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Abstract Mobile content-based multimedia analysis has
attracted much attention with the growing popularity of
high-end mobile devices. Most previous systems focus on
mobile visual search, i.e., to search images with visually
duplicate or near-duplicate objects (e.g., products and land-
marks). There remains a strong need for effective mobile
video classification solutions, where videos that are not visu-
ally duplicate or near-duplicate but are from similar high-
level semantic categories can be identified. In this work,
we develop a mobile video classification system based on
multi-modal analysis. On the mobile side, both visual and
audio features are extracted from the input video, and these
features are further compressed into compact hash bits for
efficient transmission. On the server side, the received hash
bits are used to compute the audio and visual Bag-of-Words
representations for multi-modal concept classification. We
propose a novel method where hash functions are learned
based on the multi-modal information from the visual and
audio codewords. Compared with traditional ways of com-
puting visual-based and audio-based hash functions based
on raw visual and audio local features separately, our method
exploits the co-occurrences of audio and visual codewords as
augmenting information and significantly improves the clas-
sification performance. The cost budget of our system for
mobile data storage, computation, and transmission is sim-
ilar to that in state-of-the-art mobile visual search systems.
Extensive experiments over 10,000 YouTube videos show
that our system can achieve similar classification accuracy
with conventional server-based video classification systems
using uncompressed raw descriptors.
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1 Introduction

The growing popularity of high-end mobile devices has trig-
gered many interesting research and applications, such as
mobile visual search for objects (e.g., products, buildings,
logos, printed media, and artwork). In the context of mobile
devices, successful applications need to tackle several chal-
lenging conditions. The low computation power, memory
and storage space on the mobile side make it necessary to use
remote servers for massive computation. The limited band-
width for wireless transmission makes it important to care-
fully select the amount of data sent from the mobile device
to the servers. Fast, sometimes faster than real-time, compu-
tation on the server side is usually required.

A popular workflow of a mobile visual search system is
described in Fig. 1. Local features such as SIFT, SURF,
or Compressed Histogram of Gradients (CHoG) [3] are
extracted at the mobile side, and such features are then
compressed, e.g., by coding techniques or compact hashing
methods. The compressed features usually have low bit rate
and can be efficiently transmitted from the mobile device
to remote servers. On the server side, similar images are
searched from the database based on distances between the
compressed local features. The systems have shown impres-
sive performances for searching images with visually dupli-
cate or near-duplicate objects [7,10,12]. For example, to
search for products, logos, landmarks, paintings, book cov-
ers, and so on. However, when searching for videos that are
not visually duplicate or near duplicate but are from similar
high-level semantic categories, e.g., “birthday” videos from
different birthday parties, the performance of such systems
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Fig. 1 A popular framework of mobile visual search

often suffers. In the case of video classification and catego-
rization, it has been shown by prior arts that multi-modal
(e.g., joint audio-visual) analysis is usually necessary to
achieve satisfactory performance [14,29].

As the amount of videos growing increasingly large
in recent years, many researchers have started to investi-
gate accelerated video concept classification [13,14,29]. A
widely used framework can be described as follows. The
input video is downsampled first, to reduce the resolution
and the number of visual and audio frames to process, so that
the computation cost of feature extraction can be reduced.
Then multi-modal features are extracted from the downsam-
pled data. The most commonly used features are the visual
local descriptors, e.g., SIFT and SURF, and the audio MFCC
descriptor.1 Next, the raw descriptors are further converted
to the Bag-of-Words (BoW) feature vectors. Specifically, the
raw visual (audio) descriptors are matched against the visual
(audio) codewords that are computed based on the training
videos, and the visual (audio) word frequencies of the input
video form the visual (audio) BoW representation. Several
techniques have been developed for fast BoW computation,
such as the vocabulary-tree-based methods [23,25]. For final
classification, the audio and visual BoW vectors can be either
early fused by concatenation, or individually fed into classi-
fiers to generate classification scores that are then combined
as late fusion. The SVM classifier is usually used due to its
proven performance for various video concept classification
tasks. In [20], an efficient framework has been further devel-
oped to speedup the SVM classification using the histogram
intersection kernels. It has been reported that the state-of-the-
art video concept classification systems can work real-time
on server machines [14,29].

In this work, we study real-time video concept classifica-
tion on mobile devices. Figure 2 gives the overall workflow
of our system. Similar to mobile visual search systems, we
need to maintain fairly low computation and storage costs at
the mobile side, transmit as few data as possible through the
wireless network, and ensure fast responses from servers. To
achieve these goals, on the mobile side, we first downsample
the input video to reduce the resolution and the number of
visual and audio frames. Next, audio and visual features are
extracted from the downsampled data. These raw features are

1 Information such as text or meta data is not generally used because
its existence is not guaranteed.

then compressed to generate compact hash bits for efficient
transmission. On the server side, the received hash bits are
used to compute the audio and visual BoW representations,
which are further used for multi-modal concept classifica-
tion. To cope with the state-of-the-art bit budget for data
transmission (tens of bits per feature and a few hundred fea-
tures per video) similar to that used in mobile visual search
[3,12], and at the same time, to maintain good classification
performance using the BoW representations, we propose the
following strategy for feature compression. Instead of com-
puting hash functions based on raw visual or audio features,
we learn our hash functions based on the visual and audio
codebooks. The advantages of our approach are threefold.

1. The number of raw audio and visual features (e.g., visual
SURF and audio MFCC) from training videos can be
very large (billions or even trillions). To generate well-
performing short codes, data-dependent hashing tech-
niques such as spectral hashing [31] should be used. Sig-
nificant downsampling of the raw descriptors is therefore
necessary to be able to effectively use the data-dependent
hashing techniques. Compared with random downsam-
pling, the audio and visual codebooks capture the infor-
mative centroids to represent the raw audio and visual
features. Hash functions computed based on codebooks
should outperform those computed based on randomly
downsampled raw features.

2. The hash functions computed based on codebooks are tar-
geted at mapping raw descriptors to similar correspond-
ing codewords. This is naturally aligned with the final
goal of using the compact hash bits, i.e., to compute the
BoW representations for classification.

3. There are rarely exact or near duplicate audio and visual
content from different videos. The hash functions found
based on the relatively small number of codewords usu-
ally result in higher recall, i.e., higher probability of find-
ing similar matching codewords, for the raw descriptors,
and therefore, result in higher hit rate of the true code-
words in the final BoW representation.

Feature compression reduces the amount of data for effec-
tive transmission. As a trade-off, it usually results in per-
formance drop. In this paper, to alleviate such performance
degradation for final classification, a multi-modal hashing
method is further developed. Based on the observation that
the low-dimension audio feature results in large performance
degradation, we use the visual information to help com-
press the audio descriptors. Specifically, the co-occurrences
of audio and visual codewords are used to construct an
augmenting multi-modal feature space, and we learn the
audio hash functions by preserving the local data neigh-
borhoods in both the original audio feature space and this
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Fig. 2 The workflow of our
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augmenting multi-modal feature space. Extensive experi-
ments over 10,000 YouTube videos show the effectiveness
of our system. We can achieve similar classification accu-
racy with the conventional server-based video classification
systems using uncompressed raw descriptors.

2 Related works

2.1 Fast video concept classification

As video sets grow increasingly large, the efficiency of com-
putation for video content analysis has become a critical
issue. Most of the state-of-the-art video concept classifica-
tion systems use the BoW framework that keeps showing
optimal performances over a series of benchmarks, such as
the TRECVID high-level feature extraction and multimedia
event detection [24], the Columbia Consumer Video (CCV)
classification [15], and the Hollywood human action classi-
fication [21]. To reduce the computational cost of the BoW
systems, several different approaches have been developed.
To reduce the time cost of quantization, the vocabulary-tree-
based methods have been developed [23,25]. To achieve real-
time classification, Uijlings et al. use a series of actions in
[29], including extracting the densely sampled DURF and
DIFT, using linear approximation of the histogram intersec-
tion kernel, and so on. The work of [13] significantly down-
samples image and audio frames to reduce the cost of feature
extraction, and uses an audio-visual grouplet representation
to reduce the final BoW dimension for classification. The
work of [14] gives an extensive evaluation of various audio
and visual descriptors and downsampling rates, and presents
a general framework for fast internet video classification.

2.2 Mobile visual search

The increasing popularity of high-end mobile devices enables
many interesting applications such as mobile visual search.
Using the mobile camera to initiate a query, users can search
for visually similar objects in the remote database. One major
effort is related to identifying duplicate or near duplicate
objects, such as products, logos, buildings and real estates,
printed media and artwork. Many commercial systems have
been developed, including Google Goggles [10], Amazon
Snaptell [2], etc. Active research has also been conducted in

recent years to further improve the performance of mobile
visual search systems. For example, the low-bit-rate CHoG
descriptor has been proposed [3], which reduces costs of
storage and transmission while maintaining good precision.
The Bag-of-Hash-Bits (BoHB) framework [12] incorporates
boundary-feature-based reranking to improve the accuracy
of mobile product search. The Active Query Sensing (AQS)
method [7] incorporates the active viewing-angle recommen-
dation mechanism to improve the performance of mobile
location search.

2.3 Hashing

Many hash coding-based algorithms have been proposed to
effectively approximate nearest neighbor search with high-
dimensional data. Let X ∈ R

d×n denote n data points, each
column xi being a datum in a d-dim feature space. Let Y ∈
B

r×n denote the binary codes of X, where each column y(xi )

is an r -bit binary code for xi . The most widely used hash
functions use linear projections with the following form:

hk(x) = sign(wT
k x + bk), (1)

where wk and bk are the projection vector and threshold,
respectively, for generating the kth bit. The corresponding
hash bit is given by yk(x)=(1+hk(x))/2.

A large variety of wk have been adopted. The approaches
based on locality-sensitive hashing (LSH) [6,8] use random
projections following a p-stable distribution for a general
l p norm. These methods have the theoretical advantage that
the input distance can be asymptotically preserved as the
number of hash bits increases. However, long codes are usu-
ally required to achieve good precision, and to alleviate the
recall degradation resulting from long codes, multiple hash
tables (often several hundred) have to be maintained for high-
dimensional datasets. Instead of using random projections,
the semi-supervised hashing (SSH) method [30] learns the
projection vector by minimizing the empirical error on the
labeled data while maximizing the overall entropy. The itera-
tive quantization (ITQ) method [9] first performs orthogonal
transformation over the data and then refines the initial trans-
formation by reducing the quantization error. To better cope
with linearly inseparable data or high-dim kernelized data
with implicitly known embedding, the kernelized methods
have been further developed, such as the Kernelized LSH
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[17], the Binary Recostructive Embedding (BRE) [16], and
the kernel-based supervised hashing (KSH) [19].

The optimal Hamming embedding of the dataset can also
be directly learned. Let A denote the affinity matrix between
pair-wise data points in the original feature space, i.e., each
Ai j measures the similarity between xi and x j . As discussed
in [31], the desired binary codes Y can be obtained by solving
the following optimization problem:

min
Y

tr (YLYT ) s.t. Y∈{1,−1}r×n, 1TY=0, YYT =I.

(2)

L is the graph Laplacian defined as L = D − A, where
D is a diagonal matrix and Dii = ∑

j Ai j . The constraint

1T Y = 0 requires each bit to fire 50 % of the time, and the
constraint YYT = I requires mutually uncorrelated bits to
reduce redundancy. However, the original problem of Eq. (2)
is NP-hard, and the spectral relaxation is usually applied to
remove the constraint: Y ∈ {1,−1}r×n . With the relaxation,
the optimal binary codes can be obtained through two steps:
(1) computing Y as the r eigenvectors corresponding to the r
smallest non-zero eigenvalues of the graph Laplacian L, and
(2) getting binary codes as sign(Y).

When extending the eigenvectors to unseen data, to reduce
computation, the spectral hashing method [31] assumes a
separable uniform data distribution and obtains a 1-D Lapla-
cian eigenfunction solution, and the AGH method [18] com-
putes an anchor graph Laplacian to preserve the approximate
data neighborhood.

3 Mobile video concept classification

3.1 Mobile side: feature extraction

Due to the limited computation and storage power, as well
as the limited bandwidth for transmitting data, the original
input video needs to be significantly downsampled in both
visual and audio channels. We conduct this downsampling
from several aspects.

One image frame is uniformly sampled from every 10 s,
and correspondingly, around the sampled image frame, a 6-s
audio signal is extracted. If the original sampled image frame
has high resolution, it is further downsized to 320 × 240.
Then, over the image frame, two types of visual features
are computed. The first is the SURF descriptor (128-dim),
which has proven performance in both accuracy and speed
in many previous systems [14,22]. The other is the 225-dim
grid-based color moment (GCM), which is very fast to com-
pute and has shown robust performance for general video
concept classification [1]. Over the downsampled audio sig-
nal, the 13-dim MFCC coefficients as well as their deltas are
computed, composing a 26-dim audio feature for each audio

frame. Such an audio feature has been proved effective for
general audio and video concept classification in previous
literature [4,26]. A fairly large audio frame, i.e., 250 ms win-
dow with 100 ms hop, is taken here, due to two reasons. First,
as shown in [26], the 250 ms audio frame setting can be more
appropriate for classifying audio concepts in generic audio
signals in consumer-quality videos. Second, the large audio
frame leads to a smaller number of audio features and can
save computation in later parts of the system.

Considering the constraint of transmission bandwidth, we
need to further reduce the amount of raw features, especially
for long videos. In our implementation, we uniformly sample
at most 1,000 SURF features for each video, and keep at
most 1,000 audio features per video. Only one global GCM
feature is used per video, which is the feature closest to the
mean of all GCM features in this video. Therefore, we have
1, 000×(128+26)+225 feature values (about 617 KB data)
for each input video. In many situations, these raw features
are still too many to be transmitted directly. Therefore, we
need to further compress such raw features to reduce the
amount of data for fast transmission.

3.2 Mobile side: feature compression

Recently, low-bit-rate descriptors have gained great atten-
tion in the research community. In [28], each SURF descrip-
tor is quantized and entropy coded to 36.8 bytes. In [3], an
effective CHoG descriptor has been developed, where each
local descriptor has only 53 bits. In [11], a bag-of-hash-bits
approach has been proposed where each local SURF descrip-
tor is compressed to 80 hash bits.

In this work, we aim to compress the visual SURF descrip-
tors and audio MFCC with delta descriptors into compact
bits, with similar bit budget to that of the states-of-the-art
[3,11]. We take an approach similar to [11], where we com-
press the visual and audio features by hashing. Different
from [11], we do not compose hash functions based on raw
visual or audio descriptors. We learn hash functions based
on the visual and audio codebooks, and then use the hash
functions to compress the visual and audio descriptors of
the input video. On the server side, after receiving the hash
bits, the audio and visual BoW features can be computed
based on the hash bits. The advantages of our approach are:
with a relatively small number of codewords, we can learn
hash functions using data-dependent hashing techniques such
as spectral hashing [31]; since there are rarely exact or
near duplicate descriptors from different videos, hash func-
tions found based on the relatively small number of code-
words result in higher recall (probability of finding similar
matching codewords) for the raw descriptors, and therefore,
result in higher hit rate of the true codewords in the final
BoW representation; and finally, hash functions computed
based on codebooks aim to map raw descriptors to similar
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corresponding codewords, which is naturally aligned with
the goal of generating the hash bits, i.e., to compute BoW
representations for final classification.

Many data-dependent hashing methods have been devel-
oped to overcome the limitations of the data-independent
LSH that long codes and a large number of multiple hash
tables are usually necessary to achieve reasonable precision
and recall. As discussed in Sect. 2.3, these methods learn
compact binary codes based on properties of the underly-
ing dataset. Representative approaches are the unsupervised
spectral hashing [31], BRE [16], AGH [18], the semi-su-
pervised SSH [30], and the supervised semantic hashing [27]
and KSH [19]. Since we do not have supervised training
labels over the audio or visual codewords, we need to use
unsupervised methods. Due to the limited memory and stor-
age on mobile devices, methods that require storing part of
the original training data in memory are too expensive to
use for large-scale problems. For example, the kernelized
LSH [17] and BRE [16] require to store the original training
data and compute kernel values between the test data and the
training data at run time. The AGH method [18], although
significantly reducing the storage and computation costs, still
requires, at run time, storing the original anchors in memory
and computing distances between the raw descriptors to the
anchor points. As a result, in our baseline approach, we use
the spectral hashing algorithm [31] to compress the audio
and visual descriptors.

3.2.1 The baseline approach

In the training process, a visual codebook is generated by
clustering all the SURF descriptors from all the training
videos into different codewords. The K-means algorithm is
used for this purpose, and the entire codebook has 10,000
codewords. By empirical study, such a codebook size is an
appropriate trade-off between the classification accuracy and
the computational cost. Similarly, a 10,000-codeword audio
codebook is generated by clustering all the MFCC plus delta
audio descriptors from all the training videos.

Then we generate hash functions based on the visual code-
book and the audio codebook, respectively. In the visual
aspect, we hash each of the original 128-dim SURF feature to
40 bits. Then on the server side, after receiving the hash bits,
5 hash tables are used to increase recall when computing the
visual BoW representation. The 5 hash tables are composed
by reusing the 40 bits, i.e., 24 bits are randomly sampled from
the 40 bits to generate each table. As suggested by [11], such
a method improves the recall without adding burden to trans-
mission. Also, the spatial location of each SURF descriptor
generates a 2-bit code (recording the location in the 2 × 2
spatial layout). So finally, each SURF descriptor has 42 bits.
In the audio aspect, each of the original 26-dim MFCC with
delta descriptor is hashed to 24 bits, and only one hash table is

used. The 225-dim GCM feature can be either directly trans-
mitted, or quantized then entropy coded (similar to [3]) for
transmission. In combination, for a 1-min video, we transmit
about 9 KB feature data from the mobile device to the server.
This bit budget is similar to that of the state-of-the-art image
search systems [3,11].

As can be seen from Fig. 3 in Sect. 4, compared with the
original descriptors, the compressed feature will sacrifice the
final classification performance. The performance degrada-
tion is especially severe for the audio feature (more than 50 %
MAP drop). It is highly desirable that a more effective hash-
ing method can be used to alleviate the performance drop,
especially in the audio aspect.

3.2.2 Multi-modal hashing

In this subsection, we develop a multi-modal hashing algo-
rithm for compressing the audio descriptors. The basic idea
is to improve the hashed audio feature with the help of visual
information. One possible reason for the large performance
drop in the audio aspect observed in the baseline approach
is the relatively low dimensionality (26 dim) of the orig-
inal raw audio descriptors. That is, it is especially hardly
true that the PCA-aligned descriptors can be modeled by a
multivariate uniform distribution, and the selected 24 hash
functions (eigenfunctions) to generating the 24 audio hash
bits tend to completely ignore the underlying data struc-
ture. Therefore, we propose to learn audio hash functions
by preserving the local data neighborhoods. To maintain
similar storage and computation budget with the baseline
spectral hashing method, we follow the idea of learning a
projection vector wk that is used to compose the linear-
projection-based hash function described in Eq. (1). Let W
denote the r ×d projection matrix whose rows are projec-
tion vectors wT

k . We learn the optimal W to preserve the
local data neighborhood that is defined based on information
from both audio and visual channels. At run time, we only
need to store the projection matrix W in memory, and only
need to perform one matrix multiplication to compress raw
descriptors.

Without loss of generality, we assume that the dataset X is
zero-mean, i.e., X has been normalized. According to Eq. (1),
the kth bit yk(x) of a datum x is given by:

yk(x) = (1 + hk(x))/2 = (1 + sign(wT
k x))/2. (3)

Following Eq. (2), we compute the optimal W by solving the
following problem:

min
W

tr(sign(WT X) L sign(XT W)) s.t. WT W = I.

The constraint WT W = I requires orthogonal projections,
which avoids redundancy in hash bits. As shown in [30], the
requirement of using exact balanced bits makes the above

123



208 Int J Multimed Info Retr (2013) 2:203–212

objective function intractable. Therefore, similar to [30], we
take the relaxation by replacing the sign of the projection with
its signed magnitude. That is, similar points should not only
have the same signs but also have large projection magni-
tudes, while dissimilar points should not only have different
signs but also have far apart projections. With such a relax-
ation, the original cost function turns to:

min
W

tr(WT XLXT W) s.t. WT W = I. (4)

The graph laplacian L is computed based on an affinity matrix
A, and in our approach, this affinity matrix incorporates infor-
mation from both audio and visual channels. Specifically,
based on the set of training videos V , an nv×na dimensional
co-occurrence matrix M can be computed, where each item
Mi j measures how likely the i th visual codeword and the
j th audio codeword co-occur. Let vk be a training video
in V , fv

BoW (vk) = [ f v
BoW (vk, 1), . . . , f v

BoW (vk, nv)] be the
BoW feature of video vk computed against the visual code-
book, and fa

BoW (vk) = [ f a
BoW (vk, 1), . . . , f a

BoW (vk, na)] be
the BoW feature of video vk computed against the audio
codebook. Mi j can be computed as:

Mi j = 1

|V|
∑

vk∈V
f v
BoW (vk, i) + f a

BoW (vk, j).

Using the original 26-dim audio MFCC with delta descrip-
tors, we can compute an affinity matrix Aa measuring the
pair-wise similarity between audio codewords, where each
item Aa

i j is given by:

Aa
i j =

{
exp

(−||xi − x j ||2/(σ a)2
)
, ∀ j ∈ 〈i〉

0, otherwise

〈i〉 ⊂ [1 : m] denote the indices of m nearest neighbors of
xi (i.e., m defines the size of local neighborhoods that we
want to preserve). In practice, we set m =10. The parameter
σ a is simply set as the mean value of all pair-wise distances
(measured in the original MFCC plus delta feature space)
between the audio codewords.

In addition, each column m j of the co-occurrence matrix
M can be treated as an nv-dim feature representation of
the j th audio codeword. Using this feature, another affinity
matrix Aa−v can be computed with items Aa−v

i j as:

Aa−v
i j =

{
exp

(−||mi − m j ||2/(σ a−v)2
)
, ∀ j ∈ 〈i〉

0, otherwise

where 〈i〉 ⊂ [1 : m] denote the indices of m nearest neigh-
bors of mi . We also set m = 10 in practice. The parameter
σ a−v , again, is simply set as the mean value of all pair-wise
distances (measured based on co-occurrence-based features)
between audio codewords.

Therefore, the final affinity matrix A can be computed as
a weighted combination of Aa and Aa−v:

A = Aa + ηAa−v. (5)

Using the graph Laplacian L that is computed based on the
affinity matrix A defined in Eq. 5, we can solve the problem
of Eq. 4 to obtain the optimal projection matrix W as the r
eigenvectors corresponding to the r smallest non-zero eigen-
values of the graph Laplacian L. At run time, to compress a
raw audio descriptor x, we only need to store the r ×d-dim
projection matrix W in memory, and only need to compute
the matrix multiplication Wx. Both storage and computation
costs are similar to (actually a little less than) those in the
baseline spectral hashing approach.

Similar to spectral hashing, we have the limitation that
the length of the binary codes cannot exceed the length of
the original feature dimension. In practice, we choose r as
the number of non-zero eigenvalues of L (r <26). Similar to
the baseline approach, only one hash table is used to compute
the audio BoW feature at the server side.

3.3 Server side

After obtaining the hashed visual and audio features, 42 bits
for each visual SURF descriptor (2 bits recording the spatial
information), and r bits for each audio descriptor, the visual
and audio BoW representations can be effectively computed.
We use Hamming ball of radius 1. Each visual BoW fea-
ture has 5nv dimensions (nv = 10, 000 in practice), which
is the concatenation of two BoW features corresponding to
the 1×1 and 2×2 spatial layouts, respectively. The audio
BoW feature has na dimensions (na = 10, 000 in practice).
Assume that we have C concepts. To classify each semantic
concept, the SVM classifiers using χ2-RBF kernels corre-
sponding to that concept are applied to the audio and visual
BoW features, respectively, to obtain the audio and visual-
based classification scores. At the same time, the SVM clas-
sifier using the Gaussian RBF kernel corresponding to that
concept is applied to the GCM feature to obtain the visual
global-based classification score. All these three scores are
first normalized by using a sigmoid function and then aver-
agely combined to obtain the final classification score. It
is worth mentioning that when the number of concepts C
increases, the computational time does not increase as fast,
since the most time consuming part in the whole process is
to compute the BoW features, and the same BoW features,
once computed, are used by all concept classifiers. In addi-
tion, the final SVM classification can be parallelled for further
speedup.
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4 Experiments

We evaluate our system based on the CCV dataset [15], which
is one of the largest video set of open-domain consumer
videos. The dataset contains 9,317 videos downloaded from
YouTube, 4,659 videos for training and 4,658 videos for test-
ing. The videos are manually annotated to 20 consumer con-
cepts focusing on human activities and events, objects, and
scenes. The average video duration is about 80 s. On aver-
age, each concept has about 400 positive samples, which are
evenly distributed in the training and test sets. The perfor-
mance is measured by Average Precision (AP, the area under
uninterpolated PR curve) and Mean AP (MAP, averaged AP
across concepts).

4.1 The baseline performance

Figure 3 (a–c) shows the performance of the baseline
approach where spectral hashing (SH) is used for feature
compression. We have the following observations.

1. The original SURF feature with two spatial layouts gets
roughly 0.36 MAP. This result is consistent with numbers
reported in [14] over the same dataset, since we use at
most 1,000 SURF points per video, which is equivalent
to using only 2–3 frames per video in [14]. The orig-
inal MFCC with delta feature gets roughly 0.22 MAP,
which is slightly better than the corresponding down-
sampled MFCC results reported in [14]. After feature
compression, both MFCC and SURF have large perfor-
mance drop. The MAP of “SURF-SH” drops 20 % from
the original “SURF,” and the MAP of “MFCC-SH” drops
even more (53 %).

2. In Fig. 3c, we combine classification scores from various
features by late fusion, and we can see that although the
largely downsampled MFCC with delta descriptor per-
forms not satisfactorily, the combination of audio and
visual features can still get big performance improve-
ments (30 % MAP gain compared with SURF alone).
Similarly, for the compressed feature, the combined
audio and visual descriptor can improve the MAP by
16 % compared with “SURF-SH,” despite the bad per-
formance of “MFCC-SH” alone.

3. It is also interesting to see that by adding the global
GCM feature, for classification using original audio
and visual descriptors, no benefit is obtained overall.
Instead, the MAP drops by 5 %. This confirms the
importance of using local visual descriptors for video
event and object classification, as observed by oth-
ers [14,24]. However, the global GCM feature con-
tributes a lot to the final classification performance
using hashed audio and visual descriptors. The “SURF-
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Fig. 3 Baseline performance: feature compression by spectral hashing

SH+MFCC&Delta-SH+GCM” outperforms the corre-
sponding “SURF-SH+MFCC&Delta-SH” by 17 % in
terms of MAP, and the improvement is consistent over
most of the concepts. This phenomenon confirms the
importance of including the global GCM feature in our
mobile video classification system, since the global GCM
feature is fairly low-cost to compute and transmit and has
the ability to boost the final classification performance.
Finally, compared with the best performing original
features (i.e., the “SURF+MFCC&Delta” method), the
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best performing compressed features (i.e., the “SURF-
SH+MFCC&Delta-SH+GCM” method) still have 17 %
MAP drop.

To further demonstrate the advantage of the proposed
codeword-based hashing framework, we compare our base-
line approach with the intuitive alternative method that com-
putes hash functions based on downsampled raw visual and
audio descriptors. Specifically, 1 million SURF descriptors
and 1 million MFCC plus delta descriptors are randomly sam-
pled from the training videos, and spectral hashing is applied
to the visual and audio raw descriptors, respectively, to gener-
ate the visual and audio hash functions. For fair comparison,
we use the same bit budget here, i.e., 40 bits and 5 hash tables
(24 bits for each table) for the visual part, 24 bits for the audio
part. Figure 4 shows the performance comparison. From the
figure, our baseline approach using codeword-based hash
functions significantly and consistently outperforms the cor-
responding hash functions computed over raw descriptors.
That is, “SURF-SH” outperforms “SURF-SH (Raw)” (by
32 % MAP improvement), “MFCC&Delta-SH” outperforms
“MFCC&Delta-SH (Raw)” (by 50 % MAP improvement),
and “SURF-SH+MFCC&Delta-SH” outperforms the corre-
sponding “SURF-SH+MFCC&Delta-SH (Raw)” (by 33 %
MAP improvement).

4.2 Performance of multi-modal hashing

Figure 5a, b shows the performance of our method where
multi-modal hashing is used to improve the performance of
audio feature compression.

From Fig. 5a, using the co-occurrence of audio and visual
codewords as additional information, the compressed MFCC
with Delta feature with multi-modal hashing (“MFCC-
&Delta-MMH” with η > 0) consistently outperforms the
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raw descriptors
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Fig. 5 Performance of our approach

compressed feature with spectral hashing (“MFCC&Delta-
SH”), over every concept. When η = 0, the problem of
Eq. (4) reduces to solving for a projection matrix W based
on the pair-wise affinity matrix defined in the audio feature
space alone, without using the audio-visual co-occurrence
information. As shown in Fig. 5a, when η > 0, the audio-
visual co-occurrence information can help to obtain a better
compressed audio feature. In addition, the final performance
is not very sensitive to parameter η. As η varies between
0.01 and 5, the overall MAP varies only a little bit. There-
fore, in practice, we simply set η = 1. In such a case,
the “MFCC&Delta-MMH” significantly improves the per-
formance of compressed audio feature by pulling up the
MAP back to roughly 0.22, which is the same as the original
uncompressed “MFCC&Delta” in Fig. 3b.

When we combine multi-modal classification scores
through late fusion, as shown in Fig. 5b, we can bring the
overall MAP of using compressed feature back to about
0.46, which is roughly the same with (actually slightly
better than) the MAP of using original uncompressed
descriptors. Over some concepts where audio feature plays
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critical roles, e.g., “bird”, “birthday”, “graduation” ,“wed-
ding ceremony”, “wedding dance”, and “music perfor-
mance”, the performance improvement compared with spec-
tral hashing is quite significant. This is because over these
concepts, our multi-modal hashing can largely improve the
quality of compressed audio feature, resulting in the final AP
boost for combined classification. Such experimental results
are quite encouraging, which show that with much less costs
in computation, storage, and transmission, the compressed
features can actually achieve the same classification perfor-
mance as the uncompressed features.

5 Conclusion

We develop a mobile video concept classification system
in this paper. Our approach uses a new method to learn
hash functions based on the multi-modal information from
the visual and audio codewords, and the generated com-
pact hash bits significantly outperform the traditional alter-
natives where hash functions are generated based on raw
visual and audio local features. Extensive experiments over
the large-scale YouTube video set show that our system can
conduct real-time video concept classification on mobile
devices with similar classification accuracy to the conven-
tional server-based video classification systems using corre-
sponding uncompressed raw descriptors.

The multi-modal analysis provides the opportunity of
learning multi-modal compact bits both for effectively rep-
resenting the video content and for efficient transmission.
The work described in this paper gives an example of using
the audio-visual co-occurrences to facilitate hashing audio
features for video concept classification. In the future, more
research will be conducted along this direction. Other types
of multi-modal information will be studied to help gener-
ate effective compact bits, in both visual and audio aspects.
Other applications, besides video concept classification, will
be investigated, such as video-based search and control.
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