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Abstract
With the recent spread of the SARS-CoV-2 virus, computer-aided diagnosis (CAD) has received more attention. The most 
important CAD application is to detect and classify pneumonia diseases using X-ray images, especially, in a critical period 
as pandemic of covid-19 that is kind of pneumonia. In this work, we aim to evaluate the performance of single and ensemble 
learning models for the pneumonia disease classification. The ensembles used are mainly based on fined-tuned versions of 
(InceptionResNet_V2, ResNet50 and MobileNet_V2). We collected a new dataset containing 6087 chest X-ray images in 
which we conduct comprehensive experiments. As a result, for a single model, we found out that InceptionResNet_V2 gives 
93.52% of F1 score. In addition, ensemble of 3 models (ResNet50 with MobileNet_V2 with InceptionResNet_V2) shows 
more accurate than other ensembles constructed (94.84% of F1 score).

Keywords  Pneumonia disease · Pneumonia multiclass classification · Covid-19 · X-ray images · Computer-aided 
diagnosis · Deep learning · Ensemble deep learning

1  Introduction

Throughout history, epidemics and chronic diseases have 
killed numerous individuals and caused significant emergen-
cies that have set aside a long effort to survive [1]. Recently, 
researchers, specialists, and companies around the world are 
rolling out CAD systems that can fastly process hundreds 
of X-ray and computed tomography (CT) images to accel-
erate the diagnosis of pneumonia such as SARS, MERS, 
covid-19, and aid in its containment [2]. As the number of 
patients infected by pneumonia disease increases, it turns 
out to be increasingly hard for radiologists to finish the diag-
nostic process in the constrained accessible time [3]. Medi-
cal images analysis is one of the most promising research 
areas [4], and it provides facilities for diagnosis and making 
decisions of several diseases such as covid-19. Therefore, 
interpretation of these images requires expertise and necessi-
tates several algorithms in order to enhance, accelerate, and 
make an accurate diagnosis. Recently, many efforts and more 

attention are paid to imaging modalities and deep learning 
(DL) in pneumonia disease [2]. DL is a neural network that 
consists of five layers which are: input layer, convolutional 
layers, pooling layers, full-connection layers, and output 
layer [5] . Following this context, DL models have obtained 
better performance in the detection and classification of 
pneumonia disease and demonstrated high accuracy com-
pared with previous state-of-the-art methods [2].

Numerous computer vision applications are intricate that 
they cannot be solved by the utilization of a single algo-
rithm [6]. This required the need for development of models 
by combining two or more of the studied algorithms. The 
selection of models relies on the necessities and character-
istics of the issue. Ensemble models combine more than 
one single model to solve a given task. This methodology 
was intended to overcome the weaknesses of single models 
and consolidate their strengths [7]. In the field of medical 
science, ensemble models are currently served to carry out 
prediction tasks (e.g., regression and classification) [8]. 
The single models that comprise the ensemble are trained 
independently to solve the given task. The last output of the 
ensemble model is an aggregation of the various outputs 
given by the single model. Furthermore, ensemble model 
reduces the variance of predictions and generalization error 
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and significantly improves the computational training and 
could be utilized with a few training data [8].

Motivated by all advantages cited above, the present work 
aims to evaluate the performance of the most accurate deep 
learning models for multiclass classification of X-ray images 
in order to answer the following research questions (RQ):

(RQ1): What is the diagnostic accuracy that DL can attain 
based on X-ray images?
(RQ2): Is combining DL to construct ensembles DL will 
enhance the final accuracy of certain model?
(RQ3): Does the number of DL combined to construct 
ensembles DL affect the accuracy of the model?

The main contributions of the present paper are summa-
rized as follows:

1.	 We implement 3 fined-tuned versions of (Inception-
ResNet_V2, ResNet50 and MobileNet_V2) according 
to the technique used by Elasnaoui and Chawki [2], 
Elasnaoui et al. [3].

2.	 We design single and ensemble models based on 3 fined-
tuned models.

3.	 To avoid over-fitting in different models, we used weight 
decay and L2-regularizers.

4.	 We combine 3 and 2 fined-tuned models to construct 
single and ensemble models.

5.	 We tested single and ensemble on chest X-ray datasets 
[9, 10].

6.	 We evaluate the performance of the single and ensemble 
models used in this study.

The remainder of this paper is organized as follows. Sec-
tion 2 deals with some related work. We describe our pro-
posed contribution in Sect. 3. Section 4 presents the experi-
ment material and parameterization. The results obtained 
and their interpretations are illustrated in Sect. 5. Threats 
of validity are presented in Sect. 6. Finally, conclusion and 
future work are given in the last section.

2 � Background

A study of the state of the art reveals that significant works 
have been published for pneumonia detection and clas-
sification from X-ray images in recent years, where most 
works used several successful deep learning approaches for 
automatically classifying chest X-ray images into different 
disease categories [11]. The application of DL in the field 
of pneumonia leads to the reduction of false-positive and 
negative errors in the detection and diagnosis of this disease 
and provides an optimal opportunity to provide fast, cheap, 
and safe diagnostic services to patients [12]. This section 

summarizes and discusses the state-of-the-art methods of 
pneumonia detection and classification using DL.

As listed in Table 1, we observed that:
(1). Chest X-ray is one of the most common medical 

imaging modalities used to detect respiratory system dis-
eases. This observation is extended in [12, 13]. (2). Most 
studies published are focused on the binary classification 
based on different DL techniques. (3). Elasnaoui et al. [2], 
Elasnaoui and Chawki [3], Hemdan et al. [41] are deeply 
compared seven DL for the classification of pneumonia. 
(4). Some studies have also developed their own custom-
ized architecture and methods [segmentation for example 
(Pulagam 2016)], independent of well-known DL archi-
tectures. (5). Sensitivity, specificity, and accuracy are the 
criteria utilized in several studies for measuring the effi-
ciency of methods. However, F1 score and area under curve 
(AUC) have been utilized in some studies to determine the 
efficiency of the method. (6). These studies found out that 
InceptionResNet_V2, ResNet50, and MobileNet_V2 gave 
better accuracy. This observation is also proved in [12, 14]. 
(7). However, few studies reported the use of multiclass 
classification (4 classes). (8). No study presented an ensem-
ble learning model in the pneumonia disease for multiclass 
classification. (9). No study reported a comparison between 
single and ensemble models for multiclass classification.

3 � Methodology

In this section, the methodology used in this study is dis-
cussed. According to Table 1 and [12, 14], InceptionResNet_
V2, ResNet50, and MobileNet_V2 models give more than 
90% of accuracy. Motivated by this conclusion, we com-
pared these pre-trained models for multiclass classification 
(4 classes) once they have been fine-tuned on a joined image 
dataset. The steps to do this research are divided into several 
sections which are shown in Fig. 1. The following sections 
give out in detail the steps of the proposed methodology.

3.1 � Preprocessing dataset of the study

We instantiated the present work with two publicly available 
image datasets, chest X-ray, and CT dataset [9] and Covid 
Chest X-ray Dataset [10]. The first one is composed of 5856 
images with three classes (1493 viral pneumonia, 2780 bac-
terial pneumonia, and 1583 normal), while the second one 
is containing 231 Covid-19 Chest X-ray images. We joined 
the second dataset to the first one to form a joint dataset 
which composed of four classes given as follows: bacteria, 
covid-19, normal, and viral. Finally, as depicted in Table 2, 
the joined dataset is composed of 6087 images (jpeg format).

When analyzing several data, a natural question arises 
on how to efficiently use it. As known, condition of data 
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collected from any area may be contaminated by numerous 
factors such as sensor/human errors. Using directly such data 
by the algorithm may conduct to unreliable results. Thus, the 
next stage is to preprocess input data. The motivation behind 
data preprocessing is to eliminate or decrease noise present 
in the original input data, to improve data quality, etc. In the 
present work, intensity normalization and Contrast Limited 
Adaptive Histogram Equalization (CLAHE) [2, 3] are used 
to provide clean data for a successful classification.

3.2 � Data augmentation

Medical imaging datasets are limited in size due to privacy 
laws, high cost of obtaining annotations, and considerations 
[22]. Data augmentation is used for the training process 
after dataset pre-processing and splitting and has the goal 
to enrich the data in data-limited scenarios and avoid the risk 
of overfitting [2, 3, 22]. Moreover, the strategies we used 
include geometric transforms such as rescaling, rotations, 
shifts, shears, zooms, and flips [2, 3]. Practically, the images 
are randomly rotated, shifted vertically or horizontally by 
a maximum of 90 and 0.2, respectively. Shear and zoom 
range are set to 0.2 and horizontal flip set to true. Finally, a 
scale image from integers 0–255 to floats 0–1 is employed. 

By this way, the models used in this study avoid the risk of 
over-fitting and learn to be robust to position and orienta-
tion variance.

3.3 � Transfer learning

Research studies in computer vision before 2010 were 
focused on feature extraction using different techniques such 
as color [48], texture [49], shape [50]. However, these tech-
niques gradually disappeared between 2010 and 2012 due 
to the appearance of DL techniques such as convolutional 
neural networks (CNNs). DL models are highly used for the 
diagnosis of pneumonia since 2016 [9, 51]. Although the DL 
models have shown huge achievement in terms of success in 
medical imaging, they require a large amount of data, which 
is not yet available in the medical imaging domain due to 
privacy laws, high cost of obtaining annotations, and consid-
erations [2, 3, 22]. Following the context of non-availability 
of medical imaging datasets, we use transfer learning (TF). 
TF is a machine learning technique where we reused a pre-
trained model from ImageNet and transfer the learned model 
into a new model to be trained. In this study, and according 
to Table 1 and [12, 14], the pre-trained models Inception-
ResNet_V2, ResNet50, and MobileNet_V2 give more than 
90% of accuracy. Following this conclusion, we used these 
pre-trained models instead of training them from scratch on 
a small dataset. The following subsections present a brief 
description of these pre-trained models.

3.3.1 � InceptionResNet_V2

InceptionResNet_V2 is a convolutional neural network 
that is trained on more than a million images from the Ima-
geNet database [52]. It is a hybrid technique combining the 

Fig. 1   Flow diagram of pro-
posed methodology

Table 2   Dataset structure

Dataset name Class name Number 
of images

Chest X-ray and CT dataset [9] Viral pneumonia 1493
Bacterial pneumonia 2780
Normal 1583

Covid chest X-ray dataset [10] Covid-19 231
Joined dataset 4 classes 6087
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inception structure and the residual connection. The model 
accepts images of 299 × 299 image, and its output is a list of 
estimated class probabilities. The advantages of Inception-
ResNet_V2 are converting inception modules to Residual 
Inception blocks, adding more Inception modules and add-
ing a new type of Inception module (Inception-A) after the 
Stem module.

3.3.2 � ResNet50

ResNet50 is a deep residual network developed by He et al. 
[53] and is a subclass of convolutional neural networks 
used for image classification. It is the winner of ILSVRC 
2015. The principal innovation is the introduction of the 
new architecture network-in-network using residual layers. 
The ResNet50 consists of five steps each with a convolu-
tion and identity block; each convolution block and each 
identity block have 3 convolution layers. ResNet50 has 50 
residual networks and accepts images size of 224 × 224 
pixels.

3.3.3 � MobileNet_V2

MobileNet_V2 [54] is a convolutional neural network 
being an improved version of MobileNet_V1. It is made 
of only 54 layers and has an input image size of 224 × 224. 
Its main characteristic is instead of performing a 2D con-
volution with a single kernel, instead of performing a 2D 
convolution with a single kernel. It uses depthwise sepa-
rable convolutions that consist in applying two 1D convo-
lutions with two kernels. That means, less memory and 
parameters are required for training leading to a small and 
efficient model. We can distinguish two types of blocks: 
first one is residual block with stride of 1; second one 
is block with stride of 2 for downsizing. For each block, 
there are three layers: the first layer is 1 × 1 convolution 
with ReLU6, the second layer is the depthwise convolu-
tion, and the third layer is another 1 × 1 convolution but 
without any nonlinearity.

3.4 � Training and classification

After data pre-processing, splitting, and data augmentation 
techniques used, our training dataset size is increased and 
ready to be passed to the feature extraction step with the 
proposed models in order to extract the appropriate and 
pertinent features. The extracted features from each pro-
posed model are flattened together to create the last layer 
of fully connected and then to classify each image into 

corresponding classes. Moreover, the single models that 
comprise the ensemble are trained independently to solve 
the given task. The last output of the ensemble model is an 
average/fusion of the various outputs given by the single 
model. Furthermore, ensemble models reduce the variance 
of predictions and generalization error and significantly 
improve the computational training and could be utilized 
with a few training data [8]. Finally, the performance of sin-
gle and ensemble models is evaluated on test images using 
the trained model [2, 3].

4 � Experiment material 
and parameterization

This section presents experiment settings and performance 
measure employed in this study in order to predict pneumonia 
disease using single and ensemble model. We note that single 
model refers to one model (for example InceptionResNet_V2) 
trained independently and predicted the output result, while 
ensemble model stands to combine more than one single 
model.

4.1 � Experiment setup

The experimentations were implemented using Python pro-
gramming language and were carried out based on the follow-
ing experimental parameters: We employed for data splitting 
(hold-out) 80% and 20% of the images for training and test-
ing, respectively. We ensure that the images chosen for testing 
are not used during training. Moreover, we pre-process input 
images using two different pre-processing techniques (inten-
sity normalization and Contrast Limited Adaptive Histogram 
Equalization (CLAHE)) [2, 3]. To train the deep transfer 
learning models, all the images of the dataset were resized to 
224 × 224 pixels except those of InceptionResNet_V2 model 
that were resized to 299 × 299. Furthermore, we set the batch 
size to 32 with the number of epochs set to 250. β1 = 0.9, 
β2 = 0.999 are used for Adam optimization, and the learning 
rate initiated to 0.00001. Furthermore, we employed weight 
decay and L2-regularizers to reduce over-fitting for the dif-
ferent models. We note that these models are independently 
trained, and the results of ensemble models are assembled 
via average/fusion technique. Furthermore, a last dense layer 
is updated in single and ensemble learning models to output 
four classes representing bacteria, covid-19, normal, and viral 
instead of 1000 classes as was utilized for ImageNet. Keras 
and TensorFlow are used as a deep learning backend. The 
training and testing steps run using NVIDIA Tesla P40 with 
24 Go RAM. Table 3 depicts the parameters used during this 
study.
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4.2 � Quality assessment

To evaluate the single and ensemble learning models, the 
present study uses some performance parameters such as: 
accuracy (ACC), sensitivity (SEN), specificity (SPE), preci-
sion (PRE), and F1 score (F1) [2, 3, 12, 14] which are given 
as follows:

where TN stands to true-negative cases in detection results, 
while TP denotes the true positive. FP equals the false posi-
tive, and FN stands for false negative.

5 � Results and discussion

This section presents and discusses the results obtained 
based on the experimental setup discussed in the previous 
section for single and ensemble models.

5.1 � Results of single model

We firstly present the confusion matrix, accuracy, and loss 
curves (Figs. 2, 3, 4) given by different deep transfer learning 
models (InceptionResNet_V2, ResNet50, and MobileNet_
V2) and using imbalanced dataset [i.e., most of the datasets 

(1)

ACC =
TP + TN

TP + TN + FP + FN
× 100 PRE =

TP

TP + FP
× 100

SPE =
TN

TN + FP
× 100 SEN =

TP

TP + FN
× 100

F1 = 2 ×
Recall × Precision

Recall + Precision
× 100

containing pneumonia images are class-imbalanced [14] ], 
then we compared the results of all architectures based on 
the metrics defined in Eq. (1) in order to determine the best 
method (Table 2) to use to classify X-ray images between 
bacteria, covid-19, normal, and viral. The next section shows 
accuracy and loss curve and confusion matrix of different 
models used in this study and interpretation of the results 
obtained. (All figures with high resolution could be find 
upon request by email to the authors of this study).

•	 InceptionResNet_V2

We can observe (Fig. 2) that from epoch 0 to 29, the train-
ing and testing accuracy is increasing until the value where 
the accuracies are equal to 95.18% and 94.01% for train-
ing and testing, respectively. After this epoch, the accura-
cies curves become stable and they are equal to 97.46% and 
94.27% for training and testing data, respectively.

For the loss curve of training and testing data, an excel-
lent fit is noticed until the epoch 29. Then the values of these 
curves are converged toward 5.

Regarding the confusion matrix, the InceptionResNet_V2 
model was able to correctly identify 549 images as bacteria 
class, 31 were classified as covid-19, 304 were correctly 
labeled as normal, and 232 were identified as viral.

•	 MobileNet_V2

The obtained accuracy curve of training data is speedily 
increasing until the value of 94.68% (Fig. 3). After epoch 
11, the training accuracy enters in the stability stage where 

Table 3   Parameterization of the experience

Parameter name Value

Data splitting 80% for training (4883 images) and 20% for testing (1181 images)
Input size 299 × 299 for InceptionResNet_V2 and 224 × 224 for MobileNet_

V2 and ResNet50
Batch size 32
Learning rate 0.00001
Number of epochs 250
Adam optimization β1 = 0.9, β2 = 0.999
Number of train samples 152
Number of test samples 36
Last dense layer 4 classes
Number of weights InceptionResNet_V2 Total params: 55,125,732

Trainable params: 55,065,188
Non-trainable params: 60,544

ResNet50 Total params: 24,769,156
Trainable params: 24,716,036
Non-trainable params: 53,120

MobileNet_V2 Total params: 5,146,180
Trainable params: 5,112,068
Non-trainable params: 34,112
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Fig. 2   Accuracy and loss curve and confusion matrix of InceptionResNet_V2

Fig. 3   Accuracy and loss curve and confusion matrix of MobileNet_V2

Fig. 4   Accuracy and loss curve and confusion matrix of ResNet50
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it is equivalent to 94.16%. For testing accuracy, the curve is 
increasing until the epoch 40 where the accuracy value is 
equal to 94.53; then, it becomes stable.

A good fit can be noticed for the training and testing loss 
curves. Indeed, the curves are quickly decreasing until the 
end of training.

The confusion matrix depicts that for the bacteria class, 
MobileNet_V2 model can correctly recognize 548 images, 
yet 27 were named as covid-19. The model also was able to 
correctly identify 303 images as normal, and 234 images 
were marked as viral class.

•	 ResNet50

It is noted that the accuracy of training data is fastly 
increasing from epoch 0 to 10 where the accuracy is equal 
to 93.93% (see Fig. 4). Then it gets stable until the end of 
training where the accuracy is equal to 98.59%. For the test-
ing data, a quick increasing can be seen from epoch 0 to 9 
where the value is 92.97%, after that, it begins to be stable.

For the loss curve of training and testing data, the values 
are decreasing from epoch 0 to end of training.

When we see this confusion matrix, we can say that for 
the bacteria class, ResNet50 model has the option to cor-
rectly recognize 549 images. Moreover, 32 were selected as 
covid-19. ResNet50 also can correctly recognize 303 images 
as normal class; thus, 200 images were marked as viral class.

Results for our experiment classification are depicted in 
Table 4 based on fine-tuned versions of ResNet50, Incep-
tionResNet_V2, and MobileNet_V2. The table details the 
classification performances across each experiment using 
confusion matrices for each model. From the results, it is 
noted that the accuracy and F1 score when we use Incep-
tionResNet_V2 are higher compared with ResNet50 and 
MobileNet_V2. Moreover, it can be observed that accura-
cies of ResNet50 and MobileNet_V2 both are equivalents to 

Table 4   Evaluations metrics for 
single model

Model Class TP TN FN FP ACC​ SEN SPE PRE F1

InceptionResNet_V2 Bacteria 549 629 1 2 94.50 93.79 98.13 94.12 93.52
Covid-19 31 1147 1 2
Normal 304 815 3 59
Viral 232 887 60 2

MobileNet_V2 Bacteria 548 625 2 6 93.73 90.29 97.83 93.91 91.62
Covid-19 27 1148 5 1
Normal 302 815 5 59
Viral 230 881 62 8

ResNet50 Bacteria 548 628 2 3 93.73 93.07 97.85 94.89 93.47
Covid-19 31 1149 1 0
Normal 302 807 5 67
Viral 226 885 66 4

93.73%. However, F1 of ResNet50 (93.47%) is higher than 
MobileNet_V2 (91.62%).

5.2 � Results of ensemble models

In the rest of this study, we focus on ensembles learning to 
see whether there is an improvement of performance meas-
ures [Eqs. (1)]. Toward this end, we constructed 5 ensembles 
of different deep transfer learning following the architec-
ture given in Fig. 1 and using 2, and 3 DL models, respec-
tively, those that were fully fine-tuned previously. Then, 
we evaluate them using quality assessment [Eqs. (1)]. The 
goal behind using ensemble learning is to show if ensemble 
learning is more accurate than a single model.

Practically, we based on Table 4 and we construct 3 
ensembles using each time 2 models (MobileNet_V2 with 
InceptionResNet_V2), (ResNet50 with InceptionResNet_
V2) and (ResNet50 with MobileNet_V2) followed by 1 
ensemble of all models (ResNet50 with MobileNet_V2 with 
InceptionResNet_V2) (Table 5). The next sections present 
in detail the results obtained by the different ensembles 
constructed.

6 � Discussion

In this study, we investigated the multiclass classification of 
X-ray images using single and ensemble learning models, 
in order to identify the best performing architecture based 
on the several parameters defined in Eq. 1. We note that 
accuracy is utilized when the TP and TN are more impor-
tant, while F1 score is utilized when the FN and FP are 
crucial. Accuracy can be utilized when the class distribution 
is similar, whereas F1 score is a better metric when there are 
imbalanced classes. Following this context, this comparison 
between single and ensemble learning models is based on F1 
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score since our dataset is highly imbalanced. Figure 5 sum-
marizes F1 score and accuracy obtained during this study 
for single and ensemble models.

The findings of this study from Fig. 5 are:

(RQ1): What is the diagnostic accuracy that DL can attain 
based on X-ray images?

From this study, we can conclude that the results are 
highly satisfactory. Nevertheless, we observed that Incep-
tionResNet_V2 gives best results (93.52% of F1 score) 
regardless of the dataset used. In addition, InceptionResNet_
V2 has been proven to obtain remarkable results in related 
tasks [2].

Table 5   Evaluations metrics for ensemble model

Model Class TP TN FN FP ACC​ SEN SPE PRE F1

MobileNet_V2 with InceptionResNet_V2 Bacteria 548 628 2 3 93.82 92.48 97.90 93.20 92.52
Covid-19 30 1147 2 2
Normal 298 816 9 58
Viral 232 879 60 10

ResNet50 with InceptionResNet_V2 Bacteria 548 623 2 8 93.65 92.31 97.79 93.13 92.43
Covid-19 30 1147 2 2
Normal 296 819 11 55
Viral 232 879 60 10

ResNet50 with MobileNet_V2 Bacteria 548 630 2 1 95.17 92.47 98.37 95.46 93.79
Covid-19 28 1149 4 0
Normal 294 835 13 39
Viral 254 872 38 17

ResNet50 with MobileNet_V2 with Incep-
tionResNet_V2

Bacteria 549 628 1 3 95.09 94.43 98.31 95.53 94.84
Covid-19 31 1149 1 0
Normal 295 831 12 43
Viral 248 877 44 12

Fig. 5   Performance measure of 
single and ensemble models
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(RQ2): Is combining DL to construct ensembles DL will 
enhance the final accuracy of certain model?

The analysis of the results depicted in Fig. 5, tells us 
that there is a slight improvement of accuracy for differ-
ent ensembles. Since our dataset is highly imbalanced, we 
focus on F1 score. Indeed, ensemble of (ResNet50 with 
MobileNet_V2 with InceptionResNet_V2) performs better 
than single and ensemble models.

(RQ3): Does the number of DL combined to construct 
ensembles DL affect the accuracy of the model?

There is no strong evidence to prove that the number of 
DL combined to construct ensembles DL affects the accu-
racy of the model. In fact, the results are influenced by the 
type of the ensemble used. As it can be seen in Fig. 5, the 
ensemble of three models (ResNet50 with MobileNet_V2 
with InceptionResNet_V2) is more accurate followed 
by ensemble (ResNet50 with MobileNet_V2). Moreo-
ver, InceptionResNet_V2 performs better than ensembles 
(MobileNet_V2 with InceptionResNet_V2) and (ResNet50 
with InceptionResNet_V2).

Furthermore, Table 6 illustrates the execution time in 
second for different models tested along this study. For 
InceptionResnet_V2, the elapsed time for training was 
52,586.62 s. ResNet50 has required 31,381.87 s for training, 
while MobileNet_V2 necessitates 32,976.83 for training.

From Table 6, we observe that IncpetionResNet_V2 even 
it gives a good result it is not fast because it takes 52,586.62 
in training followed by MobileNet_V2. In addition, we 
notice that ensemble ResNet50 with MobileNet_V2 is fast 
and provides good results (93.79% of F1 score). In the medi-
cal field, the scientist has the choice between the F1 score 
and the computation time to finally select the DL technique 
to use. According to [2], the F1 score of the DL techniques 
stays major selection criteria. But combining both F1 score 
and computation time remain a good benefit. Consequently, 
this study shows that ensemble (ResNet50 with MobileNet_
V2) can be a good solution to classify X-ray images into 
4 classes which are: bacteria, covid-19, normal, and viral.

7 � Threats to validity

The goal of any scientific study is to produce generalizable 
knowledge about the reality. Without internal and external 
validity, we cannot apply results obtained from the experi-
ments to the real world. The validity of any research study 
refers to how well the results obtained represent true find-
ings among similar results outside the study. The validity 
of the present research study includes internal and external 
validity.

7.1 � Internal validity

Threats to internal validity are defined as the extent to which 
the found results represent the truth in the field we are study-
ing and, thus, are not due to methodological errors. In this 
study, the goal is to see if ensemble learning is more accu-
rate than a single model by investigating several parameters. 
Threats to internal validity of this study may concern the 
criteria utilized to evaluate the model performance. The 
findings of the present study are mainly based on F1 score 
since the dataset is highly imbalanced. The choice of deep 
learning models may be another threat.

7.2 � External validity

Threats to external validity are the extent to which we gen-
eralize the findings, the results and experimental design of 
a study to other situations. In this study, we used a joined 
dataset and varying number of models that constitute an 
ensemble. Some published works in other medical science 
evaluated their proposed ensembles with only one dataset 
[55, 56]. However, it will be a good benefit to replicate this 
study using more datasets, more sophisticated feature extrac-
tion techniques.

8 � Conclusion

We reported in this work a classification of chest X-ray 
images into 4 classes which are: bacteria, covid-19, normal, 
and viral using single and ensemble learning models based 
on fine-tuned models (InceptionResNet_V2, ResNet50, and 
MobileNet_V2). The main goal is to answer the research 
questions (RQ) defined as follows:

(RQ1): What is the diagnostic accuracy that DL can attain 
based on X-ray images?
(RQ2): Is combining DL to construct ensembles DL 
will enhance the final accuracy of certain model?
(RQ3): Does the number of DL combined to construct 
ensembles DL affect the accuracy of the model?

Table 6   Computation time

Model Training time (s)

InceptionResNet_V2 52,586.62
MobileNet_V2 32,976.83
ResNet50 31,381.87
ResNet50 with MobileNet_V2 with Inception-

ResNet_V2
78.86

ResNet50 with InceptionResNet_V2 69.63
MobileNet_V2 with InceptionResNet_V2 67.89
ResNet50 with MobileNet_V2 49.55
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As a result, for a single model, we found out that 
InceptionResNet_V2 gives 93.52% of F1 score. Besides, 
ensemble of 3 models (ResNet50 with MobileNet_V2 with 
InceptionResNet_V2) performs better than other ensem-
bles constructed (94.84% of F1 score). Moreover, there is 
no strong evidence to prove that the number of DL com-
bined to construct ensembles DL affects the accuracy of 
the model.

Future work intends to develop a full system for pneu-
monia by combining deep learning and feature extraction 
using different techniques such as color [48], texture [49], 
shape [50], Ouhda [57]). In addition, the performance may 
be improved using more datasets, more sophisticated fea-
ture extraction techniques; also other fusion approaches 
would be interesting.
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