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Abstract Reliable evaluation of Information Retrieval
systems requires large amounts of relevance judgments.
Making these annotations is not only tedious but also com-
plex for many Music Information Retrieval tasks. As a result,
performing such evaluations usually requires too much effort.
A low-cost alternative is the application of Minimal Test Col-
lections algorithms, which offer very reliable results while
significantly reducing the required annotation effort. The idea
is to represent effectiveness scores as random variables that
can be estimated, iteratively selecting which documents to
judge so that we can compute accurate estimates with a cer-
tain degree of confidence and with the least effort. In this
paper we show the application of Minimal Test Collections
to the evaluation of the Audio Music Similarity and Retrieval
task, run by the annual MIREX evaluation campaign. An
analysis with the MIREX 2007, 2009, 2010 and 2011 data
shows that with as little as 2 % of the total judgments we
can obtain accurate estimates of the ranking of systems. We
also present a method to rank systems without making any
annotations, which can be successfully used when little or no
resources are available.
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1 Introduction

The evaluation of Information Retrieval (IR) systems requires
a test collection, usually containing a set of documents, a set
of task-specific queries, and a set of annotations that provide
information as to what results a system should return for each
query [10,22]. Depending on the task, the set of queries may
comprise the collection of documents itself, and the type of
annotations can differ widely. In the field of Music IR (MIR),
building these collections is very problematic due to the very
nature of the musical information, legal restrictions upon the
documents, etc. [7]. In addition, annotating a test collection
is a very time-consuming and expensive process for some
MIR tasks. For instance, annotating a single clip for Audio
Melody Extraction can take several hours. As a result, test
collections for MIR tasks use to be very small, biased, and
unlikely to change from year to year, posing serious problems
for the proper evolution of the field [17].

The annual Music Information Retrieval Evaluation
eXchange (MIREX) started in 2005 as an international forum
to promote and perform evaluation of MIR systems for var-
ious tasks [8]. MIREX was developed following the princi-
ples and methodologies that have made the Text REtrieval
Conference (TREC) [24] such a successful forum for eval-
uating Text IR systems [6,23]. However, since its inception
in 2005, the MIREX campaigns have evolved in parallel to
TREC, practically ignoring all recent developments in the
evaluation of IR systems [10,17]. In fact, the last 5 years
have witnessed several works on low-cost, yet reliable eval-
uation techniques, allowing the number of queries used to
grow up to as many as 40,000 [5]. One of these works is the
development of algorithms for evaluation with Minimal Test
Collections (MTC) [1–3].

The idea behind MTC is that the results of an IR evaluation
experiment may be estimated with high confidence even if
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Table 1 Summary of MIREX
AMS editions

In the 2006 edition three
different assessors provided
annotations for every
query-document pair. The task
did not run in 2008

Year Teams Systems Queries Results Judgments Overlap

2006 5 6 60 1,800 3×1,629 10 %

2007 8 12 100 6,000 4,832 19 %

2009 9 15 100 7,500 6,732 10 %

2010 5 8 100 4,000 2,737 32 %

2011 10 18 100 9,000 6,322 30 %

the set of annotations is very incomplete. In a typical setting,
it means that we do not need to judge all documents retrieved
for a query, but only a small fraction of it, to estimate with
high confidence which of two systems is better. In this paper
we study the application of MTC to the evaluation of Audio
Music Similarity and Retrieval (AMS) systems, as it is one
of the tasks that most closely resembles the ad hoc Text IR
scenario: for a given audio clip (the query), an AMS system
returns a list of music pieces deemed to be similar to it. AMS
is one of the most important tasks in MIR, and it has been run
in MIREX in five of the seven editions so far (see Table 1).

Each edition of the AMS task requires the work of dozens
of volunteers to perform similarity judgments, telling how
similar two 30 s audio clips are. In the last edition, in 2011,
6,322 of these judgments were needed, meaning that at least
53 h of assessor time were needed to complete the judging
task. In practice, though, collecting all these judgments takes
several days, even weeks [11]. But along with the Symbolic
Melodic Similarity (SMS) task, AMS is one of the couple
of exceptions for which a new set of queries and relevance
judgments are put together every year. Most of the MIR tasks
just use the same collections over and over again because they
are too expensive to build, especially in terms of judging or
annotation effort. Therefore, the study of low-cost evaluation
methodologies is imperative for the development of proper
test collections to reliably evaluate MIR systems and properly
advance the state of the art [17].

Developing low-cost evaluation methodologies is essen-
tial for private, in-house evaluations too. A researcher inves-
tigating several improvements of an existing MIR technique
is not really interested in knowing how well they perform
for the task (which is highly dependent on the test collection
anyway), but in which one performs better. That is, she is
interested in the comparative evaluation of systems. MTC is
specifically designed for these cases: it minimizes the anno-
tation effort needed to find a difference between systems, iter-
atively selecting for judging those documents that are more
informative to figure out the difference between systems, and
reusing previous judgments when available.

2 AMS evaluation

Audio Music Similarity and Retrieval systems are evaluated
according to an effectiveness measure that assesses how well

they would satisfy an arbitrary user for a given query [18].
In order to generalize the results of an evaluation experiment
to an arbitrary query, the MIREX evaluations use a random
sample Q of 100 queries. Each system is run for every query,
returning a list of all documents in the collection D, ranked
by their similarity to the query. The effectiveness measure
used in MIREX is Average Gain of the top k documents
retrieved (AG@k), with k = 5 [8,19]. For an arbitrary sys-
tem A, AG@k is defined as:

AG@k = 1

k

∑

i∈D
Gi · I (Ai ≤ k)

where Gi is the gain of document i, Ai is the rank at which
system A retrieved document i, and I (x) is a boolean indi-
cator function that evaluates to 1 if the expression x is true
and to 0 otherwise. Therefore, the summation adds the gain
of all documents in the collection that were ranked by A in
the top k.

The gain of a document is a measure of how much informa-
tion the user will gain from inspecting that result. In MIREX,
there are two different scales [11,19]: the Broad scale is a 3-
point graded scale where a document is considered either not
similar to the query (gain 0), somewhat similar (gain 1) or
very similar (gain 2); and the Fine scale, where the gain of a
document ranges from 0 (not similar at all) to 100 (identical
to the query)1. These gain scores are assigned by humans,
who make similarity judgments between queries and docu-
ments. After all the judging is done, every system gets an
AG@k score for each query, and then they are ranked by
their mean score across all queries.

To minimize random effects due to the particular sample
of queries chosen, the Friedman test is run with the Average
Gain scores of every system to look for significant differ-
ences, and the Tukey’s HSD test is then used to correct the
experiment-wide Type I error rate [19]. The grand results of
the evaluation are therefore scale-dependent pairwise com-
parisons between systems, telling which one is better for the
current set of queries Q, and whether the observed difference
was found to be statistically significant.

1 In early editions of MIREX it was defined from 0 to 10, with one
decimal digit. Both definitions are equivalent.
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3 Evaluation with incomplete judgments

The evaluation methodology used in MIREX is expensive
in the sense that a complete set of similarity judgments is
needed: the top k documents retrieved by every system have
to be judged for every query. However, we may investigate
how to compare systems so that we do not need to judge
all documents and still be confident about the result of an
evaluation experiment.

The idea is to use random variables to represent gain
scores. The upside is that their value can be estimated fairly
well for most documents; the downside is that these estimates
will have some degree of uncertainty. The goal of MTC is to
select for judging those documents that allow us to compute
good estimates of the difference between systems with very
few judgments.

3.1 AG@k as a random variable

Let Gi be a random variable representing the gain of docu-
ment i. The distribution of Gi is multinomial and depends
on the similarity scale used: for the Broad scale Gi can take
one of 3 values, and for the Fine scale it can take one of 101
values. The expectation and variance of Gi are as follows:

E[Gi ] =
∑

l∈L
P(Gi = l) · l

Var[Gi ] =
∑

l∈L
P(Gi = l) · l2 − E[Gi ]2

(1)

where L is the set of possible relevance levels:

LBroad = {0, 1, 2}
LFine = {0, 1, . . . , 100}

Whenever document i is judged and assigned a gain l,
its expectation and variance are fixed to E[Gi ] = l and
Var[Gi ] = 0; that is, no uncertainty about Gi . Given this
definition of the gain of an arbitrary document, we can now
define the AG@k of an arbitrary system as a random variable
too.

Under the assumption that the gain of one document is
independent of the others, the expectation and variance of
AG@k are defined as:

E[AG@k] = 1

k

∑

i∈D
E[Gi ] · I (Ai ≤ k)

Var[AG@k] = 1

k2

∑

i∈D
Var[Gi ] · I (Ai ≤ k)

(2)

Having AG@k defined this way allows us to estimate its
value from an incomplete set of judgments. With no judg-
ments at all, the variance of the estimator would be max-
imum, but as judgments are made the variance decreases.

With all k documents judged, the variance is zero and the
estimate equals the true AG@k score.

3.2 Difference in AG@k

Using Eq. (2) we can estimate the AG@k score of a system.
But we are really interested in knowing which of two systems
performs better, that is, the sign of their difference in AG@k.

For arbitrary systems A and B:

�AG@k = 1

k

∑

i∈D
Gi · I (Ai ≤ k)− 1

k

∑

i∈D
Gi · I (Bi ≤ k)

= 1

k

∑

i∈D
Gi · (I (Ai ≤ k)− I (Bi ≤ k)) (3)

If �AG@k is positive, we can conclude system A performed
better than system B (worse if negative) for the query. We can
see that only documents retrieved by one system and not by
the other will contribute to �AG@k: documents retrieved by
both systems will contribute Gi−Gi = 0. Therefore, judging
these documents will not tell us anything about the difference.
Thus, the larger the overlap between the systems’ outputs,
the fewer the judgments necessary to figure out which one
is better. Because the two systems are independent of each
other, the expectation and variance are2:

E[�AG@k]= 1

k

∑

i∈D
E[Gi ]·(I (Ai ≤k)− I (Bi ≤k))

Var[�AG@k]= 1

k2

∑

i∈D
Var[Gi ]·(I (Ai ≤k)− I (Bi ≤k))2

(4)

Now that we can compute an estimate of the difference for
one query, let us generalize to a set of queries Q, computing
the mean of the �AG@k scores for all of them. As they are
sampled randomly3 [8,19], queries are independent of each
other, so the expectation and variance are:

E
[
�AG@k

] = 1

|Q|
∑

q∈Q
E[�AG@kq ]

Var
[
�AG@k

] = 1

|Q|2
∑

q∈Q
Var[�AG@kq ]

(5)

With these estimates we can rank all systems by their dif-
ference in AG@k. In addition, for a given set of judg-
ments, we can compute P

(
�AG@k ≤ 0

)
, that is, the prob-

ability of system A performing worse than system B. If
P

(
�AG@k ≤ 0

) ≤ α then we can conclude that system A
performs worse than B with α confidence (1− α confidence
of B being worse than A). If, while judging documents, we

2 The indicator functions are squared in the variance so all documents
have a positive contribution to the total variance.
3 Note that this is rarely true in Text Information Retrieval.
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Fig. 1 Distribution of AG@5 assuming a uniform distribution of gains
for the Broad (left) and Fine (right) scales. The red lines are normal
distributions with means E[AG@5] and variances Var[AG@5].

reach a certain confidence in the sign, say 95 %, we can stop
judging.

3.3 Distribution of �AG@k

To compute the confidence in the sign, we need to know
the distribution of �AG@k. For a relevance scale with only
two levels (similar and not similar), AG@k is basically the
same as P@k (precision at k), which can be approximated
by a normal distribution under a binomial or uniform prior
distribution of Gi [2]. In our case, the Broad scale has 3
possible levels, and the Fine scale has 101 levels.

Let us define �k as the set of all |L|k possible assignments
that can be made for k documents. The probability of AG@k
being equal to a value z is:

P(AG@k = z) :=
∑

γ k∈�k

P
(

AG@k = z|γ k
)
· P

(
γ k

)

that is, if we can compute the probability of making each
γ k assignment, we can just sum the probabilities of those
that lead to AG@k = z. In our case, there are 35= 243
possible assignments of relevance with the Broad scale and
1015 ≈10.5 billion assignments with the Fine scale. How-
ever, we still need information about the distribution of each
Gi in order to compute P

(
γ k

)
.

But AG@k turns out to be a special case. Let G be a ran-
dom variable representing the gain of the top k documents
retrieved by a system for all possible queries, and let the set
{AG@k1, . . . , AG@k|Q|} be a random sample of size |Q|
where each AG@kq is the average gain of k documents sam-
pled from G. By the Central Limit Theorem, as |Q| → ∞ the
distribution of the sample mean AG@k = ∑

AG@kq/|Q|
approximates a normal distribution, regardless of the under-
lying distribution of G. Therefore, with a large number of
queries �AG@k can be approximated by a normal distrib-
ution, because it is the sum of two variables approximately
normal themselves.

The left plot in Fig. 1 shows the histogram of possible
AG@5 scores with the Broad scale assuming a uniform

distribution of assignments; and the right plot shows the
scores observed in a random sample of 1 million assignments
with the Fine scale. The red lines are normal distributions
with means E[AG@k] and variances Var[AG@k]. We can
see that the normal distributions do indeed approximate very
well.

Therefore, we can use the normal cumulative density func-
tion � to approximate the probability of A being worse than
B as:

P
(
�AG@k ≤ 0

) = �

⎛

⎝ E
[
�AG@k

]
√

Var
[
�AG@k

]

⎞

⎠ (6)

which measures the area under the curve that is to the left
of zero. From here we can define the confidence CAB in the
sign of �AG@k as the maximum between the probability
of it being positive and it being negative:

CAB=max
(
P

(
�AG@k≤0

)
,1−P

(
�AG@k≤0

))
(7)

Whenever we pass a threshold on confidence, say CAB ≥
95 %, we can stop judging and conclude which system is
better based on the sign of E

[
�AG@k

]
.

3.4 Document selection

Equations (4) and (5) can be used to estimate the difference
between two systems with an incomplete set of judgments,
but the problem is: which documents should we judge? Ide-
ally, we want to judge only those that are most informative
to know the sign of the difference in AG@k. For just two
systems it is obvious from Eq. (3) only documents retrieved
by one system but not by the other one are informative. For
an arbitrary number of queries, we can just refer to a query-
document pair as a single document (i.e. the gain of a docu-
ment for a particular query).

However, with an arbitrary number of systems a partic-
ular document could be informative for more than just one
of the pairwise comparisons. We can assign a weight wi to
every query-document i, equal to the number of pairwise sys-
tem comparisons for which judging query-document i would
affect the estimate of �AG@k. Being S the set of all system
pairs, the weight of an arbitrary document i is defined as:

wi =
∑

(A,B)∈S
(I (Ai ≤ k)− I (Bi ≤ k))2 (8)

At all times, we will want to judge those documents with the
largest weight because they will have the largest effect on the
ranking. Algorithm 1 lists MTC to rank a set of systems S
with 1− α confidence.

For the stopping condition we compute the mean confi-
dence across all system pairs: if it is sufficiently large, we stop
judging altogether. We call this the confidence in the ranking.
We note though that MTC can be used with a different stop-
ping condition. For instance, we may require at least 95 %
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Algorithm 1 MTC for �AG@k

while 1
|S|

∑
(A,B)∈S CAB ≤ 1− α do

i∗ ← argmaxi wi for all unjudged query-document pairs
judge query-document i∗ (obtain true gaini∗ )
E [Gi∗ ]← gaini∗
V ar [Gi∗ ]← 0

end while

confidence in all comparisons, as opposed to an average of
95 % as we do here. In such cases, the definition of wi could
differ from that in Eq. (8). For instance, we could consider just
the system pairs for which CAB < 1−α, and make their con-
tribution to wi proportional to CAB. We could further modify
the algorithm by considering the magnitude of the difference
between systems instead of just its sign [18]. This would
allow us to estimate system differences from the perspec-
tive of expected user satisfaction, for instance by computing
P

(
�AG@k ≤ −0.3

)
instead of P

(
�AG@k ≤ 0

)
.

4 Estimation of gain scores

Equations (6) and (7) allow us to compute the confidence in
the sign of the difference between two systems. But tracking
back to Eq. (1), we still need to know what the distribution
of Gi is; that is, what P(Gi = l) is for each of the labels in
the similarity scale used. There are two immediate choices: a
fixed distribution for each document i, maybe estimated from
judgments in previous MIREX editions; or a distribution for
each document as returned by a model fitted with various
features.

4.1 Distribution of gain scores

A simple choice is to assume that every similarity assignment
is equally likely [3,20]. For the Broad scale, all three assign-
ments would have probability 1/3, while for the Fine scale
each assignment would have probability 1/101. According to
Eq. (1), an arbitrary unjudged document would have expec-
tation 1 and variance 2/3 in the Broad scale, and in the Fine
scale it would have expectation 50 and variance 850.

A better alternative is to estimate the gain score of each
document individually [1,2,4]. The problem reduces then to
fitting a model that, given certain features about a query-
document, allows us to estimate its gain score. We may
consider two frameworks for creating such a model: clas-
sification and regression. The classification approach is not
appropriate because it ignores the order of the labels. In the
Broad scale, for instance, it means that if the true gain of a
document were 0, an estimation of 1 would be as good as
an estimation of 2, while the latter is clearly worse. Linear
regression is not appropriate either, because the predicted
gains could be well outside the limits [0–2] and [0–100].

This could be solved with truncated regression [13], but we
would still need to make assumptions about its underlying
distribution. Multinomial regression has the same problem
as classification, namely that it ignores the order of the levels
in the outcome.

Ordinal logistic regression is the most appropriate
framework [4,12]. The dependent variable is modeled as an
ordinal variable and, as opposed to classification and multino-
mial regression, the order of the levels is therefore taken into
account. For an arbitrary similarity scale L = {l1, . . . , l|L|},
the model for our ordinal variable is:

log
P(Gi ≥ l j | fi )

P(Gi < l j | fi )
= α j +

| fi |∑

k=1

βk · fik (9)

where βk are the parameters to fit, α j is the fitted intercept
for the particular level l j , and fi is the feature vector for doc-
ument i. Once the model is fitted, we can use the inverse logit
function to compute P(Gi ≥ l j | fi ). Then, the probability of
Gi being equal to some similarity level l j is computed as4:

P(Gi = l j | fi ) = P(Gi ≥ l j | fi )−P(Gi ≥ l j+1| fi ) (10)

This proportional odds model is generalized by the Vector
Generalized Additive Model (VGAM) [26], which is imple-
mented in standard statistical packages such as R [25] and
facilitate the above calculations.

Therefore, the ordinal logistic framework allows us to esti-
mate the distribution P(Gi = l) in Eq. (1), which in turn
enables the computation of expectation and variance as usual.
As opposed to using the uniform distribution, this model is
expected to produce estimates closer to the true score and
with reduced variance. As a result, the confidence calcula-
tions as per Eq. (7) are expected to be more reliable and
require fewer judgments to pass a threshold like 95 %.

4.2 Features used and fitted models

We consider two types of features to use in the above model
in order to estimate gain scores: output-based features and
judgment-based features.

4.2.1 Output-based features

This set of features represent different aspects of the system
outputs, so they can still be used when there are no judgments
at all. For an arbitrary document d and query q:

– pSYS: percentage of systems that retrieved d for q. Intu-
itively, the more systems retrieve d, the more likely for
it to be similar to q.

4 Note that P(Gi ≥ l1| fi ) is always 1.
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– pTEAM: percentage of research teams participating in
MIREX that retrieved d for q. Systems by the same team
are likely to return similar documents, so the effect of
pSYS could be biased if teams participate with a large
number of systems. pTEAM can be used to reduce this
bias.

– OV: degree of overlap between systems, to calibrate
inherent similarities among systems when using the
pSYS and pTEAM features.

– aRANK: average rank at which systems retrieved d for
q. Documents retrieved closer to the top of the results
lists are expected to be more similar to q.

– sGEN : whether the musical genre of d is the same as
q’s (either 1 or 0), as documents of the same genre are
usually considered similar to each other [14].

– pGEN : percentage of all documents retrieved for q that
belong to the same musical genre as d does.

– pART: percentage of all documents retrieved for q that
belong to the same artist as d does. Note that a feature
like sGEN for artists does not make sense because all
retrieved documents by q’s artist are filtered out [8,9].

4.2.2 Judgment-based features

This set of features takes advantage of known judgments to
produce better predictions:

– aSYS: average gain score obtained by the systems that
retrieved d for q. Intuitively, a document retrieved by
good systems is likely to be a good result.

– aDOC: average gain score of all the other documents
retrieved for q. Likewise, this feature models query dif-
ficulty: if documents retrieved for q are not similar, d is
not likely to be similar either.

– aGEN : average gain score of the documents retrieved for
q that belong to the same genre as d does.

– aART: average gain score of the documents retrieved for
q and by the same artist as d’s.

4.2.3 Fitted models

We used data from the MIREX 2007, 2009, 2010 and 2011
editions of the Audio Music Similarity and Retrieval task to
fit the models following the regression framework described
in Sect. 4.1. Starting with a saturated model, we simplified
to a model, called L judge, using the features pTEAM, OV,
aSYS and aART. All these features showed a very significant
effect on the response (p < 0.0001). While other features
did improve the model, they did so very marginally, so we
decided to keep it as simple as possible. The coefficient of
determination R2 can be used to assess the goodness of fit,
measuring the proportion of variability in the outcome that is

accounted for by the model. The predictions of L judge are par-
ticularly good, with an adjusted R2 score of approximately
0.9 (the value R2 = 1 means that the model offers a perfect
fit of the data).

Even though L judge produces very good results, we can
only use it to estimate the Gi scores of documents for which
we can compute both aSYS and aART. However, because our
goal is to reduce the amount of judging as much as possible,
we will not be able to estimate the gain scores for most of the
documents until we have made a fair amount of judgments.
Therefore, we decided to fit another model, called Loutput,

that only uses output-based features. With this model, we can
always estimate Gi scores, even when there are no judgments
available at all.

Proceeding as before, we simplified to a model using
the features pTEAM, OV, pART, sGEN, pGEN and the
sGEN:pGEN interaction. Despite all features showed again
a significant effect (p < 0.0001), the predictions were sig-
nificantly worse than with L judge, resulting in an adjusted R2

score of approximately 0.35.
When fitting the models for the Fine scale, we further

simplified by breaking the scale down to 10 levels rather
than the original 101. Therefore, we actually use the scale
{0, 11, 22, . . . , 99}. In order to avoid overfitting, when esti-
mating the gain scores for one MIREX edition we excluded
all data from that edition when fitting the model. There-
fore, we actually fitted L judge and Loutput for each scale and
each edition. See the appendix for more details regarding the
models.

4.3 Estimation errors in practice

To check the accuracy of the Gi estimates we again used
the similarity judgments collected in MIREX 2007, 2009,
2010 and 2011 (see Table 2). First, we computed the Root
Mean Square Error (RMSE) between every document’s true
gain score and its estimation. The errors with the uniform
prior distribution are≈0.8 with the Broad scale and≈30 with
the Fine scale. Both regression models consistently produce
less error, with the L judge model having an error of ≈ 0.27
with the Broad scale and ≈ 8.9 with the Fine scale; that is,
the error is reduced to about one third.

In MIREX 2006 three different assessors provided judg-
ments for each query-document pair [8,11]. If we consider
one assessor’s judgments as the truth, and the other’s as mere
estimates, we find that the average RMSE among assessors
was 0.795 with the Broad scale and 31.2 with the Fine scale.
We note that these errors are extremely similar to the errors
of the Loutput model (see Table 2), and quite larger than the
errors of the L judge model. Therefore, we argue that the errors
we make when using MTC or ranking without judgments
are comparable to the differences we should expect just by
having a different human assessor in the first place [11,21].
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Table 2 Average error and variance of the Gi estimates computed with the uniform distribution and regression models

Year Broad scale Fine scale

Uniform Loutput L judge Uniform Loutput L judge

RMSE Var RMSE Var RMSE Var RMSE Var RMSE Var RMSE Var

2007 0.813 0.667 0.639 0.436 0.260 0.067 31.9 850 24.3 601 8.83 70

2009 0.812 0.667 0.632 0.454 0.254 0.069 31.1 850 23.4 626 8.76 73

2010 0.794 0.667 0.706 0.394 0.283 0.07 30.2 850 26.1 549 8.94 73

2011 0.789 0.667 0.690 0.390 0.304 0.078 29.6 850 25.2 561 9.36 72

2007 − Broad

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

2009 − Broad

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

2010 − Broad

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100
0.

8
0.

85
0.

9
0.

95
1

Learned
Uniform

2011 − Broad

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

2007 − Fine

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

2009 − Fine

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

2010 − Fine

Percent of judgments

C
on

fid
en

ce
 in

 th
e 

ra
nk

in
g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

2011 − Fine

Percent of judgments
C

on
fid

en
ce

 in
 th

e 
ra

nk
in

g

0 20 40 60 80 100

0.
8

0.
85

0.
9

0.
95

1

Learned
Uniform

Fig. 2 Confidence in the ranking of systems as the number of judgments increases. The dashed lines mark the point at which 95 % confidence is
reached for the first time

The MIREX evaluations assume arbitrary final users, so these
errors can be ignored for all practical purposes. If no arbitrary
users were assumed, but specific users were considered for
instance in personalization [18], then our estimates would be
erroneous to the degree reported here.

We also compared the average variance of the estimates.
In Sect. 4.1 we saw that the variance in the uniform estimates
is 2/3 with the Broad scale and 850 with the Fine scale. As
Table 2 shows, the regression models improve the estimates
also in terms of variance. The L judge model reduces variance
by one order of magnitude: ≈0.07 with Broad judgments
and ≈72 with Fine judgments. Thus, the regression models
provide better estimates and reduce variance to achieve high
confidence in the sign differences earlier in the process.

5 Results

We simulated the use of MTC to evaluate all systems
from the MIREX 2007, 2009, 2010 and 2011 Audio Music

Similarity and Retrieval task (see Table 1). The number of
pairwise system comparisons are 66, 105, 28 and 153, respec-
tively. Recall that the Loutput and L judge models for one edi-
tion are fitted ignoring all information from that same edition,
thus avoiding overfitting. When using MTC with the regres-
sion models, all Gi scores are estimated at the beginning with
Loutput, and updated every 20 judgments, when possible, with
L judge.

Figure 2 shows how the confidence in the ranking of sys-
tems increases as more judgments are made. This confidence
in the ranking can be interpreted as the expected confidence in
the sign of �AG@k of any two systems picked at random.
MTC with the estimates based on the uniform distribution
need about 60 % of the judgments to reach 95 % confidence
in the ranking. However, it is clearly outperformed by MTC
with the learned distribution. As Table 3 shows, the judg-
ing effort is dramatically reduced: the median percentage of
judgments needed with the Broad scale is 3 %, and as little as
1.8 % with the Fine scale. Considering that a single MIREX
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Table 3 Judgments needed by
MTC to reach 95 % confidence
in the ranking of systems and
accuracy of the sign estimates at
that point

All Gi scores are estimated with
Loutput and L judge

Year Total judgments Broad scale Fine scale

Judgments Accuracy τ Judgments Accuracy τ

2007 4,832 200 (4.1 %) 0.955 0.909 80 (1.7 %) 0.955 0.909

2009 6,732 300 (4.5 %) 0.971 0.943 440 (6.5 %) 0.952 0.905

2010 2,737 13 (0.5 %) 0.893 0.786 2 (0.1 %) 0.857 0.714

2011 6,322 120 (1.9 %) 0.941 0.882 120 (1.9 %) 0.941 0.882
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Fig. 3 Accuracy of the ranking of systems as the number of judgments increases. The dashed lines mark the point at which 95 % confidence is
reached for the first time

assessor makes about 220 judgments per edition [8,11], the
use of MTC would significantly reduce the required man-
power to just 1 or 2 assessors.

We can see that very high confidence levels can be
achieved with considerably fewer judgments, but how good
are the estimates of the sign of �AG@k? Figure 3 shows
how the accuracy of the estimated ranking tends to increase
as more judgments are made, where accuracy is defined as
the proportion of sign estimates that are correct across all
systems pairs:

Accuracy = correct

total

In particular, Table 3 reports the performance of MTC when
judging until the average confidence achieved is 95 %. The
accuracy is above 0.95 for the 2007 and 2009 collections,
and as high as 0.941 for 2011. However, for 2010 it drops
below 0.9 for 2010. Nonetheless, in no case is an estimate
wrong between two systems for which the true �AG@k is
statistically significant.

Another traditional way of comparing the estimated rank-
ing and the true ranking is to compute Kendall’s τ correlation
coefficient between the two, defined as:

τ = correct− incorrect

total

Kendall’s τ ranges between 1 (exact same rankings) and −1
(opposite rankings), with 0 meaning that half of the pairs
are swapped. Rankings with correlations above 0.9 are usu-
ally considered equivalent if we account for the effect of
having one or another assessor make the judgments [11,21].
Formally, 0.9 Kendall correlation is achieved with 5 % of
incorrect estimates, which corresponds to 0.95 accuracy. As
Table 3 shows, correlations are above 0.9 in the 2007 and
2009 collections, but a little below in 2011 and, especially,
in 2010. However, we note that with only 28 system pairs
in 2010, just a single incorrect estimate would drop τ to
26/28=0.929; so low correlations are expected with this
collection. This dramatic effect of one single erroneous esti-
mate can be easily seen in Fig. 3. Nonetheless, the median
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Table 4 Accuracy versus confidence in the sign estimates when running
MTC to 95 % confidence in the ranking

Conf. Broad scale Fine scale

In bin Acc. In bin Acc.

[0.50, 0.60) 7 (2.0 %) 0.714 13 (3.7 %) 0.615

[0.60, 0.70) 15 (4.3 %) 0.733 13 (3.7 %) 0.846

[0.70, 0.80) 11 (3.1 %) 0.818 7 (2.0 %) 0.714

[0.80, 0.90) 24 (6.8 %) 0.833 24 (6.8 %) 0.833

[0.90, 0.95) 15 (4.3 %) 0.733 15 (4.3 %) 0.667

[0.95, 0.99) 31 (8.8 %) 1.000 22 (6.2 %) 0.909

[0.99, 1) 249 (70.7 %) 0.992 258 (73.3 %) 0.996

Table 5 Confidence and accuracy of the estimated ranking when no
judgments are made

Year Broad scale Fine scale

Conf. Acc. τ Conf. Acc. τ

2007 0.941 0.909 0.818 0.946 0.924 0.848

2009 0.925 0.933 0.867 0.929 0.943 0.886

2010 0.947 0.893 0.786 0.949 0.857 0.714

2011 0.939 0.948 0.895 0.942 0.948 0.895

correlation across collections is as high as 0.896 with the
Broad scale and 0.894 with the Fine scale. We note again
that all mistakes are produced between systems that are not
significantly different anyway.

5.1 Accuracy of the individual estimates

Despite the average confidence in the ranking generally cor-
responds to the average accuracy of the sign estimates, there
can be the case where the average confidence is biased by a
few comparisons for which we are extremely confident. The
question now is: how trustworthy are each of the individ-
ual estimates? We ran MTC with all four collections and the
two similarity scales, and stopped judging when the average
confidence was at least 95 %. The 352 system pairs from all
four collections were divided by confidence in the sign of the
individual E

[
�AG@k

]
.

Ideally, we would want accuracy to correspond to confi-
dence (e.g. 0.80 accuracy in all pairs with 0.80 confidence),
and Table 4 shows that this is generally the case. However,
confidence seems slightly overestimated in the range [0.90–
0.99], though we note again that there are just too few occur-
rences in that range to compute a reliable accuracy score.
Nonetheless, over 70 % of the times confidence is larger than
0.99, where almost all estimates are indeed correct. On the
other hand, having such a high proportion of very confident
estimates seemingly tends to overestimate the average confi-

Table 6 Accuracy versus confidence in the sign estimates when ranking
systems in all collections and with no judgments

Conf. Broad scale Fine scale

In bin Acc. In bin Acc.

[0.50, 0.60) 16 (4.5 %) 0.500 16 (4.5 %) 0.625

[0.60, 0.70) 17 (4.8 %) 0.882 15 (4.3 %) 0.867

[0.70, 0.80) 15 (4.3 %) 0.800 15 (4.3 %) 0.733

[0.80, 0.90) 24 (6.8 %) 0.792 24 (6.8 %) 0.792

[0.90, 0.95) 16 (4.5 %) 0.875 13 (3.7 %) 0.846

[0.95, 0.99) 33 (9.4 %) 0.909 31 (8.8 %) 0.903

[0.99, 1) 231 (65.6 %) 0.996 238 (67.6 %) 0.996

dence in the ranking, which is here used as stopping condition
in Algorithm 1.

5.2 Ranking systems without judgments

As discussed above, the confidence in the ranking is quite
high with very few judgments, so next we ask the question:
how well can we rank systems with no judgments at all?
Soboroff et al. [16] first studied this problem with systems
submitted to TREC, showing that randomly considering doc-
uments as relevant correlated positively with the true TREC
rankings. Rather than using random judgments, we use the
estimates provided by the Loutput regression model. Note that
the L judge model cannot be used because it does require some
known judgments.

Table 5 shows the confidence in the rankings when making
no judgments at all. Confidence is very high across collec-
tions, with a median of 0.942. The accuracy of the rankings
is again quite high: the medians are 0.921 with the Broad
scale and 0.934 with the Fine scale, which correspond to
median τ correlations of 0.843 and 0.867 respectively. The
overall performance is worse than running MTC and making
a few judgments, but it is still very good considering that no
judgments are needed.

The next question is again: how trustworthy are each of the
individual estimates? As in Tables 4, 6 bins all 352 individual
system comparisons by confidence, showing the correspond-
ing accuracy in each bin. Similarly, we see that confidence
is slightly overestimated in the range [0.80–0.99] and that,
in general, confidence tends to be lower than when running
MTC. Nonetheless, about 66 % of the times confidence is
again above 0.99, where virtually all estimates are correct.
Therefore, estimating system differences with the gain scores
predicted by Loutput is a very reasonable method for develop-
ers to compare their systems when no judging resources are
available. In particular, it can prove to be very useful at sug-
gesting which systems perform very differently and which
are very similar and thus require judging effort to gain more
confidence.
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6 Conclusions

We have shown how to adapt the Minimal Test Collections
(MTC) family of algorithms for the evaluation of the MIREX
Audio Music Similarity and Retrieval task. We showed that
the distribution of AG@k scores is normally distributed,
which allows us to look at it as a random variable whose
expectation may be estimated with a certain level of con-
fidence. This confidence is proportional to the number of
similarity judgments available, and MTC ensures that the
set of judgments we make to reach some confidence level is
minimal.

Using data from the previous MIREX AMS evaluations,
we fitted a model that allows us to predict gain scores when
no judgments are available, and another model that consider-
ably improves the predictions when judgments are available.
Aided by these two models, MTC is shown to dramatically
reduce the judging effort needed to rank systems with 95 %
confidence. We simulated the MIREX AMS evaluations from
2007, 2009, 2010 and 2011, and showed that the average
number of judgments needed is just 3 % with the Broad scale
and 1.8 % with the Fine scale. The average accuracy of the
estimated rankings is 0.948 with the Broad scale and 0.947
with the Fine scale, showing that MTC coupled with our mod-
els does not only require very little effort, but also produces
accurate estimates. In fact, when systems show a statistically
significant difference our estimates are always correct.

We further showed that these models can be used to rank
systems without the need of making any judgments at all.
Even though overall accuracy is slightly lower than when run-
ning MTC, we showed that the individual confidence scores
can be trusted. Also, we showed that the estimation errors are
negligible in practice, because they compare to the disagree-
ments produced by different human assessors. This method
can thus be employed to quickly check if there is a substantial
difference between systems.

In general, the Fine scale seems to require fewer judgments
than the Broad scale, while at the same time produces sim-
ilarly accurate estimates. In previous work we also showed
that the Fine scale is slightly more powerful and similarly
stable as the Broad scale for a variety of measures [19], and
that it is better correlated with final user satisfaction too [18].
Therefore, the evidence so far seems to indicate that the Fine
scale works better than the Broad scale, suggesting its use
alone in the MIREX AMS evaluations. Dropping the Broad
scale would also lower the cost of the evaluations, at least in
terms of judging time.

7 Future work

Two clear lines for future work can be identified. In this paper
we used two sets of features to fit the regression models that

allow us to predict gain scores: features based on the output
of the systems and metadata, as well as features based on the
known judgments. While these features work well in practice,
a third set of features to consider could take advantage of the
actual musical content used in the test collections, such as the
similarity between the current document and those that have
been judged as highly similar to the query. Unfortunately, the
collection used in MIREX is not public, so we were not able
to study these features here. Nonetheless, further research
should definitely explore this line. Also, by no means are our
models the only ones possible; other features or frameworks
might prove better to predict gain scores. For instance, trying
to predict gain scores on a per-system or per-query basis
would probably improve the results.

The most important direction for further research is the
study of low-cost evaluation methodologies for other MIR
tasks. In accordance with previous work [19], we have shown
here that the effort in evaluating a set of AMS systems can
be greatly reduced, leaving open the possibility of building
brand new test collections for other tasks for which making
annotations is very expensive. For instance, the group of vol-
unteers requested by MIREX for the annual evaluation of the
AMS and SMS tasks could probably be better employed if
some of them were instead dedicated to incrementally add
new annotations for the other tasks in clear need of new
collections [15].

Another clear setting for the application of low-cost
methodologies is that of a researcher evaluating a set of
systems with a private document collection, a scenario very
common in MIR given the legal restrictions when sharing
music corpora [7]. Those researchers, and in most cases pub-
lic forums too, do not have the possibility of requesting large
pools of external volunteers for annotating their collections.
Thus, being able to evaluate systems with the minimal effort
is paramount. To this end, low-cost evaluation methodologies
must be investigated for the wealth of MIR tasks.

But in most of these tasks researchers rely on test collec-
tions annotated a priori, which can be very expensive and
time consuming to build. However, we have seen that not
all annotations are necessary to accurately rank systems. For
instance, if two Audio Melody Extraction algorithms predict
the same F0 (fundamental frequency) in a given audio frame,
whether that F0 prediction is correct or not is not useful to
know which of the two systems is better. The adoption of a
posteriori evaluation methodologies such as MTC can take
advantage of this idea to greatly reduce the annotation cost
or allow the use of significantly larger collections. Getting to
that point, though, requires a shift in the current evaluation
practices. But given the benefits of doing so, both in terms of
cost and reliability, we strongly encourage the MIR commu-
nity to study these evaluation alternatives and progressively
adopt them for a more rapid and stable development of the
field.
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Appendix

The models described in Sect. 4 to predict gain scores were
fitted ignoring all data from the MIREX edition they were
used for. For future editions though, we can use models fit-
ted with all the available data from 2007, 2009, 2010 and
2011. Table 7 lists the fitted parameters, for both models and
both similarity scales, for their use in future AMS evaluation
experiments. Compared to the models fitted for each individ-
ual collection (see Table 2), these models produce similarly
accurate estimates.

As an example, let us use Loutput to estimate the Broad
score of a document whose true score is 2 and has the follow-
ing features: pTEAM =0.25, OV =0.8053, pART =0.0217,
sGEN =1 and pGEN =0.8478. Plugging these features and
the parameters in Table 7 into Eq. (9):

Table 7 Parameters fitted for the regression models using all data
from MIREX 2007, 2009, 2010 and 2011; and errors of the estimates
(bottom)

Parameter Broad scale Fine scale

Loutput L judge Loutput L judge

pTEAM 2.3677 2.0900 2.2223 1.4405

OV 1.9749 0.2420 2.0652 0.1139

pART 3.2041 – 2.9179 –

sGEN 1.9030 – 2.0174 –

pGEN 5.4144 – 5.4605 –

sGEN:pGEN −2.9848 – −3.4288 –

aSYS – 1.1490 – 0.0115

aART – 7.1853 – 0.2128

α1 −3.2513 −5.5370 −1.7043 −2.1862

α2 −5.3349 −12.2572 −2.6087 −4.6920

α3 – – −3.2373 −6.9954

α4 – – −3.7705 −9.2063

α5 – – −4.2464 −11.2362

α6 – – −4.8460 −13.5847

α7 – – −5.5678 −15.8001

α8 – – −6.6135 −18.2491

α9 – – −8.4655 −21.2480

adjusted R2 0.362 0.916 0.344 0.904

RMSE 0.651 0.275 24.1 8.97

Var 0.422 0.071 591 72

log
P(Gi ≥ 2)

P(Gi < 2)
= −5.3349

+ 2.3677 · 0.25+ 1.9749 · 0.8053

+ 3.2041 · 0.0217+ 1.9030 · 1
+ 5.4144 · 0.8478− 2.9848 · 1 · 0.8478

= 0.8798

log
P(Gi ≥1)

P(Gi < 1)
=−3.2513

+ 2.3677 · 0.25+ 1.9749 · 0.8053

+ 3.2041 · 0.0217+ 1.9030 · 1
+ 5.4144 · 0.8478− 2.9848 · 1 · 0.8478

= 2.9634

Next, we use the inverse logit function:

P(Gi ≥ 2) = e0.8798

1− e0.8798 = 0.7068

P(Gi ≥ 1) = e2.9634

1− e2.9634 = 0.9509

Plugging into Eq. (10):

P(Gi = 2) = 0.7068

P(Gi = 1) = 0.9509− 0.7068 = 0.2441

P(Gi = 0) = 1− 0.9509 = 0.0491

Finally, plugging into Eq. (1) we can compute the expectation
and variance of Gi :

E[Gi ] = 0.2441+ 0.7068 · 2 = 1.6577

Var[Gi ] = 0.2441+ 0.7068 · 22 − 1.65772 = 0.3233
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