solution, the number of
required training iterations is small. Therefore the training of
the mm-pLSA with the fast initialization strategy is fast and
effective.

In a second serious of experiments, we evaluate how the
mm-pLSA can be used to fuse multiple features into a com-
bined representation. In these experiments the two modalities
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Fig. 10 Scores for our different retrieval systems based on SIFT and
HOG features. Vertical bars mark the standard deviation between the
users’ means

that are evaluated are SIFT and HOG features. The results of
the corresponding user studies are shown in Fig. 10. Similar
to the previous experiments, the pLSA on the concatenated
feature histograms does hardly improve over the better of
the two modalities. This observation underlines the impor-
tance of hierarchical models even for assumed easy tasks
such as multi-feature combination. Despite the close relation
of these gradient-based features one can see that a stepwise
combination of three pLSA models (termed “mm-pLSA fast
init only”) further improves the retrieval, but is slightly out-
performed by the mm-pLSA model that performs a global
optimization.

It remains subject of future research why the mm-pLSA
model with fast initialization strategy and global optimiza-
tion performs worse than expected on this data set but out-
performed all other in previous work in the case where SIFT
features and tags combined. A probably related issue is the
inferior performance of the tag-based model. One possible
solution may be to upscale the tag vocabulary in order to
describe such huge data set more accurately. Another poten-
tial solution may be to also include the provided textual image
description of Flickr images rather than tags alone.

5.4 Discussion

For further insights we visualize the conditional probabilities
of the modality-specific “subtopics” given the “supertopics”
(P(zv

k |ztop
l ) and P(zt

p|ztop
l )) of the mm-pLSA training.

We chose the mm-pLSA with fast initialization strategy
and plot these probabilities as a matrix, where the actual
probability value is mapped to a color ranging from dark
black for 0 to bright white for 1. Each row l of such a matrix
represents P(zv

k |ztop
l ) on the left half (split by the red line)
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Fig. 11 Visualization of the
matrix P(subtopics|
supertopics) for the mm-pLSA
on SIFT features and tags. One
row in this matrix denotes all
conditional probabilities
P(zk |supertopics) and
P(z p|supertopics) summing
to 1. The subtopics for the SIFT
features are shown on the left
half, the subtopics derived from
tags on the right half. (Best
viewed in color) (color figure
online)

Fig. 12 Visualization of
P(subtopics|supertopics) for
the mm-pLSA on SIFT and
HOG features. One row in this
matrix denotes all conditional
probabilities
P(zk |supertopics) and
P(z p|supertopics) summing
to 1. The subtopics for the SIFT
features are shown on the left
half, the subtopics derived from
HOG features on the right half.
(Best viewed in color) (color
figure online)

and P(zt
p|ztop

l ) on the right half. The columns then enumer-
ate the subtopics k and p correspondingly. Note that each
row sums to 1. Therefore one can easily identify the present
mixture of the modalities by looking at each row.

The conditional probabilities for SIFT features and tags
are shown in Fig. 11. It can be seen that most entries with
high probability value are present for tags only (right half of
Fig. 11). The visual part (left half) has no peaks but is appar-
ently less sparse. One can further observe that the entries in
each row with a significant probability (the visible entries) are
either on the visual or on the textual side, not on both. There
is no direct correspondence between visual topics and textual
topics. This means that each (super-) topic determined by the
mm-pLSA basically acts as a kind of auto-selection mech-
anism for these two modalities. The mixture of visual and
textual description is thereby achieved by representing each
individual image by a mixture of such supertopics. These are

in turn mutually exclusive on their subtopic representation,
but the mixture of these describes both modalities.

This is different for the multi-feature model combining
SIFT and HOG features. In Fig. 12, one can see that the
supertopics represent a real mixture of subtopics from differ-
ent modalities.

6 Conclusion

A very general scheme for multilayer multimodal probabilis-
tic Latent Semantic Analysis has been proposed. It naturally
extends the single-layer pLSA to the concept of layered
or hierarchical topics—a natural way to describe an image
composition. It also allows grasping concepts across dif-
ferent modalities. The proposed fast initialization technique
makes the mm-pLSA very practical and computable. The
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Fig. 13 Examples of retrieval results for the different approaches and
two different queries. The query image is shown at the top left corner
(pink frame) followed by the retrieved images. Query: “Eiffel Tower”:
Upper left pLSA on SIFT features. Upper right pLSA on tags. Lower
left mm-pLSA (the fast initialization only) on both SIFT and tags. Lower

right mm-pLSA with fast init and global optimization on both SIFT and
tags. Query: “bike”: Upper left pLSA on SIFT features. Upper right
pLSA on HOG features. Lower left mm-pLSA (the fast initialization
only) on both SIFT and HOG features. Lower right mm-pLSA with fast
init and global optimization on both visual feature types

overall approach was evaluated in a query-by-example image
retrieval scenario by users and outperformed unimodal pLSA
significantly. The simple structure of two leaves, one node
instance of such model was just an example and can be
extended to full tree structures with more than two layers.
Thus the mm-pLSA shows huge promise for future research
(See Fig. 13 for example queries and the corresponding
retrieval results).
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