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Abstract Accurate diagnosis is crucial for successful treat-
ment of the brain tumor. Accordingly in this paper, we
propose an intelligent content-based image retrieval (CBIR)
system which retrieves similar pathology bearing magnetic
resonance (MR) images of the brain from a medical database
to assist the radiologist in the diagnosis of the brain tumor.
A single feature vector will not perform well for finding sim-
ilar images in the medical domain as images within the same
disease class differ by severity, density and other such fac-
tors. To handle this problem, the proposed CBIR system uses
a two-step approach to retrieve similar MR images. The first
step classifies the query image as benign or malignant using
the features that discriminate the classes. The second step
then retrieves the most similar images within the predicted
class using the features that distinguish the subclasses. In
order to provide faster image retrieval, we propose an index-
ing method called clustering with principal component analy-
sis (PCA) and KD-tree which groups subclass features into
clusters using modified K-means clustering and separately
reduces the dimensionality of each cluster using PCA. The
reduced feature set is then indexed using a KD-tree. The pro-
posed CBIR system is also made robust against misalignment
that occurs during MR image acquisition. Experiments were
carried out on a database consisting of 820 MR images of
the brain tumor. The experimental results demonstrate the
effectiveness of the proposed system and show the viability
of clinical application.
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1 Introduction

Brain tumor is inherently serious and life-threatening because
of its invasive and infiltrative character in the limited space
of the intracranial cavity. The mortality rates due to the
brain tumor are continuously increasing [1]. Brain tumors
are mainly classified as benign or malignant depending
on their growth pattern. Benign tumors are non-cancerous,
slow growing and do not spread to the surrounding tis-
sue. Whereas malignant tumors are cancerous, fast growing
and invade nearby organs. Accurate classification of brain
tumors is important because their clinical behavior, prog-
nosis and therapy differ markedly. Discrimination between
benign and malignant tumors is necessary for optimal patient
treatment. The screening tests for the identification of brain
tumor require visual examination of MR images of the brain
by the radiologist. But visual analysis is time consuming,
tedious and subjective. In order to overcome these draw-
backs, computer-aided diagnosis (CAD) systems are devel-
oped to improve the diagnosis sensitivity by 20–30 % when
compared with the diagnosis by visual analysis [2]. Content-
based image retrieval (CBIR) is an important component
of CAD system which can assist the radiologist in diag-
nosing tumors. The MR images of patients taken during
the diagnosis of the brain tumor are stored in a medical
database known as picture archiving and communication
system (PACS) along with the diagnosis and treatment infor-
mation [3]. When the radiologist is less confident about diag-
nosis of any brain tumor case, he can query a database of
past resolved cases to retrieve images that contain regions
with features similar to that of the query image. With the
knowledge of disease entities that match with the features of
the query image and associated diagnostic information, the
radiologist can arrive at a diagnostic decision [4]. Thus, the
image retrieval helps the radiologist in making case-based
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reasoning in diagnosis of brain tumors. Text-based retrieval
techniques are now commonly used in PACS. In these sys-
tems, keywords from lab reports and associated text from
images are used for querying images. Although this approach
can offer much flexibility in query formulation, it suffers from
several drawbacks such as it is difficult to manually annotate
the description of every image in the database and the manual
description of the image is subjective due to the difference
in human perception [5]. Thus, the text-based retrieval leads
to inaccuracies during the retrieval process. Whereas CBIR
retrieves similar images from the database based on shape,
texture, location and grey level features of the image [6].
This has motivated research and development in CBIR in the
medical domain.

1.1 Related work

Content-based image retrieval is a very demanding applica-
tion in the medical field since it can provide the physician
a decision support in the diagnosis of diseases by retrieving
relevant cases. The features used to retrieve general images
may not apply to medical images. The knowledge of the
acquired medical images and disease characteristics is nec-
essary to extract appropriate features of the medical images.
Traina et al. [7] present a retrieval system where the shape
information about various regions of the brain is extracted
to retrieve similar images from the database. The system
was not able to retrieve similar images in all the cases as
it is based on global features which consider information of
the entire image. In medical radiology, the clinically use-
ful information consists of variations in the highly local-
ized region of the image. Hence, attributes characterizing
the local regions are required. The pathology bearing region
(PBR) has to be segmented on the medical image to extract
local features. There exist several brain tumor segmentation
techniques such as region-based [8], cluster-based [9] and
deformable models [10]. Ahmad et al. [11] experimented
with both global features obtained from whole image and
local features obtained from non-overlapping image blocks
in retrieving similar CT brain images from the database.
Retrieval precision of only 94 % was reported since PBR
was segmented manually. Automatic segmentation of PBR
is necessary in CAD as it is more accurate and consistent.

Color has got limited expressive power in the MR image
retrieval as these images are in grey scale. The most vital fea-
tures of medical images are shape and texture. The shape of
the tumor can be characterized with shape descriptors such as
Fourier descriptors (FD), Zernike moments and fractals [12].
The malignant brain tumors are more irregular in shape com-
pared to benign tumors. Among the visual features of medical
images, texture acquires distinguished importance in identi-
fying tissues. Various texture description methods are pro-
posed in the literature of CBIR such as co-occurrence matrix

[13], autoregressive model [14], Tamura [15], wavelets [16]
and Gabor filters [17]. Among these methods, multichannel
analysis algorithms such as wavelets and Gabor filters have
gained a lot of attention due to their ability to characterize
features at different frequencies and orientations. The simi-
larity measure used for comparing images in CBIR also has
an impact on image retrieval results. Tsang et al. [18] exper-
imented with various similarity measures and achieved a
highest precision of 91.7 % with Jeffrey divergence and local
texture features. However, good precision was not achieved
since tumors were characterized using only texture features.

One of the inherent problems in CBIR is the semantic
gap due to the inconsistency between the features extracted
and the user interpretation of an image. In the recent years,
several methods are proposed to eliminate the semantic gap
based on supervised classification, unsupervised classifica-
tion and relevance feedback [19]. Li-Xin et al. [20] filled the
semantic gap by incorporating the relevance feedback into
the CBIR system. But, the relevance feedback consumes a
lot of time to fine tune the system parameters as it involves
the user. K-means clustering is the widely used unsupervised
classification method because of its simplicity. However, the
K-means algorithm is sensitive to initial cluster centers [21].
Thus, it may give unstable and empty clusters in case of ran-
dom initialization. There exist several methods for cluster
center initialization such as the one based on genetic pro-
gramming [22], binary splitting [23] and KD-tree [24]. But
these methods have increased computational complexity and
are parameter dependent. Also K-means clustering requires
the user to specify the number of clusters in the data set. This
becomes the difficult process if the user does not have any
prior knowledge about the data. The existing methods such
as the one proposed by Zhao et al. [25], Kothari et al. [26] and
Fang et al. [27] solved this problem by running the clustering
algorithm for a wide range of clusters and selecting the num-
ber of clusters that optimize the cluster validity index. But a
single index may not give optimum results in all the cases.

In addition to accuracy, efficiency is also one of the impor-
tant performance factors to be considered in the development
of CBIR system. Thus, the existing CBIR systems make use
of various indexing schemes such as KD-tree, R-tree, R*-tree
and quad trees to improve the efficiency of the image retrieval
system [28]. The indexing techniques retrieve images sim-
ilar to the query image without comparing each image in
the database and thus reduce the retrieval time. All these
indexing structures give worst performance in case of large-
dimensional feature vectors. Extracting a large number of
visual features of an image leads to the dimensionality curse
problem, where the indexing, retrieval and similarity match-
ing techniques collapse, due to the fact that it is not possible
to well separate the data [29]. Thus, the retrieval accuracy
and efficiency can be improved using a feature reduction
technique on the feature vector dimensions.

123



Int J Multimed Info Retr (2013) 2:175–188 177

1.2 Motivation

Although several studies are already being conducted with
respect to content-based medical image retrieval, many chal-
lenging problems still exist:

• Automatic delineation of PBR on the medical image
without relying on the radiologist.

• A single feature vector will not perform well in describ-
ing tumor because the features that are most effective in
discriminating among images from different classes may
not be the most effective for retrieval of images belong-
ing to the subclass within a class. That is the hierarchy
of classes exists. Benign tumors can be of type Menin-
gioma, Schwannoma, Astrocytoma, etc. Malign tumors
can be of type Medulloblastoma, Chrodoma, Neuroblas-
toma, etc. Thus, to retrieve most similar pathology bear-
ing MR images of the brain tumor there is a need to
represent the class and subclass of the tumor.

• Elimination of the semantic gap by developing a CBIR
framework that learns well the similarity between the
images and inherent structure of the data.

• Making the CBIR system robust to misalignments of
images that occur during MR image acquisition.

• Providing efficient indexing structure for faster retrieval
of images from the database.

• Proper incorporation of the dimensionality reduction
techniques into the CBIR system so that the indexing
structures can be beneficial.

Motivated by these needs, in this paper, we propose a
CBIR system for automatic extraction and analysis of the
tumor region on MR images. The semantic gap between the
high- and low-level features is reduced by developing a hier-
archical framework that combines supervised and unsuper-
vised classification techniques with different set of tumor

features at each level. Also, the system is made efficient by
applying modified K-means clustering on the feature set and
adopting the indexing structure in low-dimensional feature
space.

The rest of the paper is organized as follows: Sect. 2 gives
the description of the proposed methodology. The exper-
imental results and performance analysis are presented in
Sect. 3. Finally, Sect. 4 concludes the paper.

2 Proposed methodology

The block diagram of the proposed CBIR system for the
diagnosis of brain tumor is shown in Fig. 1. It consists of
two phases: database building (off-line) and query process-
ing (on-line) phase. In the off-line phase, MR images of
the brain tumor stored in the image database are pre-
processed by image denoising and rotation correction of
misaligned images. Next, images are segmented automati-
cally using wavelet transform and modified fuzzy c-means
(MFCM) clustering to identify the brain tumor region on
MR images. The segmented tumor is represented using class
and subclass features describing the shape and texture of the
tumor. Tumor class features are fed to the ensemble clas-
sifier consisting of support vector machine (SVM), artifi-
cial neural network (ANN) and k-nearest neighbor (k-NN)
classifiers to obtain the class label as benign or malig-
nant. The class label along with the subclass features are
stored in the feature database. Features in the database
are indexed using the proposed clustering with PCA and
KD-tree (CPKD) indexing technique. A CPKD structure is
constructed with three steps: partitioning the subclass fea-
tures using the proposed modified K-means clustering, per-
forming local dimensionality reduction by applying PCA
to each cluster separately and constructing KD-tree index
for the reduced space. Local dimensionality reduction is
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Fig. 1 Framework of the proposed CBIR system
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performed within each cluster independently as features are
correlated at a local rather than at a global level.

Similarly in the online phase, a query image is pre-
processed and segmented. Then, the segmented brain tumor
is represented using its class and subclass features. The fea-
tures of the query image are compared with the features in
the database using the Euclidian distance and Chi-square dis-
tance as these distance measures are more effective in find-
ing similarity between tumors. The database is indexed using
CPKD technique and the most similar pathology bearing MR
images of brain tumor are retrieved.

2.1 Problem formulation

Let D = Xi |i = 1, 2, . . . N be the collection of feature
vectors in the database representing N brain tumor MR
images. Each feature vector Xi is M-dimensional vector
denoted as Xi = f q

j | j = 1, 2, . . . M . Let Q be the query
image with M-dimensional feature vector represented as
f Q
l |l = 1, 2 . . . M . The aim of this paper is to retrieve accu-

rately and efficiently K MR images of brain tumor from the
database that are most similar to the query image Q according
to similarity distance measure D(Q, D).

2.2 Preprocessing

Medical images are often corrupted by noise during the image
acquisition process. The presence of noise in medical image
obscures the important information present in the image and
hence makes the image analysis task difficult. In the proposed
system, the quality of the image is improved by eliminating
the noise from the image using 3 × 3 median filter. Median
filter results in smoothing of edges in the image. Hence, to
improve the perceptibility of structures in the brain, unsharp
masking was used after median filtering. A 3 × 3 unsharp
filter was constructed using the negative of two-dimensional
Laplacian filter.

During MR image acquisition, there can be misalignment
of images due to movement of the patient. The misalignment
results in rotation or translation of the image. The transla-
tion will not cause problems in image analysis because the
brain tumor can be segmented and analyzed irrespective of
the location of brain region in the MR image. But image rota-
tion limits the application of automated tools for MR image
analysis as it changes the shape and texture properties of the
tumor. Thus, in this work we propose a method for rotation
correction of misaligned brain MR images. First, the orienta-
tion of the brain image must be identified to know the angle
by which to rotate the misaligned image to its standard posi-
tion. This is accomplished by measuring the orientation of
the major axis of the MR image with the reference x-axis as
shown in Fig. 2.

Major axis

(b)

θ

(a)

Fig. 2 Orientation angle estimation of the brain MR image. a Original
brain MR image b orientation angle

Then based on the orientation angle (θ ), the rotation cor-
rection angle (θ ′ = 90 − θ) is computed. Then, the mis-
aligned image can be restored to its standard position using
the following rotation transformation equations:

x ′ = xcos(θ ′) − ysin(θ ′) (1)

y′ = xsin(θ ′) + ycos(θ ′) (2)

where, a point (x, y) in the original image is directly mapped
onto the point (x ′, y′) in the resultant image. But, this kind of
forward mapping creates holes in the output image as the tar-
get position (x ′, y′) does not coincide with the discrete grid
points. Thus, to retain the quality of the resultant image, we
perform inverse mapping where for each discrete pixel posi-
tion in the output image, the corresponding continuous posi-
tion (x, y) is computed in the input image. This mapping hits
the non-integer locations in the input image where there is no
pixel present. Hence, the pixel value at this non-integer loca-
tion is computed using interpolation method. In this work,
bicubic interpolation method is used as it is more accurate
compared to nearest neighbor (NN) and bilinear interpola-
tion techniques [30]. Bicubic interpolation determines a new
pixel value by considering nearest 4 × 4 neighborhood of
known pixels and by giving all the 4 × 4 pixels a weight
using their distance to the new pixel. The interpolated pixel
value is mapped back to the point (x ′, y′) in the output image.

2.3 Segmentation

Skull removal of the brain in MR image is an important pre-
liminary step in segmentation since it may cause misclassi-
fications of pixels due to intensity similarities with the brain
regions. Thus, skull region is eliminated by first converting
the original MR image (Fig. 3a) to binary image using Otsu’s
method [31]. The resultant image consists of connected com-
ponents as shown in Fig. 3b. Then, a search is made for the
largest connected component which corresponds to the brain.
Thus, the skull region is eliminated by retaining only the pix-
els in the largest connected component as shown in Fig. 3c.

Next, the brain tumor is extracted by applying our previ-
ously proposed automatic segmentation technique consisting
of wavelet decomposition and MFCM clustering [32].
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Fig. 3 Brain skull stripping:
a original MR image b binary
image c skull-stripped image

Fig. 4 Brain image clusters a white matter b grey matter c cerebrospinal fluid d tumor

The brain image is partitioned into four clusters such as
white matter (WM), grey matter (GM), cerebrospinal fluid
(CSF) and brain tumor using a fuzzy membership function as
shown in Fig. 4. Then, the region of the brain tumor is marked
on the MR image by applying 4-connected neighbors.

2.4 Tumor class characterization

In this work, we extracted both 2D and 3D features from
the tumor to evaluate their effectiveness in differentiating
between benign and malignant tumors. Given a set of slices,
the slice containing the largest cross-sectional area of the
tumor is chosen as a representative slice of the tumor since
it contains the maximum possible information of the tumor.
A representative slice was selected from both T1-weighted
post contrast and T2-weighted MR images. Instead of
processing all slices, a set of 2D features was extracted from
a single representative slice to have a faster analysis of the
tumor. 3D features were extracted from the 3D model of the
tumor which was developed by applying the marching cubes
algorithm [33] on a set of slices containing the tumor. The fol-
lowing features were extracted from the representative slice
and 3D model of the tumor.

2.4.1 Shape features

Tumor shape is one of the discriminating features for dis-
tinguishing between benign and malignant tumors. In this
paper, tumor geometric parameters such as circularity, radial

length, compactness and fractal dimension are measured to
identify the shape of the tumor [34–36].

2.4.2 Texture features

Tissues are expected to have consistent and homogeneous
texture along with the series of slices. Therefore, texture
information can be used to discriminate among organ tissues.
Texture features are extracted using first- and second-order
statistics of the tumor region.

First-order statistics In our experiment, five features were
calculated from the histogram of the segmented tumor. These
features correspond to the average grey level, standard devi-
ation, entropy, skewness and kurtosis [37].

Second-order statistics The texture characteristics which cor-
respond to second-order statistics were derived from the grey
level co-occurrence matrix (GLCM) [38]. In case of 2D,
four co-occurrence matrices are computed by considering the
inter pixel distance of 1 and four angular directions. In case
of 3D, 13 co-occurrence matrices are computed by consid-
ering the inter voxel distance of 1 and 13 angular directions
[39]. Seven features corresponding to contrast, correlation,
variance, inverse difference moment, entropy, homogeneity
and cluster tendency were extracted from each GLCM to rep-
resent the texture of the brain tumor. The texture information
on each sub band is represented by taking the average value
of each feature computed over all directions.
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2.5 Tumor subclass characterization

In medical domain, not all pairs of images within one class
have equivalent perceptual similarity. That is a subclass of
the tumor exists. Hence, subclass features of the tumor are
extracted from the representative slice and 3D model using
Fourier descriptors, Gabor filter and edge histogram descrip-
tors (EHD).

2.5.1 Shape feature extraction

The local shape of the tumor is represented using wavelet-
based FD [40] as they help in identifying most similar shapes
from the database by taking into account the fine details of the
shape. Let the boundary coordinates of the tumor be C(t) =
{(x(t), y(t)), t = 0, 1, . . . L − 1} as shown in Fig. 5. The
shape signature of the boundary points is computed using
centroid distance function as given in Eq. 3.

r(t) = [(x(n) − xc)
2 + (y(n) − yc)

2] 1
2 (3)

where,

xc = 1

L

L−1∑

n=0

x(n), yc = 1

L

L−1∑

n=0

y(n) (4)

Next, the wavelet transform is applied on the shape sig-
nature, (r(t)) as given in Eq. 5. Experiments were carried
out with several wavelet functions and Mexican hat wavelets
performed better than others. Thus in this work, we use Mexi-
can hat wavelets (ϕ). Wavelet transform achieves multi-scale
representation of the tumor boundary by decomposing it on
different levels. Hence, wavelet-based methods are ideally
suited for highlighting local features in the decomposed sub-
images.

Ca(b) = 1√|a|
∫

R

r(t)ϕ

(
t − b

a

)
dt (5)

where, Ca(b) are wavelet coefficients at scale a and position
b. Fourier descriptors are then obtained by applying Fourier
transform on wavelet coefficients which is given as:

Fig. 5 Boundary points on the brain tumor

an = 1

N

N−1∑

b=0

Ca(b)exp(− j2πb/N ) (6)

The Fourier coefficients, an , are called FDs of the shape.
The shape of the tumor is represented with the feature vector
consisting of tumor area and FDs as given below:

F S = [A, F D1, F D2, . . . F DN−1]. (7)

The first coefficient of the FD is ignored to make shape rep-
resentation invariant to the boundary starting point.

2.5.2 Texture feature

Local texture of the tumor is extracted using Gabor fil-
ter and EHD which are provided by the MPEG-7 standard
[41]. These features provide perceptual representation of the
image texture and thus help in retrieving most similar images
from the database. The Gabor filter extracts the homogeneous
texture of the image and EHD represents the local distribu-
tion of edges in the image.

Gabor filter Texture analysis of the brain tumor was per-
formed by applying a bank of scale and orientation selec-
tive Gabor filters on the tumor image. A 2D Gabor function
g(x, y) is given as:

g(x, y) = 1

2πσxσy
exp

[
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

)
+ 2π jW x

]
(8)

where, W is the modulation frequency and σ 2
x and σ 2

y rep-
resent variance in x and y directions, respectively. A set of
self-similar Gabor functions, gmn(xy), are obtained by dila-
tion and rotation of mother Gabor filter using the generating
function:

gmn(x, y) = a−2m g(x ′, y′), a ≥ 1 (9)

x ′ = a−m(xcos(θ) + y sin(θ),

y′ = a−m(−x sin(θ) + y cos(θ)) (10)

where θ = nπ
N , m = 0, 1 . . . M −1, n = 0, 1, . . . N −1 and

a is the scale factor. The parameters M and N specify the
total number of scales and orientations, respectively. Based
on the experiments, four scales (M = 4) and six orientations
(N = 6) were chosen to describe the tumor texture. Texture
features of an image I (x, y) are obtained by convolution of
I (x, y) with Gabor filter gmn(x, y):

Gmn(x, y) = I (x1, y1)gmn(x − x1, y − y1) (11)

The mean and the standard deviation of the filtered images,
which are used to construct a feature vector, are computed
using Eq. (12) and Eq. (13) respectively.
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Fig. 6 Image partitioning for EHD computation

Fig. 7 Edge detection operators: a vertical b horizontal c 45◦ anti-
diagonal d 135◦ diagonal e non-directional

μmn = 1

P × Q

∑

x

∑

y

|Gmn(x, y)| (12)

σmn =
√

1

P × Q

∑

x

∑

y

(|Gmn(x, y)| − μmn)2 (13)

where P × Q is the total number of image pixels. The texture
feature vector for M scales and N orientations is given by:

FTG = [μ00, σ00, μ01, σ01 . . . μ(M−1), σ(N−1)] (14)

Edge histogram descriptor EHD represents the local distribu-
tion of edges on five different orientations: vertical, horizon-
tal, 45◦ anti-diagonal, 135◦ diagonal and non-directed. EHD
is computed by dividing the image into 4×4 non-overlapping
blocks as shown in Fig. 6. This image partitioning yields 16
equal sized sub-images. Each sub-image is divided into num-
ber of image blocks and the image block is divided into four
sub-blocks for abstracting the edge histogram.

The edge histogram information is obtained by applying
five types of edge detectors defined by MPEG-7 on each sub-
block as shown in Fig. 7. This computation results in edge
histogram with 16 × 5 = 80 bins.

The edge histogram feature vector is represented with the
bins of the edge occurrence histogram as given below:

FTE = [B1, B2, . . . B80] (15)

2.6 Classification

The classification stage determines the class of the given
sample based on the class features extracted using global
shape descriptors, image histogram and GLCM. To overcome
the limited generalization performance of single classifier,
we use ensemble classifier which combines the decision of
multiple classifiers (SVM, ANN, k-NN) to predict the class

SVM  classifier 

ANN  classifier 

k-NN classifier 

SVM Prediction

ANN Prediction

k-NN Prediction

Ensemble

Final decision
Classifier
fusion rule

Fig. 8 Framework of ensemble classifier

of the given brain tumor as benign or malignant as shown in
Fig. 8.

Ensemble classifier not only improves the classification
accuracy but also reduces the chance of over training. This
is because the fusion of decision from multiple classifiers
avoids a biased decision. The class label obtained using
ensemble classifier, along with the subclass features and
high-level data of the patient like age and gender, is stored in
the feature database.

2.7 Similarity matching

In order to retrieve similar pathology bearing MR images of
the brain tumor from the database, the following similarity
measures are used to measure the similarity between subclass
features of the query image and database images belonging
to the same class. The shape similarity between two images
x and y is given by the Euclidian distance:

DS(x, y) =
√√√√(Ax − Ay)2 +

(
N−1∑

i=0

(FD(x)
i − FD(y)

i )2

)
(16)

Where, A and FD represent the area and Fourier descriptors
of the tumor, respectively. The texture similarity between two
images x and y, with their texture feature vectors obtained
by Gabor filter, is measured using the Euclidian distance:

DTG(x, y) =
∑

m

∑

n

dmn(x, y) (17)

dmn(x, y) =
√

(μmn(x)−μmn(y))2+(σmn(x)−σmn(y))2

(18)

where, μmn and σmn are mean and standard deviation of the
Gabor filtered image at scale m and orientation n. The texture
similarity measure between two images x and y, with their
texture feature vectors obtained by EHD, is given by the Chi-
square distance:

DTE = χ2(x, y) =
K∑

k=1

[Bx (k) − By(k)]2

[Bx (k) + By(k)] (19)
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where, Bx (k) and By(k) are kth EHD histogram bin of the
image x and y respectively. All the similarity measures are
normalized and fused to form a single similarity measure as:

D(Q, R) = DS(x, y) + DTG(x, y) + DTE(x, y) (20)

In order to retrieve K most relevant images from the database,
the calculated distances are sorted in ascending order and
corresponding images are retrieved.

2.8 Feature database indexing

Instead of exhaustively matching the features of the query
image with all features in the database, a smarter way is to use
indexing for faster retrieval. Hence, we propose an indexing
method called CPKD which supports efficient processing of
NN queries as shown in Fig. 9. Since the subclass labels of
tumors are unavailable, the CPKD technique groups subclass
features into clusters using the proposed modified K-means
clustering (unsupervised classification).

Since the dimensionality of the subclass feature vector is
large consisting of 134 features, we need to apply dimen-
sionality reduction technique to reduce the computational
complexity and database size. The dimensionality of each
cluster is reduced separately using PCA as features are cor-
related at the local, rather than at the global level. Then
within each cluster, the features are indexed using a KD-
tree as KD-tree provides searches with O(log N ) efficiency
on low-dimensional feature vector.

Given a query image, its similarity to clusters in the data-
base is measured by computing the distance between the
query subclass features and the cluster centroids (CT). The
query image is considered as the most similar to the cluster
with the closest centroid. The query is projected onto the sub-
space in the nearest cluster. The K-nearest neighbor search
is performed on the KD-tree to obtain a subset of K images
which are nearest to the query image. The subset contains all
the tumor images satisfying (for all i ∈ K ),

Benign 

CT-1
CT-2

.

.
CT-N

Malign 

CT-1
CT-2

.

.

CT-M

Cluster1

Cluster2

ClusterN

Cluster1

Cluster2

ClusterM

  Kd-tree indexing  Classification   Clustering

  Class label
+

Sub class features

Fig. 9 Index structure for faster retrieval of MR images of brain tumor

‖ q − i ‖<‖ q − n ‖, for all n ∈ (DB − K ) (21)

where ‖ · ‖ is a distance measure. The KD-tree is a binary
search tree which is built from the given feature set by recur-
sively partitioning the tree into two halves at each level based
on the median of the dimension having the largest variance.
KD-tree reduces the search time by almost eliminating half
of the tree during the searching process [42].

2.8.1 Modified K-means clustering

The proposed CPKD indexing structure makes use of the
proposed modified K-means clustering to partition the sub-
class features into different clusters. The main drawback of
K-means clustering [43] is its sensitivity to the cluster cen-
ter initialization and the number of clusters. Since we do not
have a prior knowledge on tumor subtypes present in the
data set, it is not possible to predict the correct number of
clusters. In order to overcome these drawbacks, we propose
a method for determining the number of clusters and initial
cluster centroids for K-means clustering.

Determining number of clusters We approach the problem
of estimating the optimal number of clusters based on the
fusion of several validity indexes V = [V1, V2, . . . Vn] value
instead of single validity index. The proposed algorithm is
as follows:

Algorithm 1 Estimate_Clusters
Input: Tumor subclass features set.
Output: Number of clusters in the feature set.
1: Choose the range of clusters with Cmin and Cmax .
2: for c = Cmin to Cmax do
3: Initialize c cluster centers.
4: Apply K-means algorithm to update the membership matrix and

the cluster centers (c).
5: Test for convergence. If not converged go to step 4.
6: Compute value of validity indexes V (c) = [V1, V2 . . . Vn].
7: end for
8: Normalize values of validity indexes in V.
9: Combine the normalized values using median-based decision fusion

to obtain single index, I (c).
10: Choose number of clusters that give optimum value of index, I (c).

The K-means clustering algorithm was applied to the
dataset with the number of clusters varying within the range
[Cmin, Cmax]. At the end of each run, the partitions of the
data set obtained were evaluated using Dunn [44], Davies–
Bouldin [45] and Jagota index [46]. Then, min–max normal-
ization was performed to scale the values of validity indexes
to the range [0, 1]. The maximum value of Dunn index and
minimum value of Davies–Bouldin and Jagota index indi-
cates the best clustering solution. Thus to have consistency,
the value of Dunn index is reversed to have a minimum value
as an indicator of best partition. Finally, the values of each
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run are combined using median-based fusion and the opti-
mal number of clusters is chosen as the one with a minimum
fused index value.

Cluster center initialization Clustering is considered as opti-
mal if it minimizes the intra-cluster distance and maximizes
the inter-cluster distance. Thus, we base the choice of ini-
tial centroids on dissimilarity measure. For a given K clus-
ters, the first two cluster centers chosen are the data items
which are located far apart. Next center is chosen as the
data item that is farthest from its nearest cluster center. This
process is repeated until the desired number of cluster centers
is chosen. The proposed algorithm is given in Algorithm 2
(ClusterCenter_Init).

Algorithm 2 ClusterCenter_Init
Input: Number of clusters, Tumor subclass features set.
Output: Cluster centroids.
1: Let S = 0, 1, . . . N − 1 represent the data set.
2: For each (i, j) ∈ S2, compute di j = dist (xi , x j )

3: (i∗, j∗) = arg max
(i, j)∈S2

di j

C1 = i∗
C2 = j∗
S = S − {i∗} − { j∗}

4: repeat
5: For each h ∈ S, compute dist (h, {C1, C2, . . . Ck}).
6: Choose the data item that is farthest from the nearest cluster as the

next cluster.
7: C(k + 1) = f ar thest_ i tem.
8: S = S − { f ar thest_i tem}.
9: until k 	= Number of clusters

3 Experimental results and discussion

The proposed method is implemented using MATLAB. All
the experiments were performed on a personal computer with
3GHz Pentium processor and 3GB of memory running under
Windows XP operating system.

3.1 Dataset

The input dataset consists of the T1-weighted post-contrast
and T2-weighted brain MR images of 820 patients (male 438,
female 382) with verified and untreated tumors. The patients’
ages were in the range of 15–74 years (mean age 48 years).
The images were acquired from 1.5-T MRI clinical scanner
at Shirdi Sai Cancer Hospital, Manipal, India over the time
period of February 2008 to March 2011. The scan of each
patient produced set of 64 slices with each slice having a
thickness of 2 mm. All images in the data set were grey-scale
images with size 640 × 480 and each pixel size corresponds
to 0.11 mm × 0.11 mm. Tumors were from 4 to 41 mm in
size (mean size 21 mm). Among 820 patients, 420 patients
were diagnosed with benign tumor and 400 patients with

malignant tumor based on histopathology analysis of biopsy
samples. T1-weighted post-contrast and T2-weighted MR
images were used in the experiments as they provide impor-
tant diagnostic information and appreciable contrast between
brain regions.

3.1.1 Retrieval results

To test the effectiveness of the rotation correction tech-
nique, some of the images in the dataset were rotated by
10◦, 15◦, 20◦ and 25◦ in clockwise and anti clockwise direc-
tions. In the preprocessing stage, the misaligned images were
corrected using inverse mapping and bicubic interpolation.
Table 1 shows the average similarity scores between the orig-
inal images and the rotation corrected images when the rota-
tion was corrected using three interpolation methods. It was
observed that similarity increases when the complexity of the
interpolation method increases.

The graphical user interface (GUI) for the CBIR system
along with the retrieval results for a given query image is
shown in Fig. 10. It can be seen that the system retrieves
benign tumor images in response to the query image which
is also benign. With the help of a GUI, the user can select a
query image and the number of images to be retrieved from
the database. The retrieved images are ranked by degree of
similarity to the query feature vector. The top 12 most similar
images are retrieved and displayed along with the patient data
in response to the query image. Also, the retrieval results can
be refined for detailed analysis based on the age and gender of
the patient. The physician can then study the characteristics
of the retrieved tumors and also refer diagnosis report to know
the tumor type, severity and prescribed treatment of the corre-
sponding cases. All these parameters assist the radiologist in
making case-based reasoning in diagnosis of the brain tumor.

3.2 Performance analysis

The performance of proposed CBIR system is evaluated by
measuring retrieval accuracy and efficiency.

Table 1 Performance comparison of interpolation methods

Rotation angle Similarity scores

Nearest neighbor Bilinear Bicubic

−10◦ 1.36 0.98 0.00

−15◦ 2.73 0.76 0.00

−20◦ 2.98 1.13 0.01

−25◦ 4.15 1.20 0.01

10◦ 1.28 0.71 0.00

15◦ 3.01 1.02 0.01

20◦ 4.00 2.08 0.02

25◦ 4.55 2.11 0.02
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Fig. 10 GUI for content-based image retrieval of brain tumor

3.2.1 Retrieval accuracy

In the classification stage, the ensemble classifier consisting
of SVM, ANN and k-NN was used to classify the brain tumor
as benign or malignant based on class-specific features. The
performance of the ensemble classifier was evaluated using
tenfold cross-validation. 820 MR images in the dataset were
randomly split into 10 groups with each group consisting
of 42 benign tumor and 40 malignant tumor images. Within
each iteration, one group was left aside and the ensemble
classifier was trained using images of the remaining nine
groups. Once trained, the images in the group left aside were
tested using the trained ensemble classifier. This process was
repeated until every group was tested. Radial basis function
was chosen as the kernel function for the SVM classifier.
The parameters resulting in optimal classification accuracies
consist of the regularization parameter (C) = 10 and ker-
nel parameter (σ ) = 2.5 for SVM classifier, eight hidden
neurons for ANN classifier and the number of neighbors in
k-NN classifier was set as k = 13. Table 2 lists the number of
misclassified cases in each test set by the ensemble classifier
based on 2D and 3D features. It was found that both types of
features were equally effective in classifying the brain tumor
as benign or malignant.

The performance of the ensemble classifier in tenfold
cross-validation is measured using the following perfor-
mance metrics:

Sensitivity = TP

TP + FN
× 100. (22)

Specificity = TN

TN + FP
× 100. (23)

Table 2 The number of misclassified cases by ensemble classifier in
each test set

Test set 2D features 3D features

Malignant Benign Malignant Benign

1 0/40 0/42 0/40 0/42

2 0/40 1/42 0/40 1/42

3 0/40 0/42 0/40 0/42

4 0/40 0/42 0/40 0/42

5 0/40 0/42 0/40 0/42

6 0/40 0/42 0/40 0/42

7 0/40 2/42 0/40 2/42

8 0/40 0/42 0/40 0/42

9 0/40 0/42 0/40 0/42

10 0/40 0/42 0/40 0/42

Accuracy = TP + TN

TP + TN + FP + FN
× 100. (24)

where, TP (true positive): number of malignant tumors clas-
sified as malignant. FP (false positive): number of benign
tumors classified as malignant. TN (true negative): number
of benign tumors classified as benign. FN (false negative):
number of malignant tumors classified as benign. The accu-
racy of the ensemble classifier is 99.39 % with 100 % sensi-
tivity and 98.80 % specificity. This means that the ensemble
classifier can predict well the malignant category. This is
important from the diagnostic viewpoint as the false clas-
sification of malignant tumor cases has very serious conse-
quences for the patient. However, some of the benign cases
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Fig. 11 Performance comparison of shape descriptors

were incorrectly classified due to the difficulty in capturing
boundary and shape features of the benign tumors in few
cases.

Precision and recall are the standard performance metrics
used to measure the effectiveness of the CBIR system in
retrieving most similar images. They are computed as:

Precision = No. of relevant images retrieved

No. of images retrieved
× 100 (25)

Recall = No. of relevant images retrieved

No. of relevant images in the database
× 100

(26)

The tumor shape description by wavelet-based Fourier
descriptors gives a large set of Fourier coefficients repre-
senting the tumor contour shape information. Also, since the
tumors are of different sizes, the number of boundary points
may not be equal. This creates problem in similarity match-
ing. To acquire the knowledge on the number of coefficients
necessary for shape matching, we carried out an experiment
with 10–30 descriptors. With 10 or 20 descriptors we could
obtain the global form of the object but finer details were
missing, which are essentially required for better classifica-
tion. We obtained an optimal tumor shape representation with
30 descriptors. Therefore, we used 30 FDs for tumor retrieval.

The effectiveness of FD in representing tumor shape
details is evaluated by comparing it with other state-of-the-
art shape descriptors using precision–recall graph as shown
in Fig. 11.

Fourier descriptor and curvature scale space (CSS) [47]
are contour-based shape descriptors whereas a Zernike
moment descriptor (ZMD) and grid descriptors (GD) [48] are
region-based shape descriptors. ZMD of MPEG-7 performs
better than GD and CSS. However, ZMD loses the important
perceptual meaning. FD outperforms in shape representation
of tumor compared to other shape descriptors as it applies
fourier transform on the wavelet coefficients. Also Fourier

descriptors are much easier to derive, match, normalize and
more compact compared to other descriptors.

The MPEG-7 Gabor filter and EHD describe homoge-
neous and non-homogeneous textures of the tumor and per-
form better when used together for representing subclass of
the tumor. The performance comparison of different texture
features and combination of texture and shape features for
representing the tumor subclass is given in Table 3. It is
observed that the 2D and 3D features obtained almost similar
retrieval accuracies and the retrieval performance improves
when shape descriptors are combined with texture descrip-
tors. Hence, our proposed CBIR system is based on 2D shape
and texture features extracted from a representative slice of
the tumor instead of 3D model of the tumor built from a set of
slices. The proposed combination of shape and texture fea-
tures extracted using FD, Gabor filter and EHD achieves the
highest precision and recall of 98.16 % and 97.35 %, respec-
tively.

In addition to tumor features, the feature similarity mea-
sure also has a vital effect on the retrieval results. Thus, we
experimented with various similarity measures to evaluate
their performance in retrieving similar shapes and texture as
shown in Fig. 12. It is found that Euclidian and Chi-square
distances give good retrieval performance when used for
comparing shape and texture features, respectively.

3.2.2 Retrieval efficiency

In order to provide faster retrieval results, the proposed
CPKD indexing method prunes the search space by cluster-
ing subclass features using the proposed modified K-means
clustering algorithm. Table 4 shows the number of clusters
determined in the benign brain tumor dataset by the pro-
posed algorithm (Estimate_Clusters). In the experiments,
the number of clusters was varied between Cmin = 2 and
Cmax = √

n based on Bezdek’s suggestion [49], where
n indicates the number of features to be clustered. For
simplicity, only ten entries are shown in the table. The clus-
tering results obtained are evaluated using Dunn, Davies–
Bouldin and Jagota index. The minimum fused index value
indicates optimal clustering. As shown in the highlighted
row of Table 4, the algorithm identifies seven clusters in the
benign brain tumor data set, as with this set of clusters the
fused value obtained from validity indices is optimized. Sim-
ilarly, five clusters were identified in the malignant tumor set.
We also evaluated the clustering results using the randomly
initialized centers and initial centers derived by the pro-
posed algorithm (ClusterCenter_Init) in terms of cluster cen-
ter proximity (CCP) [48] which is given as:

CCP = 1

K × m

K∑

s=1

m∑

j=1

∣∣∣∣
fs j − Csj

fs j

∣∣∣∣ (27)
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Table 3 Performance
comparison of feature
descriptors

Feature descriptors 2D features 3D features

Precision (%) Recall (%) Precision (%) Recall (%)

Gabor filter 92.52 88.41 92.52 88.41

EHD 90.11 93.53 90.11 93.48

GLCM 85.62 83.0 85.65 83.03

Tamura 82.18 79.31 82.18 79.31

Gabor filter + FD 95.0 94.86 95.0 94.86

EHD + FD 94.72 95.20 94.70 95.20

GLCM + FD 92.55 88.53 92.55 88.58

Tamura + FD 90.60 88.15 99.60 88.15

Gabor filter + EHD + FD (proposed) 98.16 97.35 98.16 97.35

Table 4 Estimation of number of clusters in benign brain tumor data
set

No. of clusters Cluster validity indices Index fusion

Dunn Davies–Bouldin Jagota

2 0.85 0.83 0.69 0.83

3 0.80 0.59 0.72 0.72

4 0.68 0.27 0.53 0.53

5 0.38 0.24 0.19 0.24

6 0.16 0.20 0.21 0.20

7 0.06 0.09 0.17 0.09

8 0.08 0.14 0.20 0.14

9 0.15 0.21 0.23 0.19

10 0.18 0.27 0.25 0.25

where fs j and Csj indicate j th attribute value of the desired
and initial cluster centers, respectively. CCP values of 0.62
and 0.10 were obtained with random and proposed initial-
ization technique, respectively. This infers that the proposed
method predicts initial cluster centers nearer to actual clus-
ter centers. Table 5 shows the comparison of time complex-
ity of different indexing methods for processing the nearest
neighbor queries on feature database. Where, N and D repre-
sent number of feature vectors and their original dimensions,
respectively. N (h) and D′ represent number of feature vectors
in cluster h(h = 1, 2 . . . K ) and their reduced dimensions,
respectively. C indicates the number of clusters in the dataset.

It is observed that exhaustive search which is a brute force
search method consumes more time to retrieve similar tumor
images from the database. Whereas the proposed method
takes very less time (2–3 s) compared to other methods. This
is because it has a combination of modified K-means cluster-
ing, PCA and KD-tree. The use of clustering and PCA prunes
the search space by limiting the query to lower dimensional-
ity space of the closest cluster instead of searching the entire
database. Also, the KD-tree gives good search performance
of O(log N ) in lower dimensional spaces. Thus, the pro-
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Fig. 12 Comparison of similarity measures

posed indexing method narrows down the search space and
thus accelerates the retrieval task.

The retrieval performance of the proposed CBIR method
was compared with the following existing methods as shown
in Fig. 13:

• E1: Retrieval using multiple features (Emmanuel et al.
[50]).

• E2: Retrieval based on classification (Dube et al. [51]).
• E3: Retrieval based on machine learning and clustering

(Rahman et al. [52]).
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Table 5 Comparison of database indexing techniques

Indexing method Exhaustive search Clustering CPKD (proposed)

Retrieval time O(DN ) O(DC) + O(C) + O(D′N (h)) O(DC) + O(C) + O(D′ log N (h))
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Fig. 13 Performance comparison of CBIR systems

Emmanuel et al. [50] extracted multiple features to char-
acterize the tumor completely. But a large number of fea-
tures leads to curse of dimensionality problem. Dube et al.
[51] retrieved brain tumors based on classification. They
reported accuracy of only 87 % as the system could not
match the images of subclasses. In order to enhance similarity
learning, Rahman et al. [52] combined classification with
clustering. But the same feature set was used for both clas-
sification and retrieval after classification. Thus, the system
could not achieve higher performance in retrieving most simi-
lar images. Our proposed method for CBIR fills the semantic
gap by learning the similarity hierarchically with different
set of features to represent the tumor at each level. Thus, it
achieves good precision and recall rates as compared to other
CBIR methods.

4 Conclusion

In this paper we have proposed an accurate, efficient and
automatic approach to brain tumor diagnosis based on
content-based retrieval of MR images from the medical
image database. The proposed approach resolves the MR
image misalignment problems by rotation correction tech-
nique. The system is made accurate by the hierarchical
approach to similarity learning and extracting more effec-
tive features for representing the brain tumor type. Also,
the system is made more efficient by incorporating indexing
technique which is developed based on modified K-means
clustering, PCA and KD-tree.

The performance evaluation demonstrated that the combi-
nation of features yields better retrieval accuracy than using
features independently. Also, the various similarity measures
were compared to select the measure that retrieves most
similar images. The proposed indexing technique proved
to be better than the exhaustive search. Overall, the fusion
of several features of the tumor and the indexing technique
resulted in good retrieval accuracy with 98.16 % precision
and 97.35 % recall. Thus, the proposed CBIR system can be
used in hospitals for assisting the radiologist in diagnosing
brain tumors with good accuracy and speed.
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