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Abstract Providing effective tools to retrieve event-related
pictures within media-sharing applications, such as Flickr, is
an important but challenging task. One interesting aspect is
to search pictures related to a specific event with a given
annotated image. Most existing methods have focused on
doing this by extracting visual features from the pictures.
However, pictures in media-sharing applications increasingly
come with location information, such as geotags. Therefore,
we stress the importance of exploring the possibility to lever-
age on the geographical and temporal distribution of terms
in a tag-based search process, within event-related image
retrieval. Specifically, we propose extended query expansion
models that exploit the information about the temporal neigh-
borhoods among pictures in a collection, and leverage on the
geo-temporal distribution of the candidate expansion terms
to reweight and expand the initial query. To evaluate our
approach, we conduct extensive experiments on a dataset
consisting of pictures from Flickr. The results from these
experiments demonstrate the effectiveness of our method
with respect to retrieval performance.
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1 Introduction

The explosion of photos shared on the web has not only
opened many possibilities but also resulted in new needs, and
hence new challenges. Although recent developments and
technological advances have helped the user to access public
photos on the web, e.g., through media-sharing applications,
the amount of available information makes the access to these
photos still a less straightforward task. To partly address this
challenge, the development of event-related image retrieval
systems has been proposed [28]. An event-related image
retrieval system is optimized to retrieve all pictures related to
a specific event. Here, an event has a specific semantic mean-
ing. Focusing on media-sharing applications, an event can be
“something happening in a certain place at a certain time and
tagged with a certain term” [40]. So in an event-retrieval sys-
tem, the intent of a user might be to retrieve resources related
to a particular event, or to use a given tagged photo repre-
senting an event to retrieve other photos related to any similar
events from a large image collection. Our main focus is on
the latter.

Due to their characteristics, pictures in photo-sharing
applications such as Flickr! and Panoramio® are here partic-
ularly interesting. Pictures in such applications are accom-
panied by contextual metadata, containing heterogeneous
fields, such as camera-specific data, e.g., the Exchangeable
image file format (EXIF)3 data, Title, Tags, Description, tem-
poral information, i.e., capture and upload time, and geoloca-
tion, i.e., geotags. In this work, we study how we can exploit
the above metadata to retrieve event-related pictures. In doing

I See http://www.flickr.com/.
2 See http://www.panoramio.com/.

3 EXIF is a standard of the Camera and Imaging Products Association
(CIPA). See also http://www.cipa.jp/english.
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so, we aim at addressing the following challenges. First, not
all pictures may contain reliable tags, description or title.
They may either be missing or have no relation to the content
of the picture. As a result, they may not contribute much in a
retrieval task. Second, Tags are unstructured, subjective and
full of noise, thus worsening the retrieval performance. Third,
many of the queries are short, i.e., pictures containing only
few tags. Dealing with short queries is in itself a challenge.
Fourth, a complete collection of images from photo-sharing
applications is inherently large, and handling large datasets
is in itself an important challenge.

In summary, the main goal of this work is to deal with
the above challenges, focusing on situations where a user
searches for pictures related to a specific event, each of which
is represented by an image with a possibly small number of
tags. We believe this area is still not mature, and that only few
approaches are available, e.g., [24,28,46]. Further, within
information retrieval (IR), existing work has mainly been
focused on applying temporal information in the retrieval
models [17]. At the same time, the most related approaches,
such as [46], are promising with respect to retrieval perfor-
mance, but seems to be mainly based on using the visual
features. We also considered using visual features as part of
our approach. However, we early learned that performance
(speed) could be a challenge with large datasets. Further, due
to the characteristics of event-based pictures, also pointed out
by Brenner and Izquierdo [7], we decided to mainly focus on
using the metadata. As shown in this paper, we manage to
get good retrieval performance, even without using visual
features.

That is, we show that by mining and extracting the geo-
profiles of terms from textual tags, we can further improve
the retrieval performance. To our best knowledge, this has not
been explored in depth before. Existing work has mainly been
concerned with point-of-interests (POI) extraction [34,39]
and trajectory mining [50]. With the constantly increasing
number of geotagged pictures in, e.g., Flickr*, exploring this
dimension is important. To this end, our main contributions
are as follows. First, we conduct a study comparing the effec-
tiveness of different retrieval models when using only the
textual metadata in event-related image retrieval. As part
of this, we thoroughly analyze how different combinations
of textual fields affect the retrieval effectiveness, depending
on the adopted retrieval model. Second, we propose a new
weighting model for a query expansion step-based tempo-
ral proximity in combination with existing term weighting
and similarity models. Third, we develop a new extended
model that also includes the mined spatial profile for terms
in the textual tags. Our extensive evaluation shows that using
both of our new models yields better retrieval performance

4 In 2009, more than 3.3% (approx. 100 million pictures) were
geotagged. See also http://goo.gl/fvjPg.
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than the baseline models, especially with short queries, i.e.,
pictures with only one to three tags.

This paper is organized as follows. Section 2 gives an
overview of the related work. Section 3 outlines some pre-
liminary theory that our approach is based on, and defines
the problems addressed in this paper. Section 4 elaborates on
our new weighting model for query expansion, accompanied
by the query expansion models that we use as baselines for
our experiments in Sect. 5. Section 6 presents the result from
these experiments. Finally, in Sect. 7 we conclude the paper
and outline our future work.

2 Related work

Extracting pictures related to real-life events is an active
research field [14,38,46], and in the past decades, detection
of events from textual document streams and databases has
been extensively treated in the literature [1,6]. Still, despite
being active, we believe that event-related image retrieval and
matching for photo-sharing applications is not a fully mature
field. To put our research into perspective, in the following
we briefly discuss some approaches that are related to ours.

2.1 Event retrieval and matching

Most related approaches within event retrieval and matching
have been aimed at extracting events from different kinds
of datasets. To our best knowledge, only few works have
addressed the problems of retrieving events related to media
sharing. Most of these approaches were presented in the
social event detection (SED) task at MediaEval 2011 [28],
where the main objective was to develop event retrieval sys-
tems for Flickr pictures. Most interesting is the work by Trad
et al. [46]. Similar to our approach, the authors proposed
methods to match a given (query) picture representing an
event to pictures representing the same events in a picture
collection. The query image is provided with both tempo-
ral and spatial information, and the matching algorithm is
based first on visual similarity, followed by a reranking step
based on geo-temporal coherence. To handle the scalability,
they use Map Reduce in the content analysis and indexing
process, and conducted their experiments on a set of around
1 million of pictures, from the LastFM-Flickr dataset [47].
Our work differs from this work in that rather than applying
visual features, we only use textual data. This allows us to
work on a much larger dataset, i.e., a dataset consisting of
around 88 million Flickr pictures.

2.2 Query expansion

Query expansion (QE) has been proven to increase retrieval
effectiveness, where an often applied approach is so-called
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pseudo-relevance feedback [26,37,51]. The use of tempo-
ral information in information retrieval has been previously
widely investigated both for ranking models [22] and query
expansion [11]. Approaches incorporating geographical con-
text in query expansion has, on the other hand, been mainly
proposed in the field of geographical information retrieval
(GIR) systems [8,13,30,32]. In particular in [13], the authors
propose an expansion process by deriving the spatial query
footprint from SPIRIT? ontologies, while in [8], the term sug-
gestion is supported by Wordnet.® The main difference to our
work is that in both [8, 13], the query expansion process uses
similarity derived from ontologies, whereas, in our work we
measure the geographical co-occurrence using the dynamic
context of social media resources such as Flickr. This also
allows us to use free text search rather than relying on queries
with specific query structure, such as the triplet <what, rela-
tion, where>, often used in GIR [8]. Note that tag suggestion
can be related to the topic of query expansion. For example
in the work in [27,45], the authors proposed tag recommen-
dation methods for Flickr pictures. The limitation of these
approaches is that the input query image must be necessarily
geotagged. However, with our approach we only require the
tag-based search to be performed with timestamped textual
queries.

2.3 Events in photo-sharing applications

Concerning image-sharing applications such as Flickr in gen-
eral, there are several approaches that are worth discussing.
Most notable is the approaches presented in [29,33]. In both
of these approaches, the authors proposed methods for detect-
ing groups of events and landmark pictures from commu-
nity photo collections, by applying a clustering step and fol-
lowed by a classification step. The main difference is the
way the clustering step is carried out. While the former used
an agglomerative clustering algorithm, the latter is based on
community detection clustering algorithm. Nevertheless, at
a first glance, these approaches seem to be related to ours
in that we can apply the event detection part in the event
retrieval process. However, the focus is different in that we
are most interested in directly retrieving event-related pic-
tures without having to cluster and classify them first. Also,
to our best knowledge, both of the approaches are based on
visual features. In addition to these two approaches, the work
by Becker et al. [4] is another approach on extracting events
from community photo collections. Here, the authors mainly
focused on event clustering. For this reason, the focus is dif-
ferent from ours.

3 http://www.geo-spirit.org/.
6 http://wordnet.princeton.edu/.

2.4 Event detection and extraction from Microblogs

Due to the advance of Internet-based social community, much
effort has been put on developing approaches to identify and
extract events from different social community resources
such as Microblogs [5,10,25,42,48], and image-sharing
applications [4,29,33,38]. Focusing on Microblogs,such as
twitter’, the user contributes to the social media by post-
ing text messages that are generally short and tagged with a
temporal tag. The most important differences of this type
of text compared with textual documents are the average
length of the textual messages and the noises in which
such messages contain. Works on event detection within this
domain have tried to tackle the above two characteristics
in different ways. For example, Long et al. [25] propose a
language-independent approach for detecting, summarizing
and tracking events from tweeter posts. Further, Chakrabarti
and Punera [10] suggested a real-time approach to summarize
the tweeter posts as events, using a modified variant of the
Hidden Markov Model to model the hidden state represen-
tation of an event. Other examples of real-time approaches
were presented in [5,42,48]. In [48], the goal was to detect
events from tweet posts by leveraging on their geographical
and temporal tags. In [5], the authors presented a method
composed by a clustering step, followed by a classification
step to group tweets and separate event clusters from non-
event clusters, respectively. Finally, Sakaki et al. [42] inves-
tigated the possibility to detect events such as earthquake
using the real-time stream of tweet posts as sensors. For this,
the authors proposed a specific spatio-temporal model based
on Kalman filter to detect such a kind of event.

3 Problem definition

The main focus of our work is on a tag-based search of event-
related pictures from a photo collection. Here, we assume a
query to be a set of tags from a picture, e.g., a Flickr pic-
ture tagged with textual information, including Title, Tag
and Description, as well as a timestamp specifying when the
picture was taken.

So, consider a collection of Flickr images as our target
dataset 2, where each image .# comes with metadata con-
sisting of information about when the picture was taken
and the textual annotations. Then, each image .¥ € %
can be represented as ¢ = {7, d;}, where .7 = {Title,
Description, Tags} denotes the set of textual annota-
tions for .#, and d; is the timestamp for when the photo
was taken. With the aforementioned challenges in mind,
we want to investigate approaches to deal with the situ-
ation in which a user wants to retrieve a set of pictures

7 See http://www.twitter.com/.
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representing a specific event, given a picture representing
the same event. Formally, if we let % be a set of pictures
representing the target event related to the user query inten-
tion, and .7, € .# denote our query image, then our problem

is to retrieve all .# € .& representing the same event as
Fy.

As part of the solutions to our problem, we will answer
the following research questions: First, how do differ-
ent tag fields of a picture from a media-sharing applica-
tion such as Flickr affect the retrieval effectiveness? Sec-
ond, can a query expansion step be useful in retriev-
ing event-related pictures, if we have a query consisting
only of the metadata for a single picture? Third, which
temporal and spatial features can be useful to improve
the search effectiveness in retrieving event-related pic-
tures? Forth, can we still improve the retrieval effec-
tiveness when applying queries with small number of
tags?

As we explain in Sect. 4, we aim particularly at exploring
the temporal proximity between term distributions and con-
sidering the spatial profile of tag terms in retrieving event-
related pictures. Further, to partly answer the above ques-
tions, in our evaluation we will first perform a set of baseline
experiments in which we explore the effectiveness of dif-
ferent retrieval and query expansion models. Then, we will
evaluate the retrieval effectiveness of our query expansion
model based on temporal and spatio-temporal reranking of
the retrieved list.

4 Query expansion for event retrieval

Query expansion is a post-processing step in retrieval sys-
tems, aiming at ensuring good retrieval performance when
the query is too short, poor and does not contain all the terms,
and therefore does not sufficiently reflect the user’s search
intent [3]. The effectiveness of QE has been proved in many
works [15,26,49]. One of the most used QE approaches is
pseudo-relevance feedback [3]. The main idea is to assume
that a top-k ranked list of retrieved documents are relevant to
a specific query. Then, we perform QE by extracting terms
from these documents, and use them to reweight and extend
the terms in the original query. Depending on the method
being used, the choice of the terms can be done by com-
paring the distributions of terms in the retrieved (or feed-
back) documents and the entire collection. Note that since we
want to tackle the challenges connected to searching event-
related pictures using metadata—assuming timestamped pic-
tures with small number of tags, it is necessary to improve
and adapt existing query expansion techniques. In the follow-
ing, we elaborate on how we do this after giving an overview
of the baseline QE approaches.

@ Springer

4.1 Baseline query expansion approaches

Generally speaking, a query expansion approach is a two
step approach consisting of (1) choosing the terms to be used
in the expansion, and (2) assigning the weight to the chosen
terms. Focusing on (1), there are several approaches that have
been suggested. Among these, we have specifically consid-
ered two methods that have been proven to be very effective:
the Kullback—Liebler (KL) divergence-based approach [9]
and the divergence from randomness (DFR) model [2]. With
the KL divergence approach, the idea is to analyze the term
distributions, and maximize the divergence between the dis-
tribution of terms from the top-k retrieved documents and the
distribution of terms over the entire collection [9]. The terms
chosen for the query expansion are those contributing to the
highest divergence, i.e., the highest KL score [9]. This means
that expansion terms with low probability in the entire col-
lection and high probability on the retrieved top-k documents
are given more weights than the other terms. The following
equation is used to calculate the KL score for a given term ¢
in the feedback (top-k) documents [9]:

Prei (7) i|

1
Pcon (1) %

KL(7) = Prei(t) log [
where Pre(#) and Pcoy () are the probability that ¢ appears
in the top-k documents and in the collection, respectively.
Here, Prei(f) can be estimated by the normalized term fre-
quency of 7 in the top-k documents, whereas Pcop () can be
computed as the normalized frequency of ¢ in the entire col-
lection. With the DFR model, on the other hand, the idea is
to weight the expansion terms by calculating the divergence
between the distribution of terms in the feedback documents
(the top-k documents) and a random distribution [2]. In our
work, we have chosen to implement this method based on
the Bose—Einstein statistics (Bol), which has been shown to
be one of the most effective approaches. Bol is computed as
follows [2]:

1+ Py(7)

Bol(#) = 1 ffeedback l0g I:P—(t)
n

} +log [l + P,(0)], (2)

where f freedback 1S the frequency of term ¢ in the feedback
documents, and P,(r) = F/N is the ratio between the fre-
quency F of ¢ in the entire collection and N the size of the
data set. After the expansion terms have been selected using
one of the approaches above, we can proceed to step (2),
i.e, reweighting the terms in the query. One of the classical
approach to reweight query terms is the Rocchio’s algorithm
[37]. In particular, we use the Rocchio’s Beta equation [31]
as follows:

3
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where w(z,) is the new weight of a term 7, of the query,
w(t,) is the weight from the expansion model, i.e., KL(#;) or
Bol(t;), max w is the maximum weight from the expanded
weight model, max ¢f, is the maximum term frequency in
the query and ¢ fq;q is the frequency of the term in the query.

4.2 Extended query expansion models for event retrieval

In this section, we propose a set of methods to extend the
above baseline models. Our main goal is to exploit the tempo-
ral and geographical information encapsulated in the picture
tags. Previous approaches have focused on investigating the
application of the temporal information in pseudo-relevance
feedback approaches. For example, the approaches by Efron
and Golovchinsky [12] and Keikha et al. [ 18] proposed meth-
ods to incorporate time into the relevance model by Lavrenko
and Croft [20]. In contrast to this, our objective is to use
the characteristics of an event, in combination with the tem-
poral proximity of the term distribution as features in the
term selection process for a query expansion framework. We
assume that all pictures in our collection contain a tempo-
ral annotation identifying when the picture was taken, i.e., a
timestamp. Further, we hypothesize that pictures related to
the same event have some temporal proximity or temporal
closeness. This means that the more temporally close to the
query the retrieved pictures are, the more likely that they are
related to the same event. Such a property is useful in a query
expansion framework, since we can use the temporal infor-
mation to decide the term weights. For example, we can give
higher weights to terms having higher probability to appear
in a document and being temporally close to the query. With
this in mind, in the following we propose a query expansion
model to improve the retrieval of events.

4.2.1 Temporal-proximity reranking

As afirst improvement, we explore the effectiveness of using
a ranking function that considers both the textual similarity
and the temporal proximity of the document, in the query
expansion process. The idea is to push documents with higher
temporal proximity up in the top-k feedback documents.
Note, however, that the temporal similarity and the textual
similarity are not two unified measures. Therefore, the scores
assigned by performing two queries, one with textual query
and another with the temporal data, are not straightforward
to merge by a score-based ranked list fusion. For this reason,
we merge the two ranked lists by adopting rCombMNZ [21],
which is the ranked-based version of CombMNZ [43], given
by

score® = h(d,R) Z
Ri€[R1,R2]

gfi(d), )

where d is a document of a ranked list, R; and R; are the
two ranked lists and % (d, R) is the rank hits representing the
number of ranking lists in which the document d is present.
Further, gR" (d) denotes the normalized ranking score of the
document d in the ranked list R;.

4.2.2 Temporal-proximity-aware KL divergence

As a second improvement, we actively use the assumption
about temporal proximity, mentioned before. In both of the
presented baseline query expansion models, the core premise
is that a query expansion word should be more common in
the feedback documents and less common in the whole col-
lection. This means that we have a high divergence between
the distribution of the candidate term expansion in the feed-
back document set, and the distribution of the same term in
the whole collection. Hence, our intuition is the following:
the distribution of a good candidate expansion term should
commonly co-occur as much as possible in documents that
are temporally close to the query picture and less common
in the whole collection. This is the same as having a high
divergence between the distribution of the co-occurrence of
the candidate expansion terms and the query terms in the set
of temporal neighbors pictures, and the distribution in the
whole collection. The idea is that in addition to the original
KL-divergence computation, our weighting process also con-
siders the divergence of the term distributions within a time
slice .%, centered in the timestamp of the query image, and
the co-occurrence with the query terms within the same time
slice. Now, let 9[{{;{] be the distribution of the co-occurrence
between the candidate expansion term ¢ and the query terms
t; € Q within the set of temporal neighbors, and 0[(;‘;}1] denote
the distribution of the co-occurrence terms in the whole col-
lection. Then, our temporal-aware KL score can be computed
as follows:

KLZ (0, 1) = > KL@F, 160 )
tieQ
Po(tlt)
lngf 7 (Lrlti) 0g|:PC011(t|ti):| ©

In this reweighting process, the new weight of a candidate
G

expansion term ¢ is the sum of the divergence between 9[;{;1,]
and 95‘;}1], for all the ; € Q. In other words, a candi-
date expansion term gets a higher weight if the divergence
between these two distributions 0[}%1] and 95‘;}1] is high. Fur-
ther, P (t|t;) is the co-occurrence probability of the terms
t and ¢; within a time interval .2, and Pcop(¢]t;) is the co-
occurrence probability of the terms ¢ and #; within the whole
collection. We evaluate the co-occurrence probability as pro-

posed in [44] by adding a normalization factor:

@ Springer
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expansion teme aer baseime - KL KL# (0.1

KL divergence.(KL), and @ atmedia 1.400 london 1.316

temporal KL divergence (KL~)

london 1.168 atmedia 1.266

ajax 1.108 ajax 1.135

atmedia2009 0.270 media 0.400

atmediaajax 0.089 atmediaajax 0.244

javascript 0.077 event 0.182

atmedia09 0.055 conference 0.146

media 0.050 web 0.130

web 0.047 javascript 0.097

conference 0.040 presentation 0.048

atmedia2008 0.030 session 0.046

event 0.025 abbey 0.033

presentation 0.020 pub 0.031

brendaneich 0.015 bar 0.021

session 0.014 screen 0.021

johnresig 0.013 brendaneich 0.015

Boldun‘derline.v.alue?s indicates christianheilmann 0.012 lectern 0.014

E;ctreasmg position in the ranked patrickgriffiths 0.012 christianheilmann 0.009

[ nf (t.1;) j| query Q, such as event, conference and session, get

Potl) = ng (O+ng” (&) and @ highefr scores than with the baseline approach. This is bf?cause

22 the distribution of the co-occurrences of such terms with the

nS(z 1) i| query terms have a higher divergence in the set of temporal

1§ () +n 5T (17) neighbors, compared to the divergence of the same distrib-

Peon(t]ti) = . () ution in the whole collection. To further illustrate the use-

|21

where 2 is the whole dataset and D ¢» C D is a subset of D
composed by documents having timestamp within the time
interval .. This means that nf (t,t;) and ng"”(t, t;) are the
number of documents in the set D¢ and D, respectively,
in which the terms ¢ and #; co-occur. Similarly, nf (t) and
ngon(t) are the number of documents in the set D ¢ and D,
respectively, that are tagged with the term ¢.

Example To explain the motivation behind Eq. 6, consider
the tag scores in Table 1. This table shows the results of
two reweighting processes: (1) using the baseline KL diver-
gence in Sect. 4.1, and (2) using the temporal KL in Eq. 6.
Here, our query was a picture with the tags {atmedia,
london, ajax} and the timestamp (27.09.2007), referring
to a periodic conference event, “atmedia”, in 2007. As shown
in Table 1, our dataset at least contains pictures from the 2008
and 2009 conferences.

In this example, we can make the following interesting
observations. First, with the baseline approach, although sev-
eral tags may refer to the same periodic event, e.g, the tag
atmedia2008 and atmedia2009, different times may
lead to different scores. Second, using our temporal KL
divergence approach, generic event- related terms in the user

@ Springer

fulness of applying the temporal information, Fig. 1 shows
how the temporal distributions of two tags conference
and atmedia, and their co-occurrences look like within a
given time interval. Also, the results of our experiments in
Sect. 5 demonstrate that our observation also apply to most
cases.

4.2.3 Combining the KL divergences

To include the influences of both scores in the calculation of
the final expansion weight, the last two models can be mixed
in a linear combination, given by

KLT(Q. 1) = yKL(@) + (1 — »)KLZ (0, 1), )

where y is factor used to determine the amount of influence
each score has on the final weight. In our experiment, we will
analyze the retrieval effectiveness as function of the values
of y on the weighting step, in the query expansion process.
This gives us also the possibility to evaluate the impact of
the proposed temporal weighting model.
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Fig. 1 Temporal distribution
of the tags conference
and atmedia and their
co-occurrence
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4.3 Exploring term spatial distribution

As explained in our hypothesis, pictures related to the same
event tend to appear in a limited geographical area. In this
approach, we mainly consider query pictures that are not geo-
tagged. There are two main reasons for this. First, we believe
the problem would be less challenging to solve when having
both the temporal and geographical information available.
Second, we aim at making our approach as generic as possi-
ble, and thus enabling it for media-sharing applications and
social media in general. For example, in the Flickr dataset
only 3.3 % of the pictures are geotagged. As a conclusion,
although the probability to have a geotagged picture is low,
the portion of pictures that are geotags can still be useful to
extract geographical profile of the terms.

With this in mind, we propose a method to find a good
expansion term #, given a set of query terms Q = {f;};.
Including the geographical dimension, a good expansion
term is a term related to the same event of the query picture.
In particular it is a term that commonly co-occur in docu-
ments that are temporally close to the query picture and in
a geographic delimited area, and less common in the whole
temporal timeline in the same delimited area. To define a
realistic problem, the query picture is not geotagged.

The method presented is based on the discretization of
the world map. We first divide the world map in M files
O = {F}k=1..m of size one degree as proposed by [52].
This means that the tiles does not have the same size. This
is because, on the world map, the size corresponding to one
degree varies depending on the latitude values; spanning from

0 Km on the poles, to 100 Km close to the equator. This
approximation is suitable to use since most of the highly
populated areas are closer to the equator than the poles.

To include the spatial dimension in the candidate expan-
sion term score, we use a similar hypothesis to the one pro-
posed in Sect. 4.2.2 as a starting point. This means that a good
expansion term ¢ is the one for which there is a high diver-
gence between the distribution of the pictures tagged with
the query term and the expansion term in a temporal time
slice .Z and a tile .7, and the distribution of the terms in the
same geographical tile .7; but covering the whole timeline.

Formally the new divergence is computed using
KL-divergence as follow:

7 7 Coll
KL% (.0 = > KL (07, 7165 7,) (10)
tieQ
Py (tlt;, Ti)
= Pyl T)lo [— .
t% 2 £ Pcon(tlti, k)
(11)

Here, Py (t|t;, ;) is the co-occurrence probability of the
query term #; and expansion term ¢, within a time interval
% and a geographical tile . Similarly, Pcoy(t|t;, %), is
the same probability without the temporal restriction. We
approximate these probability as follows:

n§N (.11 %)
ng® (1] T)+nG (111 %)

Pg)”(ﬂti,%): [ |%|

12)
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n? (t.41.%)
nZ (| F)+n 41 F)

177

PS(tl, 77 = [ (13)

We calculate the pair of probabilities PCGou(”th ;) and
Pg,(ﬂt,-, Z{j ) for each tile .7}, € ®. We calculate the diver-
gence between the two distribution values, tile by tile. We
consider the maximum as the final score. To include the influ-
ence of KLT, we mixed the models in a linear combination,
given by

KLST(Q, t)=0KLT(Q, t)+(1—0) max{KL%k (0,0} 7.
(14)

4.4 Scalability of the method

Recall that the purpose of our work is to improve the tag-
based search effectiveness of event related resources, such
as Flickr pictures, by improving the keyword-based rank-
ing models in IR. In our approach, the images are indexed
based on their textual metadata (the tags), using inverted
index structure. It is a data structure that efficiently store and
retrieve textual resources, and has been proven scalable [23].

As for our framework, the temporal and spatial dimensions
are included in the ranking model, and our query expansion
method does not need extra data structure. Thus, the only
bottleneck might be the increased size of queries. However,
as we mentioned before, we assume that the query size is
normally small. Therefore, this would not be an issue.

Nevertheless, our expansion algorithm is depicted in
Algorithm 1. To further understand the scalability of our
approach, let us analyze the computation cost of this algo-
rithm. As can be observed, to compute the final score, the
algorithm requires N = |&| * | Q] * |®]| steps, where |&] is
the number of expansion terms, | Q| is the size of the query
and |®| denotes the number of tiles. Since |®| is a finite num-
ber and that not all tiles contain images, plus | Q| is normally
small, it is safe to assume that our algorithm has a complexity
of O(|&)).

In general situations where the above sizes are unlimited,
we can parallelize the core of the algorithm, i.e., Step 6 to
Step 8 in Algorithm 1. Moreover, computing Eq. 10 is done
with a query limited in a spatial area (the tile). During the
computation, this area is fixed for any queries. In such a case,
scalability would not cause any problem.

As a final note, to perform our experiments, we indexed
and run our queries using Terrier® for the text search and Solr”
for the spatial search, both providing features for searching
and storing web-scale indexes. Further, we defined three ran-
dom test queries with one keyword, two keywords and three

8 See http://www.terrier.org.

9 See http://lucene.apache.org/solr.

@ Springer

Algorithm 1 Pseudo code of the QE procedure that incorpo-
rates geo-temporal dimensions.

1: £ <« time interval centred in the query timestamp
2: Query Q by using ranking model r and get the D set of top-N relevant

docs

3: Extract unique tags from D and get the candidate expansion term
set £

4: for e in £ do

5 for ¢; in Q do

6: for 7; in ® do

7: Calculate KL% (1;, ¢;)

8 end for

9: Calculate K LT (t;, ¢j)

10: Calculate KLST (t;, ¢;)

11: end for

12: Calculate 3, ., KLST (t;, ¢;)

13: end for

14: Rank ¢; € £ terms according to KLST(Q, e;) — ERrank
15: Re-build Q with the top-k terms from Eggnx — Q
16: Query Q by using ranking model r

1.6x104 -
I A *
5 1l.4x104 T
g -
2 1ox104 ---4--- Geo-Temporal KL
= — - — Baseline KL
(]
2 1.0x104
o
Q.
3
o 8.0x103 &~ A ————— A—_
—A
6.0x103 + ‘ ‘ ‘
20 40 60 80

Dataset Size (Millions of Documents)

Fig. 2 Response time for our QE executions with the random test
queries as function of the dataset size

keywords. Then, we measured the response time as function
of the size of the dataset, i.e., the number of indexed doc-
uments. We performed the experiments on an Intel i7-950
Processor, with 24 Gb RAM and 1 Tb Hard Disk. Figure 2
summarizes the results of our experiments, showing the aver-
age response time of the baseline QE method and the average
response time of our QE approach.

As can be derived from these results, even though the
size grew, the execution times did not follow the increase
of the dataset size. Note that the code written to perform
the experiments was not optimized, and thus this lack of
optimization might affect the response time, in general.
More specifically, we did not perform any parallelization of
the queries in Steps 68 in Algorithm 1. We did not opti-
mize Solr neither, but used standard tuning values. Finally,
we did not warm up the cache of the Solr system before
each experiment, i.e., the cache was empty at each query
processing.


http://www.terrier.org
http://lucene.apache.org/solr
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Fig. 3 Distribution of number of tags per pictures

5 Experimental setup
5.1 Dataset

To evaluate our method, we use the Upcoming dataset
[4] as the ground-truth for our experiments. This dataset
consists of 270.425 pictures from Flickr, taken between 1
January 2006 and 31 December 2008, each of which belongs
to a specific event from the Upcoming event database.'”
The unique number of events are 9.515. Each event is com-
posed by a variable number of images, varying from 1 to
2.398 pictures. Further, since the size of this dataset is rel-
atively small for our purpose, and due to the lack of other
datasets that are very large, we decided to build an addi-
tional dataset by merging the Upcoming dataset with other
pictures gathered from Flickr!!' covering a time period from
01.01.2006 to 31.12.2010 and without spatial restrictions.
Our final dataset now consists of 88.257.485 pictures, of
which 18.861.585 pictures are without any tags and around
23.5 % with 1-3 tags (see also Fig. 3 for more information
about the distribution of the number of tags). This further
illustrates the necessity of supporting short queries, as men-
tioned in Sect. 1. Also, this shows that both the ground-truth
and the final dataset contain sufficiently enough portions of
short queries.

Before performing our experiments, we first indexed all
image tags using Terrier. As part of the dataset preparation
we run a preprocessing step consisting of tokenization, i.e.,
UTFTokenizion based on whitespace and punctuation marks,
and English stopword removal. Then, we randomly selected
set of pictures from each event cluster in the Upcoming
dataset and use these as queries.

10" See http://upcoming.yahoo.com/.

I 'We used Flickr API to do this. See also http:/www.flickr.com/
services/api/.

5.2 Evaluation methodology

To assess the effectiveness of our approach, we compare our
models with existing models, which also serve as baseline
for our evaluation. Our baseline models are the Vector Space
Model (TFIDF) [3], Okapi BM25 (BM25) [35], Hiemstra
Language Modelling (LM) weighting model [16] and KL
divergence retrieval model (KLDM) [19]. For both BM25
and LM, we use the default parameter values, i.e., for BM25
we set ki = 1.2, k3 = 8 and b = 0.75, and for LM is
c =0.15.

To evaluate the retrieval performance, we use standard in
information retrieval evaluation metrics, including the mean
average precision (MAP) and R-Precision (RP) [3]. To make
sure that any improvements are statistically significant, we
perform paired two-sample one-tailed ¢ tests at p < 0.05
or 95 % confidence interval. Therefore, any stated improve-
ments in this paper are all statistically significant, unless oth-
erwise specified.

5.3 Considerations related to query expansion

Studying our dataset, we observed that more than one picture
related to the same event have been annotated with the same
set of tags by the same user. This is because many users in
Flickr often copy and paste the same set of tags for pictures
related to the same events or same group of pictures. To illus-
trate this, Fig. 4 shows the difference between the number of
picture retrieved and the number of unique pictures in the
retrieved set, using our query set presented above and with a
BM2S5 retrieval model.

This histogram shows that a set of retrieved documents
generally contains a high percentage (around 80 % in all the
cases) of pictures with duplicated set of tags. This observation
is useful when performing a query expansion on the type of
dataset as ours. Further, when extracting candidate expansion
terms from the top-K retrieved documents, it can happen that
a high number of duplicates of tag sets are in the documents
(pictures) within the top-K positions. This would reduce the
space of candidate expansion terms. To avoid this problem,

1000

800 M Unique Annotated Pictures
[l Top-K retrieved Pictures

600

#Picturess

400

200

0

Fig. 4 Comparison between the number of pictures retrieved and the
uniqueness of their TagSet
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we decide to remove the duplicates from the retrieved docu-
ment set during the process of selecting the top-K retrieved
pictures. So in our experiments, the number of pictures in
the top-k retrieved set used to select the candidate expansion
terms is the number after removing the duplicates.

Finally, to handle noisy and non-informative tags, we first
filter candidate expansion terms from the whole dataset that
do not comply with #f < 100. Then, we remove candidate
terms that do not match £ < 50, where 7f g is the term
frequency of a term extracted from images taken within the
geographical tile .

6 Results

Aiming at answering our research questions in Sect. 3, we
analyze the effectiveness of each textual field in the pictures
to find out which of the fields contributes to the best retrieval
performance. Thereafter, we perform different sets of experi-
ments to study the effectiveness of our proposed query expan-
sion model with respect to different parameter values.

6.1 Field effectiveness

Our first experiment aims at exploring the effectiveness of
using Flickr images as queries. To assess this effectiveness

and analyze the role of the fields in the metadata, we use
different combinations of the textual metadata as queries and
document representation. Specifically, we evaluate how Title,
Tag and their combination affect the retrieval effectiveness.
To do this, we first use Title only as a document, then Tag
only, and finally Description only. Thereafter, we test differ-
ent combinations of these fields as follows: Title and Tag;
and Title, Tag and Description.

Note that the efforts of the TREC community on retrieval
of structured and unstructured documents, i.e., the INEX
benchmarking for XML information retrieval, and the field-
based retrieval models such as BM25F [36] can seem to be
related to this part of our work. However, because the focuses
of these are more on full text contents, they are beyond the
scope of this work.

The set of queries is formed by randomly selecting one
picture from each event cluster in the Upcoming Dataset.
Here, we only consider event clusters containing more than
500 pictures from a total of 50 clusters. Thus, the total number
of queries is 50 for each sample. This random sampling is
repeated five times to obtain five sets of 50 queries, which
means that the total number of queries submitted are 250.

Tables 2, 3 and 4 summarize the results from the experi-
ments for our retrieval effectiveness analyses. Here, TAGTaG
means that we use the tag field in both the indexing and the

Table 2 MAP and RP by

querying using the Title field Comb TFIDF BM25 M KLDM
MAP RP MAP RP MAP RP MAP RP
TITtag  0.498 0.502 0.5003*  0.5062*  0.484%3*  0.4922%* 050323  0.510%*
TITr 0350 0.358 0.324 0.332 0.357 0.364 0.353 0.360
30141;“&03};65 }ftati;tfifa“g vap  TToes 0.550'24  0.559'2 0459 0.467 0.460 0.468 0.460 0.468
significant highest R am TITrr  0.113 0.129 0.106 0.124 0.127 0.140 0.130 0.147
value (then for each column)
Table 3 MAP and RP
able 3 MAP and RP by Comb TFIDF BM25 LM KLDM
querying using the Tag field
MAP RP MAP RP MAP RP MAP RP
TAGrag  0.685 0.695 0.687234  0.697%%*  0.691 0.704 0.6925%%  0.7043%
TAGmr  0.064 0.082 0.085 0.105 0.067 0.083 0.064 0.081
Bold indicates statistically TAGpes  0.281 0.290 0.281 0.287 0.434 0.448 0.281 0.288
significant highest RP and MAP - o =g 695123 79713 (530 0.540 0.696'2  0.708'2  0.6912  0.704%3
value (then for each column)
Table 4 MAP and RP
abled VIAFan Comb  TFIDF BM25 LM KLDM
by querying using both
the Tag and Title field MAP RP MAP RP MAP RP MAP RP
TTrag  0.663 0.680 0.669°  0.6862>  0.468 0.484 0.667°  0.682%3
TTrr  0.117 0.139 0.108 0.129 0.120 0.144 0.129 0.154
BOldéndiC?eShstatisﬁcaﬂg TTpes  0.369 0.376 0.287 0.295 0.288 0.297 0.289 0.297
signi i RP and MAP
significant highest RE an TTrr  0.673'2  0.690'3  0.665°  0.6833  0.693'23 070523  0.6702  0.6862

value (then for each column)
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query, whereas TAGTiT means we apply tag (TAG) in the
indexing but title (TIT) in the query, and so on. TT stands for
tags and title combination, while DES is the description field.
The numbers 1, 2, 3 and 4 in superscript in the tables indi-
cate the statistical significance improvements on the dataset
indexed with TAG field, TIT field, DES field and TT fields,
respectively.

With the results in these three tables, we can make the
following observations. First as shown in Table 2, querying
using the title resulted in the lowest MAP and R-precision
values compared to querying with the title and the tags. Fur-
ther, looking at the best results in each table, for each retrieval
model, the most representative field for each picture was the
Tag field, with which the MAP and the RP values were the
highest.

Finally, in Tables 3 and 4, we can see that in all the cases,
the highest MAP and RP values were obtained when the same
fields were used both to represent the documents/images and
to generate the set of queries. In summary, since these results
are conclusive, we can safely base our experiments to test
our query expansion step using the combination TAGTaG.

6.2 Short queries versus long queries

In this section, we compare the retrieval effectiveness of using
query pictures with less than three tags and query pictures
with more than four tags. To do this, we randomly select 40
query pictures with less than three tags and 40 query pictures
with more than four tags. To make the experiment more real-
istic, we consider only event clusters containing more than
100 pictures. This is because a small number of users nor-
mally contribute to small clusters. Thus, there would be a
high probability that a high percentage of the pictures would
be annotated with the same tags.

To perform this experiment, as well as executing the stan-
dard models, we also applied the query expansion mod-
els described in the previous section. Specifically, we used
the Rocchio’s framework weighting model, with both the
Kullback-Leibler divergence model (KL), and the Bose—
Einstein weighting scheme (Bol) to choose the expansion
terms. For each QE run, we used the default values, i.e., set-
ting B = 0.4 and choosing the first n terms of the top-K doc-
uments for the Rocchio’s Beta weighting model. The values
of K, i.e., the number of pseudo-relevant documents, were
chosen from {30, 60, 90}, and n, i.e., the number of selected
terms, from {8, 18}.

Figure 5 and Table 5 present the results of our comparisons
of the effects of using short and long queries. Specifically, in
Fig. 5 we focus on comparing the effects of short and long
queries on the retrieval effectiveness when using only stan-
dard IR models. In Table 5, on the other hand, we compare the
impacts of the query lengths when applying the two different
query expansion models, Bol and KL. Here, we summarize

[l Short Queries [ Long Queries
0.8 1

0.7 1
0.6 1
0.5 1

KLDM LM BM25 TFIDF
Fig. 5 MAP values with respect to using different retrieval models
Table 5 Short versus long queries: percentage improvements using the

query expansion model compared to the standard retrieval model, in
terms of MAP values

Bol KL

Long Short Long Short
TFIDF (%) 2.75 5.79 2.75 5.78
BM25 (%) 2.62 5.71 2.54 5.83
LM (%) —0.33 3.98 —0.32 3.98

the percentage improvements from standard IR models to
applying the query expansion models.

As Fig. 5 shows, with all standard IR models, we obtained
the highest MAP and R-precision values with long queries. In
contrast to this, as shown in Table 5, when applying the query
expansion step, we generally get the best results with the short
queries. More specifically, apart from the Language Model
(LM), where long queries resulted in decreased MAP values,
applying the query expansion step yielded two times higher
improvements with short queries than using long queries.

As a conclusion, if we only use standard retrieval models,
we get the best results with long queries. The reasons for this
is that (1) the use of a higher number of tags make the query
more effective, and (2) many users usually annotate groups
of pictures with high number of tags. Since we extract the
expansion terms from a list of top-K documents, thus making
most of the query terms either an excess or more important,
short queries with the expansion steps give the best results.
For this reason, we focus on improving the query expansion
models based on short queries.

6.3 Evaluating the extended QE models

In this experiment, we evaluated the approaches proposed in
Sect. 4.2.1. As in the previous experiment, we first randomly
selected 100 queries from the event clusters, containing more
than 100 pictures. Then we selected pictures with less than
three tags.
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In the first set of experiments, we compared the results
obtained by performing the retrieval process followed first
by the standard KL divergence for query expansion (KL),
and thereafter by the proposed proximity-based temporal
KL (KLT). In the second set of experiments, we tried the
combination of the two proposed methods, i.e., selecting the
expansion query terms by considering the pseudo-relevant
top-K documents and weighting the terms extracted apply-
ing KL and KLT, using the linear combination in Eq. 9. In
the third experiment, we compared the previous models with
the one based on spatial distribution of terms (KLST). In the
fourth experiment set, to assess the effectiveness of KLT, we
compared the effectiveness of KL and KLT, when doing a
reranking step as explained in Sect. 4.2.1, with Eq. 4 being
either applied or not applied. Here, the QE was performed on
pseudo-relevant pictures, still using Bol and KL in the Roc-
chio’s Beta framework (RB), with the same default values
of B.

Now, to perform a complete set of experiments, we con-
sidered different values of the following parameters. First,
as query expansion parameters, we varied the value of K
such that K € {30, 60, 90, 120} and the values of n such
that n € {8, 18}. Second, as a parameter for KLT, we var-
ied the time slice .Z in the following set: {1 day, 3 days,
7 days}. Third, for the reranking step, we varied the R val-
ues, i.e., number of top-R documents to rerank, in the set
{1,000, 2,000, 3,000, 4,000}.

In addition to the above models, we also implemented the
Mixture Model [51] and the Relevance Model [20]. How-
ever, the results were comparable to the KL and Bol query
expansion models. Thus, due to the space constraints, we did
not include them in this paper.

6.3.1 The impact of y on mixed KL

With this set of experiments, we tested the impact of the
parameter ¥ in Eq. 9 used to linearly combine the KLT and
the standard KL divergences. We varied its values from 0 to
1 such that y € {0, 0.25, 0.5, 0.75, 1}, where O means that

we only have the contribution of KLT and to 1 we only have
the contribution of KL. We repeated this experiment for the
six combinations of the number of query expansion terms #,
and the number of top-K documents considered in the query
expansion process.

Figure 6 shows the impact of varying the values of y on
the MAP values. As can be seen in this figure, for all the
combinations of K and n values, the MAP values decreased
when we increased the y value. This means that mixing both
of the contributions was not very effective with respect to
retrieval performance, but the most important contribution
came from our KLT divergence.

6.3.2 KL versus KLT

To further assess the performance of our KLT approach, we
compared it with the baseline approach, using the linear com-
bination in Eq. 9, with y =0.

First, we compared KL and KLT without any rerank-
ing step. The result from this experiment is summarized in
Fig. 7, showing comparison between the retrieval effective-
nesses of our QE models and the baseline models. As can
be observed, using BM25 and TFIDF retrieval models in the
initial retrieval step, our KLT outperforms KL, with all com-
binations of K and n. With LM and n = 30, the KLT also
outperforms the baseline model. With n = 60, the KLT still
outperforms KL but in this case the query expansion process
is not very effective. Overall, we can conclude that our query
expansion models are better than the baseline QE model, and
that all presented improvements are statistically significant
at 95 % confidence interval.

We carried out our next experiment to assess the effec-
tiveness of our KLT compared to the baseline query expan-
sion, including the reranking step. Specifically, we evaluate
the impact of R, i.e., the number documents reranked with
respect to the temporal proximity. Here, we performed the
retrieval process, first by reranking and then applying the
KL divergence for query expansion (RERANKING+KL),
and second by reranking and then applying our proposed

0.53 4 0.53
0.52 @
0.52{ " 0.51
£ E
3 g 0.50
0.51 A 0.49
R 0.48
0.50 0.50 i ; i " 0.47
0 025 05 075 1 0 025 05 0.75 1 0 0.25 05  0.75 1
¥ values ¥ values ¥ values

(a) TFIDF as base model

(b) BM25 as base model

(¢) LM as base model

Fig. 6 The MAP values as function of the value of y for three different standard retrieval models as base for the query expansion models. In each
figure from a—c, each graph represents a combination of K and n values, expressed as {K'}_{n}
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Fig. 7 The MAP values as function of the values of K and n, expressed as { K'}_{n}, with the three different retrieval models as bases for the

different query expansion models
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Fig. 8 The MAP values as function of the of number of documents to rerank, different retrieval models and different values of K and n

temporal KL. (RERANKING+KLT). As before, we varied
the values of n and K.

Figure 8 presents the results from this experiment. It
depicts several graphs comparing the retrieval performance
of the above approaches, using different combinations of the
size of the feedback document set K and the number of can-
didate query expansion terms.

So Fig. 8a shows the results from running QE with TFIDF
as a base retrieval model'2, and with K = 30 and n = 8, and

12° A base model is the retrieval model we run prior to a QE step.

so on. As we can observe in this figure, in all our tests, our
proposed KLT with the reranking outperforms the standard
KL. Moreover, we can see that in all the cases, we obtained
the highest MAP values with R=4,000. And, as before, all
the improvements of KLT are statistically significant at 95 %
confidence interval.

6.3.3 KLT versus KLST

In this subsection, we compare the temporal-aware query
expansion model with the spatio-temporal-aware query

@ Springer
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Table 6 Percentage of improvement of MAP and RP using different reweighting model on BM25

AMAP (%) ARP (%)
KL KLT KLST KL KLT KLST

30_8 2.97 8.20 10.84!2 3.74 8.29 10.59'2
60_8 457 10.66 15.06'% 5.46 9.79 16.66'%
90_8 291 13.19 16.77'%3 3.02 11.30 17.42'23
120_8 2.61 13.34 16.94!% 247 11.01 17.63'23
30_18 3.62 8.58 11.44!23 435 8.61 12.30'23
60_18 3.62 12.25 15.55'23 435 11.30 16.63'3
90_18 2.95 14.33 16.85!%3 3.19 13.38 18.30'2
120_18 2.84 14.52 17.25'%3 3.14 13.29 19.05'23

The numbers 1, 2 and 3 in superscript in the table indicate the statistical significance improvements on the baseline, KL and KLT reweighting

models, respectively

Bold indicates statistically significant highest values of AMAP and ARP at different values of feedback documents (K) and selected terms () (then

for each half row)

0.527 g Baseline
0.504 [ KLTEMP
I KLST
0.48 4
0.46
0.44
0.42
0.40 +
30_8 60_8 90.8 120.8 30.18 60_18 9018 12018
(a) MAP

7308 608 908 1208 3018

(b) RP

60 18 90 18 12018

Fig. 9 Comparison of MAP and RP values of KL_ST against other query expansion models, as function of the values of K and n [expressed as

{K}_{n}], using BM25

expansion model KLST. We use the values of y = 0 for the
linear combination between KL and KLT, which has been
shown to yield the best result. Further, we set § = 0.5 to
compute KLST(#) as given by Eq. 14. Due to the space
limitation, we do not present any tuning process for the
3 value.

Table 6 summarizes our comparison experiments. In this
table, we show how much our proposed query expansion
models, KLT and KLST, improve the retrieval performance,
i.e., the MAP and RP values, as compared to the base IR
model BM25 and the baseline KL. The temporal window
used is 3 days. For both the MAP and RP values, the first
columns of the table is the percentage improvement from
BM25 to KL; the second column is the percentage improve-
ment from BM25 to KLT; while the third column is the
percentage improvement from BM25 to KLST. Note that
as mentioned previously, we have omitted the results from
applying the Bol-based QE model because they were not
significantly different from the KL results. Further, we chose
to include BM25 as the base IR model here since it was
the model that gave us the overall best results, compared to
TFIDF and LM (see also Sect. 6.3.2).

@ Springer

Analyzing the results in Table 6, we can observe that for all
combinations of the number of feedback documents K and
number of expansion terms n, our geo-spatial and temporal-
based QE model, KLST, outperforms both the baseline KL
and our temporal-based, KLT, reweighting model. Specifi-
cally, KLST is from 10.6 to 19 % better than the baseline
method. Moreover, with the best MAP and RP values, KLST
is six times better than the baseline KL and around 50 % better
than the KLT model. To give a better overview of our compar-
ison, Fig. 9 depicts the differences between the four models
with respect to the MAP and RP values. As this figure shows,
the effectiveness of our KLST model is noticeably better than
the three other models, which also specifically answers our
third research question in Sect. 3.

7 Conclusions

Photo-sharing applications, such as Flickr, contain many pic-
tures related to real life events, and many of them are anno-
tated with time and location information. The main goal
of this work has been to improve existing retrieval models
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by exploiting this information within event-related image
retrieval. Our main idea has been to use picture metadata to
emulate a query-by-example analogy. To achieve this goal,
we have proposed an extended query expansion model that
exploits the temporal information of pictures and the spatial
distribution of terms. We thoroughly evaluated our approach
by first analyzing the retrieval effectiveness with respect to
different combinations of metadata fields, and using differ-
ent standard retrieval models. Then, we conducted several
experiments to assess the effectiveness of our two proposed
query expansion models; one based on temporal proximity
of tag terms and the other based on spatial distribution of
tag terms. We compared both methods with existing baseline
approaches. The results of these experiments have shown that
our approach outperforms the state-of-the-art query expan-
sion models, and that the improvements were statistically
significant at a p < 0.05 % level. In particular, we demon-
strated that our method is effective even when the amount of
information surrounding a picture is small. Finally, by test-
ing our approach on a large dataset, and still getting good
results, we can conclude that our approach can handle large-
scale data.

Nevertheless, there are still interesting results and aspects
of this work that we have omitted, but will be part of our future
research. More specifically, we are currently investigating
the effects of including semantic similarities among terms
using and linking to knowledge bases, such as Wikipedia, in
term reweighting. We are also investigating the possibility of
integrating features from (web-based social) user interactions
to further improve our retrieval performance.
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