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Abstract
State-of-the-art deep learning systems (e.g., ImageNet image classification) typically require very large training sets to
achieve high accuracies. Therefore, one of the grand challenges is called few-shot learning where only a few training samples
are required for good performance. In this survey, we illuminate one of the key paradigms in few-shot learning called
meta-learning. These meta-learning methods, by simulating the tasks which will be presented at inference through episodic
training, can effectively employ previous prior knowledge to guide the learning of new tasks. In this paper, we provide
a comprehensive overview and key insights into the meta-learning approaches and categorize them into three branches
according to their technical characteristics, namely metric-based, model-based and optimization-based meta-learning. Due to
the major importance of the evaluation process, we also present an overview of current widely used benchmarks, as well as
performances of recent meta-learning methods on these datasets. Based on over 200 papers in this survey, we conclude with
the major challenges and future directions of few-shot learning and meta-learning.

Keywords Few-shot learning · Meta-learning · Image classification · Deep neural networks

1 Introduction

Image classification [67, 142] is an important application in
computer vision [4, 162] and machine learning [91, 193].
With the continuous development of deep learning [5, 79,
132], recent years have witnessed great breakthroughs in
this area [48, 153]. However, such success relies on a huge
amount of data [22, 136] (usually in the order of million),
which is difficult and time-consuming in the real world. In
order to reduce the data requirement, there has been growing
interest in small-sample image classification [80, 140, 201],
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such as few-shot classification [1, 18, 115], which learns a
classification rule from few (1-5) labeled samples.

A core challenge in few-shot image classification is to
alleviate the susceptibility of models to overfitting under
few-data regime [27, 110, 168]. To address this problem,
researchers have proposed several promising approaches,
such as transfer learning [123, 203], meta-learning [38, 122,
145] and data augmentation [7, 16, 57]. In transfer learning,
a model is first trained on a source domain where abundant
source data is available. Then this trainedmodel is fine-tuned
[15, 137, 195] on another target domain with few labeled tar-
get samples. The learnt prior knowledge can be transferred
from source tasks to target tasks during this process. Meta-
learning, or learning to learn, has emerged as one of the
prominent approaches for few-shot learning. It is proposed
to train a meta-learner which can quickly generalize to new
tasks with few examples [33, 45, 165, 178]. A meta-learning
procedure also involves learning at two levels, within and
across tasks. Meta-learning approaches simulate the tasks
that will be presented at inference through episodic train-
ing [116, 170, 202], enabling the generalization ability of
meta-learner within minor adaption steps. Data augmenta-
tion methods are often used as preprocessing in few-shot
learning (FSL). In order to solve the problem of insufficient
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training data, they introduce various kinds of existing data
variance for the model to capture. For image classification,
one commonly used method is deformation [69, 119, 164,
185], including horizontal flipping, cropping and rotation.
Besides these, more advanced methods, such as generating
training samples and pseudolabels [28, 29, 192], are also an
important part of data augmentation.

In this paper, we present a survey of recent meta-learning
methods for few-shot image classification. Meta-learning
focuses on learning prior knowledge from previous tasks
which can bring efficient downstream learning to new tasks.
This learning mechanism enables models can learn new
concepts quickly where only few samples are available.
Meta-learning deserves special attention as it is an essential
part of few-shot image classification and it has also demon-
strated outstanding performance on benchmark datasets [64,
144]. To be specific, in this survey we divide meta-learning
into three categories according to the different mechanisms,
namely metric-based, model-based and optimization-based
methods [40, 58, 89, 166].

A number of surveys on FSL have been proposed. In 2018,
Shu et al. [140] provided an early survey on small-sample
learning, discussing approaches for different scenarios (zero-
shot learning [124, 179, 180] and FSL) and tasks (image
classification, visual question answering [6, 90, 139] and
object detection [62, 114, 151]). Wang et al. [167] conducted
a comprehensive review in 2021, which provides a formal
definition of FSL and distinguishes it from other machine
learning problems, exploring FSL from a fundamental view-
point of error decomposition in supervised learning. Li et
al. [74] published another comprehensive review on FSL in
2021, which is entirely focused on meta-learning and review
literature [39, 43, 44, 156] over a long period in this area.
There is another review on few-shot image classification [76]
published in 2023, which is fully devoted to metric learning
methods [103, 141, 188]. Compared with these surveys [74,
76, 140, 167], our review presents an up-to-date survey of
meta-learning approaches for few-shot image classification
and provides a thorough analysis of these different kinds of
methods to better understand their individual strengths and
limitations.

The remainder of this survey is organized as follows.
In Sect. 2, we provide the preliminary concepts of meta-
learning, including the definition of few-shot image clas-
sification, commonly used datasets and the evaluation pro-
cedure. In Sect. 3, we mainly introduce the category of
meta-learning methods and review both classical and state-
of-the-art meta-learning approaches. We also present other
kinds of few-shot learning methods to do a comparison. In
Sect. 4, we discuss the major challenges, along with future
directions. Finally, we conclude this survey in Sect. 5.

2 The framework of few-shot image
classification

2.1 Notation and definitions

In this section, we first present a brief introduction about
few-shot learning and meta-learning, and then provide the
notation and unified definitions of few-shot image classifica-
tion [23, 56, 155].

Few-shot learning is a surprising research area that focuses
on learning patterns from a set of data (base classes) and then
adapting to a disjoint set (novel classes) with limited training
samples. Few-shot image classification is the one with most
attention and researches. As the most popular approach for
few-shot learning, meta-learning organizes the learning pro-
cess into two phases, called meta-training and meta-testing.
During each phase, the meta-training set or meta-testing set
is split intomultiple episodes. Each episode samples from the
task distribution and is further divided into a small training
set and a testing set.

In the standard few-shot image classification setting,
two distinct datasets are involved, namely base dataset
Dbase = {(xi , yi ) ; xi ∈ Xbase, yi ∈ Ybase}Nbase

i=1 and novel

dataset Dnovel = {(xi , yi ) ; xi ∈ Xnovel, yi ∈ Ynovel}Nnovel
i=1 ,

where xi represents the original feature vector of i-th image
and yi is the corresponding class label; Nbase and Nnovel

denote the total numbers of instances in Dbase and Dnovel,
respectively. The base dataset is an auxiliary dataset that is
used to train the classifier to learn someprior or shared knowl-
edge and the novel dataset is used for the classifier to perform
new classification tasks. Note that Dbase and Dnovel are dis-
joint, which means Ybase ∩ Ynovel = ∅. In order to train and
test the classifier, the Dnovel is usually split into the support
set DS and the query set DQ and they share the same label
space.

Definition 1 The few-shot image classification task aims to
learn a classifier from Dbase and DS to correctly classify the
samples in DQ . It is generally termed as a N-way K-shot
problem, where N and K denote the number of classes and
instances in DS , respectively. If K = 1, it becomes a one-
shot image classification task; and if K = 0, then the task is
called zero-shot classification.

Definition 2 A few-shot image classification task is called
cross-domain few-shot image classification when the base
dataset and the novel dataset are from two different domains,
i.e., Xbase �= Xnovel.

2.2 Datasets

In this section, we briefly introduce several well-known
datasets for few-shot image classification. According to dif-
ferent data types, we categorize them into simple image
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Fig. 1 Sample images of these
benchmark datasets widely used
for few-shot image classification

dataset (Omniglot [70]), complex image dataset (MiniIm-
ageNet [120, 161], TieredImageNet [122], CIFAR-FS [10]
and FC100 [107]) and special image dataset (CUB-200 [163,
175]). Among these datasets, CIFAR-FS and FC100 are con-
sidered more difficult as the resolution of images from the
two datasets is 32 × 32. It is more challenging for models
to extract useful information from low-resolution images.
Statistics of these datasets and popular experimental settings
are summarized below.We also present some sample images
from these benchmark datasets in Fig. 1.

Omniglot is one of the most frequently used benchmarks
for evaluating few-shot image classification algorithms. It
contains 1623 handwritten characters collected from 50 dif-
ferent alphabets. Each character consists of 20 samples,
drawn by different human subjects. This dataset is usually
augmented by the rotations in multiples of 90 degrees, and
1200 characters are used for training and the rest for evalua-
tion.

MiniImageNet and TieredImageNet are two mini versions
of the large ImageNet dataset [129].MiniImaget is composed
of 60,000 color images from 100 classes, with 600 images
in each class. Following the widely used splitting protocol
proposed by Revi and Larochelle [120], 64 classes are used
for training, 16 classes for validation and 20 classes for eval-
uation. TieredIamgeNet is another larger subset of ImageNet
with a hierarchical structure. It contains 779,165 images from
34 high-level categories (or 608 classes), which are further
split into 20 base categories (351 classes), 6 validation cate-
gories (97 classes) and 8 novel categories (160 classes).

CIFAR-FS and FC100 are two widely used datasets
derived from CIFAR-100 [68]. CIFAR-FS is constructed

from 100 classes with 600 images per class. The 100 classes
are split into 64, 16 and 20 classes for training, validation and
evaluation, respectively. FC100 also contains 100 classes,
which are further divided into 20 super-categories, with five
classes in each super-categories. FC100 is split into 12 base,
4 validation and 4 novel super-categories.

CUB-200 is a fine-grained dataset consisting of 200 bird
species. TheCUB-200dataset has twoversions,while the ini-
tial version was proposed in 2010 [175] which includes 6033
images and is extended to 11,788 images in 2011 [163]. The
CUB-200-2010 dataset is often split into 130 base, 20 vali-
dation and 50 novel classes [85], while the CUB-200-2011
dataset is divided into 100 classes for training, 50 classes for
validation and 50 classes for testing [18].

MiniImageNet → CUB is a dataset designed for cross-
domain few-shot image classification [93, 159, 169, 190].
MiniImageNet plays the role of the base dataset, while 50
classes of CUB-200-2011 are used for validation, and the
remaining 50 classes serve for evaluation.

2.3 Evaluation process of few-shot image
classification

In this section, we present a general procedure [30, 55, 148,
177, 200] to evaluate a classifier’s performance onN-wayK-
shot image classificationproblems inAlgorithm1.Thewhole
evaluation process is composed of lots of episodes. In each
episode, we first randomly select N classes from the novel
label space with K samples in each class to form a support
set DS and M examples from the rest samples of those N
classes to compose a query set DQ . A final classifier can be

123



14 Page 4 of 17 International Journal of Multimedia Information Retrieval (2023) 12 :14

obtained based on the base dataset and support set, which
is used to predict labels of samples in DQ . We use acc(e) to
denote the classification accuracy in the e-th episode, and the
performance of a learning algorithm can be measured by the
averaged classification accuracy over all episodes.

Algorithm 1 Evaluation process of N-way K-shot image
classification

Input: Dbase; Dnovel ; the total number of episodes E and
a classifier f .
for e = 1, · · · , E do
Randomly select N classes from Dnovel .
Randomly selectK samples from each class to compose the
support set D(e)

S .
Randomly selectM samples from the remaining samples of
N classes to compose the query set D(e)

Q = {(X (e), Y (e))}.
Use the classifier f to predict labels of the samples from

DQ :
∧
Y

(e)
= f

(
X (e)|Dbase, DS

(e)
)
.

Record accuracy acc(e) = 1
M

∑M
j=1 1

[∧
Y

(e)
= Y (e)

]
.

end for
return mean accuracy 1

E

∑E
e=1 acc

(e).

3 Paradigms of meta-learning for few-shot
image classification

The goal of meta-learning for few-shot image classifica-
tion [24, 61, 82, 94, 111] is to enable models, especially
deep neural networks, to perform well on new tasks when
only few samples are available. With the rapid development
of few-shot learning [50, 183, 205], a number of meta-
learning approaches [19, 102, 184] have been proposed.
In this section, we provide a comprehensive overview of
recent meta-learning studies and their advances. In order to
let beginners better understand, we follow the main trend
and still categorize meta-learning into metric-based, model-
based and optimization-based methods. Besides, we also
present other few-shot learning methods to make a com-

parison. Figure 2 shows an overview of few-shot image
classification.

3.1 Metric-basedmeta-learning

Metric-based meta-learning methods [49, 72, 75, 194] aim
to learn a distance metric, which can effectively measure
the similarity among samples, ensuring it is optimal for new
learning tasks. For few-shot image classification problems,
the learnedmetric should follow the rules that enable samples
from the same (or different) class should a small (or large)
distance.

Siamese network is one of the most widely used metric-
based methods for one-shot image classification. The term
“Siamese” was first proposed for signature verification [13]
and the principal structure of Siamese network was intro-
duced for the fingerprint similarity estimation problem [9]. In
2015, Koch et al. [65] adopted a pair of identical VGG-styled
[142] convolutional layers with shared weights to extract
high-level features from two input images and calculate the
weighted L1 distance between the two feature vectors. The
network finally outputs a score, representing the probability
that the two images belong to the same class. The archi-
tecture of Siamese network is shown in Fig. 3. Wang et al.
[173] proposed an attention-based Siamese network, which
exploits an attention kernel function to measure the similar-
ity between two feature vectors. To bridge the gap between
one-shot image recognition [17, 32, 160] and regular classifi-
cation, Lungu et al. [88] proposed amulti-resolution Siamese
network, which mixes different kernel size streams into one
layer and adopts a hybrid training mechanism.

As another powerful metric-based meta-learning method,
matching network [161] uses different networks to encode
support and query images. For support images embedding, a
bidirectional long-short-term memory (LSTM) [198] is used
in the context of the support set DS ; for query images embed-
ding, an LSTMwith an attention kernel is taken to enable the
dependency on DS , where the attention kernel [12, 105, 106]
is used to compute cosine similarities between support and
query images and then normalize the similarities through

Fig. 2 An overview of few-shot
image classification approaches
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Fig. 3 Siamese network
architecture

Fig. 4 Prototypical network
architecture

a softmax function. Matching network’s output is defined
as a sum of the labels (one-hot encoded) of support images
weighted by the attention kernel. In 2019,Mai et al. [92] pro-
posed an attentive matching network (AMN), introducing a
feature-level attention mechanism to pay more attention to
the features that can better reflect the inter-class differences
and a complementary cosine loss function for optimization.

The initial prototypical network was proposed by Snell et
al. [145] based on the hypothesis that there exists an embed-
ding space where each class can be represented by a unique
prototype, and all samples are supposed to cluster around
their corresponding prototypes. Figure 4 shows the architec-
ture of prototypical network. A simple convolutional neural
network with 4 layers is exploited to extract features, and
the prototype of each class is defined as the mean value of
feature embeddings from the support samples belonging to
that class. The squared Euclidean distance is employed as
a distance metric, calculating the distance between query
embeddings and each class prototype. Build on this, Li et
al. [86] proposed a covariance metric network (CovaMNet),
using the covariance matrix of embedding vectors to repre-
sent the class prototype and also apply a covariance-based
metric to measure the similarity between the query sample
and the class prototype.Wang and Zhai [172] proposed a pro-
totypical Siamese network (PSN), adding a prototypemodule
in Siamese network to obtain high-quality prototype repre-
sentations of each class.

Relation network [149] is the first study that employs
a neural network to estimate a similarity score of feature
embeddings rather than manual computation. This model
consists of two main components: an embedding module

and a relation module. The embedding module is com-
posed of convolutional blocks, mapping input images into
an embedding space; and the relation module builds on two
convolutional blocks and two fully connected layers, calcu-
lating a relation score between each query and support image
(or a class prototype when the number of support samples is
more than one). Note that the feature embeddings of support
and query images need to be concatenated together before
they are fed into the relation module. The architecture of
relation network is presented in Fig. 5. In order to obtain dis-
criminative features for fine-grained image classification [35,
59, 204], the subsequent work [73] proposed a bi-similarity
network (BSNet), which combines an extra cosine module
with the existing similaritymeasure as a new relationmodule,
generating a more compact feature space by forcing features
to adapt to the new relation module.

In order to get optimal matching image regions, Zhang
et al. [196] proposed a DeepEMD algorithm, which adopts
the earth mover’s distance (EMD) [112, 127, 191] as a dis-
tance metric to calculate the similarity. They introduce a
cross-reference mechanism to produce the weights of ele-
ments in the EMD formulation and embed the EMD layer
into the network for end-to-end training. Motivated by this,
Xie et al. [181] proposed a deep Brownian distance covari-
ance (DeepBDC) approach, which applies BDC metric for
few-shot learning. To learn discriminative feature representa-
tions, Afrasiyabi et al. [2] proposed a mixture-based feature
space learning (MixtFSL) approach, learning both the fea-
ture representations and the mixture model via an online
manner. Different from those few-shot classification meth-
ods that extract a single feature vector from each image,

123



14 Page 6 of 17 International Journal of Multimedia Information Retrieval (2023) 12 :14

Fig. 5 Relation network architecture

Table 1 A summary of presented metric-based meta-learning approaches

Approach Author Year Brief Description

Siamese network [65] Koch et al 2015 Exploit a pair of identical networks with shared weights to extract
features and calculate the distance between feature vectors

Attention-based Siamese network [173] Wang et al 2018 Use an attention kernel function to measure the similarity

Multi-resolution Siamese network [88] Lungu et al 2020 Mix different kernel size streams into one layer

Matching network [161] Vinyals et al 2016 Use different networks to encode support and query images

AMN [92] Mai et al 2019 Introduce a feature-level attention mechanism

Prototypical network [145] Snell et al 2017 Propose class prototypes, and calculate the distances between query
samples and class prototypes

CovaMNet [86] Li et al 2019 Apply the covariance matrix of embedding vectors to represent the
class prototype and use a covariance-based metric to measure the
similarity

PSN [172] Wang and Zhai 2020 Add a prototype module in Siamese network

Relation Network [149] Sung et al 2018 Employ a neural network to estimate a similarity score of feature
embeddings

BSNet [73] Li et al 2021 Combine an extra cosine module with the existing similarity measure
as a new relation module

DeepEMD [196] Zhang et al 2020 Adopt the earth mover’s distance (EMD) as a distance metric to
calculate the similarity

DeepBDC [181] Xie et al 2022 Apply the Brownian distance covariance (BDC) metric

MixtFSL [2] Afrasiyabi et al 2021 Learn the feature representations and the mixture model jointly via an
online manner

Matching feature sets [3] Afrasiyabi et al 2022 Embed self-attention modules in between convolutional blocks and
introduce set-to-set metrics

Afrasiyabi et al. [3] held the view that a set-based repre-
sentation can build a richer and more robust representation
of images from base classes. To do so, they proposed a
matching feature sets method which embeds self-attention
modules in between convolutional blocks and introduces set-
to-setmetrics for evaluation.We summarize those introduced
metric-based meta-learning approaches in Table 1.

3.2 Model-basedmeta-learning

With the goal of fast learning, model-based methods [63,
104] mainly focus on model architectures, adjusting model
parameters based on presented tasks. There are several fre-
quently used architectures in model-based methods, such
as convolutional neural networks (CNNs) [71], recurrent
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Fig. 6 Neural Turing machine
scheme

neural networks (RNNs) [128, 134] and long short-term
memory (LSTM) [54]. According to the model architecture
types, these model-based methods are further separated into
memory-based, rapid adaptation-based and miscellaneous
models.

Memory-augmented neural network (MANN) is a famous
memory-based method proposed by Santoro et al. [131],
which aims at improving task adaptation by utilizing the
neural Turing machine (NTM) [21, 36, 47]. NTM is a neu-
ral network that integrates an external memory component
during its learning process, enabling it has access to retrieve
previously stored information. To be specific, NTM consists
of a controller, interacting with an external memory module
via a number of read and write heads. The NTM scheme is
shown in Fig. 6. In MANN, a new addressing mechanism,
namely least recently used access (LRUA) [131], is proposed,
writing memories to either the least used memory location or
the most recently used memory location. Through the stored
information of a coupled representation-class label in the
external memory, MANN can access them for later classi-
fication. Tran et al. [157] proposed a memory-augmented
matching network (MAMN), which combines MANN and
matching network. In MAMN, to reduce the biased on class
prototypes caused by data distribution skew, weighted class
prototypes are introduced by incorporating the distances of
classwise samples. As another memory-based meta-learning
method, memorymatching network (MM-Net) [14] incorpo-
rates the memory module extracted from key-value memory
network [96] into matching network. Different from tra-
ditional one-shot learning methods, MM-Net encodes and
generalizes the whole support set into memory slots and can
generate a unified model regardless of the number of shots
and categories.

Meta-network (MetaNet) [100] is a model that designed
with specific architecture and training process for rapid adap-

tion across tasks. Meta-network contains a base learner, a
meta-learner and an external memory. It performs a generic
knowledge acquisition in a meta-space and shifts its induc-
tive biases via fast parameterization for rapid generalization.
Conditional shifted neurons (CSNs) [101] is a generic neu-
ral mechanism designed for fast adaption, which is able
to extract conditional information and generate conditional
shifts for prediction during the meta-learning process. Com-
pared with previous works [97, 100, 131], CSNs is more
efficient computationally as the number of neurons is usu-
ally much smaller than that of weight parameters. Moreover,
CSNs can be integrated into various neural architectures,
including CNNs and RNNs. Similar to MetaNet, CSNs con-
tains a base learner, a meta-learner and a memory module.
During the description time, the meta-learner extracts and
employs conditional information to generate memory val-
ues for samples within a task; at the prediction phase, the
meta-learner generates query keys of query images by a key
function for the purpose of getting the value of conditional
shift.

Simple neural attentive learner (SNAIL) [98] is a general
model-based meta-learning architecture that incorporates
temporal convolution and soft attentionmechanism.The tem-
poral convolution acts as high-bandwidth memory access,
and the soft attention enables access to specific pieces
of information. This combination enables models to bet-
ter leverage information from past experiences. Similar to
SNAIL, Garnelo et al. [42] proposed conditional neural pro-
cesses (CNPs) which consists of a meta-learner and task
learner. The meta-learner generates a memory value by
aggregating representations of the support set, and the task
learner makes predictions by processing the aggregated rep-
resentations. Figure 7 shows the CNPs scheme. We also
make a short summary of those model-based meta-learning
approaches and present it in Table 2.
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Fig. 7 Conditional neural
processes scheme

Table 2 A summary of
presented model-based
meta-learning approaches

Approach Author Year Brief Description

MANN [131] Santoro et al 2016 Employ a modified NTM to
quickly assimilate new data into
memory

MAMN [157] Tran et al 2019 Combine MANN and matching
network

MM-Net [14] Cai et al 2018 Incorporate the memory module
extracted from key-value
memory network into matching
network

MetaNet [100] Munkhdalai and Yu 2017 Perform a generic knowledge
acquisition in a meta-space and
shift its inductive biases via fast
parameterization

CSNs [101] Munkhdalai et al 2018 Extract conditional information
and generate conditional shifts
for prediction during the
meta-learning process

SNAIL [98] Mishra et al 2018 Incorporate temporal convolution
and soft attention mechanism

CNPs [42] Garnelo et al 2018 Make predictions based on concise
representations of seen classes

3.3 Optimization-basedmeta-learning

Optimization-based meta-learning methods are an important
vital branch in the field of few-shot image classification [11,
20, 37, 41, 121]. Basically, this kind of algorithm attempts
to obtain a better initialization model or gradient descent
direction by leveraging the meta-learning architecture and
optimizes the initialization parameters through episodic
training, enabling an optimization procedure to work on a
small number of training samples. Optimization-basedmeth-
ods generally contain a task-specific learner trained for a
given task and ameta-learner trained ondistributions of tasks.

In 2017, Finn et al. [38] proposed model-agnostic meta-
learning (MAML), the first algorithm for learning an ini-
tialization. The key idea of MAML is to enable a model’s
parameters can adapt fast to new unseen tasks through the
gradient-based learning rule. During themeta-training phase,
MAML attempt to update the task-specific parameters and
the global initialization jointly in an iterative manner. The

MAML scheme is presented in Fig. 8. The main contribu-
tion of MAML is its compatibility in different application
domains, not only in classification, but also in regression
[133, 135, 199] and reinforcement learning [34, 51, 84]. To
address the limitation of neural networks that are trainedwith
gradient-based optimization on few-shot learning tasks [26,
143, 186], Ravi and Larochelle [120] proposed an LSTM-
based meta-learner to learn both the exact task-specific
optimization of a classifier, as well as good initialization val-
ues for the parameters of task-specific learner.

By taking ideas from prototypical network and MAML,
Triantafillou et al. [158] proposed Proto-MAML, incorpo-
rating the advantages of both the former’s simple inductive
bias and the latter’s flexible adaptation mechanism. As an
extension to MAML, CAVIA [206] divides the model into
parameters and task-specific context parameters which are
shared across tasks. Compared with MAML, CAVIA is
less prone to meta-overfitting and easier to parallelize. To
address the issue that meta-learning models would be too
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Fig. 8 Model-agnostic meta-learning scheme

biased toward existing tasks and lead to poor generalization,
Jamal and Qi [60] proposed a task-agnostic meta-learning
(TAML) algorithm, where two approaches are exploited to
train a model unbiased over tasks. In order to improve gen-
eralization performance, BaiK et al. [8] proposed a novel
framework calledmeta-learningwith task-adaptive loss func-
tion (MeTAL). Particularly, MeTAL learns a task-adaptive
loss function through two meta-learners and can be applied
to different MAML variants.

Wang et al. [171] introduced a new approach called task-
aware feature embeddings for low-shot learning (TAFE-Net)
which mainly concentrates on tuning task-specific feature
embedding through the generic embedding of ameta-learner.
TAFE-Net is composed of a meta-learner and a prediction
network,where the task-aware feature embedding is obtained
by utilizing the meta-learner to develop task-specific feature
layers of the prediction network. Sun et al. [152] intro-
duced a meta-transfer learner (MTL) method, which focuses
on generating task-specific feature extractors by leveraging
both meta-learning and transfer learning. In MTL, scaling
and shifting operations are introduced on pre-trained feature
embeddings to freeze the feature extractor. Besides, similar
fine-tuning steps are taken in MTL as those in previous work
[18]. This work also proposed a novel hard task meta-batch

process that put more focus on hard tasks through sampling
extra instances from the classes that the classifier failed.

Considering difficulties that exist in optimization on high-
dimensional parameter spaces such as those faced byMAML
[38], Rusu et al. [130] proposed an innovative algorithm
called latent embedding optimization (LEO) that learns a
low-dimensional latent representation of model parameters
and performs optimization-basedmeta-learning in this space.
Similar to MAML, LEO also consists of an inner loop
training where the task-specific values are learned and an
outer loop training where global shared initializations are
updated. To instantiate low-dimensional latent embedding
of model’s parameters, samples pass through a combination
of an encoder and a relation network. The encoder is used
to generate hidden codes from the support set. Then, these
hidden codes are concatenated pairwise and fed into a rela-
tion network, leading to a probability distribution over latent
codes in a lower dimension. Finally, the decoder produces
task-specific initial parameters which are differentiable to
backpropagate for adaptation. The LEO scheme is shown in
Fig. 9. We present a short summary of optimization-based
meta-learning approaches in Table 3.

3.4 Other methods

Transfer learning involves leveraging knowledge learned
from a related task to enhance learning in a new task [52,
125, 126, 187, 189]. In the few-shot image classification
scenario, transferring knowledge from another network is a
viable option when original data is too limited to train a deep
neural network from scratch. Compared with meta-learning,
the learning experience involved in transfer learning is much
narrower. To address few-shot hyperspectral image classifi-
cation problems, Qu et al. [118] applied the transfer learning
scheme to extract learned intrinsic representations from the
same kind of objects in different domains. Tai et al. [154]
proposed a novel few-shot transfer learning approach for
synthetic aperture radar image classification, which uses a

Fig. 9 Latent embedding
optimization scheme
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Table 3 A summary of presented optimization-based meta-learning approaches

Approach Author Year Brief Description

MAML [38] Finn et al 2017 Enable a model’s parameters can adapt fast to
new unseen tasks through the gradient-based
learning rule

LSTM-based meta-learner [120] Ravi and Larochelle 2017 Learn both the exact task-specific optimization of
a classifier and good initialization values for the
parameters of task-specific learner

Proto-MAML [158] Triantafillou et al 2020 Combine prototypical network and MAML

CAVIA [206] Zintgraf et al 2019 Divide the model into parameters and
task-specific context parameters which are
shared across tasks

TAML [60] Jamal and Qi 2019 Train a model unbiased over tasks

MeTAL [8] Baik et al 2021 Learn a task-adaptive loss function through two
meta-learners

TAFE-Net [171] Wang et al 2019 Tune task-specific feature embedding through the
generic embedding of a meta-learner

MTL [152] Sun et al 2019 Generate task-specific feature extractors by
leveraging both meta-learning and transfer
learning

LEO [130] Rusu et al 2019 Learn a low-dimensional latent representation of
model parameters

connection-free attention module to transfer features from a
source network to a target network. Sun and Yang [147] pro-
posed trans-transfer learning, a two-phase learning method
for few-shot fine-grained visual categorization problems. In
some cases, knowledge transfermay also failwhen the source
domain and target domain are not related to each other, even
causing negative transfer. To address this problem, Liu et al.
[83] proposed an analogical transfer learning (ATL), follow-
ing the analogy strategy to effectively control the occurrence
of negative transfer.

Considering the fundamental problem in few-shot image
classification that models are prone to overfitting caused by
few training samples, many researchers proposed a number
of data augmentation approaches [108, 117, 174] to improve
sample diversity and prevent overfitting during training.
Goodfellow et al. [46] proposed the well-known Generative
Adversarial Nets (GAN), which contains a generator for gen-
erating similar images and a discriminator for distinguishing.
Based on GAN, Mehrotra and Dukkipati [95] proposed to
generate samples for specific tasks, enabling these gener-
ated samples more suitable for few-shot learning. Zhang et
al. [197] proposed MetaGAN. To help the classifier learn a
clearer decision boundary,MetaGAN involves GAN and part
of the classification network during the training process. Li et
al. [87] proposedAdversarial Feature HallucinationNetwork
(AFHN), using conditional Wasserstein Generative Adver-
sarial Network (cWGAN) to generate samples.

We present experimental results of recent meta-learning
methods in Tables 4 and 5. Table 4 shows performances

of different approaches on Omniglot. Omniglot is a hand-
written dataset with multiple handwriting styles, languages
and stroke types, this diversity makes Omniglot suitable
for training deep learning algorithms. Table 4 shows that
most meta-learning approaches obtain over 98% accuracies
on Omniglot. Table 5 shows experimental results on Mini-
ImgeNet and TieredImageNet. These two datasets contain
imageswith different objects, scenes and lighting conditions,
which can improve the model’s robustness. However, the
limitations in dataset size and image quality may affect the
model’s performance. Table 5 shows that DeepBDC [181]
and matching feature sets [3] achieved best results on both
datasets.

4 Major challenges and future directions

Although meta-learning methods have achieved promising
performance in few-shot image classification, there remain
some vital challenges that ought to be dealt with in the future.
These existing issues and suggested future research direc-
tions are outlined here.

4.1 Limitations and challenges

• Dataavailability and computational complexity. In image
classification, a large dataset typically has a thousand (or
more) categories. Meta-learning approaches also require
a large amount of data and computational resources, but
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Table 4 Accuracy results on
Omniglot dataset reported in
original papers, with mean
accuracy (%) and 95%
confidence interval.
i: metric-based; ii: model-based;
iii: optimization-based

Model Category Omniglot five-way
One-shot Five-shot

Siamese network [65] i 97.30 98.40

Attention-based Siamese network [173] i 99.60 99.80

Multi-resolution Siamese network [88] i – –

Matching network [161] i 98.10 98.90

AMN [92] i 99.44 ± 0.09 99.86 ±0.06

Prototypical network [145] i 98.80 99.70

CovaMNet [86] i – –

PSN [172] i – –

Relation Network [149] i 99.60 ± 0.20 99.80 ± 0.10

BSNet [73] i – –

DeepEMD [196] i – –

DeepBDC [181] i – –

MixtFSL [2] i – –

Matching feature sets [3] i – –

MANN [131] ii 82.80 94.90

MAMN [157] ii 98.90 99.70

MM-Net [14] ii 99.28 ± 0.08 99.77 ± 0.04

MetaNet [100] ii 98.45 –

CSNs [101] ii 98.42 ± 0.21 99.37 ± 0.28

SNAIL [98] ii 99.07 ± 0.16 99.78 ± 0.09

CNPs [42] ii 95.30 98.50

MAML [38] iii 98.70 ± 0.40 99.90 ± 0.10

LSTM-based meta-learner [120] iii – –

Proto-MAML [158] iii – –

CAVIA [206] iii – –

TAML [60] iii 99.47 ± 0.25 99.83 ± 0.09

MeTAL [8] iii – –

TAFE-Net [171] iii – –

MTL [152] iii – –

LEO [130] iii – –

in few-shot scenarios, it is quite challenging to collect
sufficient data. For deep testing of meta-learning we may
need thousands of large datasets! This may also be very
difficult and slow to process.

• Model selection There is not a one-size-fits-all so select-
ing an appropriate model is important. Model selection
is more crucial in few-shot image classification scenar-
ios as the model is prone to overfitting the training data.
The model may perform well on the base set and lacks
generalization on new tasks.

• TransferabilityMeta-learningmodels can transfer learned
knowledge between various tasks. The success of trans-
ferability depends on the similarity between the tasks.
Sometimes new tasks may have significant differences
from old ones, making it difficult to transfer learned
knowledge effectively, such as cross-domain tasks.

• Task dependence Most meta-learning approaches are
designed to work for a specific set of tasks or domains.
They may not perform well on new tasks or domains that
are significantly different from the ones used during train-
ing. Improvingmeta-learning’s generalization ability can
be a hard task.

• Interpretability Interpretability is a critical aspect of neu-
ral approaches that refers to the ability to understand how
a model works. Unfortunately, all neural approaches can
be extremely challenging to interpret and thus difficult to
understand how it learns to learn and make predictions
or decisions. This issue can make it arduous to debug,
diagnose and improve models’ performances.
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Table 5 Accuracy results on MiniImageNet and TieredImageNet datasets reported in original papers, with mean accuracy (%) and 95% confidence
interval. i: metric-based; ii: model-based; iii: optimization-based

Model Category MiniImageNet five-way TieredImageNet five-way
One-shot Five-shot One-shot Five-shot

Siamese network [65] i – – – –

Attention-based Siamese network [173] i 51.20 69.70 – –

Multi-resolution Siamese network [88] i – – – –

Matching network [161] i 46.60 60.00 – –

AMN [92] i 54.97 ± 0.77 71.84 ± 0.67 – –

Prototypical network [145] i 49.42 ± 0.78 68.20 ± 0.66 – –

CovaMNet [86] i 51.19 ± 0.76 67.65 ± 0.63 – –

PSN [172] i 48.70 69.40 – –

Relation Network [149] i 50.44 ± 0.82 65.32 ± 0.70 – –

BSNet [73] i – – – –

DeepEMD [196] i 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

DeepBDC [181] i 67.83 ± 0.43 85.45 ± 0.29 73.82 ± 0.47 89.00 ± 0.30

MixtFSL [2] i 64.31 ± 0.79 81.66 ± 0.60 70.97 ± 1.03 86.16 ± 0.67

Matching feature sets [3] i 68.32 ± 0.62 82.71 ± 0.46 73.63 ± 0.88 87.59 ± 0.57

MANN [131] ii – – – –

MAMN [157] ii 49.80 66.50 – –

MM-Net [14] ii 53.37 ± 0.48 66.97 ± 0.35 – –

MetaNet [100] ii 49.21 ± 0.96 – – –

CSNs [101] ii 56.88 ± 0.62 71.94 ± 0.57 – –

SNAIL [98] ii 55.71 ± 0.99 68.88 ± 0.92 – –

CNPs [42] ii – – – –

MAML [38] iii 48.70 ± 1.84 63.11 ± 0.92 – –

LSTM-based meta-learner [120] iii 43.44 ± 0.77 60.60 ± 0.71 – –

Proto-MAML [158] iii – – – –

CAVIA [206] iii 51.82 ± 0.65 65.85 ± 0.55 – –

TAML [60] iii 51.73 ± 1.88 66.05 ± 0.85 – –

MeTAL [8] iii 66.61 ± 0.28 81.43 ± 0.25 70.29 ± 0.40 86.17 ± 0.35

TAFE-Net [171] iii – – – –

MTL [152] iii 61.20 ± 1.80 75.50 ± 0.80 – –

LEO [130] iii 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

4.2 Future directions

• Enhancing generalized feature learning To address the
main challenge in few-shot learning that learn from
a handful of samples [81, 146, 182], meta-learning
employs shared knowledge from previously experienced
tasks for unseen tasks. However, in most existing meta-
learning methods, researchers attempt to learn discrimi-
native features via attention mechanism, multitask learn-
ing, data augmentation and so on. One major research
direction is developing new approaches for learning
features that generalize better to new domains; and eval-

uation measures for assessment and selection of the
learned features.

• Practice of episodic training strategy In order to realize
fast adaption to new tasks with limited samples, episodic
training requires that each training episode should have
the same number of classes and examples as the evalu-
ation episode. But, this setting is prone to catastrophic
forgetting [31, 138, 176] and leads to model underfit-
ting in base classes. A number of approaches have been
proposed to address this issue, and improving model per-
formance on both base and novel classes remains a vital
direction for future work.
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• Improving stability Despite the continuous improvement
of meta-learning in few-shot image classification, one
existing issue is that some meta-learning methods obtain
state-of-the-art performance on special datasets, but per-
form not well on other benchmarks. For example, a
metric-based meta-learning method named global class
representation (GCR) [78] achieved great performance
on Omniglot, but cannot compete with other non-metric-
based methods on miniImageNet. Further exploration of
stable models [25, 66] will be very valuable.

• Cross-domain and multimodal meta-learning In princi-
ple, the base dataset Dbase and novel dataset Dnovel in
few-shot learning can be from different domains [77,
150]. However, most model performances will decline
when the difference between Dbase and Dnovel . Develop-
ingmeta-learningmethods on cross-domain performance
can be one future research direction. Multimodal deep
learning has also brought great opportunities to few-
shot learning [53, 99, 109]. For example, Peng et al.
[113] proposed a Knowledge Transfer Network (KTN),
which combines semantic features and image features
for few-shot image classification tasks. Therefore, how
to design a more appropriate multimodal fusion method
is a research trend in few-shot image classification.

5 Conclusions

This paper presents a survey comprised of over 200 papers
on recent few-shot learning and meta-learning research
for image understanding. Based on the research literature,
we introduce the general approaches for few-shot learning
and then turn to one of the key approaches called meta-
learning. We separate existing meta-learning methods into
three important categories: metric-based, model-based and
optimization-based methods. We introduce both classical
and state-of-the-art approaches in each category and summa-
rize the state of the art. We also present the state-of-the-art
performance of the literature approaches on well-known
datasets. According to our study, we conclude with limi-
tations, challenges and weaknesses for meta-learning and
present promising directions of meta-learning from the per-
spectives of generalization, effectiveness and applicability.
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