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Abstract One promise of Semantic Web applications is
to seamlessly deal with heterogeneous data. The Extensi-
ble Markup Language (XML) has become widely adopted
as an almost ubiquitous interchange format for data, along
with transformation languages like XSLT and XQuery to
translate data from one XML format into another. However,
the more recent Resource Description Framework (RDF)
has become another popular standard for data representation
and exchange, supported by its own query language SPAR-
QL, that enables extraction and transformation of RDF data.
Being able to work with XML and RDF using a common
framework eliminates several unnecessary steps that are cur-
rently required when handling both formats side by side.
In this paper we present the XSPARQL language that, by
combining XQuery and SPARQL, allows to query XML and
RDF data using the same framework and transform data from
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one format into the other. We focus on the semantics of this
combined language and present an implementation, includ-
ing discussion of query optimisations along with benchmark
evaluation.

Keywords Query processing · XML · RDF · SPARQL ·
XQuery · XSPARQL

1 Introduction

XML [18] has become a well established and widely adopted
interchange format for data on the Web. Accompanying stan-
dards, such as XSL Transformations (XSLT) by Kay [42]
and, more recently, XQuery by Chamberlin et al. [22], both
based on the XML Path Language (XPath) [11], are often
used to query XML data and convert between different XML
representations.

In the effort to convert the Web into a Semantic Web, the
Resource Description Framework (RDF) [46,39] has become
the language of choice for modelling, interlinking, and merg-
ing data. RDF data and applications that consume this data are
becoming increasingly present on the Web. Opposed to the
tree structure of XML, RDF structures data in sets of triples,
representing edges of a directed, labelled graph. Querying
RDF graphs and converting between them can be performed
using SPARQL [54], the W3C recommended query language
for RDF.

In many applications combining and converting between
XML and RDF data is a useful but often not trivial task. The
importance of this issue is acknowledged within the W3C,
for instance in the working groups on Gleaning Resource
Descriptions from Dialects of Languages (GRDDL) by Con-
nolly [24] and Semantic Annotations for WSDL (SAWS-
DL) by Farrell and Lausen [29]. As we will show, common
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approaches for transformations between XML and RDF,
which rely on the standard XML serialisation of RDF by
Beckett and McBride [9] and on XML technologies, e.g.,
XSLT, have several disadvantages. While both XQuery and
SPARQL languages operate on different data models, respec-
tively, the XQuery and XPath Data Model (XDM) [30] for
XML and RDF, we show that the merge of both query lan-
guages in the novel language XSPARQL has the potential to
finally bring XML and RDF closer together. XSPARQL pro-
vides concise and intuitive solutions for mapping between
XML and RDF in either direction: operations where both
XQuery and SPARQL struggle. In fact it is not possible to use
SPARQL alone for such transformations since the SPARQL
query language does not provide the possibility of handling
XML data. On the other side, the only way to work with RDF
data within XQuery is by relying on the RDF/XML seriali-
sation for RDF graphs. As we show in Sect. 2, this approach
is hard to implement due to the different possible serialisa-
tions in RDF/XML for a single RDF graph. An additional use
for XSPARQL is the conversion between RDF graphs. XSP-
ARQL extends SPARQL’s expressiveness for such transfor-
mations, by allowing, for instance, nested XSPARQL queries
in the graph construction step.

Since its first version by Akhtar et al. [4], XSPARQL has
gained community interest and practical use cases have been
presented in a W3C Member Submission [49]. Based on these
experiences, the present article makes the following main
contributions:

– we present syntax and formal semantics of XSPARQL
based on the XQuery Formal Semantics by Draper et al.
[27]. In comparison with our initial publication, we
improved the treatment of nested queries over RDF with
respect to blank nodes and allow for assignment of RDF
graphs to variables;

– our implementation of XSPARQL is based on rewriting an
XSPARQL query into a semantically equivalent XQue-
ry query; as opposed to the preliminary version of this
rewriting by Akhtar et al. [4], in this paper we present a
more tightly integrated, new prototype implementing sev-
eral new features;

– we prove various properties of XSPARQL and show
soundness and completeness of the new tighter query
rewriting;

– we present a set of optimisations for complex queries (con-
taining nested XSPARQL queries) and show their correct-
ness;

– we introduce a novel benchmark suite (XMarkRDF) that
extends the XMark XML Benchmark suite by also con-
sidering RDF as a data format; and

– based on the XMarkRDF suite, we present benchmark
evaluation of the new XSPARQL prototype and compare

it with a related system. Furthermore, we discuss the per-
formance impact of the proposed optimisations.

The article is organised as follows: Sect. 2 will illustrate
our main motivation to come up with a new language by
discussing drawbacks of existing technologies for transfor-
mations between RDF and XML. In Sect. 3 we will briefly
review the main characteristics of the XQuery and SPARQL
query languages and, in Sect. 4, present their combination in
the form of the XSPARQL language by defining the formal
semantics and showing semantic properties of the novel lan-
guage. Section 5 shows the architecture and query rewriting
techniques for a prototype implementation. Section 6 dis-
cusses query optimisation techniques that speed up the eval-
uation of XSPARQL queries. We compare XSPARQL with
another prototype that combines SPARQL and XQuery in
Sect. 7 and report on experimental results using the bench-
mark suite XMarkRDF. We also compare query response
times of the presented optimisations, showing promising
results. We conclude this work with a discussion of related
works in Sect. 8 and wrap up in Sect. 9.

2 Motivation: Lifting and Lowering

XML can be viewed as a tree-like data representation format,
with intermediate nodes of this tree being XML elements or
attribute names, and the leaf nodes being either empty ele-
ments or textual attribute values and element content. The
order of child nodes is relevant in XML. As opposed to this,
RDF data, i.e., an RDF graph, is an unordered set of subject–
predicate–object triples, as follows:

Definition 1 (RDF Triple, RDF Graph) Given pairwise dis-
joint sets of URI references U, blank nodes B, and literals
L,1 a triple (s, p, o) ∈ UB × U × UBL (often written as a
“statement” ‘s p o .’) is called an RDF triple; sets of RDF
triples are called RDF graphs. We call elements of UBL RDF
terms.

Besides the normative syntax to exchange RDF using
XML, RDF/XML [9], there are various serialisation formats
for RDF, such as RDFa [2], a format that allows one to embed
RDF within (X)HTML, or non-XML representations such
as the more human-readable Turtle [7] syntax. Since data
in RDF may be considered on a higher level of abstrac-
tion than semi-structured XML data, the translation from
XML to RDF is often called lifting, while the opposite direc-
tion is called lowering. The importance of converting data
between the XML and RDF formats has been acknowledged

1 For brevity we will denote the concatenation of sets by concatenating
their names, e.g., U ∪ B is represented as UB.
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Mapping between RDF and XML with XSPARQL 149

Fig. 1 From XML to RDF and back: “lifting” and “lowering”

within the W3C in several related standardisation efforts,
such as GRDDL and SAWSDL. The GRDDL working group
addressed the issue of extracting RDF data out of exist-
ing (X)HTML Web pages (lifting). Likewise, in the Seman-
tic Web Services community, the SAWSDL working group
aimed at defining mechanisms (and link them in Web service
descriptions) to generate XML messages sent to Web services
from RDF data (lowering) and vice versa extract RDF from
service result messages in XML (lifting) [see 29,44]. Both
GRDDL and SAWSDL use XSLT (although they acknowl-
edge that other mechanisms could be used) in their examples
to perform lifting and lowering. In the following, let us illus-
trate some drawbacks of this approach.

As a running example throughout this paper we use a map-
ping between a custom XML format and RDF as shown in
Fig. 1 (using Turtle syntax for illustration). The task is, in
both directions, to extract for all persons the names of people
they know. URIs denoting predicates and terms in a partic-
ular domain are typically collected under a common name-
space in RDF with a designated prefix, such as RDF core
terms in the namespace http://www.w3.org/1999/02/22-rdf-
syntax-ns# using prefix rdf: or terms of the FOAF [20]
ontology in the namespace http://xmlns.com/foaf/0.1/ using
prefix foaf:.2

Blank nodes are represented in Turtle by the prefix ‘_:’
followed by an identifier/label, or by square brackets ‘[]’.
Blank nodes play a special role in RDF’s data model: they
allow to model unknown nodes or incomplete data, akin to
existential variables. Regarding the serialisation in Turtle that
means, if we would replace _:b1 in Fig. 1 by _:x, it would
represent an equivalent RDF graph.

RDF/XML [9] is the recommended syntax for RDF, using
XML as the underlying representation model. This format
enables the use of XML tools such as XSLT or XQuery to
translate between RDF/XML and other XML formats. How-
ever, such a transformation is greatly complicated by the flex-
ibility the RDF/XML format offers in serialising RDF graphs.
Therefore, tools that handle RDF/XML as XML data (and not
as a sets of triples) need to take different possible representa-
tions into account. Figure 2 shows four versions of a subset
of the RDF data from our running example that represent

2 In listings and figures we sometimes abbreviate well-known name-
space URIs with “…”.

(a)

(b)

(c)

(d)

Fig. 2 Different representations of the same RDF graph

the same FOAF data. Figure 2a uses Turtle [7], a simple and
readable textual format for RDF, inaccessible to pure XML
processing tools though; the remaining three versions are all
RDF/XML, ranging from concise (2b) to verbose (2d). These
three RDF/XML variants represent different XML trees but
the same RDF graph. Note that blank node identifiers may
disappear or change through XML serialisation.

For our running example, let us attempt lifting and lower-
ing transformations using XSLT (we will get to XQuery as
another alternative in more detail later on).
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(a)

(b)

Fig. 3 Lifting attempt by XSLT

Lifting. The XSLT stylesheet in Fig. 3a for instance, could
be used to generate RDF/XML (in the format presented in
Fig. 2b) from the relations.xml file in Fig. 1. However, this
first attempt does not yet accomplish the intended transforma-
tion since unique identifiers are not created for each person.
This is easy to see in the Turtle version of the result of this
transformation (presented in Fig. 3b): while in our example
names should uniquely identify a person, in this transforma-
tion the same person is potentially given several different
blank nodes.

Although a proper lifting transformation catering for all
possible XML serialisations is doable in XSLT, the corre-
sponding stylesheet would need to be far more involved.

Lowering. The simple XSLT stylesheet lowering.xsl in
Fig. 4b is an attempt to perform the lowering task directly
from RDF/XML. However, this XSLT will break if the input
RDF/XML serialisation is in any other variant than the ver-
sion in Fig. 2b. We could create a specific stylesheet for
each of the presented variants, but creating one that han-
dles all the possible RDF/XML forms would be much more
complicated.

Apart from its syntactic ambiguities, processing RDF/
XML via XSLT also loses another feature of RDF, namely

Fig. 4 Lowering using XSLT (lowering.xsl)

Fig. 5 RDF data using the relationship ontology

its interplay with ontological information, e.g., RDF Schema.
RDF Schema [19] (RDFS) allows to express subclass or sub-
property hierarchies, which can be exploited by RDF tools
capable of ontological inference. The RDF data from Fig. 1
could—rather than foaf:knows—use predicates from the
relationship ontology,3 which are all stated as subproperties
of foaf:knows, as presented in Fig. 5. Similar consider-
ations would apply if we attempted to perform the lifting
and lowering using XQuery: since XML tools do not support
ontological inference, we literally would need to implement
an RDFS inference engine within XSLT or XQuery, to be
able to implement a lowering mechanism that also works for
this kind of RDF data. Given the availability of RDF tools
and engines that readily offer RDFS support, this seems to
be a dispensable exercise.

Benefits of an integrated language. In recognition of the
above problems, the SAWSDL specification contains a non-
normative example which performs a lowering transforma-
tion as a sequence of a SPARQL query followed by an XSLT
transformation on SPARQL’s query results XML format [23].
The advantage of such a two-step approach is first that since
SPARQL works on the RDF data model, all the input data
from Fig. 2 are considered to be equivalent. Second, if one
deploys a SPARQL engine that supports RDFS inference also

3 http://vocab.org/relationship/.
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Mapping between RDF and XML with XSPARQL 151

input data that involves ontologically related RDF vocabu-
laries could be dealt with. For example, to get all persons
who work with (rel:worksWith) or have met (rel:has-
Met) Charles from the FOAF data described in Fig. 5, a sim-
ple SPARQL query would be enough:

select $person from <foaf.rdf >
where { $person foaf:knows [ foaf:name "Charles

" ] . }

Although the approach proposed by the SAWSDL Work-
ing Group provides a good starting point, we argue that
it can still be improved on several points: first, the detour
through SPARQL’s XML query results format seems to be
an unnecessary burden. Second, a more tightly coupled inte-
gration of SPARQL and XML query languages can provide
a more expressive language, beyond the capabilities of using
SPARQL and XSLT or XQuery sequentially, and directly
amenable to query optimisations. XSPARQL, the language
proposed in the present paper, aims to provide exactly this:
use cases that otherwise would require interleaved calls to
SPARQL (typically requiring an implementation using an
external programming framework) can be solved in XSP-
ARQL directly, cf. the lowering example in Fig. 10. More-
over, as we will see, the combined language not only allows
for concise lifting and lowering, but also may be viewed as
an extension of SPARQL for RDF-to-RDF transformations,
cf. the example in Fig. 8b below. Before we turn to these
examples and XSPARQL in more detail, let us give a short
overview of the languages XSPARQL builds on: XQuery and
SPARQL.

3 Preliminaries

XQuery allows for a convenient and concise syntax for XML
query processing and XML transformation, while SPARQL
is the standard for RDF querying and transformation. One of
the major differences between XQuery and SPARQL resides
on the ordering of their respective data models: while XML
(and hence XQuery) is an intrinsically ordered data model,
RDF is an unordered data model. As such, necessary mecha-
nisms must be in place to ensure XQuery respects the order-
ing of the input. Queries in each of the two languages can
roughly be divided in two parts: (i) the retrieval part (body)
and (ii) the result construction part (head): this is presented
schematically in Fig. 6. Our goal is to combine these compo-
nents for both languages in a unified language, XSPARQL,
where XQuery’s and SPARQL’s heads and bodies may be
used interchangeably and even nested. We next outline some
of the main aspects of XQuery and SPARQL relevant to their
combination into XSPARQL. For a more detailed overview
of XQuery and SPARQL we refer the reader to [22,27] and
to [51,54].

(a)

(b)

Fig. 6 An overview of XQuery and SPARQL

Fig. 7 Lifting using XQuery

3.1 XQuery

XQuery consists mainly of so-called FLWOR expressions,
denoting the body (FLWO) and the head (R) of a query. The
ForClauses (F) can be used to declare variables that iterate
over XML sequences, returned, e.g., by an XPath expres-
sion, while let assignments (L) allow to bind values, e.g.,
the entire result of an XPath expression, to variables. A filter
condition on the current variable bindings or processing order
of results within a ForClause can be specified in the where

part (W) and by the order by clause (O), respectively. In the
head (R) arbitrary well-formed XML, nested XQuery expres-
sions, or previously assigned variables are allowed follow-
ing the return keyword. Together with a large catalogue of
built-in functions [45], XQuery offers a flexible instrument
for arbitrary XML transformations.
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The lifting task of Fig. 1 can be solved with XQuery as
shown in Fig. 7.4 Please note that, due to the nature of XQue-
ry, in this query we are generating RDF/XML, opposed to the
more concise Turtle syntax from Fig. 1. The resulting query
is quite involved, but completely addresses the lifting task,
including unique blank node generation for each person. We
first select, in variable $persons (line 3), all nodes repre-
senting person names: either person or knows nodes and
next, for each different name, we keep a sequence with all
the distinct person names (stored in variable $positions),
which we will use as the blank node identifier for the person.
Iterating over these distinct person names, we determine the
person identifier (line 10). The nested for (lines 14–23) again
iterates over persons in order to create nested foaf:knows

elements: for each person name ($n) from the outer for

expression, this nested expression selects the XML nodes
that correspond to persons which $n knows (line 14) and cre-
ates the corresponding foaf:knows elements (lines 18–20).
While this is a valid solution for lifting, we still observe the
following drawbacks: (1) We still have to build RDF/XML
manually and cannot make use of the more readable and con-
cise Turtle syntax; and (2) if we had to apply XQuery for the
lowering task, we still would need to cater for all kinds of
different RDF/XML representations. Thus we still face the
same problems as discussed in the XSLT solution in Sect. 2.
However, both these drawbacks will be alleviated by adding
SPARQL to XQuery. By combining XQuery and SPARQL,
XSPARQL also simplifies the lifting process by allowing to
use SPARQL ConstructClauses that generate RDF in Turtle
format and by performing automatic validation of the gener-
ated RDF graphs.

Semantics. Next, let us give a short overview of the XQue-
ry Formal Semantics [27], on which we will base XSP-
ARQL’s semantics; it is defined essentially via three types
of rules: (i) normalisation rules, (ii) static typing rules,
and (iii) dynamic evaluation rules. Normalisation rules are
used to rewrite arbitrary XQuery expression to the XQuery
Core language—a subset of XQuery that, while semanti-
cally equivalent, aims to be easier to define, implement, and
optimise [41]. Static typing rules are used to assign a type
to each XQuery expression, while the dynamic evaluation
rules are responsible for producing the resulting XML from
each expression and guaranteeing that the expression input
is consistent with the typing information determined during
the static analysis step. Any XQuery expression E is eval-
uated with regard to an expression context C that holds the
static environment (statEnv) and the dynamic environment
(dynEnv) up until the evaluation of E . Environments are
composed of different components and hold information nec-
essary to the evaluation of any XQuery expression: statEnv

4 We assume this query is executed with the context item set externally
to the document node of relations.xml file presented in Fig. 1.

holds the information available during static analysis, for
example the varType component holds variable type infor-
mation, while the dynEnv environment contains information
available during expression evaluation, like the value for vari-
ables that is stored in the varValue component. We refer to
the static environment of C as statEnv(C) and to the dynamic
environment as dynEnv(C) and we can access the different
components by name: statEnv(C) .varType and the specific
value for element var of the a context can be accessed using
statEnv(C) .varType(var). In case the expression context C
is not explicitly presented, statEnv and dynEnv can be used
in place of statEnv(C) and dynEnv(C).

Normalisation rules are represented using mapping rules
and, as an example, we present the following rule from
Draper et al. [27] that illustrates the normalisation of con-
secutive ForClauses into XQuery Core:

�
�����

for $VarName1 OptTypeDeclaration1
OptPosVar1 in Expr1

, · · · ,

$VarNamen OptTypeDeclarationn
OptPosVarn in Exprn ReturnClause

�
�����

Expr

==
for $VarName1 OptTypeDeclaration1
OptPosVar1 in �Expr1	Expr return

· · ·
for $VarNamen OptTypeDeclarationn
OptPosVarn in �Exprn	Expr �ReturnClause	Expr

(N1)

In normalisation rules, fixed-width font (like for) refers to
specific keywords, and italic font refers to productions in the
XQuery Core grammar [27, Appendix A]. Static type rules,
and dynamic evaluation rules are represented using infer-
ence rules. For instance, the following static typing rule from
Draper et al. [27] ensures that no expression has empty type
except the empty sequence and functions in the fs namespace
that are applied to empty parentheses ():

statEnv � Expr : Type
statEnv � Type <: empty

not
(

Expr is the empty parentheses () or fn:data()

or any fs function applied to empty parentheses ()

)

A static type error is raised for expression Expr

(S1)

The judgements statEnv � Expr : Type and statEnv � Type <:
empty hold when, in the static environment statEnv, both
Expr has type Type and Type is a subtype of empty, respec-
tively. For all details of the XQuery Semantics we refer the
reader to [27].

Typing Fernández et al. [30] describe the XQuery and
XPath Data Model (XDM) that is used to define the input to
XQuery and the values of any XPath expression. Draper et al.
[27, Section 2.4] describe the formal notation for types that
we use throughout this paper. This representation of types is
used for specification purposes only and is not exposed to
the end user by XQuery. As [27, Section 8.3.1] describe, it

123



Mapping between RDF and XML with XSPARQL 153

is possible to match a Value against a specific Type by using
the judgement Value matches Type.

3.2 SPARQL

In analogy to FLWOR in XQuery, we will denote its cor-
respondent “DWMC expressions” in SPARQL. The body
(DWM) offers the following features: a dataset (D), i.e.,
the set of (named) source RDF graphs, is specified in from

(or from named) clauses. The where part (W) allows match-
ing parts of the dataset by specifying a graph pattern. Such
patterns can be simple triple patterns possibly involving
variables, URI references, and literals,5 or unions of graph
patterns, optional patterns matching of parts of a graph, or
patterns matching of named graphs, etc.

Definition 2 (Graph Patterns, [51]) Let V be an infinite set
of variables, graph patterns are inductively defined as fol-
lows:

– a tuple (s, p, o) ∈ ULV×UV×ULV, called triple pattern,
is a graph pattern;

– a set of triple patterns, called Basic Graph Pattern (BGP),
is a graph pattern;

– if P and P ′ are graph patterns, then (P P ′), (P optional

P ′), and (P union P ′) are graph patterns;
– if P is a graph pattern and i ∈ UV, then (graph i P) is a

graph pattern; and
– if P is a graph pattern and R is a filter expression,

then (P filter R) is a graph pattern.

For any pattern P , we write vars(P) for the set of all
variables occurring in P . A filter expression R can be com-
posed from constants, elements of ULV, comparison opera-
tors (‘=’,‘<’, ‘>’,‘≤’,‘≥’) and logical connectives (‘¬’,‘∧’,
‘∨’), and built-in functions.6

The evaluation semantics of SPARQL consists of com-
puting a sequence of solution mappings, i.e., sets of bindings
for the variables in these patterns, matching them against
the graphs in the dataset. Sequences of solution mappings as
referred to simply as solution sequences.

SPARQL is agnostic to the actual XML representation of
the underlying source graphs, which alleviates the pain of
having to deal with different RDF/XML representations of
the graphs in the dataset. Also several RDF source graphs [39]

5 Note that we do not allow blank nodes in graph patterns, and thus do
not consider them in our definitions. This restriction does not affect the
expressivity of SPARQL, implicit in [51], since blank nodes in query
patterns can always be replaced equivalently with variables. See dis-
cussion in Sect. 4.2 below.
6 For a complete list of built-in functions we refer the reader to [54].

(a)

(b)

Fig. 8 RDF-to-RDF mappings in SPARQL and in XSPARQL

specified in consecutive from clauses can be merged trans-
parently in SPARQL, however for XML tools this involves
renaming of blank nodes at the pure XML level. Solution
sequences can be ordered or sliced using solution modifi-
ers (M) order by, limit, and offset.

In the head, SPARQL’s construct clause (C) offers con-
venient and XML-independent means to create an output
RDF graph. A construct template consists of a list of triple
patterns in Turtle syntax. By instantiating this template with
the variable bindings computed in the body, a result graph
is created, which enables SPARQL to be used as a trans-
formation language between different RDF formats (simi-
lar to XSLT and XQuery for transforming between XML
formats). A simple example for mapping full names from
the vCard/RDF [40] format to foaf:name is given by the
SPARQL query in Fig. 8. Blank nodes in construct tem-
plates—as used in the query in Fig. 8b—play a special role, in
that they are replaced by a fresh blank node for each solution
sequence in the result graph.

Other possible types of SPARQL queries include select,
ask, and describe queries: select queries simply return
the bindings for variables present in the query (instead
of using these bindings to instantiate the template like a
construct clause), ask queries return a boolean answer,
indicating whether the graph pattern produces any results,
and describe queries are used to return information about
a resource. For the aims of XSPARQL we support the
ConstructClause that allows to produce RDF and the select
expression that allows us to input RDF data—although with
a different syntax as explained in Sect. 4.1.

Let us remark that SPARQL does not cater for the creation
of new values, which on the contrary is an inherent feature of
XQuery. By combining XQuery and SPARQL, we are also
enabling SPARQL to use the full range of XPath/XQuery
built-in functions [45].

Due to this, the query in Fig. 8 which attempts to merge
family names and given names into a single foaf:name by
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calling thefn:concat function is beyond SPARQL’s capa-
bilities. As we will see, XSPARQL will not only reuse SPAR-
QL for transformations from and to RDF, but also enable such
advanced RDF-to-RDF transformations.

Semantics The semantics of SPARQL is defined by means
of evaluation rules which are presented by [54, Section 12.5].
Here we only give an overview of the notion of Basic Graph
Pattern (BGP) matching that we will use later to define the
semantics of XSPARQL.

The matching of BGPs is done with regard to a specific
RDF graph—the active graph—which is a graph contained in
the dataset specified to the query. This matching is defined in
terms of replacing variables from the BGP with RDF terms
present in the active graph, where the function that maps
query variables to RDF terms is called a solution mapping.

Definition 3 (Solution Mapping) A solution mapping [see
54, Section 12.1.6] is a partial function mapping SPARQL
variables to RDF terms. The domain of a solution mapping μ,
denoted dom(μ), is the set of variables for which μ is defined.
Furthermore, we denote the value of variable v ∈ V accord-
ing to solution μ as μ(v). Two solution mappings μ1 and
μ2 are compatible if for any v ∈ dom(μ1) ∩ dom(μ2) it
holds that μ1(v) = μ2(v). The union of two compatible
mappings μ1 and μ2 consists of the standard set-theoretical
union μ1 ∪ μ2.

The replacement of variables in a graph pattern according
to a solution mapping is defined next.

Definition 4 Let P be a graph pattern and μ be a solution
mapping. The variable substitution of P by μ, denoted μ(P),
is the graph pattern P with all variables v ∈ vars(P) ∩
dom(μ) substituted by μ(v).

Finally, the definition of BGP matching from [54, Sec-
tion 12.3] specifies the solutions to a query.

Definition 5 (Basic Graph Pattern Matching) We say μ is
a solution for a BGP P with respect to the active graph G,
if there exists a solution mapping μ′ such that μ′(P) is a
subgraph of G, and μ is the restriction of μ′ to the variables
in vars(P).

The definition of BGP matching is extended to more com-
plex SPARQL query patterns (including union, optional,
graph, filter, etc.) by the SPARQL algebra [54, Sec-
tion 12.4], such that the where clause of every SPARQL
query—i.e., any DWM body—returns a list of solutions.
We denote this evaluation of a SPARQL Graph Pattern P
over a dataset D as eval(D, P). As presented by [51], the
evaluation of a SPARQL graph pattern can be specified
by mapping the graph pattern to relational algebra oper-
ators. Since Perez et al. deal with set-based semantics of
SPARQL, here we extend their notion of the join opera-
tor to solution sequences. Let �1 and �2 be two solution
sequences; then �1 �� �2 = ToList({μ1 ∪ μ2 | (μ1, μ2) ∈

ToMultiSet(�1) × ToMultiSet(�2) , μ1 and μ2 are com-
patible}), where by × we denote the Cartesian product of
the multisets and ToList() is, as per the SPARQL specifica-
tion [cf. 54, Section 12.4], an operation that turns a multiset
into a sequence with the same elements and arbitrary order-
ing. Analogously to the ToList()operation, ToMultiSet() con-
verts a sequence into a multiset by preserving duplicates but
disregarding the sequence ordering.

For further details on the SPARQL query language, we
refer the reader to the W3C specification [54].

Next, we define the notion of inclusion of solution
sequences.

Definition 6 Let �1 and �2 be solution sequences. We
say �1 is included in �2, denoted �1 
 �2, if for all solu-
tion mappings μ1 ∈ ToMultiset(�1) there exists a solution
mapping μ2 ∈ ToMultiset(�2) such that μ1 ⊆ μ2.

Please note that this definition extends the notion of sub-
set between multisets by considering also the subset relation
between their elements, i.e., solution mappings. This def-
inition will be required for the optimisations presented in
Sect. 6. Since the presented optimisations are not order pre-
serving we rely only on the notion of inclusion.

In a construct query, the solutions of the pattern in the
where clause of the body are then used to instantiate the con-
struct template and the result graph is obtained from the
union of all valid RDF triples resulting from such instanti-
ation. As mentioned before, for each solution, blank nodes
occurring in a construct template are replaced by new blank
nodes with new identifiers.

Apart from construct queries, which we mainly focus
on here, SPARQL also allows select queries, which return
sequences of variable bindings, obtained from projecting
only solution mappings for a given list of variables.

4 XSPARQL

Conceptually, XSPARQL is a merge of SPARQL construct

queries into XQuery. This combination of languages allows
us to benefit from the facilities of SPARQL for retrieving
RDF data and to use Turtle-like syntax for constructing RDF
graphs, while still having access to all the features from
XQuery for XML processing. In XSPARQL we allow any
native XQuery query and we extend XQuery’s FLWOR
expressions to what we call FLWOR’ expressions:

(i) In the body we allow SPARQL-style F’DWM blocks
alternatively to XQuery’s FLWO blocks. The new F’
clause of the form forvarlist is very similar to XQue-
ry’s native ForClause, but instead of allowing a single
variable (which is assigned to the results of an XPath
expression), the new clause supports a white space-sep-
arated list of variables (varlist). Each variable in varlist
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Fig. 9 Lifting in XSPARQL

Fig. 10 Lowering using XSPARQL

is then assigned the value resulting from evaluating a
SPARQL query of the form: selectvarlist DWM.

(ii) In the head we allow to create RDF graphs directly
using construct templates (C) alternatively to XQue-
ry’s native return (R).

(iii) Different forms of nesting are allowed, for example
subqueries that construct RDF graphs may appear in
let assignments which are later used in SPARQL-style
from clauses, or can be used for value construction
within SPARQL-style construct templates.

These modifications allow us to reformulate the lifting
query of Fig. 7 on page 151 into its slightly more concise XSP-
ARQL version of Fig. 9. The real power of XSPARQL in our
example becomes apparent on the lowering part, where all of
the other languages observed so far struggled. The lowering
query for our running example is shown in Fig. 10.

4.1 Syntax of XSPARQL

In more detail, the XSPARQL syntax is an extension of the
grammar rules in XQuery [22]. Figure 11 shows a schema
of our merge of XQuery and SPARQL. For the definition of
the XSPARQL syntax, we assume to inherit all the grammar
productions of SPARQL [54] and XQuery [22] and mark any

Fig. 11 Schematic view of XSPARQL

modified grammar productions with the prime symbol (′). We
introduce two new productions: SparqlForClause and Con-
structClause, corresponding to roughly to SPARQL select

queries and construct templates; we present the grammar
productions for these in Fig. 12. The full XSPARQL gram-
mar can be found in [15]. In these grammar productions, the
WhereClause and SolutionModifier correspond, respectively,
to rules [13] and [14] from the SPARQL grammar, cf. [54,
Appendix A.8].

The newly introduced SparqlForClause(rule [33a]) is sim-
ilar to an XQuery for clause that can be used to iterate over
SPARQL results.7 This expression stands at the same level as
XQuery’s for and let expressions, i.e., such type of clauses
are allowed to start new FLWOR’ expressions, or may occur
inside deeply nested XSPARQL queries.

The ConstructTemplate’ expression is defined in the same
way as the production ConstructTemplate in SPARQL [54],
but we additionally allow nested XSPARQL expressions
(FLWORExpr’) in subject, predicate, and object positions;
we achieve this by replacing SPARQL syntax rules Verb
and VarOrTerm for ConstructTemplate with the rules VarOr-
Term’ and Verb’ represented in Fig. 12b.8

The rules for SourceSelector from the SPARQL syntax
are also extended (as presented in Fig. 12c), i.e., we allow
for graphs in a SPARQL dataset to be specified by a variable
which must evaluate to a URI.

In analogy to SPARQL’s select * shortcut, we allow to
write for * in place of for [list of all unbound variables
appearing in the WhereClause] for SparqlForClauses; as
syntactic sugar this is also the default value for the F’ clause
whenever a SPARQL-style WhereClause is found and a cor-
responding F’ clause is missing. Please note that for Sparql-
ForClauses we do not allow XQuery QNames as variable

7 This expression does not have the exact semantics of a SPARQL
select clause—returning bindings to variables—but rather adds new
variables to the query; hence a syntax inspired by the existing XQuery
ForClauses was chosen.
8 These changes are highlighted in Fig. 12 by using bold face.
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(a) XSPARQL core syntax elements, extending [22, Appendix A]

(b) Modified ConstructTemplate syntax elements, extending [54, Appendix A]

(c) Modified DatasetClause syntax elements, extending [54, Appendix A]

Fig. 12 Overview of XSPARQL syntax

names (further details are available in [27, Section 3.1.1.1])
and assume that only unprefixed variables are shared between
the XQuery and SPARQL expressions of XSPARQL. By this
treatment, XSPARQL becomes a syntactic superset of native
SPARQL construct queries, since we additionally allow
the following:

(1) XQuery and SPARQL namespace declarations (P) may
be used interchangeably; and

(2) SPARQL-style construct result forms (C) may appear
before the retrieval part for queries. This feature is mainly
added in order to encompass SPARQL style queries, but
in principle, we expect the (R/C) parts to appear in the
end of a FLWOR’ expression.

Thus, thequeryofFig. 8aonpage153oranyotherSPARQL
construct queries remain valid syntax for XSPARQL.

4.2 Semantics of XSPARQL

Next we define the semantics of XSPARQL. After introduc-
ing some new types, used in the semantics, and an extension
to the normalisation rules of XQuery ForClauses, we will
turn to extending the notion of Basic Graph Pattern matching
(Sect. 4.2) to make SPARQL clauses aware of the bindings for
variables from XQuery. Then, we present the semantics of the
newly introduced expressions: SparqlForClause(Sect. 4.2)
and ConstructClause (Sect. 4.2), based on XQuery’s formal
semantics [27], by defining normalisation, static type and
dynamic evaluation rules for each of the new expressions.

XSPARQL Types. We extend the XQuery and XPath Data
Model (XDM), described by Fernández et al. [30], with the
following new types that accommodate for SPARQL specific
parts of XSPARQL:

(1) the RDFTerm type further consists of the subtypes uri,
bnode and literal and is used as the type of SPARQL
variables;

Fig. 13 XSPARQL Type Definitions

(2) the PatternSolution type consists of a set of pairs
(variableName, RDFTerm) representing SPARQL vari-
able bindings;

(3) the RDFGraph is the type of construct expressions; and
(4) the RDFDataset as the type for DatasetClauses.

The formal definition of (1)–(4) is given in Fig. 13. The
RDFTerm type is used to represent RDF terms (composed of
URIs, blank nodes or literals). The type of SPARQL variables
are represented by the Binding type, that consists of the var-
iable name and the RDF term that is assigned to it. Finally,
sequences of SPARQL variable bindings are represented by
the type PatternSolution. This representation of SPARQL
results is similar to the XML Schema of the SPARQL Query
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Results XML Format, available at http://www.w3.org/2007/
SPARQL/result.xsd.

The RDFGraph type corresponds to a sequence of RDFTri-
ples which are in turn a complex type composed of subject,
predicate and object. The RDFDataset type is defined
as an RDFGraph that is considered the default graph and a
sequence of RDFNamedGraphs represented by the name of
the graph and the corresponding RDFGraph.

The following definition presents the translation between
a SPARQL solution sequence and a sequence of Result type
elements that we implement in XSPARQL.

Definition 7 (Serialisation of Solution Sequences) Given a
solution sequence � = (μ1, . . . , μn) a serialisation of �

into a sequence of PatternSolution is defined as follows:

– serialise(�) ⇒ serialise(μ1) , . . . , serialise(μn)

– serialise(μ) ⇒
<result>

{∀x ∈ dom(μ) , serialise(μ, x)}
</result>

– serialise(μ, x) ⇒
<binding name="x">

{term(μ(x))}
</binding>

,

where term(μ(x)) is

– <uri>μ(x)</uri> if μ(x) ∈ U

– <bnode>μ(x)</bnode> if μ(x) ∈ B

– <literal>μ(x)</literal> if μ(x) ∈ L

Following the definition of the serialise function, in evalua-
tion rules, we will refer to sequences of elements of type Pat-
ternSolution as � and to elements of type Result as μ.

Query Prolog Normalisation As stated previously,
XQuery and SPARQL namespace declarations can be used
interchangeably in the query prolog. Hence, we convert any
SPARQL syntax prefix declaration to XQuery namespace
declarations by the following normalisation rules:

�prefix NCName: <URILiteral>	Expr

==
�declare namespace NCName = URILiteral ;	Expr

(N2)

�prefix : <URILiteral>	Expr

==
�declare default namespace = URILiteral ;	Expr

(N3)

�base <URILiteral>	Expr

==
�declare base-uri URILiteral ;	Expr

(N4)

XQuery for normalisation In accordance with the
SPARQL semantics, blank nodes in ConstructTemplates
need to be distinctly instantiated for any solution map-
ping matching the body, i.e., for every solution for the
WhereClause a new blank node identifier needs to be cre-
ated in the resulting graph. To ensure this behaviour in XSP-

ARQL ConstructTemplates, we will use position variables9

from XQuery in ForClauses to generate these new blank
node identifiers, i.e., we introduce position variables in any
XQuery for expressions without position variables and also
to make sure that XSPARQL SparqlForClauseexpressions
have position variables. To handle the XQuery for expres-
sion, we change the normalisation rule of for expressions to
XQuery Core for expressions (cf. Sect. 3.1):

�
�������

for $VarName1 OptTypeDeclaration1
OptPositionalVar1 in Expr1,

· · · ,

$VarNamen OptTypeDeclarationn
OptPositionalVarn in Exprn
ReturnClause

�
�������

Expr

==
for $VarName1 OptTypeDeclaration1
�OptPositionalVar1	PosVar in �Expr1	Expr
return

· · ·
for $VarNamen OptTypeDeclarationn
�OptPositionalVarn	PosVar in �Exprn	Expr
�ReturnClause	Expr

(N5)

A new normalisation rule �·�PosVar takes care of introduc-
ing new positional variables where necessary. We assume
that the introduced position variables are distinct from any
of the variables in scope, represented by the formal seman-
tics variable $fs:new [cf. 27, Section 4.12.6]: �	PosVar ==
at $fs:new. In case a positional variable is already present
it is reused: �at $PosVar	PosVar == at $PosVar.

We also assume a new static environment component
statEnv.posVars which consists of a sequence holding all
positional variables in the given static environment, that is,
the variables defined in the at clause of enclosingfor expres-
sions. The static type rules for the for expression [cf. 27,
Section 4.8.2] need to be extended accordingly to store these
positional variables, similar to the rules for SparqlForClauses
in Sect. 4.2 below.

XSPARQL BGP Matching In this section we extend the
notion of Basic Graph Pattern (BGP) matching described
by [54, Section 12.3], to provide SPARQL with the variable
bindings from XQuery. For this we rely on the XQuery var-
Value dynamic environment component that maps variable
names to their value and consider this environment com-
ponent as defining a set of bindings in the spirit of SPAR-
QL solution mappings (as presented in Definition 3). Along
these lines, we will consider the varValue component of the
dynamic environment in which a SPARQL graph pattern P
is executed the basis for the XSPARQL instance mapping of
P . The transformation from the dynEnv.varValue into the
XSPARQL instance mapping is defined next:

9 Position variables are variables that appear in an XQuery ForClauses
after the optional at keyword—cf. Fig. 6a on page 151—and bind to an
integer indicating the current position in the for-expression.
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Definition 8 (XSPARQL instance mapping) Let C be an
expression context, and DC = dynEnv(C) .varValue be
the varValue and TC = statEnv(C) .varType be the var-
Type component of the static environment of C , respectively.
The XSPARQL instance mapping μC is a solution mapping
where, for each mapping vi → xi ∈ DC , xi is converted into
an instance of type RDFTerm or an RDF Collection according
to the following conditions:

– if xi = () and TC .varType(vi ) = RDFTerm then μC(xi ) is
undefined;

– if xi = () and TC .varType(vi ) �= RDFTerm then μC(xi ) =
() is an empty RDF Collection;

– if xi is a singleton sequence, thenμC(xi ) = RDFTerm(xi );
– if xi = (e1, . . . , en), n > 1, is a sequence then μC(xi ) =

(RDFTerm(e1) · · · RDFTerm(en)) to be read as an RDF
Collection [46, Section 4.2] in Turtle notation [see 7, Sec-
tion 3.5];

where RDFTerm(xi ) is

– xi if TC .varType(vi ) = RDFTerm,
– "xi" if TC .varType(vi ) = xsd:string,
– "xi"ˆˆrdf:XMLLiteral if TC .varType(vi ) =
element(),

– "data(xi )" if TC .varType(vi ) = attribute(), and
– "xi"ˆˆTC .varType(vi ), otherwise.

For a graph pattern P , we call the XSPARQL instance map-
ping of the expression context in which P is executed the
XSPARQL instance mapping of P .

Next we define the notion of XSPARQL BGP matching based
on the semantics of SPARQL BGP matching presented in
Sect. 3.2.

Definition 9 (Extended solution mapping) Let C be an
expression context. An extended solution mapping of a graph
pattern P in C is a solution mapping compatible with the
XSPARQL instance mapping of C .

XSPARQL BGP matching is defined analogously to the
SPARQL BGP matching with the exception that we consider
only extended solution mappings:

Definition 10 (XSPARQL BGP matching) Let P be a basic
graph pattern, C be the expression context of P , and G be
an RDF graph. We say that μ is a solution for P with respect
to active graph G, if there exists an extended solution map-
ping μ′ of C such that μ′(P) is a subgraph of G and μ is the
restriction of μ′ to the variables in vars(P).

This definition quasi injects the variable bindings inherited
from XQuery into SPARQL patterns occurring within XSP-
ARQL; by considering extended solution mappings the bind-
ings returned for a BGP P will not only match the input graph

G but also respect any bindings for variables in the dynamic
environment. We can extend the XSPARQL BGP matching
to generic graph patterns by following the SPARQL eval-
uation semantics, as described by [54, Section 12.4]. Con-
sidering a graph pattern P and μC the XSPARQL instance
mapping of P , we similarly denote by evalxs(D, P, μC ) the
evaluation of P over dataset D following XSPARQL BGP
matching.

Matching blank nodes in nested queries As for the
handling of explicit DatasetClauses we briefly review the
scoping graph concept from SPARQL’s semantics, presented
in [54, Section 12]. Query solutions are taken from the scop-
ing graph, a graph that is equivalent to the active graph
but does not share any blank nodes with it or any graph
pattern within the query. Although in XSPARQL we are
not considering blank nodes in graph patterns, in the pres-
ence of nested SparqlForClauses XSPARQL instance map-
pings may in fact contain assignments of variables to blank
nodes, injected from the outer SparqlForClause into the
inner SparqlForClause. For example, in Fig. 10 on page
155, blank nodes bound in the outer SparqlForClause to the
variable $Person will be injected into the inner SparqlFor-
Clauseexpression. In XSPARQL—as opposed to SPARQL
patterns—such injected bnodes will be matched like con-
stants against the blank nodes from the data, to enable core-
ference within nested queries over the same dataset. To ensure
this behaviour, we introduce the notion of active dataset;
nested queries over the same active dataset keep the same
the scoping graphs. Any SparqlForClause with an explicit
DatasetClause causes the active dataset to change, i.e., new
scoping graphs (with fresh blank nodes) for each graph
within it are created; if no DatasetClause is present in a
nested SparqlForClause (implicit dataset), the active data-
set remains unchanged.

We introduce another auxiliary function in the XSP-
ARQL semantics, fs:dataset(DatasetClause), which returns
an element of type RDFDataset based on the evaluation
of its argument. This conversion is performed accord-
ing to the SPARQL semantics presented in Sect. 3.2 and
detailed in [54]. The static type signature of this function
is

fs:dataset($datasetClause as xs:string)
as RDFDataset

We allow the SourceSelector of a DatasetClause to
be specified by an element of type uri or RDFGraph. Ele-
ments of the type uri in the position of a graph will
be mapped to graphs where the uri is used as its name.
XSPARQL—just like the SPARQL specification—leaves
the exact mapping of URIs to graphs open to particular
implementations, but for the rest of this paper, we assume
obtaining the RDF graph just by dereferencing the URI via
HTTP.
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SparqlForClause and XQuery ForClauses The seman-
tics of SparqlForClause (Rule [33a], Fig. 12a) is defined
by the following normalisation rules, static type analysis
rules, and dynamic evaluation rules. We will also need
to slightly adapt the static analysis rules for regular For-
Clauses (in order to properly deal with the extra position
variables introduced by rule (N5)). We start with normal-
isation rules for SparqlForClauses with implicit variable
selection (by means of “for *”) and with explicitly stated
variables:



for * OptDatasetClause WhereClause
SolutionModifier return ExprSingle

�

Expr

==�
�
for �WhereClause	vars
OptDatasetClause WhereClause
SolutionModifier return ExprSingle

�
�

Expr

(N6)

The normalisation rule �WhereClause�vars determines all
statically unbound variables present in the WhereClause,
i.e., returns a whitespace separated list of all variables in
the WhereClause that are not present in the statEnv.varType
environment component. The next normalisation rule intro-
duces a new position variable, analogously to the before-
mentioned XQuery for normalisation rule, where �·�PosVar
is as described above:

�
�
for $VarName1 . . . $VarNamen
OptDatasetClause WhereClause
SolutionModifier return ExprSingle

�
�

Expr

==
for $VarName1 . . . $VarNamen �	PosVar
OptDatasetClause WhereClause
�return ExprSingle	Expr

(N7)

Static type analysis The following static rule takes care
of defining the types of variables present in a for expres-
sion as RDFTerm, adds the introduced position variables to
statEnv.posVars, and determines the static type of the Sparql-
ForClause expression:

statEnv.posVars = (PosVar1, · · · , PosVarn)

statEnv � PosVarName of var expands to PosVar

statEnv + posVars(PosVar1, · · · , PosVarn, PosVar)

+ varType

⎛
⎝ PosVar ⇒ xs:integer;

Var1 ⇒ RDFTerm;
· · · ; Varn ⇒ RDFTerm

⎞
⎠

� ExprSingle : Type

statEnv �
for $Var1 · · · $Varn at PosVarName
DatasetClause WhereClause
SolutionModifier
return ExprSingle : Type∗

(S2)

Please note that, since the variables included in a Sparql-
ForClause are not allowed to contain a namespace prefix,
we omitted the rules handling the namespace expansion for
the respective variables. The static type rule for a SparqlFor-
Clausewithout an explicit DatasetClause is analogous. Like-
wise, note that we need to slightly adapt the standard static

type checking rules for standard XQuery [27, Section 4.8.2],
to populate the XSPARQL specific new static environment
component statEnv.posVars:10

statEnv.posVars = (PosVar1, · · · , PosVarn)

statEnv � Expr1 : T ype1

statEnv � VarName of var expands to V ar
statEnv � V ar Namepos of var expands to V arpos

statEnv + posVars(PosVar1, · · · , PosVarn, Varpos)

+ varType

(
Var ⇒ prime(T ype1);
Varpos ⇒ xs:integer

)

� ExprSingle : Type

statEnv �
for $VarName at $VarNamepos
in Expr1 return ExprSingle :

Type · quantifier(T ype1)

(S3)

Dynamic Evaluation For the dynamic evaluation we have
to introduce a new dynamic environment component called
activeDataset that will be used to evaluate WhereClauses.
Initially, this component is empty (or set to a system default)
and is changed by a DatasetClause appearing in a SparqlFor-
Clause. We further introduce two auxiliary functions fs:value
and fs:sparql.

fs:value The fs:value
(
$PS, $var

)
function returns the

value of the specified SPARQL variable $var in a Pattern

Solution specified by $PS. If $var is not bound in $PS, the
empty sequence is returned. This function is defined as

fs:value($ps as PatternSolution,
$variable as xs:string)

as RDFTerm?

fs:sparql The fs:sparql function corresponds to the
adapted version of the eval function, the evalxs function, that
evaluates graph patterns implementing the extended notion
of BGP Matching (cf. Definition 10).

The static type signature of this function is defined as

fs:sparql($dataset as RDFDataset,
$SparqlWhere as xs:string,
$solutionModifiers as xs:string)

as PatternSolution*

The parameters of the evalxs function correspond to the
dataset $dataset, the SPARQL algebra expression gener-
ated from the graph pattern $SparqlWhere and
$solutionModifiers, as described by [cf. 54, Section
12.2.3], and the XSPARQL instance mapping μC that is
derived from the expression context C over which the
fs:sparql function is evaluated. The result of evalxs con-
sists of a solution sequence which, as a result of applying
the serialise function (cf. Definition 7), can be translated
directly into an XQuery sequence of XML elements of
type PatternSolution.

We can now define the dynamic evaluation rules for the
SparqlForClause expression. Intuitively, these rules state

10 We show here only the adapted rule for ForClauses with position
variables without type declaration, the rule handling both position vari-
ables and type declarations is adapted analogously.
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that the return expression ExprSingle will be executed for
each PatternSolution that is returned from the evalua-
tion of the fs:sparql function. The following two dynamic
rules specify the evaluation of the SparqlForClause with an
explicit DatasetClause:

dynEnv � fs:dataset(DatasetClause) ⇒ Dataset

dynEnv � fs:sparql

(
Dataset , WhereClause,
SolutionModifier

)
⇒ μ1, . . . , μm

dynEnv + activeDataset(Dataset)

+ varValue

⎛
⎜⎜⎝

PosVar ⇒ 1;
Var1 ⇒ fs:value

(
μ1, Var1

) ;
. . . ;
Varn ⇒ fs:value

(
μ1, Varn

)

⎞
⎟⎟⎠

� ExprSingle ⇒ Value1

.

.

.

dynEnv + activeDataset(Dataset)

+ varValue

⎛
⎜⎜⎝

PosVar ⇒ n;
Var1 ⇒ fs:value

(
μm, Var1

) ;
. . . ;
Varn ⇒ fs:value

(
μm, Varn

)

⎞
⎟⎟⎠

� ExprSingle ⇒ Valuem

dynEnv �
for $Var1 · · · $Varn at $PosVar
DatasetClause WhereClause
SolutionModifier return
ExprSingle ⇒ Value1, . . . , Valuem

(D1)

This rule ensures that the activeDataset component of
the dynamic environment is updated to reflect the explicit
DatasetClause of the SparqlForClause. If the evaluation of
the fs:sparql function does not yield any solutions, i.e., eval-
uates to an empty sequence, the overall result will also be the
empty sequence:

dynEnv.activeDataset ⇒ Dataset

dynEnv � fs:sparql

(
Dataset , WhereClause,
SolutionModifier

)
⇒ ()

dynEnv �
for $Var1 · · · $Varn at $PosVar
DatasetClause WhereClause
SolutionModifier return ExprSingle

⇒ ()

(D2)

The rule that handles the SparqlForClause without an
explicit DatasetClause is presented next:

dynEnv.activeDataset ⇒ Dataset

dynEnv � fs:sparql

(
Dataset , WhereClause,
SolutionModifier

)
⇒ μ1, . . . , μm

dynEnv + varValue

⎛
⎜⎜⎝

PosVar ⇒ 1;
Var1 ⇒ fs:value

(
μ1, Var1

) ;
. . . ;
Varn ⇒ fs:value

(
μ1, Varn

)

⎞
⎟⎟⎠

� ExprSingle ⇒ Value1

.

.

.

dynEnv + varValue

⎛
⎜⎜⎝

PosVar ⇒ n;
Var1 ⇒ fs:value

(
μm, Var1

) ;
. . . ;
Varn ⇒ fs:value

(
μm, Varn

)

⎞
⎟⎟⎠

� ExprSingle ⇒ Valuem

dynEnv �
for $Var1 · · · $Varn at $PosVar
WhereClause SolutionModifier
return ExprSingle ⇒ Value1, . . . , Valuem

(D3)

Analogously to the SparqlForClause with an explicit data-
set, whenever the fs:sparql function evaluates to an empty
sequence, the result will also be an empty sequence.

ConstructClause We now define the semantics of the
ConstructClause (Rule [33b], Fig. 12a) by means of nor-
malisation rules. SPARQL stand-alone construct queries
(as described in Sect. 4.1) are normalised into construct

queries with a surrounding ForClause:
�
�
construct ConstructTemplate′
DatasetClause WhereClause
SolutionModifier

�
�

Expr==�
�
for ∗ DatasetClause
WhereClause SolutionModifier
construct ConstructTemplate′

�
�

Expr

(N8)

The resulting query will be further rewritten according
to aforementioned normalisation rule (N6). As introduced in
Sect. 4.1, we allow nested XSPARQL expressions in subject,
predicate, and object positions of ConstructTemplate’. These
nested expressions are identified by the shortcuts {Expr},
<{Expr}>, and _:{Expr}, that construct elements of
type literal, uri, and bnode, respectively.

Similar to the normalisation rule for stand-alone Return-
Clauses presented in [27, Section 4.8.1], the following nor-
malisation rule transforms construct clauses into XQuery
return ExprSingle s.

�
construct ConstructTemplate′


Expr==
return fs:evalCT

(�
ConstructTemplate′


normCT

) (N9)

In the following we assume that ConstructTemplate’ is a
simple "." separated list of Subject, Predicate, and Object.
The �·�normCT rule transforms any Turtle shortcut notation
used in ConstructTemplate’ to these simple lists. As an exam-
ple of this rule, we present the rule for normalising Turtle “;”
abbreviations [cf. 7, Section 2.3]:

�Subject Pred1 Obj1; . . . ; Predn Objn	normCT
==

Subject Pred1 Obj1 . . . Subject Predn Objn

(N10)

The normalisation rules for the other Turtle shortcuts
that are allowed in the SPARQL ConstructTemplate’ syn-
tax are similar to this one and are not presented here. Since
anonymous blank nodes can be written in numerous ways
in Turtle, the �·�normCT normalisation rule transforms each
anonymous blank node into a labelled blank node where the
identifier/label is distinct from any other blank node labels
present in the ConstructTemplate’. Take, as an example, the
ConstructTemplate in Fig. 8b on page 153. It is normalised as

{ _:b foaf:name {
fn:concat($N, " ", $F)

}.
}
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fs:evalCT The fs:evalCT function is a new built-in func-
tion that ensures the created RDF graph is valid and rewrites
any blank nodes inside of ConstructTemplates to comply with
the SPARQL semantics (as described in Sect. 4.2). The aux-
iliary fs:validTriple function checks if each triple is valid
according to the RDF semantics and is defined by rules (D5)
and (D6). The static type signatures of these functions are
defined as

fs:evalCT($template as RDFTerm*) as RDFGraph
fs:validTriple($subject as RDFTerm,

$predicate as RDFTerm,
$object as RDFTerm)

as RDFTriple

The fs:evalCT function, and hence construct expressions,
return elements of the previously defined type RDFGraph,
thus allowing the result of construct expressions to be used
in a DatasetClause of a subsequent SparqlForClause. In more
detail, the fs:evalCT function checks the constructed RDF
graph for validity according to the conditions described in
Definition 1, filtering out any non-valid RDF triples where
subjects are literals, predicates are literals or blank nodes,
etc. This is illustrated by the following dynamic evaluation
rules:

dynEnv � fs:validTriple(Subj1, Pred1, Obj1) ⇒ Triple1

.

.

.

dynEnv � fs:validTriple
(
Subjn, Predn, Objn

) ⇒ Triplen

dynEnv � fs:evalCT

⎛
⎝ Subj1 Pred1 Obj1

. . .

Subjn Predn Objn

⎞
⎠

⇒ <triples>Triple1 . . . Triplen</triples>

(D4)

The following dynamic evaluation rule for the fs:validTriple
function checks, relying on the fs:bnode function defined
below, if a triple is valid according to the RDF semantics:

dynEnv � fs:bnode(Subject) ⇒ ValS
statEnv � ValS matches (uri | bnode)

dynEnv � Predicate ⇒ ValP
statEnv � ValP matches uri

dynEnv � fs:bnode
(
Object

) ⇒ ValO

dynEnv � ValO matches (uri | bnode | literal)

dynEnv � fs:validTriple

⎛
⎝ Subject,

Predicate,
Object

⎞
⎠

⇒ element triple of type RDFTriple {
element subject of type RDFTerm {ValS}
element predicate of type RDFTerm {ValP}
element object of type RDFTerm {ValO}

}

(D5)

In case any of the subject, predicate or object do not match
an allowed type, the empty sequence is returned. Effectively
this suppresses any invalid RDF triples from the output graph.

dynEnv � fs:bnode(Subject) ⇒ ValueS
dynEnv � Predicate ⇒ ValueP

dynEnv � fs:bnode
(
Object

) ⇒ ValueO

dynEnv �not

⎛
⎝ValueS matches (uri | bnode) and

ValueP matches uri and
ValueO matches

(
uri | bnode | literal )

⎞
⎠

dynEnv � fs:validTriple(Subject, Predicate, Object) ⇒ ()

(D6)

Blank Node Skolemisation In order to comply with the
SPARQL construct semantics, all blank nodes inside a
ConstructTemplate’ need to be skolemised, i.e., for each solu-
tion a new distinct blank node identifier needs to be gener-
ated. Since we normalise every XQuery for expression and
SparqlForClauses by assigning them position variables (as
described in Sect. 4.1), we just need to retrieve the avail-
able position variables from the static environment compo-
nent statEnv.posVars, and create the new distinct identifier
based on the values of these variables. The fs:bnode function
takes care of skolemising blank nodes. If the argument of
this function is of type bnode a new blank node identifier is
generated using rule (D7):

dynEnv � ValueR matches bnode
statEnv.posVars = (PosVar1, . . . , PosVarn)

dynEnv.varValue(PosVar1) = PosValue1

.

.

.
dynEnv.varValue(PosVarn) = PosValuen

dynEnv � fs:skolemConstant

⎛
⎜⎜⎝

V alueR,

PosValue1,

. . . ,

PosValuen

⎞
⎟⎟⎠ ⇒ ValueRS

dynEnv � fs:bnode(ValueR) ⇒
element bnode of type xs:string {ValueRS}

(D7)

Otherwise, fs:bnode returns its argument unchanged as
represented by rule (D8):

dynEnv � Value matches (uri | literal)

dynEnv � fs:bnode(Value) ⇒ Value
(D8)

Both rules above use the fs:skolemConstant function for
the generation of the new identifiers based on the specified
blank node label and on positional variables in the dynamic
environment. An example of XSPARQL Semantics Evalua-
tion is included in Appendix A.

4.3 Correspondence Between XSPARQL, XQuery,
and SPARQL

Since XSPARQL syntactically extends XQuery, and—by the
remarks in the end of Sect. 4.1—also any SPARQL con-

struct query is syntactically valid in XSPARQL, these que-
ries are considered semantically equivalent to the semantics
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in their base languages. The next propositions formally estab-
lish this intuitive correspondence.

The proofs for these propositions and lemmas are included
in Appendix C.1–C.3.

Proposition 1 XSPARQL is a conservative extension of
XQuery.

A similar correspondence holds for native SPARQL con-

struct queries. We show the equivalence between SPAR-
QL BGP Matching [54, Section 12.3.1] and XSPARQL BGP
Matching (presented in Sect. 4.2) and prove the equivalence
of XSPARQL semantics for native SPARQL construct

queries with those of the SPARQL semantics.

Lemma 1 Given a graph pattern P, a dataset D and the
XSPARQL instance mapping μC of the expression context
C over which P is evaluated, let �1 = evalxs(D, P, μC )

and �2 = eval(D, P) be solution mappings. If vars(P) ∩
dom(μC ) = ∅, then �1 = �2 �� {μC }.

We define, based on [54, Section 10.2], the semantics of
the SPARQL construct clause to show their equivalence to
the XSPARQL construct clause.

Definition 11 (SPARQL construct semantics) Let C be a
ConstructTemplate and � a solution sequence. The SPARQL
construct returns an RDF graph generated by the set-union
of the triples obtained from substituting variables in C with
their bindings from � and satisfying the following condi-
tions:

1. any invalid RDF triples that may be produced by the
instantiation of the ConstructTemplate are ignored; and

2. blank node labels within the ConstructTemplate are con-
sidered scoped to the template for each solution, i.e., if the
same label occurs twice in a template, then there will be
one blank node created for each solution in �, but there
will be different blank nodes for triples generated by dif-
ferent query solutions. Blank nodes in the graph template
be shared only within the same query solution μi ∈ �.

For SPARQL construct queries we can state the following:

Proposition 2 XSPARQL is a conservative extension of
SPARQL construct queries.

5 Implementation

In this section we present a prototype implementation of the
XSPARQL language. The prototype translates an XSPARQL
query into an XQuery query with interleaved calls to a SPAR-
QL engine. The architecture of our implementation is shown
in Fig. 14 and consists of three main components:(1) a query

Fig. 14 XSPARQL implementation architecture

rewriter, which turns an XSPARQL query into an XQuery;
(2) an XQuery engine for evaluating the XQuery; and (3) a
SPARQL engine, for querying RDF from within the rewritten
XQuery.

Our current prototype is meant first to demonstrate that
XSPARQL can be implemented directly on top of off-the-
shelf components, and provides convenient means to model
and execute XML2RDF/RDF2XML transformations. Sec-
ond, as illustrated in our evaluation section (Sect. 6) we show
that a clever implementation of the XSPARQL language,
again integrating an XQuery and a SPARQL engine, but with
several optimisations in place, can improve efficiency signif-
icantly compared with a naive implementation.

In general it is possible to use any XQuery and SPARQL
engines to evaluate XSPARQL queries. The current proto-
type implements the interface between the XQuery engine,
Saxon 9.3,11 and the SPARQL engine, ARQ 2.8.7,12 using
the Saxon Extension API which allows calling Java meth-
ods from within XQuery queries. The main function, called
xsp:sparqlCall, evaluates a SPARQL query and returns
its result using the SPARQL XML results format [8]. By
using Saxon’s extension mechanism the two query engines
are tighter integrated allowing a more efficient communica-
tion than our former prototype [4] which used a SPARQL
endpoint via HTTP to evaluate SPARQL queries. To imple-
ment the blank node handling as presented in Sect. 4.2 we
changed the behaviour of ARQ accordingly using its Java
API. Instead of implementing all newly introduced types
as given in Sect. 4.2 as custom types in XQuery, we reuse
types as given by the XML Schema of the SPARQL Query
Results XML Format,13 where the sr:binding type corre-
sponds directly to XSPARQL’s RDFTerm type. An RDFGraph,
e.g., the result of a ConstructClause, is serialised using Turtle
syntax by building the output as xs:string. The remaining
types RDFDataset and RDFNamedGraph are adapted accord-
ingly.

11 http://saxon.sourceforge.net/.
12 http://jena.sourceforge.net/ARQ/.
13 See http://www.w3.org/2007/SPARQL/result.xsd, for this paper we
assume this schema is associated with the namespace prefix sr.
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Next we present how SparqlForClauses and Construct-
Clauses are processed using functions—called rewriting
functions—that operate on syntactic objects of XSPARQL
and returning an XQuery expression. In the resulting XQuery
expressions we assume the namespace prefixxsp: associated
with http://xsparql.deri.org/demo/xquery/xsparql.xquery.
This prefix is not allowed to be used in any XSPARQL query
and defines XQuery functions (presented below) that are
available to the rewriting functions and used as the name-
space for any variables introduced by the rewriting, thus
avoiding clashes with variables from the XSPARQL query.

SparqlForClause First, our implementation defers SPAR-
QL queries in a SparqlForClause to the external SPARQL
engine and extracts the bindings for the SPARQL variables
from the SPARQL XML results document that is returned,
by the following rewriting function. Let XS and XQ denote
the set of all XSPARQL core and XQuery core expres-
sions, respectively. Any SparqlForClauseis translated into an
XQuery query that calls the SPARQL engine with a select

query according to the rewriting function tr : XS → XQ.
Given an XSPARQL expression Q of form

for Vars at $PosVar
DatasetClause
WhereClause
SolutionModifier
return ExprSingle

(Q1)

then tr(Q) is defined as the XQuery Core expression

tr(Q) =
(1) let $xsp:results :=

xsp:sparqlCall

⎛
⎝select Vars DatasetClause

WhereClause
SolutionModifier

⎞
⎠ return

(2) for $xsp:result at $PosVar in $xsp:results//sr:result
return

(3) let $v := for each $v ∈ Vars
$xsp:result/sr:binding[@name = v]/∗ return

(4) ExprSingle

That is, we implement the fs:sparql formal semantics
function by translating Q to a SPARQL select query,
which is then executed by the custom runtime function
xsp:sparqlCall that receives a SPARQL select query
and returns the result in SPARQL’s XML result format. The
xsp:sparqlCall function also takes care of XSPARQL’s
BGP matching, as described in Sect. 4.2, by replacing in the
SPARQL query any previously bound variables with their
current value according to the rules presented in Definition 8,
thus mimicking XSPARQL’s BGP matching behaviour while
relying on an off-the-shelf SPARQL engine. This replace-
ment of variables is performed by producing XQuery code
that generates the SPARQL select query string that is given
as a parameter to xsp:sparqlCall function using XQuery’s

fn:concat function. We parse the query string for vari-
ables and, having access to the list of previously declared
variables it is possible to determine whether variables should
be replaced by their previously bound value or kept as a
variable. Within a SparqlForClause, whenever we encounter
fresh variables, i.e. that have not been declared before, we
leave the variable name as a string within the fn:concat
(effectively postponing evaluation of the variable to the
SPARQL engine). On the other hand, if a variable has been
declared before, the XQuery variable name is inserted into
the fn:concat function, meaning that it is evaluated and
replaced by its current value when the fn:concat func-
tion is evaluated during the execution of the rewritten query.
Furthermore, the xsp:sparqlCall function implements the
matching blank nodes in nested queries feature (as described
in Sect. 4.2): here, we rely on external Java code to call the
ARQ API in such a way that blank node labels are pre-
served over consecutive SPARQL calls that use the same
dataset; during query rewriting we trigger the correct match-
ing of blank nodes in nested queries whenever we encounter a
SparqlForClause without an explicit DatasetClause) as fol-
lows: the respective custom Java code is used to maintain
a stack of the previous datasets. More specifically, we col-
lect the blank node identifiers for each dataset created by
an explicit DatasetClause in this stack; when a SparqlFor-
Clause without explicit DatasetClause is encountered, we
take the first element of the stack as the implicit dataset for
the SparqlForClause along with its current blank node iden-
tifiers.

ConstructClause As for the construction of RDF graphs
(i.e., whenever the ReturnClause is a ConstructClause), our
implementation within XQuery simply produces a string in
Turtle syntax, where we need to ensure that each produced
RDF triple is syntactically valid. This is implemented by
means of a number of additional custom functions. First,
the auxiliary function xsp:rdfTerm

(
$VarName

)
, presented

in Fig. 19a (Appendix B), returns the correctly formatted
RDF term corresponding to the variable’s value in Tur-
tle syntax given a variable of a SPARQL result type. This
is done by matching the type of the variable and add-
ing the necessary syntactic elements for each type. Next,
the xsp:validTriple presented in Fig. 19b (Appendix B)
implements the semantics function fs:validTriple by calling
the xsp:rdfTerm function to correctly format triples to text
(using the Turtle syntax); xsp:validTriple further uses
the auxiliary functions xsp:validSubject, xsp:valid-

Predicate and xsp:validObject that, respectively, deter-
mine, according to the RDF semantics, if their argument is
a valid subject, predicate or object. Also available to our
implementation are the functions xsp:isBlank, xsp:isU-
RI and xsp:isLiteral which determine, respectively, if a
term is a blank node, URI or literal. Our implementation
of the fs:skolemConstant function consists of appending all
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the position variables from the static context (that are stored
in the statEnv.posVars component) to the respective blank
node identifier using “_” as a separator, represented here by
the rewriting function

trsk
(
$BNodeName, {$PosVar1, · · · , $PosVarn}

) =
fn:concat

(
"_:", $BNodeName,"_", $PosVar1, · · · ,

"_", $PosVarn

)
.

Finally, the function xsp:evalCT (without details) imple-
ments fs:evalCT by simply concatenating all the triples
generated by the xsp:validTriple function to a string rep-
resentation of the RDF graph to be constructed in Turtle syn-
tax.

The next lemma states that the results of the evaluation of
a Basic Graph Pattern P under XSPARQL BGP matching
semantics can be determined based on the results of eval-
uating μ(P) under SPARQL semantics. The proofs for the
following proposition and lemma are included in Appendi-
ces C.4 and C.5.

Lemma 2 Let P be a BGP, D a dataset, and μ the XSPARQL
instance mapping of P. Considering P ′ = μ(P), we have
that evalxs(D, P, μ) = eval

(
D, P ′) �� {μ}.

The following result presents the equivalence of our imple-
mentation function tr and the XSPARQL semantics.14

Proposition 3 Let Q be a SparqlForClauseof form (Q1) and
dynEnv the dynamic environment of Q, then dynEnv � Q ⇒
Val if and only if dynEnv � tr(Q) ⇒ Val.

6 Towards Optimisations of Nested for Expressions

In this section we present different rewriting strategies for
XSPARQL queries containing nested expressions. We are
specifically interested in nested expressions with an inner
SparqlForClause, as the number of interleaved calls to the
SPARQL engine can be reduced drastically using these
rewritings. As the cost inherent with XQuery for clauses
is much lower, we do not present different rewritings for
nested expressions where the inner expression is an XQuery
for. These different rewritings proposed in this section con-
stitute the initial step towards defining a set of optimisations
for the current implementation of the XSPARQL language.

We start by presenting the definitions and conditions under
which we can perform these rewritings.

Definition 12 (Dependent Join) We call two nested XSP-
ARQL for expressions (ForClause or SparqlForClause),
where the inner expression is a SparqlForClause and at least
one variable in the inner expression is bound by the outer
expression, a dependent join. The shared variables between
the for expressions are called dependent variables.

14 Please note that, for presentation purposes, we are omitting the initial
empty line in case the proof trees require no premises.

Note that the strategies presented here are only applicable
for dependent joins satisfying the following restrictions:

1. An explicit DatasetClause of the inner query needs to be
statically determined i.e., it cannot be determined based
on variables bound from the outer expression;

2. The return clause of the inner expression can not be a
ConstructClause; and

3. The dependent variable in the inner query’s graph pattern
must be strictly bounded as defined next.

Definition 13 (Strict Boundedness) The set of strictly bound
variables in a graph pattern P , denoted bVars(P), is recur-
sively defined as follows: if P is

– a basic graph pattern, then bVars(P) = vars(P);
– (P1 P2), then bVars(P) = bVars(P1) ∪ bVars(P2);
– (P1 optional P2), then bVars(P) = bVars(P1);
– (P1 union P2), then bVars(P) = bVars(P1) ∩ bVars(P2);
– (graph i P1), then bVars(P) = bVars(P1)∪({i}∩V); and
– (P1 filter R), then bVars(P) = bVars(P1).

Informally, the dependent variables must occur (i) in a basic
graph pattern, (ii) in every alternative of unions pattern, and
(iii) also outside of the optional graph pattern in case of op-
tionals. Strict boundedness essentially ensures that the join
variable does not occur only in a filter expression, which
would lead to problems in case the inner expression is called
unconstrained, see below.

The rewritings introduced for the implementation of
dependent joins can be grouped into two categories, depend-
ing whether the join is performed in XQuery or SPARQL.
For performing the join in XQuery, we use already known
join algorithms from relational databases, namely nested-
loop joins or sort-merge joins. For performing the join in
SPARQL, if the outer expression is a SparqlForClause we
can implement the join by rewriting both the inner and the
outer expressions into a single SPARQL call. In case the outer
query consists of an XQuery ForClause, we can still consider
this approach, but we need to convert the result of the outer
XQuery ForClause to an RDF graph, for instance relying
on a SPARQL engine that supports SPARQL Update [32] to
add this temporary graph to a triple store. The proofs for the
propositions presented in this section are included in Appen-
dices C.6–C.8.

6.1 Dependent Join implementation in XQuery

The intuitive idea with these rewritings is, instead of using
the naïve rewriting that performs one SPARQL query for
each iteration of the outer expression, to execute only one
unconstrained SPARQL query, before the outer query. The
resulting set of SPARQL solution mappings is then joined in
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XQuery with the results of the outer expression, using one
of the following strategies.

The straightforward way to implement the join over
dependent variables directly in XQuery is by nesting two
XQuery for expressions, much like a regular nested-loop
join [1] in standard relational databases. In our proposed
rewriting, the join consists of restricting the values of vari-
ables from the inner expression to the values taken from
the current iteration of the outer expression, which does
not require an incremental solution construction step. The
approach for query rewriting applied to XSPARQL is similar
to already known optimisations from the relational databases
realm and also presented for XQuery queries by [47].

Similarly to Sect. 5, we will describe the implementation
of this nested-loop join by means of the rewriting function
optnl. We use A�B = (A ∪ B)\ (A ∩ B) to denote the sym-
metric difference of two sets A and B.

Let Q be an XSPARQL expression of form

(1) for $Varout at $PosVarout in ExprSingle1 return

(2) for Varsin at $PosVarin

DatasetClause WhereClause SolutionModifier
(3) return ExprSingle2

(Q2)

the application of the rewriting function optnl(Q) can be split
into two cases:

– if ExprSingle1 and ExprSingle2 do not contain any occur-
rences of (Q2) then, assuming Varssp=Vars(WhereClause),
we have that

optnl(Q) =
(1) let $xsp:results :=

xsp:sparqlCall

⎛
⎜⎜⎝
select {$Varout} ∪ Varsin

DatasetClause
WhereClause
SolutionModifier

⎞
⎟⎟⎠

return
(2) for $Varout at $PosVarout in ExprSingle1 return
(3) for $xsp:result at $PosVarin

in $xsp:results//sr:result return
(4) if

(
joinnl

( {$Varout} ∩ Varssp,

$xsp:result
))

then

(5) let $v := for each $v ∈ {V arout}�Varssp

$xsp:result/sr:binding[@name = v]/∗ return
(6) ExprSingle2
(7) else ()

Note that here we slightly abuse notation, using ‘∪’
to denote the concatenation of two lists of variables.
The auxiliary function joinnl aggregates the actual join-
comparison in an XPath expression, where two variables
are considered compatible if the outer value is a blank
node, their values are equal, or the inner value ($VarResi )
is unbound:

joinnl
({$Var1, · · · , $Varn}, $res

) =⎛
⎝xsp:isBlank

(
$Var1

)
or

fn:empty(
$res/sr:binding[@name = Var1]/∗

)
or(

$Var1 eq $res/sr:binding[@name = Var1]/∗
)

⎞
⎠

and · · ·

and

⎛
⎜⎜⎝
xsp:isBlank

(
$Varn

)
or

fn:empty(
$res/sr:binding[@name = Varn]/∗

)
or(
$Varn eq $res/sr:binding[@name = Varn]/∗

)

⎞
⎟⎟⎠

– otherwise:

optnl(Q) =

optnl

⎛
⎜⎜⎜⎜⎝

for $Varout at $PosVarout in optnl
(
ExprSingle1

)
return
for Varsin at $PosVarin

DatasetClause WhereClause SolutionModifier
return optnl

(
ExprSingle2

)

⎞
⎟⎟⎟⎟⎠

When Q is an XSPARQL expression of form

(1) for Varsout at $PosVarout DatasetClauseout

(2) WhereClauseout SolutionModi f ierout

(3) return
(4) for Varsin at $PosVarin DatasetClausein

(5) WhereClausein SolutionModi f ier in

(6) return ExprSingle

(Q3)

the application of the rewriting function optnl(Q) can be split
into two cases:
– in case ExprSingle does not contain any occurrences

of (Q3) then, considering Varssp = vars
(
WhereClausein)

being the set of variables from the inner WhereClause,
we have that
optnl(Q) =
(1) let $xsp:res_in :=

xsp:sparqlCall

⎛
⎜⎜⎜⎜⎝

select
Varsin ∪ Varsout ∩ Varssp

DatasetClausein

WhereClausein

SolutionModifierin

⎞
⎟⎟⎟⎟⎠

return
(2) let $xsp:res_out :=

xsp:sparqlCall

⎛
⎜⎜⎝
select Varsout

DatasetClauseout

WhereClauseout

SolutionModifierout

⎞
⎟⎟⎠

return
(3) for $xsp:rout at $PosVarout

in $xsp:res_out//sr:result return
(4) let $v := for each $v ∈ V arsout

$xsp:rout/sr:binding[@name = v]/∗ return
(5) for $xsp:rin at $PosVarout

in $xsp:res_in//sr:result return

(6) if

⎛
⎝joinsr

⎛
⎝ Varsout ∩ Varssp,

$xsp:res_out,

$xsp:res_in

⎞
⎠

⎞
⎠ then

(7) let $v := for each $v ∈ V arsout�Varssp

$xsp:res_in/sr:binding[@name = v]/∗ return
(8) ExprSingle
(9) else ()
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where the joinsr function is defined as

joinsr
({$Var1, · · · , $Varn}, $resOut, $resIn

) =
joinnl

({$resOut/sr:binding[@name = Var1]/∗}, $resIn
)

and · · · and
joinnl

({$resOut/sr:binding[@name = Varn]/∗}, $resIn
)

.

– otherwise:

optnl(Q) =

optnl

⎛
⎜⎜⎜⎜⎜⎜⎝

for Varsout at $PosVarout DatasetClauseout

WhereClauseout SolutionModi f ierout

return
for Varsin at $PosVarin DatasetClausein

WhereClausein SolutionModi f ier in

return optnl
(
ExprSingle

)

⎞
⎟⎟⎟⎟⎟⎟⎠

This rewriting to the nested-loop join reduces the number of
needed SPARQL calls from 1 + N (where N is the number
of iterations of the outer expression) to two SPARQL calls.

Next we show that the optnl rewriting function is sound
and complete.

Proposition 4 Let Q be a XSPARQL expression of form (Q2)
or (Q3) and dynEnv the dynamic environment of Q, then
dynEnv � Q ⇒ Val if and only if dynEnv � optnl(Q) ⇒ Val.

6.2 Dependent Join Implementation in SPARQL

This form of rewriting of nested expressions aims at improv-
ing the runtime of the query by delegating the execution of
the join to the SPARQL engine, as opposed to performing
the join within XQuery only.

SparqlForClause within a SparqlForClause. For nested
expressions where both expressions consist of SparqlFor-
Clauses we can implement the join by rewriting the Sparql-
ForClauses into a single SPARQL query. The idea here is that
a join encoded as nested SparqlForClauses in XSPARQL
can just be implemented by a SPARQL query that merges
the where clauses of the outer and inner SparqlForClause.
However, there are some restrictions to the applicability of
this rewriting: (i) both queries must be done over the same
dataset; (ii) apart from order by, no other solution modifi-
ers can be used in the queries; and (iii) the original queries
must not require any nesting of the XML output or use of
aggregators.

As indicated before, for the next rewriting we are only
allowing the order by solution modifier and the concatena-
tion of “order by $o1” and “order by $o2” is “order by

$o1 $o2”. For presentation purposes, GGP and OC are,
respectively, a short representation for GroupGraphPattern
and OrderCondition.

For an XSPARQL query Q of form

(1) for Varsout at $PosVarout DatasetClause
(2) where GGPout

(3) order by OCout

(4) return
(5) for Varsin at $PosVarin DatasetClause
(6) where GGPin

(7) order by OCin

(8) return ExprSingle

(Q4)

then

– in case ExprSingle does not contain any occurrences
of (Q4), we have that

optsr(Q) =
(1) let $xsp:results :=

xsp:sparqlCall

⎛
⎜⎜⎝
select Varsout ∪ Varsin

DatasetClause
where {GGPout . GGPin}
order by OCout OCin

⎞
⎟⎟⎠

return
(2) for $xsp:result at $PosVarout

in $xsp:results//sr:result return
(3) let $v := for each $v ∈ Vars

$xsp:result/sr:binding[@name = $v]/∗ return
(4) ExprSingle

Please note that the group graph patterns GGP1 and
GGP2 include the surrounding curly braces: { and }.

– otherwise,

optsr(Q) =

optsr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

for Varsout at $PosVarout DatasetClause
where GGPout

order by OCout

return
for Varsin at $PosVarin DatasetClause
where GGPin

order by OCin

return optsr
(
ExprSingle

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proposition 5 Let Q an XSPARQL expression of form (Q4)
and dynEnv the dynamic environment of Q; then dynEnv �
Q ⇒ Val if and only if dynEnv � optsr(Q) ⇒ Val.

SparqlForClausewithin an XQuery for In case the outer
expression is an XQuery for a similar strategy of deferring
the join to a single SPARQL query is still possible. Since
the optimisation proposed here does not preserve the order-
ing of results, it can only be applied if the order of the outer
XQuery expression is not relevant. Cases where ordering can
be disregarded in XQuery, as discussed by [35], include not
only the unordered ordering mode in XQuery but also the
use of aggregate functions and other built-in functions or
the quantifiers some and every. This optimisation relies on
first transforming the outer expressions’ XML results into
RDF and then joining this newly created RDF graph with the
inner SparqlForClause’s where pattern in a single SPARQL
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query. To implement this, we can, for instance, rely on a tri-
ple store with support for named graphs to temporarily store
the RDF data corresponding to the outer XQuery for expres-
sion’s bindings for dependent variables. We can then execute
a combined query with an adapted graph pattern that joins
the pattern in the where clause of the inner SparqlForClause
with the bindings stored in the newly created named graph.
The optng rewriting function (presented below) starts by cre-
ating RDF triples representing the XML input which are then
collected into the variable $xsp:ds that corresponds to the
RDF graph to be inserted into the triple store. This opera-
tion is achieved by the XSPARQL functions xsp:createNG
that returns a URI for the newly inserted RDF named graph,
which is distinct from any other URIs for named graphs used
in the query, while finally the function xsp:deleteNG takes
care of deleting the temporary graph. Let Q be an XSPARQL
expression of form

(1) for $VarName OptTypeDeclaration
(2) OptPositionalVar in ExprSingle1
(3) return for Vars DatasetClause WhereClause
(4) SolutionModifier return ExprSingle2

(Q5)

then,

– in case ExprSingle1 and ExprSingle2 do not contain any
occurrences of (Q5), we have that

optng(Q) =
(1) let $xsp:ds :=

xsp:createNG

⎛
⎝for $VarName OptTypeDeclaration

OptPositionalVar in ExprSingle1
return xsp:evalCT(NGP)

⎞
⎠

return
(2) let $xsp:results :=

xsp:sparqlCall

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

select Vars ∪ {
$VarName

}
DatasetClause ∪{

from named $xsp:ds}
WhereClause ∪

where
{
graph $xsp:ds

NGP}
SolutionModifier

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

return
(3) for $xsp:result at $xsp:result_pos

in $xsp:results//sr:result return
(4) let $v := for each $v ∈ Vars ∪ {$VarName}

$xsp:result/sr:binding[@name = $v]/∗
(5) return

(
ExprSingle2,xsp:deleteNG

(
$xsp:ds))

where NGP is the graph pattern
{[] :value $VarName

}
.

– otherwise,

optng(Q) =

optng

⎛
⎜⎜⎝
for $VarName OptTypeDeclaration

OptPositionalVar in optng
(
ExprSingle1

)
return for Vars DatasetClause WhereClause

SolutionModifier return optng
(
ExprSingle2

)

⎞
⎟⎟⎠

Proposition 6 Let Q be an XSPARQL expression of form
(Q5) and dynEnv the dynamic environment of Q, then
dynEnv � Q ⇒ Val if and only if dynEnv � optng(Q) ⇒
Val.

7 Experimental Evaluation

In this section we present an experimental evaluation of our
prototype presented in Sect. 5 using a novel benchmark suite,
called XMarkRDF, that is based on the well-known XMark
benchmark suite for XQuery. We compare our XSPARQL
prototype with the SPARQL2XQuery engine, an implemen-
tation of the direct translation of SPARQL to XQuery pre-
sented by [33] and test—where possible—the effects of the
optimisations presented in Sect. 6.

A detailed description of the XMarkRDF benchmark suite
is included in Appendix D. We denote the 20 original XMark
queries as q1–q20 and the variants of the nested queries to
which we apply our different rewritings as q ′

8–q ′
11 and q ′′

8 –
q ′′

11. Further details regarding these queries are included in
Appendix D.

We would like point the reader to available benchmark
results for XQuery15 and SPARQL16 which present better
results than our XSPARQL implementation benchmarked
in this section. However, the comparison with such native
SPARQL and XQuery engines is beyond scope of the paper
since we specifically address a combined use case, where
components from both XQuery and SPARQL are needed.
The benchmark queries presented here cannot be compara-
bly solved by relying on a single SPARQL or XQuery engine.

7.1 Experimental Setup

Using the data generators and translators, provided by the
XMark benchmark and the XSPARQL translation to RDF
(as presented in Sect. 6), we created datasets with scaling
factors of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 and trans-
lated them into XMarkRDF. An overview of the generated
data is presented in Appendix D, including dataset sizes and,
for each of the dataset size considered, the number of persons
and item categories modelled.

Furthermore, we converted the XMarkRDF datasets into
the RDF/XML format required by the SPARQL2XQuery
system. The resulting dataset sizes and translation times for

15 Benchmark results for the XMark dataset can be found at http://www.
monetdb.org/XQuery/Benchmark/XMark/ and http://www.informatik.
uni-freiburg.de/~mschmidt/smp/xmark.html, retrieved 20-04-2012.
16 Benchmark evaluation of RDF stores can be found at http://
www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/
V6/index.html, retrieved 20-04-2012.
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Table 1 Query response times (in seconds) of the 2MB dataset. Query rewriting error (err)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

X S 9.25 10.65 10.43 9.43 10.15 11.38 11.97 358.27 355.71 35.89

S2X Q 2.63 19.47 err 3.71 2.82 2.58 err 3.44 18.91 178.71

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

X S 371.46 81.96 10.83 10.04 11.61 11.66 10.14 10.93 10.73 19.93

S2X Q 17.99 128.89 3.93 2.72 3.00 3.12 7.58 10.92 3.05 16.64

the different scaling factors of the XMarkRDF dataset are
also presented in Appendix D.

The benchmark system consists of a dual-core AMD
Opteron 250 2.4GHz, 4GB memory running a 64-bit instal-
lation of Ubuntu 10.04.1 LTS. For the XQuery engine, we
rely on Saxon version 9.3 Enterprise Edition and Java version
1.6.0 64 bit. For evaluating SPARQL queries we used ARQ
2.8.7. We ran each query with a timeout of 10 min per query,
with the Java Heap size set to 1GB and the Saxon configura-
tion set as schema-unaware. The response time of each query
was measured using GNU time 1.7 and the process startup
time was deduced to each response time. For the evaluation
we defined the following run configurations:

XS using the XSPARQL implementation over the XMark-
RDF datasets (translated data and queries) without opti-
misation;

XSZ using the XSPARQL implementation over the XMark-
RDF datasets (translated data and queries) with nested
expression optimisation optZ for Z ∈ {nl, sr, ng};

S2XQ using the SPARQL2XQuery implementation over the
translation of the XMarkRDF datasets into the required
XML format (XMarkRDFS2XQ) without optimisation;
and

S2XQZ using the SPARQL2XQuery implementation over
the translation of the XMarkRDF datasets into the
required XML format (XMarkRDFS2XQ) with nested
expression optimisation optZ for Z ∈ {nl, sr}.

7.2 Results and Interpretation

The response times of the XS and S2XQ runs for the bench-
mark queries over the 2MB dataset size are shown in Table 1.
We present the 2MB dataset as it is the largest dataset our un-
optimised implementation can process within the time limit
of 10 min. Both the data and query translation times are not
measured in our benchmarks since this process can be done
a priori. The response times for the XMark queries evaluated
using the Saxon XQuery engine are not presented in this
table since these queries do not cater for our heterogenous
data sources scenario.

The comparison of the response times of the different
rewriting functions presented in Sect. 6 is shown graphically
in Figs. 15 and 16. The response times of these queries for
the 2MB are presented in Table 2 as a reference, where n/a
indicates that the combination of query and optimisation is
not applicable.

We next present the interpretation of the benchmark results
when comparing to the SPARQL2XQuery system and then
proceed to then interpretation of the results from the different
rewriting strategies.

Evaluation of XS and S2XQ without optimisation
Table 1 shows that for most of the queries the S2XQ runs
are faster than the interleaved calls to a SPARQL engine in
the XS runs. Even considering that the response times do
not include the data translation times, this suggests that an
alternative implementation of XSPARQL where the SPAR-
QL queries are translated into native XQuery is a viable
alternative to interleaving calls to a SPARQL engine. How-
ever, for such translations to be possible we need access
to the full RDF dataset to perform the query translation
which is not possible for example in the case where we
are querying data behind a SPARQL endpoint. Another
issue related to the implementation of the SPARQL2XQue-
ry system is that response times deteriorate considerably
for larger datasets. This was observed for all the queries in
the benchmark and can be seen in the graphs of Figs. 15
and 16.

Queries q8–q12 have the highest execution times of all
the benchmark queries since they contain nested expressions
(as can be seen in q9 presented in Fig. 20). For these nested
queries, our interleaved XSPARQL implementation can only
handle small datasets: the 2MB dataset is the largest for which
all queries finish within the time limit and for the 20MB data-
set all queries result in a timeout. For these nested queries we
applied the different optimisations described in Sect. 6 and
next we present their benchmark evaluation.

Evaluation of XS and S2XQ with Nested Expression
Optimisation. As we can see from Table 2 and Figs. 15
and 16, the optnl optimisation provides significant reduc-
tion in the query evaluation times. For queries q8, q9, and
q11 the difference in response times is one order of magni-
tude.
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 15 Query response times for (variants of) q8 and q9 on all XMarkRDF datasets

The improvement in the execution time for query q10 is
less drastic. This can be explained by the fact that the outer
expression of q10 iterates over “categories” which increases
at a much smaller rate than “persons” do in the outer expres-
sions of queries q8, q9, and q11 (cf. Appendix D).

However, for the S2XQ runs this optimisation provides
virtually no improvement in the query response times for
queries q8 and q9 and their variants. In queries q10, q11,
q ′

10, and q ′
11 we can observe an improvement in response

times. This can be attributed to the fact that the rewriting

for queries q10 and q11 and their variants are not as suitable
for optimisation by the XQuery engine when compared with
queries q8 and q9. For these cases our rewriting strategy is
capable of performing the optimisation task for the XQuery
engine.

For the XS run, it is possible to see in Fig. 15c, d that optsr

(presented in Sect. 6.2) is generally more efficient in terms
of response times than the XQuery based. This can be justi-
fied by the smaller amount of information that is necessary
to transfer from SPARQL to the XQuery engine. This effec-
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 16 Query response times for (variants of) q10 and q11 on all XMarkRDF datasets

tively reduces the overhead of using an external SPARQL
engine for the evaluation of queries. Considering the S2XQsr

run, optsr produces no improvement in the query response
times and in some cases (q ′

10 and q ′
11 from Table 2) even

deteriorates considerably the response times when compared
with S2XQ. This further supports our previous claims that
the XQuery engine is not capable of optimising the rewritten
code from complex SPARQL queries.

Furthermore, the S2XQsr runs could not evaluate the
higher dataset sizes for query q8, whose response times
deteriorate considerably with the larger dataset sizes—as

opposed to the XSsr runs which behaves consistently sim-
ilar to XSnl. This indicates that S2XQ is not as efficient as the
ARQ-based native SPARQL engine runs XSsr and XSnl for
larger datasets.

We can draw similar conclusions for the optng when com-
paring the query evaluation times of the optsr rewriting.
However, the response times for this approach are deteri-
orated by the overhead of creating, inserting, and deleting
the RDF Named Graph. This slowdown makes queries q ′′

8 ,
q ′′

10 and q ′′
11 of the of the optnl rewriting outperform this

optimisation.
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Table 2 Query response times
in seconds of different
optimisations for the 2MB
XMarkRDF dataset.
Optimisation not applicable
(n/a)

X S S2X Q X Snl S2X Qnl X Ssr S2X Qsr X Sng

q8 358.27 3.44 15.66 3.54 n/a n/a n/a

q9 355.71 18.91 15.20 19.35 n/a n/a n/a

q10 35.89 178.71 19.78 156.09 n/a n/a n/a

q11 371.46 17.99 22.67 6.43 n/a n/a n/a

q ′
8 355.63 3.71 15.48 2.87 10.60 3.35 n/a

q ′
9 357.13 19.16 15.12 19.10 11.79 15.44 n/a

q ′
10 36.73 180.32 18.24 154.95 16.37 199.28 n/a

q ′
11 354.20 18.21 21.00 6.40 18.63 165.99 n/a

q ′′
8 352.10 4.46 13.29 3.61 n/a n/a 13.53

q ′′
9 356.63 18.64 13.23 16.46 n/a n/a 13.17

q ′′
10 37.84 175.70 16.88 175.47 n/a n/a 17.62

q ′′
11 365.24 139.96 21.27 145.05 n/a n/a 24.79

8 Related Work

With the establishment of XML and RDF, tools and methods
were introduced that rely on existing standards for retrieving
and querying both languages. Most of the existing proposals
to merge XML and RDF rely on translating the data from
different formats and/or translating the queries from differ-
ent languages. With this in mind, we divided the proposals
into two categories: (1) Translation of data: these tools aim
at integrating the heterogeneous data by translating between
different formats, usually relying on user predefined map-
pings. (2) Integration of query languages: this category
of approaches (where XSPARQL is also included) considers
the integration and/or expansion of query languages to allow
querying different formats. Next we give a short overview of
some of the tools and proposals available in each category.

Data translation The TriX format [21] consists of an
alternative serialisation for RDF in XML, with the aim of
being compatible with standard XML tools. It uses XSLT
as an extensibility mechanism, allowing to specify syntactic
extensions and defining macros. R3X17 uses an RDF pro-
cessor and XSLT to transform RDF data into a predictable
form of RDF/XML also catering for RSS. Similarly, Grit18

is designed to be a simplified normalisation for RDF, eas-
ier to process with XSLT than RDF/XML. Gloze [6] aims
at directly interpreting an XML document as RDF data by
providing transformations between XML and RDF based
on the XML Schema definition. The transformation tries to
map each XML element and attribute to an RDF property.
The resulting transformation makes extensive use of RDF
sequences to maintain the ordering from the XML structure.
Droop et al. [28] translate the XML document into RDF,

17 http://wasab.dk/morten/blog/archives/2004/05/30/transforming-
rdfxml-with-xslt.
18 http://code.google.com/p/oort/wiki/Grit.

annotating it with necessary information to answer XPath
queries. The XPath queries are, in turn, translated into SPAR-
QL queries, and the result of the execution of the SPARQL
query is then translated into a format equivalent to the result
of the XPath query.

Deursen et al. [26] present an approach for the transforma-
tion between XML and RDF in an ontology-dependent man-
ner, introducing a language that allows to convert existing
XML Schema documents (and XML documents conforming
to the schemas) by defining mappings relating the schema to
specified ontologies. Other approaches [17,56] aim at trans-
lating an XML Schema into an equivalent OWL ontology.
However, in our approach, we are focusing on translation
and integration of instance data, rather than aiming at pro-
viding a semantic interpretation for XML data.

The approaches that propose a batch translation of data
pose problems such as the replication of data and the need
for constant synchronisation between the original data and
the transformed data, for instance in the case of a frequently
updated database. We argue that this approach is not optimal
for most enterprise and Web scenarios and dynamic transla-
tions are the best way to describe and implement such inte-
gration of data.

Last, but not least, as we have also discussed XSPARQL
as a means to transform between different RDF representa-
tions beyond the capabilities of SPARQL [53] in this paper,
we should mention the forthcoming SPARQL 1.1 [38] spec-
ification, that will add features to SPARQL addressing such
use cases (aggregation, value generation, etc.). Whereas no
detailed studies of SPARQL 1.1’s expressivity exist as of
yet, we emphasise that XSPARQL—being a Turing-com-
plete scripting language for RDF—will be able to encompass
all features within SPARQL 1.1 and more.

Language integration Berrueta et al. [12] present a fra-
mework that allows to perform SPARQL queries from XSLT:
XSLT+SPARQL. It relies on adding functions to XSLT that
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provide the ability to query SPARQL endpoints and uses
standard XSLT to process the SPARQL XML results format.
Similarly to our current implementation, they rely on a clear
separation between the SPARQL query and XSLT parts of
the query.

The following proposals suggest compiling a SPARQL
query to XSLT/XQuery: Bikakis et al. [14] translate each
SPARQL query into an XQuery using a previously defined
mapping from OWL to XML Schema and [33] propose to
embed SPARQL into XSLT or XQuery, presenting exten-
sions to these languages to enable SPARQL querying where
each SPARQL query is also translated into an equivalent
XQuery. This language is very close to the XSPARQL lan-
guage, but it does, however, require converting the RDF data
to XML according to a predefined schema. Assuming the
queried dataset is available this translation carries overhead
into the query and in case the dataset is not available, for
example due to being stored behind a SPARQL endpoint,
such translation is not possible. Ding and Buxton presented
an approach to translate SPARQL into XQuery at the 2011
Semantic Technology Conference.19 This rewriting generates
XQuery specifically tailored for the Marklogic Server XML
database engine. On a similar approach, integrating XPath
into SPARQL [25], also promises to bridge the gap between
XML and RDF. This is approach is similar to XSPARQL,
although the choice here was to extend the SPARQL query
language. While also catering for SQL queries, [31] presents
a translation of SPARQL queries into XQuery and present
encouraging benchmark results. Another similar approach is
presented by [48], where the authors again translate SPARQL
to XQuery by relying on a normal form of RDF/XML. Also
according to our benchmarks, encoding SPARQL in XQue-
ry seems a viable option—assuming that we have access to
the RDF dataset beforehand—that would allow to compile
XSPARQL to pure XQuery without the use of a separate
SPARQL engine.

Zhou and Wu [59] propose another approach to represent
RDF data as XML trees, based on translating RDFS into an
XML Schema, and then translating SPARQL queries into
XPath and XQuery queries.

RDF Twig [58] suggests XSLT extension functions that
provide views on the sub-trees of an RDF graph. The main
idea of RDF Twig is that while RDF/XML is hard to navi-
gate using XPath, a subtree of an RDF graph can be serialised
into a more useful form of RDF/XML. RDFXSLT20 provides
an XSLT preprocessing stylesheet and a set of helper func-
tions, similar to RDF Twig, yet implemented in pure XSLT
2.0, readily available for multiple platforms. The CORESE

19 http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&
proposalid=4015.
20 http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html.

framework21 also provides extensions of SPARQL to pro-
cess XPath and XSL transformations in SPARQL queries
and defines an extension to the XSLT language to allow to
perform SPARQL queries.

Other approaches for querying heterogenous data were
presented by Berger et al. [10]. This query language follows
a different syntax than the W3C standardised SPARQL and
XQuery and allows to write queries in the form of logical
rules over an abstraction of the XML and RDF data models
(represented as a graph).

The nSPARQL query language [50] proposes to extend
SPARQL with navigational capabilities using nested regular
expressions. With this addition, the language is sufficiently
expressive to capture the semantics of RDFS. In addition to
this, it introduces a number of graph navigation operators and
adds the ability to selectively traverse the graph. This work is
different than our current proposed approach for XSPARQL,
but one of the possibilities for extending XSPARQL is to
enable to perform XQuery enriched SPARQL queries.

Related to our nested queries optimisation, initial work
has been presented by [5] over an extension of SPARQL that
caters for nested queries and presented preliminary equiva-
lences between types of nested queries with the aim of deter-
mining if query unnesting can be successfully applicable.

9 Conclusion and Future Work

In this paper we presented a novel query language, called
XSPARQL, that combines XQuery and SPARQL to provide
simplified transformations between the XML and RDF data
models. We covered the semantics of XSPARQL, defined as
an extension of the XQuery semantics, and presented our cur-
rent implementation which consists of rewriting each XSP-
ARQL query to an XQuery query. The implementation is
available for download at http://xsparql.deri.org/ where we
also provide an online XSPARQL query evaluator at http://
xsparql.deri.org/demo/.

We also presented different rewriting strategies for a
particular category of XSPARQL queries, namely those con-
taining nested expressions involving SPARQL queries and
presented benchmark evaluation of these different rewritings.
For these optimisations we detailed the rewriting functions
describing their application in our current implementation of
the XSPARQL language. We presented two types of optimi-
sations for nested expressions: one based on reordering the
expressions in the XQuery rewriting to minimise the number
of calls to the SPARQL endpoint and another based on per-
forming a more complex SPARQL query that takes care of
joining the variables. The benchmarks carried out to deter-
mine the impact of our optimisations have shown encour-

21 http://www-sop.inria.fr/edelweiss/software/corese/.
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aging results, hinting on a large potential for optimisations
in XSPARQL. Among the rewriting strategies presented in
this paper and on our test data, pushing joins into a SPARQL
engine appeared the most promising strategy. Our benchmark
results showed that our optimisations are not only specific
to XSPARQL having also improved the response times of
the SPARQL2XQuery system to which we compared XSP-
ARQL.

Future Work In this paper we have shown that nested
queries can be efficiently evaluated by applying particular re-
writings. Nonetheless all the tested rewriting strategies were
created ad-hoc. A declarative algebra model would help to
correctly and systematically study further optimisations for
XSPARQL. As starting points, [34] and [36] have presented
translations of XQuery to SQL, whereas in our own earlier
works we have likewise translated SPARQL essentially to
Relational Algebra [52]. These works seem to indicate valid
starting points for further research on equivalences and op-
timisations in our language. Initial steps for defining such a
declarative algebra can also be based on subsets of the XQue-
ry language, for example XQuery core presented by Koch
[43]. A proposal towards the declarative model of XSPARQL
has been done by Bischof [16]. Although the initial set of
optimisations proposed in this paper shows that our current
implementation of performing interleaved calls to a SPAR-
QL engine can be improved upon, a more tightly integrated
implementation of the XSPARQL language should yield bet-
ter results. Such an integrated implementation is planned for
the near future where we can leverage optimisations pro-
posed for SPARQL [37] or the proposed implementations of
XQuery over relational databases [34,13]. Finally, the current
XSPARQL language specification already allows to query
data contained in XML and RDF datastores. However, updat-
ing data of these datastores is still not directly possible. We
plan to extend the XSPARQL language to a full data manip-
ulation language allowing to update, insert, and delete data
contained in RDF tripestores. Here, similar to our combi-
nation of query languages, we will aim at combining com-
mon data manipulation languages for XML and RDF, such
as SPARQL Update [32] and XQuery Update [55].
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CE/I1380 (Líon-2), by an IRCSET scholarship, and by the Marie Curie
IRSES Grant 24761 (Net2). We would like to thank Sven Groppe for
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A Example of XSPARQL Semantics Evaluation

As an example we show the application of the XSPARQL
evaluation semantics (presented in Sect. 4.2) to the sample
query from Fig. 8b. The example query features both, the
new SparqlForClause as well as the new ConstructClause.

(a)

(b)

Fig. 17 Example input and normalised query of Fig. 8

Table 3 Result of fs:sparql

$P $N $F

_:gen “Charles” “Brown”

We assume the input graph vc.rdf as given in Fig. 17a. Let us
go through the three phases of XQuery semantics evaluation,
i.e., the normalisation, static type checking, and dynamic
evaluation steps.

Normalisation In the normalisation step the SPARQL-
style namespace declarations are rewritten to XQuery na-
mespace declarations (see Rule (N3)). After that, the whole
construct query is rewritten to a SparqlForClauseby
Rule (N8), the for * is expanded according to Rule (N6)
and the resulting SparqlForClauseis then handled by
Rule (N7). Rule �·�PosVar then adds a new positional vari-
able (e.g., $pos). Finally the construct is normalised by
Rule (N9). The whole normalisation phase results in the
query given in Fig. 17b.

Static Type Analysis By Rule (S2) the variables occur-
ring in the WhereClause, namely $P, $N , and $F, are typed
as RDFTerm, and the positional variable, $pos, is typed as
xs:integer. The whole SparqlForClause inherits its type
from the contained return ExprSingle , which in turn inher-
its its type from the function fs:evalCT which is RDFGraph.

Dynamic Evaluation First the new environment compo-
nent activeDataset is changed from empty to the one given
in the DatasetClause, i.e., the graph contained in vc.rdf.
According to Rule (D3) the WhereClause is evaluated using
the fs:sparql function with the active dataset, as just ini-
tialised, the WhereClause as given in the query, and empty
SolutionModifiers. The fs:sparql function call results in a
sequence of PatternSolutions (in this case a singleton
solution) as given in Table 3. Next, the same rule extracts the
variable bindings for all variables, using the fs:value function,
and assigns them to the corresponding XQuery variables,
typed as RDFTerm. After that the return expression Expr-
Single is evaluated, using the just initialised variables. The

123



174 S. Bischof et al.

Fig. 18 Query results

fs:evalCT function calls the fs:validTriple function passing
it a blank node generated by the fs:bnode function as sub-
ject, “foaf:name” as predicate and the result of fn:concat
as object. The fs:bnode function (as given by Rule (D7))
generates a fresh blank node label for each element of
the PatternSolution. For this example we assume that the
function returns the new blank node label “_:gen_1”. The
fs:validTriple function tests these three values for validity.
Since the subject is of type bnode, the predicate is a QName
(and therefore considered as being of type uri), and the
object is of type literal, namely an xs:string, the func-
tion returns them as a valid RDFTriple. The fs:evalCT func-
tion eventually returns the result of the single fs:validTriple
function call and thus the result of the whole query as
an element of type RDFGraph as shown in Fig. 18. Seria-
lised to Turtle the query result, including QName expansion,
is the expression _:gen_1 <http://...foaf/0.1/name>

"Charles Brown".

B Implementation Functions Example

Figure 19 presents some of the XQuery functions defined
in the XSPARQL language implementation, namely to cor-
rectly format RDF terms (Fig. 19a) and to validate triples
resulting from a construct expression (Fig 19b).

C Proofs

C.1 Proof for Proposition 1

Proposition 1 XSPARQL is a conservative extension of
XQuery.

Proof We show that the additional rules introduced in
Sect. 4.2 do not modify the semantics of any native XQue-
ry. The XSPARQL semantics—expressed in terms of nor-
malisation rules, static typing rules, and dynamic evaluation
rules—strictly extend the native semantics of XQuery. In the
semantics definition we also define new environment com-
ponents, namely statEnv.posVars and dynEnv.activeDataset,
which are not used in the XQuery semantics and thus do
not interfere with query evaluation. However, for the XSP-

(a)

(b)

Fig. 19 Implementation functions

ARQL semantics we also extend the normalisation rules and
static analysis rules for native XQuery for clauses. More
specifically, rule (N5) extends the XQuery for normalisa-
tion by adding a new variable to each position-variable free
for expression (i.e., that does not have an at clause). As
stated these new position variables are disjoint from the vari-
ables in scope, and thus this rewriting does not interfere with
the semantics of the original query. The only rules which use
the newly created position variables are (i) the slightly mod-
ified static type analysis rule (S3) which extends the XQuery
for static analysis rule by collecting the position variables in
the static environment component statEnv.posVars, thus also
maintaining the original semantics of the original XQuery
for rule and (ii) the dynamic evaluation rule (D7) which
accesses statEnv.posVars to generate Skolem-identifiers for
blank nodes in construct parts. However, rule (D7) only
applies to XSPARQL queries which fall outside the native
XQuery fragment, whereas the semantics of native XQue-
ry queries remains untouched and independent of the extra
environment components in XSPARQL. ��

C.2 Proof for Lemma 1

Lemma 1 Given a graph pattern P, a dataset D and the
XSPARQL instance mapping μC of the expression context
C over which P is evaluated, let �1 = evalxs(D, P, μC )

and �2 = eval(D, P) be solution mappings. If vars(P) ∩
dom(μC ) = ∅, then �1 = �2 �� {μC }.
Proof The XSPARQL BGP matching, evalxs(D, P, μC ),
extends SPARQL’s BGP matching, eval(D, P), by defin-
ing that the solutions of the BGP are the ones compatible
with the XSPARQL instance mapping μC . Since the evalu-
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ation of graph patterns (such as union, optional, graph,
and filter) remains unchanged from the SPARQL seman-
tics let us focus on the evaluation of a BGP P . If there are
no shared values between the graph pattern and the XSP-
ARQL instance mapping, vars(P) ∩ dom(μC ) = ∅, then
each solution μ ∈ �2 returned by the SPARQL BGP eval-
uation semantics is trivially compatible with μC and the
result of the XSPARQL BGP matching is μ ∪ μC . Extend-
ing this result to all solution mappings in �2, we obtain that
�1 = �2 �� {μC }. ��

C.3 Proof for Proposition 2

Proposition 2 XSPARQL is a conservative extension of
SPARQL construct queries.

Proof For XSPARQL queries consisting of a SPARQL con-

struct query, there cannot exist any previous bindings for
variables in XSPARQL and thus the XSPARQL instance
mapping μC over which the construct query will be exe-
cuted is empty. Let P represent the graph pattern of the con-
struct query and D the dataset, trivially there are no shared
variables between μC and P and so, following Lemma 1 the
bindings �1 for XSPARQL BGP matching are the same bind-
ings �2 as SPARQL BGP matching, since �1 = �2∪{∅} and
hence �1 = �2. Furthermore, the formal semantics func-
tion fs:evalTemplate returns an RDF graph satisfying all the
conditions of Definition 11: (1) Ignoring invalid RDF tri-
ples—Item 1—is guaranteed by Rules D5 and D6; and (2)
The generation of distinct blank nodes for each solution
sequence—Item 2—is enforced by the blank node skolemi-
sation rules (Rules (D7) and (D8)). ��

C.4 Proof for Lemma 2

Lemma 2 Let P be a BGP, D a dataset, and μ the XSPARQL
instance mapping of P. Considering P ′ = μ(P), we have
that evalxs(D, P, μ) = eval

(
D, P ′) �� {μ}.

Proof Since, according to the variable substitution operation
we have that vars

(
P ′) = vars(P) \ dom(μ), we also have

that vars
(
P ′) ∩ dom(μ) = ∅, and it follows directly from

Lemma 1 that evalxs(D, P, μ) = eval
(
D, P ′) �� {μ}. ��

C.5 Proof for Proposition 3

Proposition 3 Let Q be a SparqlForClauseof form (Q1) and
dynEnv the dynamic environment of Q, then dynEnv � Q ⇒
Val if and only if dynEnv � tr(Q) ⇒ Val.

Proof (⇐) Let us show that if dynEnv � tr(Q) ⇒ Val then
dynEnv � Q ⇒ Val . The evaluation of Q consists of the
application of Rule (D1) as

dynEnv � fs:dataset(DatasetClause) ⇒ DS

dynEnv � fs:sparql

(
DS, WhereClause,
SolutionModifier

)
⇒ μxs

i

dynEnvxs
1 � Expr Single ⇒ Valuei . .

.

dynEnv �
for $Var1 · · · $Varn at $PosVar
DatasetClause WhereClause
SolutionModifier return ExprSingle
⇒ Value1 · · · Valuem

where, for each μxs
i ,

dynEnvxs
1 = dynEnv + activeDataset(DS)

+ varValue

⎛
⎜⎜⎝

PosVar ⇒ i;
Var1 ⇒ fs:value

(
μxs

i , Var1
) ;

· · · ;
Varn ⇒ fs:value

(
μxs

i , Varn
)

⎞
⎟⎟⎠ . (T1)

Let μC be the XSPARQL instance mapping of the expres-
sion context that includes dynEnv and �tr the pattern
solution resulting from evaluating the xsp:sparqlCall

function, i.e., �tr = eval(DatasetClause, P), where P is
the rewriting of WhereClause according to μC . Further-
more, let μi ∈ �tr be the solution mapping from which
Val is generated, i.e., there exists some dynamic environ-
ment dynEnvtr based on dynEnv and extended with the var-
iable bindings from μi such that dynEnvtr � ExprSingle ⇒
Val .

Consider�xs =evalxs(DatasetClause, WhereClause, μC )

as the solution sequence resulting from the evaluation of
the fs:sparql function. As we know from Lemma 2, �xs =
�tr �� {μC } and thus there must exist a solution map-
ping μxs ∈ �xs such that μxs = μi �� μC . From (T1)
we infer that there exists a dynamic environment dynEnvxs

that results from extending dynEnv with the variable bind-
ings from μxs and thus this environment will also contain
all the variable mappings from dynEnvtr . Since we know
that dynEnvtr � ExprSingle ⇒ Val , we also have that
dynEnvxs � ExprSingle ⇒ Val and thus dynEnv � Q ⇒
Val .

(⇒) Next we will show that if dynEnv � Q ⇒ Val then
dynEnv � tr(Q) ⇒ Val . We present the proof tree for each
of the XQuery core expressions in the tr(Q) rewriting. The
proof trees are presented for each line of the tr(Q) rewrit-
ing and, in each proof tree, Expr corresponds to the XQuery
expressions of the following lines:
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– let expression of line (1):

dynEnv � xsp:sparqlCall

⎛
⎜⎜⎝
select Vars
DatasetClause
WhereClause
SolutionModifier

⎞
⎟⎟⎠ ⇒ �tr

dynEnvtr
1 � Expr ⇒ Res

dynEnv �

let $xsp:results :=

xsp:sparqlCall

⎛
⎜⎜⎝
select Vars
DatasetClause
WhereClause
SolutionModifier

⎞
⎟⎟⎠

return Expr ⇒ Res

where

dynEnvtr
1 = dynEnv + varValue

(
xsp:results ⇒ �tr

)
.

(T2)

– for expression of line (2)

dynEnvtr
1 � $xsp:results//sr:result ⇒ μi

dynEnvtr
2 � Expr ⇒ Resi . .

.

dynEnvtr
1 �

for $xsp:result at $PosVar
in $xsp:results//sr:result
return Expr ⇒ Res1, · · · , Resnwhere

dynEnvtr
2 = dynEnvtr

1 + varValue

(
xsp:result ⇒ μi;
PosVar ⇒ i

)

– let expressions of lines (3)–(4)
Here we consider all the let expressions represented by
line (3), where $v ∈ Vars:

dynEnvtr
2 � $xsp:result/sr:binding[@name = v]/∗ ⇒ V

dynEnvtr
3 � ExprSingle ⇒ Res

dynEnvtr
2 �

let $v :=
$xsp:result/sr:binding[@name = v]/∗

return ExprSingle ⇒ Res

where dynEnvtr
3 = dynEnvtr

2 + varValue(v ⇒ V )

Consider the dynamic environment dynEnvxs
i such that

dynEnvxs
i � ExprSingle ⇒ Val where, as we know

from (T1), dynEnvxs
i extends dynEnv by changing the ac-

tiveDataset and varValue environment components.
Consider μC , �xs, and �tr as before. From Lemma 2 we

get that �xs = �tr �� {μC } and since μC is created based
on dynEnv.varValue, all the variable bindings from μC are
already included in dynEnv.

From the proof trees of tr(Q) we can see that the for

expression from line (2) iterates over the all the solution map-
pings included in �tr and the let expressions from lines (3)
and (4) ensure there exists a dynEnvtr

2 such that dynEnvtr
2 .var-

Value contains all the variable bindings from dynEnvxs
i .

varValue, and we have that dynEnvtr
2 � ExprSingle ⇒ Val .

��
C.6 Proof for Proposition 4

Proposition 4 Let Q be a XSPARQL expression of form (Q2)
or (Q3) and dynEnv the dynamic environment of Q, then
dynEnv � Q ⇒ Val if and only if dynEnv � optnl(Q) ⇒ Val.

Proof We now present the proof of the optnl rewriting func-
tion for expressions of the form (Q3).

We start by showing the proof for the base case, where
ExprSingle of (Q3) does not contain any occurrences of (Q3).

Base Case. (⇒) We start by showing that if dynEnv � Q ⇒
Val then dynEnv � optnl(Q) ⇒ Val . Consider �out

xs and �in
xs

the solution sequences returned, respectively, by the evalu-
ation of the outer and inner SparqlForClauses of Q and the
set of join variables J = Varsout ∩ vars

(
WhereClausein).

Furthermore, consider μout
xs ∈ �out

xs and μin
xs ∈ �in

xs the solu-
tion mappings that agree on the value of each join vari-
able j ∈ J from where Val is generated, i.e., there exists
some dynamic environment dynEnvxs based on dynEnv and
extended with the variable mappings from μout

xs and μin
xs such

that dynEnvxs � ExprSingle ⇒ Val .
We show now the proof tree for each of the XQuery core

expressions in the optnl(Q) rewriting where, in each proof
tree, Expr corresponds to the XQuery expressions of the fol-
lowing lines:

– let expression of line (1), considering Vars = Varsin ∪(
Varsout∩ vars

(
WhereClausein)), we have that

dynEnv � xsp:sparqlCall

⎛
⎜⎜⎝
select Vars
DatasetClausein

WhereClausein

SolutionModifierin

⎞
⎟⎟⎠ ⇒ �in

dynEnvnl
1 � Expr ⇒ Res

dynEnv �

let $xsp:res_in :=

xsp:sparqlCall

⎛
⎜⎜⎝
select Vars
DatasetClausein

WhereClausein

SolutionModifierin

⎞
⎟⎟⎠

return Expr ⇒ Res

where

dynEnvnl
1 = dynEnv + varValue

(
xsp:res_in ⇒ �in

)
. (T3)

The function optnl(Q) translates the SparqlForClause
from lines (4)–(6) of Q into the xsp:sparqlCall of
line (1). The inner SparqlForClause of Q is evaluated
considering some dynamic environment dynEnvxs

i (and
its expression context Ci ). Since dynEnvxs

i is an exten-
sion of dynEnv we have that dom(μC ) ⊆ dom

(
μCi

)
.

The rewritten xsp:sparqlCall function is evaluated over
the dynamic environment dynEnv (included in expression
context C). Consider μC the XSPARQL instance mapping
of C and μCi the XSPARQL instance mapping of Ci .
Let �in

xs = evalxs

(
DatasetClausein, WhereClausein, μCi

)
be the solution sequence resulting from the evaluation
of the inner SparqlForClause of Q and the solution
sequence resulting from evaluating the xsp:sparqlCall

function be �in
nl = eval

(
DatasetClausein, Pin

)
, where Pin

123



Mapping between RDF and XML with XSPARQL 177

is the graph pattern obtained from replacing the vari-
ables in WhereClausein according to μC . As dom(μC ) ⊆
dom

(
μCi

)
, i.e., μC contains less bindings for variables

than μCi , the rewritten graph pattern Pin contains more
unbound variables, and we get that �in

xs 
 �in
nl.

– let expression of line (2)

dynEnvnl
1 � xsp:sparqlCall

⎛
⎜⎜⎝
select Varsout

DatasetClauseout

WhereClauseout

SolutionModifierout

⎞
⎟⎟⎠

⇒ �out

dynEnvnl
2 � Expr ⇒ Res

dynEnvnl
1 �

let $xsp:res_out :=

xsp:sparqlCall

⎛
⎜⎜⎝
select Varsout

DatasetClauseout

WhereClauseout

SolutionModifierout

⎞
⎟⎟⎠

return Expr ⇒ Reswhere

dynEnvnl
2 = dynEnvnl

1 + varValue
(
xsp:res_out ⇒ �out) .

Regarding the SparqlForClauseof lines (1)–(3) of Q (eval-
uated considering dynEnv), the optnl(Q) translates it into
the xsp:sparqlCall from line (2), which is evaluated
over dynEnvnl

1 .
Consider C1 the expression context where dynEnvnl

1 is
included, μC1 the XSPARQL instance mapping of C1

and Pout the graph pattern obtained from replacing the
variables in WhereClauseout according to μC1 . From (T3)
we can see that dom

(
μC1

) = dom(μC )∪{$xsp:res_in},
but $xsp:res_in belongs to the $xsp: reserved
namespace so it will not be included in the variables
of WhereClause out , and we can observe that we
obtain the same graph pattern Pout by replacing
WhereClauseout according to μC . Let �out

xs =
evalxs

(
DatasetClauseout, WhereClauseout, μC

)
be the

solution sequence resulting from evaluating the outer
SparqlForClause according to XSPARQL semantics and
�out

nl = eval
(
DatasetClauseout, Pout

)
be the pattern solu-

tion resulting from evaluating the rewritten outer Sparql-
ForClause according to SPARQL semantics. Following
Lemma 2, we have that �out

xs = �out
nl �� {μC } and, as we

have seen from the proof of Proposition 3, since μC is
already included in dynEnv, we have that �out

xs = �out
nl .

– for expression of line (3)

dynEnvnl
2 � $xsp:res_out//sr:result ⇒ μi

dynEnvnl
3 � Expr ⇒ Resi . .

.

dynEnvnl
2 �

for $xsp:rout at $PosVarout

in $xsp:res_out//sr:result
return Expr ⇒ Res1, · · · , Resn

where

dynEnvnl
3 = dynEnvnl

2 + varValue

(
xsp:rout ⇒ μi;
PosVarout ⇒ i

)
.

– let expressions of line (4)
Here we consider all the let expressions represented by
line (4), where $v ∈ Varsout :

dynEnvnl
3 � $xsp:rout/sr:binding[@name = v]/∗ ⇒ V

dynEnvnl
4 � Expr ⇒ Res

dynEnvnl
3 �

let $v :=
$xsp:rout/sr:binding[@name = v]/∗

return Expr ⇒ Res

where

dynEnvnl
4 = dynEnvnl

3 + varValue(v ⇒ V ) .

– for expression of line (5)

dynEnvnl
4 � $xsp:res_in//sr:result ⇒ Si

dynEnvnl
5 � Expr ⇒ Resi . .

.

dynEnvnl
4 �

for $xsp:rin at $PosVarout

in $xsp:res_in//sr:result
return Expr ⇒ Res1, · · · , Resn

where

dynEnvnl
5 = dynEnvnl

4 + varValue

(
xsp:rin ⇒ Si;
PosVarin ⇒ i

)
.

– if expression of lines (6)–(9)

dynEnvnl
5 � joinsr

(
V arsout ∩ vars(WhereClause) ,

$xsp:res_out, $xsp:res_in

)
⇒ true

dynEnvnl
5 � ExprSingle ⇒ Res1

dynEnvnl
5 � if

(
joinsr

(
V arsout ∩ vars(WhereClause) ,

$xsp:res_out, $xsp:res_in

))

then ExprSingle else () ⇒ Res1

– let expressions of line (7) and (8)
Here we consider all the let expressions represented by
line (7), where $v ∈ V arsout�vars

(
WhereClausein).

dynEnvnl
5 � $xsp:res_in/sr:binding[@name = v]/∗ ⇒ V

dynEnvnl
6 � ExprSingle ⇒ Res

dynEnvnl
5 �

let $v :=
$xsp:res_in/sr:binding[@name = v]/∗

return ExprSingle ⇒ Res

where

dynEnvnl
6 = dynEnvnl

5 + varValue(v ⇒ V) .

Since we know that �out
nl = �out

xs and �in
xs 
 �in

nl, we obtain
that μout

xs ∈ �out
nl and μin

xs ∈ �in
nl. Since optnl(Q) performs a

nested loop iteration over �out
nl and �in

nl, the joinsr function
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will join the two solution mappings successfully since μout
xs

and μin
xs share the same values for the join variables, and thus

we have that dynEnv � optnl(Q) ⇒ Val .

(⇐) We now proceed by showing that if dynEnv �
optnl(Q) ⇒ Val , then dynEnv � Q ⇒ Val . Let �out

nl and
�in

nl be the pattern solutions returned by the outer and inner
SparqlForClauses, respectively, and let μout

nl ∈ �out
nl and

μin
nl ∈ �in

nl be the solution mappings, where Val is deduced
from, i.e., μout

nl and μin
nl agree on their values for the join

variables. We also know that there must exist a dynamic
environment dynEnvnl, based on dynEnv and extended with
the variable mappings μout

nl and μin
nl such that dynEnvnl �

ExprSingle ⇒ Val .
Let us turn to the evaluation of dynEnv � Q ⇒ Val .

– SparqlForClause from lines (1)–(3), where Expr corre-
sponds to the SparqlForClause from lines (4)–(6) of
Q. The evaluation of this SparqlForClause consists of the
application of Rule (D1):

dynEnv � fs:dataset
(
DatasetClauseout) ⇒ DSout

dynEnv � fs:sparql

(
DSout, WhereClause,
SolutionModifier

)
⇒ μi

dynEnvxs
1 � Expr ⇒ Valuei . .

.

dynEnv �
for V arsout at $PosVarout

DatasetClauseout WhereClauseout

SolutionModifierout return
Expr ⇒ Value1 · · · Valuem

with V arsout = $Varout
1 · · · $Varout

n , we have for each μi

dynEnvxs
1 =

dynEnv + activeDataset
(
DSout

)

+ varValue

⎛
⎜⎜⎝

PosV arout ⇒ i;
V arout

1 ⇒ fs:value
(
μi, Varout

1

) ;
. . . ;
V arout

n ⇒ fs:value
(
μi, Varout

n

)

⎞
⎟⎟⎠ . (T4)

– SparqlForClause of lines (4)–(6):
The evaluation of dynEnvxs

1 � Expr ⇒ Valuei is given by

dynEnvxs
1 � fs:dataset

(
DatasetClausein) ⇒ DSin

dynEnvxs
1 � fs:sparql

(
DSin, WhereClausein,

SolutionModi f ier in

)
⇒ μj

dynEnvxs
2 � ExprSingle ⇒ Valuej . .

.

dynEnvxs
1 �

for Varsin at $PosVarin

DatasetClausein WhereClausein

SolutionModi f ier in return
ExprSingle ⇒ Value1 · · · Valuem

where, considering V arsin = $Varin
1 . . . $Varin

n , we have
for each μj

dynEnvxs
2 =

dynEnvxs
1 + activeDataset

(
DSin

)

+ varValue

⎛
⎜⎜⎜⎜⎝

PosV ar in ⇒ j;
V arin

1 ⇒ fs:value
(
μj, V arin

1

)
;

· · · ;
V arin

n ⇒ fs:value
(
μj, V arin

n

)

⎞
⎟⎟⎟⎟⎠ .

As we know from the (⇒) direction of the proof, �out
nl =

�out
xs and so we have that μout

nl ∈ �out
xs . Regarding the evalua-

tion of the inner SparqlForClausewe have that�in
xs 
 �in

nl. We
consider two cases: (i) μin

nl ∈ �in
xs or (ii) μin

nl �∈ �in
xs. In (i), we

immediately get the desired result that dynEnv � Q ⇒ Val .
For (ii), consider μxs

C1
the XSPARQL instance of the inner

SparqlForClause(created based on dynEnvxs
1 ). As we can see

from (T4), dynEnvxs
1 (and thus also μxs

C1
) includes the bind-

ings for variables from each solution mapping μi ∈ �out
xs .

Thus, according to the XSPARQL BGP matching (cf. Def-
inition 10), �in

xs will contain all the solution mappings that
are compatible with any solution mapping μi ∈ �out

xs and
specifically those compatible with μout

nl . Since we know that
μin

nl is compatible with μout
nl , we have that μin

nl must belong to

�in
xs; thus we can deduce that dynEnv � Q ⇒ Val .
Inductive Step The proof follows from the recursive

application of the base case, over a new dynamic envi-
ronment determined by the optnl rewriting to dynEnvi �
optnl(ExprSingle).

The proof for nested queries with an XQuery for outer
expression (Q2) is analogous where, in the preceding, the
evaluation of the SparqlForClause from lines (1)–(3) of (Q3)
is replaced by the evaluation of an XQuery ForClause, as pre-
sented by Draper et al. [27, Section 4.8.2]. ��

C.7 Proof for Proposition 5

Proposition 5 Let Q an XSPARQL expression of form (Q4)
and dynEnv the dynamic environment of Q, then dynEnv �
Q ⇒ Val if and only if dynEnv � optsr(Q) ⇒ Val.

Proof We start by showing the proof for the base case, where
ExprSingle of (Q4) does not contain any occurrences of (Q4).

Base Case. (⇒) We start by showing that if dynEnv �
Q ⇒ Val then dynEnv � optsr(Q) ⇒ Val . Consider �out

xs
and �in

xs the solution sequences returned, respectively, by the
evaluation of the outer and inner SparqlForClauses of Q and
J = Varsout ∩Vars

(
GGPin

)
the set of join variables. Further-

more, consider dynEnvexpr
i the dynamic environment result-

ing from extending dynEnv with the variable mappings from
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the compatible solution mappings μout
xs ∈ �out

xs and μin
xs ∈ �in

xs
such that dynEnvexpr

i � ExprSingle ⇒ Val .
We now show the proof tree for each of the XQuery core

expressions in each line of the optsr rewriting where, for each
line, Expr represents the expressions of the following lines:

– let expression of line (1)

dynEnv � xsp:sparqlCall

⎛
⎜⎜⎝
select Varsout ∪ Varsin

DatasetClause
where GGPout GGPin

order by OCout OCin

⎞
⎟⎟⎠

⇒ �sr

dynEnvsr
1 � Expr ⇒ Res

dynEnv �

let $xsp:results :=

xsp:sparqlCall

⎛
⎜⎜⎝
select Varsout ∪ Varsin

DatasetClause
where GGPout GGPin

order by OCout OCin

⎞
⎟⎟⎠

return Expr ⇒ Res
where

dynEnvsr
1 = dynEnv+ varValue

(
xsp:results ⇒ �sr

)
.

According to the SPARQL semantics, the solution
sequence that results from evaluating the graph pattern
GGPout GGPin, �sr = �out

sr �� �in
sr consists of all the

solution mappings μout
sr ∈ �out

sr and μin
sr ∈ �in

sr such that
μout

sr and μin
sr are compatible.

The following for expression iterates over all these com-
patible solution mappings:

– for expression of line (2)

dynEnvsr
1 � $xsp:results//sr:result ⇒ μi

dynEnvsr
2 � ExprSingle ⇒ Resi . .

.

dynEnvsr
1 �

for $xsp:result at $PosVarout

in $xsp:results//sr:result
return ExprSingle ⇒ Res1, · · · , Resn

where dynEnvsr
2 = dynEnvsr

1 + varValue

(
xsp:result ⇒ μi;
PosV arout ⇒ i

)

– let expressions of lines (3)–(4)

Here we consider all the let expressions represented by
line (3), where $v ∈ Vars:

dynEnvsr
2 � $xsp:result/sr:binding[@name = $v]/∗ ⇒ V

dynEnvsr
3 � ExprSingle ⇒ Res

dynEnvsr
2 �

let $v :=
$xsp:result/sr:binding[@name = v]/∗

return ExprSingle ⇒ Res
where

dynEnvsr
3 = dynEnvsr

2 + varValue(v ⇒ V) .

Note that we are only considering order by solution
modifiers; thus the number of results of each query is not
changed. At most the ordering of the results is changed but

this does not interfere with this proof and solution modifiers
can be safely ignored in what follows.

Regarding the evaluation of the SparqlForClause from
lines (1)–(4) of Q (evaluated considering dynEnv), the
optsr(Q) translates it into the xsp:sparqlCall from line (1),
which is also evaluated over dynEnv. In this case, accord-
ing to Lemma 2, we have that �out

sr = �out
xs and then

μout
xs ∈ �out

sr .
Regarding the evaluation of the SparqlForClause from

lines (5)–(8) of Q (evaluated considering some dynamic
environment dynEnvexpr), the optsr(Q) rewriting incorpo-
rates it into the xsp:sparqlCall from line (1), which is
also evaluated over dynEnv. Considering that dynEnv is less
restrictive than dynEnvexpr , i.e., dynEnv contains less bind-
ings for variables than dynEnvexpr , and thus the evaluation
of the inner SparqlForClause over dynEnv will contain all
the solution mappings from �in

xs and specifically μin
xs. As μout

xs
and μin

xs are compatible we have that dynEnv � optsr(Q) ⇒
Val .

(⇐) Next we show that if dynEnv � optsr(Q) ⇒ Val
then dynEnv � Q ⇒ Val . Consider �out

sr and �in
sr as per

the (⇒) direction of the proof and the set of join vari-
ables J = Varsout ∩ vars

(
GGPin

)
. As we have seen �sr

contains all the solution mappings μ = μout
sr �� μin

sr
such that μout

sr ∈ �out
sr and μin

sr ∈ �in
sr and μout

sr , and
μin

sr are compatible. Without loss of generality consider
μout

sr and μin
sr the solution mappings where Val is deduced

from.
Let us turn to the evaluation of dynEnv � Q ⇒

Val .

– SparqlForClause from lines (1)–(4), where Expr corre-
sponds to the SparqlForClause from lines (5)–(8) of Q.
Again, the evaluation of this SparqlForClause consists of
the application of Rule (D1):

dynEnv � fs:dataset(DatasetClause) ⇒ DS

dynEnv � fs:sparql

(
DS, where GGPout

order by OCout

)
⇒ μi

dynEnvxs
1 � Expr ⇒ Valuei . .

.

dynEnv �
for V arsout at $PosVarout DatasetClause
where GGPout

order by OCout

return Expr ⇒ Value1 · · · Valuem

where V arsout = $Varout
1 · · · $Varout

n , we have for each μi

dynEnvxs
1 =

dynEnv + activeDataset(DS)

+ varValue

⎛
⎜⎜⎝

PosV arout ⇒ i;
V arout

1 ⇒ fs:value
(
μi, V arout

1

) ;
· · · ;
V arout

n ⇒ fs:value
(
μi, V arout

n

)

⎞
⎟⎟⎠(T5)
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– SparqlForClause of lines (4)–(6):
The evaluation of dynEnvxs

i � Expr Singleout ⇒ Valuei

is shown next:

dynEnvxs
1 � fs:dataset(DatasetClause) ⇒ DS

dynEnvxs
1 � fs:sparql

⎛
⎝DS,

where GGPin

order by OCin

⎞
⎠ ⇒ μj

dynEnvxs
2 � ExprSingle ⇒ Valuej . .

.

dynEnvxs
1 �

for Varsin at $PosVarin DatasetClause
where GGPin

order by OCin

return ExprSingle ⇒ Value1 · · · Valuem

where Varsin = $Varin
1 · · · $Varin

n , we have for each
μj

dynEnvxs
2 =

dynEnvxs
1 + activeDataset(DS)

+ varValue

⎛
⎜⎜⎜⎜⎝

PosV ar in ⇒ j;
V ar in

1 ⇒ fs:value
(
μj, V arin

1

)
;

· · · ;
V ar in

n ⇒ fs:value
(
μj, V arin

n

)

⎞
⎟⎟⎟⎟⎠

.

As we have seen in the(⇒) direction, we have that �out
sr =

�out
xs and so we have that μout

sr ∈ �out
xs .

Consider C the expression context where dynEnv is
included and μC the XSPARQL instance mapping of C .
Further, consider Pin the graph pattern obtained from
replacing the variables in GGPin according to μC . Since
vars

(
GGPin

) ⊆ vars
(
Pin

)
all solutions mappings returned

by evaluating GGPin under XSPARQL semantics are
included in the solution sequence of evaluating Pin under
SPARQL semantics, i.e., �in

xs 
 �in
sr . We obtain two cases:

(i) μin
sr ∈ �in

xs or (ii) μin
sr �∈ �in

xs. In (i) we imme-
diately get that dynEnv � Q ⇒ Val . For (ii), con-
sider μxs

C1
the XSPARQL instance of the inner SparqlFor-

Clause(created based on dynEnvxs
1 ). As we can see from (T5),

dynEnvxs
1 (and thus also μxs

C1
) includes the bindings for

variables from each solution mapping μi ∈ �out
xs . Thus,

according to the XSPARQL BGP matching (cf. Defini-
tion 10), �in

xs will contain all the solution mappings that
are compatible with any solution mapping μi ∈ �out

xs and
specifically those compatible with μout

sr . Since we know
that μin

sr is compatible with μout
sr , we have that μin

sr must
belong to �in

xs; thus we can deduce that dynEnv � Q ⇒
Val .

Inductive Step The proof follows from the recursive
application of the base case, over a new dynamic envi-
ronment determined by the optsr rewriting to dynEnvi �
optsr(ExprSingle). ��

C.8 Proof for Proposition 6

Proposition 6 Let Q be an XSPARQL expression of form (Q5)
and dynEnv the dynamic environment of Q, then dynEnv �
Q ⇒ Val if and only if dynEnv � optng(Q) ⇒ Val.

Proof We start by showing the proof for the base case, where
ExprSingle1 and ExprSingle2 of (Q5) do not contain any
occurrences of (Q5).

Base Case. (⇒) Let us start by showing that if dynEnv �
Q ⇒ Val then dynEnv � optng(Q) ⇒ Val . Consider �in

xs
the solution sequence returned by the evaluation of the inner
SparqlForClauses of Q. Furthermore, consider dynEnvexpr

i
such that dynEnvexpr

i � ExprSingle2 ⇒ Val . The dynamic
environment dynEnvexpr

i results from extending dynEnv with
bindings for the outer variable $VarName and with the var-
iable bindings from a solution mapping μin

xs ∈ �in
xs where

μin
xs(VarName) = $VarName, i.e., the value for the join var-

iable in the solution mapping μin
xs is the same as assigned to

$VarName.
We now show the proof tree for each of the XQuery core

expressions in the optng rewriting.

– let expression of line (1)
Considering NGP = {[] :value $VarName

}
, we have

dynEnv � xsp:createNG

⎛
⎜⎜⎜⎝

for $VarName
OptTypeDeclaration
OptPositionalVar
in ExprSingle1 return
xsp:evalTemplate(NGP)

⎞
⎟⎟⎟⎠

⇒ DS

dynEnvng
1 � ExprSingle2 ⇒ Res

dynEnv �

let $xsp:ds :=

xsp:createNG

⎛
⎜⎜⎜⎝

for $VarName
OptTypeDeclaration
OptPositionalVar
in ExprSingle1 return
xsp:evalTemplate(NGP)

⎞
⎟⎟⎟⎠

return ExprSingle ⇒ Res

where

dynEnvng
1 = dynEnv + varValue(xsp:ds ⇒ DS) . (T6)

– let expression of line (2)
Consider the dataset clause DatasetClauseng =Dataset-
Clause ∪ {

from named $xsp:ds}
and the graph pat-

tern WhereClauseng = WhereClause ∪ where {graph
$xsp:ds {[] :value $VarName

}}
.

123



Mapping between RDF and XML with XSPARQL 181

dynEnvng
1 � xsp:sparqlCall

⎛
⎜⎜⎜⎝

select
Vars ∪ {

$VarName
}

DatasetClauseng

WhereClauseng

SolutionModifier

⎞
⎟⎟⎟⎠ ⇒ �

dynEnvng
2 � ExprSingle2 ⇒ Res

dynEnvng
1 �

let $xsp:results :=

xsp:sparqlCall

⎛
⎜⎜⎜⎝

select
Vars ∪ {

$VarName
}

DatasetClauseng

WhereClauseng

SolutionModifier

⎞
⎟⎟⎟⎠

return ExprSingle2 ⇒ Res

where

dynEnvng
2 = dynEnvng

1 + varValue
(
xsp:results ⇒ �

)
.

The new merged dataset, DatasetClauseng, is created
based on DatasetClause and the newly created named
graph NG. Since the URI that identifies the newly
created named graph NG is distinct from any URI
of named graphs present in DatasetClause, the triples
included in NG will never be a solution for Where-
Clause, and will be matched only by the graph pattern
where

{
graph $xsp:ds {[] :value $VarName

}}
.

Consider C the expression context where dynEnv is
included, μC the XSPARQL instance mapping of C
and Pout and Pin the graph patterns obtained from,
respectively, replacing the variables in WhereClause and
where {graph $xsp:ds { [] :value $VarName

} }
according to μC .
Furthermore, let �out

ng = eval
(
DatasetClauseng, Pout

)
and

�in
ng = eval

(
DatasetClauseng, Pin

)
. According to SPAR-

QL semantics, the pattern solution that results from eval-
uating WhereClause, �ng = �out

ng �� �in
ng consists of all

the solution mappings μout ∈ �out
ng and μin ∈ �in

ng such
that μout and μin are compatible.

– for expression of line (3)

dynEnvng
2 � $xsp:results//sr:result ⇒ μi

dynEnvng
3 � ExprSingle2 ⇒ Resi . .

.

dynEnvng
2 �

for $xsp:result at $xsp:result_pos
in $xsp:results//sr:result

return ExprSingle ⇒ Res1, · · · , Resn

where

dynEnvng
3 = dynEnvng

2 + varValue

(
xsp:result ⇒ μi;
xsp:result_pos ⇒ i

)
.

– let expressions of lines (4)–(5)
Here we consider all the let expressions represented by
line (4), where $v ∈ Vars:

dynEnvng
3 � $xsp:result/sr:binding[@name = $v]/∗ ⇒ V

dynEnvng
4 � ExprSingle2 ⇒ Res

dynEnvng
3 �

let $v :=
$xsp:result/sr:binding[@name = $v]/∗

return ExprSingle ⇒ Res

where

dynEnvng
4 = dynEnvng

3 + varValue(v ⇒ V) .

Similarly to the proof of Proposition 5, we are only con-
sidering order by solution modifiers; these only change the
order of the solution sequences and thus can be safely ignored
for this proof.

Regarding the evaluation of the XQuery for clause from
lines (1)–(2) of Q (evaluated considering dynEnv), the
optng(Q) translates it into the xsp:sparqlCall from line (2),
which is evaluated considering dynEnvng

1 . As we can see
from (T6), dynEnvng

1 is based on dynEnv by adding the bind-
ing for the xsp:ds variable. Since this variable belongs to
the xsp: reserved namespace, it is not allowed in the Whe-
reClause and so we have that the results of evaluating the
xsp:sparqlCall function over dynEnv or dynEnvng

1 will
be the same.

Regarding the evaluation of the SparqlForClausefrom
lines (3)–(4) of Q (evaluated considering some dynamic envi-
ronment dynEnvexpr), the optng(Q) also incorporates it into
the xsp:sparqlCall from line (2), which is evaluated over
dynEnvng

1 . Considering that dynEnvng
1 is less restrictive than

dynEnvexpr , i.e. dynEnvng
1 contains less bindings for vari-

ables than dynEnvexpr , the evaluation of the inner SparqlFor-
Clauseover dynEnvng

1 will contain all the solution mappings
from �in

xs and specifically μin. As μout and μin are compatible
we have that dynEnv � ng(expr) ⇒ Val .

(⇐) Next we will show that if dynEnv � optng(Q) ⇒ Val
then dynEnv � Q ⇒ Val . Consider �out

ng and �in
ng the solu-

tion sequences returned by, respectively, the evaluation of the
new WhereClauseng and WhereClause. As we have seen �ng

contains all the solution mappings μ = μout
ng �� μin

ng, where
μout

ng ∈ �out
ng and μin

ng ∈ �in
ng, such that μout

ng and μin
ng are com-

patible. Again, consider μout
ng and μin

ng the pattern solutions
where Val is deduced from.

Let us turn to the evaluation of dynEnv � Q ⇒ Val .

– XQuery for clause from lines (1)–(2):
Expr corresponds to the SparqlForClause from lines (3)–
(4) of Q.
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dynEnv � ExprSingle1 ⇒ Vi

dynEnvxs
i � ExprSingle1 ⇒ Valuei . .

.

dynEnv �
for $VarName OptTypeDeclaration

OptPositionalVar in ExprSingle1
return Expr ⇒ Valuei . . . Valuen

we have for each Vi:

dynEnvxs
i = dynEnv + varValue

(
V ar Name ⇒ Vi

)
. (T7)

– SparqlForClause of lines (2)–(4):

dynEnvxs
i � fs:dataset(DatasetClause) ⇒ DS

dynEnvxs
i � fs:sparql

(
DS, WhereClause,
SolutionModifier

)
⇒ μj

dynEnvxs
j � ExprSingle2 ⇒ Valuej . .

.

dynEnvxs
i �

for Vars at $PosVar DatasetClause
WhereClause SolutionModifier
return ExprSingle2 ⇒ Value1 · · · Valuem

where, considering Vars = $Var1 . . . $Varn, we have for
each μj:

dynEnvxs
j =

dynEnvxs
i + activeDataset(DS)

+ varValue

⎛
⎜⎜⎜⎝

PosVar ⇒ j;
V ar1 ⇒ fs:value

(
μj, V ar1

)
;

· · · ;
V arn ⇒ fs:value

(
μj, V arn

)

⎞
⎟⎟⎟⎠

.

As we have seen in the (⇒) direction, we have that �out
ng =

�out
xs and so we have that μout

ng ∈ �out
xs .

Consider C the expression context where dynEnv is
included and μC the XSPARQL instance mapping of C .
Further consider Pin the graph pattern obtained from replac-
ing the variables in WhereClausein according to μC . Since
we know that vars

(
WhereClausein) ⊆ vars

(
Pin

)
, all solu-

tions mappings returned by evaluating WhereClausein under
XSPARQL semantics are included in the pattern solution of
evaluating Pin under SPARQL semantics, i.e., �in

xs 
 �in
ng.

We obtain two cases: (i) μin
ng ∈ �in

xs; or (ii) μin
ng �∈ �in

xs. In
(i) we immediately get that dynEnv � Q ⇒ Val . For (ii),
consider μxs

C1
the XSPARQL instance of the inner SparqlFor-

Clause(created based on dynEnvxs
1 ). As we can see from (T7),

dynEnvxs
1 (and thus also μxs

C1
) includes the bindings for vari-

ables from each solution mapping μi ∈ �out
xs . Thus, accord-

ing to the XSPARQL BGP matching (cf. Definition 10), �in
xs

will contain all the solution mappings that are compatible
with any solution mapping μi ∈ �out

xs and specifically those
compatible with μout

ng . Since we know that μin
ng is compatible

with μout
ng , we have that μin

ng must belong to �in
xs; thus we can

deduce that dynEnv � Q ⇒ Val .

Inductive Step. Let us assume that, for some arbitrary
dynEnvi , dynEnvi � ExprSingle1 ⇒ Vali if and only
if dynEnvi � optng

(
ExprSingle1

) ⇒ Vali. According to
the optng rewriting, there must exist a dynEnv j that is
the extension of dynEnvi with Vali and thus dynEnv j �
ExprSingle2⇒Val if and only if dynEnv j �optng

(
ExprSingle2

)
⇒ Val . Consequently, we have that dynEnv � Q ⇒ Val if
and only if dynEnv � optng(Q) ⇒ Val . ��

D The XMarkRDF Benchmark

For the evaluation of our implementation we created a
benchmark suite based on the XMark benchmark suite [57].
According to [3], the XMark suite is the most widely used
benchmark suite for XQuery. It provides a data generator that
produces XML data simulating an auction website (includ-
ing information about persons and items they bid for) and
includes 20 XQuery queries, referred to as q1 to q20 hence-
forth, over this generated data.

In order to benchmark the XSPARQL language we also
require data in RDF format; hence we provide transforma-
tions (in fact, using XSPARQL queries) from XML datasets
generated by XMark into RDF triples. In this transformation
we replicate all the data in the original XMark datasets as
RDF triples. We start by generating IRIs for each XML ele-
ment that represents concepts like “persons,” “items,” “bids,”
etc. Inner XML element names are then converted into RDF
predicates and used to link the generated IRIs to the leaf ele-
ment values which are converted into RDF literals. Next, we
converted the XMark queries into corresponding XSPARQL
queries using SparqlForClauses to access the RDF data. We
call this new benchmark suite the XMarkRDF benchmark
and is available for download at http://xsparql.deri.org/data/
XMarkRDF/.

From the initial set of 20 queries there are 5 queries (q8–
q12) which contain nested expressions. They are described
informally in the XMark suite as follows:

(q8) “List the names of persons and the number of items they
bought;”

(q9) “List the names of persons and the names of the items
they bought in Europe;”

(q10) “List all persons according to their interest;”
(q11) “List the number of items currently on sale whose price

does not exceed 0.02% of the seller’s income;” and
(q12) “For each richer-than-average person, list the number

of items currently on sale whose price does not exceed
0.02% of the person’s income.”

Figure 20a, b presents XMark query q9 and its translated
XSPARQL version in XMarkRDF, respectively. We have
made two changes to the XMark queries: (1) SPARQL que-
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(a)

(b)

(c)

Fig. 20 Variants of benchmark query q9

ries do not guarantee any default ordering; hence all original
XMark queries were declared unordered—as a consequence
the XQuery engine is not required to follow document order
when executing the query; and (2) we added the external
variables $xml and $rdf in the XQuery and XSPARQL
query, respectively, as parameters used to specify the URL
identifying the input benchmark instance.

We included the SPARQL2XQuery system, which is sim-
ilar in spirit to XSPARQL, by [33] in our system comparison.
While the language allows to perform similar queries to the
XSPARQL language, the implementation follows a differ-
ent approach to integrate the XML and RDF data. Rather
than performing interleaved calls to a SPARQL engine, the
SPARQL2XQuery system relies on translating the RDF data
into a pre-defined XML format and transforming SPARQL
queries into equivalent XQuery over the pre-defined XML
format. The translated queries can be directly executed using

Table 4 XMarkRDFS2XQ dataset and translation times

Scaling Dataset Translation
factor size (MB) times (s)

0.01 3.3 18.94

0.02 6.4 18.30

0.05 16.1 26.08

0.10 32.7 39.01

0.20 65.3 62.35

0.50 162.3 143.35

1.00 326.2 329.93

a native XQuery engine. For further comparison between
XSPARQL and the SPARQL2XQuery language, and other
related works, we refer the reader to Sect. 8.

Query q9, as presented in Fig. 20c, is ready to be evaluated
by the SPARQL2XQuery system over the XMarkRDFS2XQ

dataset. Please note that this query follows the syntax pre-
sented in [33], since we only had access to the imple-
mentation of the translation from SPARQL to XQuery,
while the evaluation was done using the associated XQuery
code. We focussed in our experimental evaluation on query
response time rather than on data transformation time, and
as SPARQL2XQuery requires an additional translation step
from RDF to a custom RDF/XML format, we converted
the XMarkRDF RDF data into the format required by the
SPARQL2XQuery system. An overview of this transla-
tion process, including the translation times, is presented
in Table 4. We denote these new datasets, containing the
RDF/XML format required for the SPARQL2XQuery, by
XMarkRDFS2XQ.

Optimising XMarkRDF Nested Queries

The different rewritings presented in Sect. 6 can be applied
to the four nested queries q8–q11. Query q12 also consists of a
nested expression; however, the most accurate translation of
this query into XSPARQL results in the dependent variable
not being strictly bound since it occurs only in the filter

of the inner query. As such, we cannot apply the different
rewritings to this query.

XMarkRDF query q9 is presented in Fig. 20 on the facing
page. This query is close to queries q8, q10, and q11 and con-
sists of a nested expression: the inner for expression of the
query (lines 8–12) is executed once for each person matched
by the outer expression (lines 5–6), which means that one
SPARQL call will be made for each person separately. Thus,
the number of SPARQL calls performed in the inner expres-
sion directly depends on the size of the dataset (cf. Table 5 for
details). Queries q8, q9, and q11 evaluate the inner expression
for each person, while q10 evaluates the inner expression for
each category. Each dataset contains usually about 25 times
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Table 5 Benchmark dataset description

Scaling Persons Categories XMark (MB) XMarkRDF (MB)
factor

0.01 255 10 1.1 1.2

0.02 510 20 2.3 2.3

0.05 1,275 50 5.8 5.8

0.10 2,550 100 11.7 12.4

0.20 5,100 200 23.5 24.9

0.50 12,750 500 58.0 61.7

1.00 25,500 1,000 116.5 124.8

(a)

(b)

Fig. 21 Example output excerpts of queries q9 and q ′
9

more persons than categories. The rewriting strategies pre-
sented in Sect. 6 reduce the number of SPARQL calls to two:
one to get all the people (similar to the direct rewriting ver-
sion), and one additional SPARQL call for retrieving all the
information about all the auctions in the dataset. Although
the query remains exponential, the practical evaluation will
show that reducing the number of SPARQL calls drastically
improves query execution times (Table 2).

As mentioned in Sect. 6.2, for the SPARQL-based rewrit-
ings, we want the query output to be computable directly
in SPARQL without any further processing, i.e., we do not
want to use XQuery for further processing of the SPAR-
QL results, and the query should be expressible in SPAR-
QL without features from SPARQL 1.1. Since the original
nested queries q8–q11 group the output results (while option-
ally applying some aggregation function), we need to include
modified versions of these benchmark queries for the eval-
uation of the SPARQL based rewritings. In these modified
queries, denoted q ′

8–q ′
11, we changed the return format of the

queries to consist of a flattened representation of the output
of the original query. An example of the output for queries q9

and q ′
9 is presented in Fig. 21. All queries q ′

i and q ′′
i follow

a similar strategy for reformatting the output: the queries
resulting from applying optsr are named q ′

8–q ′
11, while the

queries that consist of an outer for expression—to which
optng was applied—are q ′′

8 –q ′′
11.
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