
Noname manuscript No.
(will be inserted by the editor)

Query Extensions and Incremental Query Rewriting for OWL
2 QL Ontologies

Tassos Venetis · Giorgos Stoilos · Giorgos Stamou

Received: date / Accepted: date

Abstract Query rewriting over lightweight ontologies,

like DL-Lite ontologies, is a prominent approach for

ontology-based data access. It is often the case in re-

alistic scenarios that users ask an initial query which

they later refine, e.g., by extending it with new con-

straints making their initial request more precise. So

far, all DL-Lite systems would need to process the new

query from scratch. In this paper we study the prob-

lem of computing the rewriting of an extended query

by ‘extending’ a previously computed rewriting of the

initial query and avoiding recomputation. Interestingly,

our approach also implies a novel algorithm for com-

puting the rewriting of a fixed query. More precisely,

the query can be ‘decomposed’ into its atoms and then

each atom can be processed incrementally. We present

detailed algorithms, several optimisations for improv-
ing the performance of our query rewriting algorithm,

and finally, an experimental evaluation.

Keywords Query rewriting · DL-Lite · Incremental

query rewriting · Query extension

1 Introduction

Efficiently managing and retrieving large amounts of

data is a key problem for many modern applications.

This is a revised and considerably extended version of the
workshop paper [33].

Tassos Venetis · Giorgos Stoilos · Giorgos Stamou
School of Electrical and Computer Engineering
National Technical University of Athens, Greece
Tel.: +30-210 772 3039
Fax: +30-210 772 2491
E-mail: avenet@image.ece.ntua.gr
E-mail: gstoil@image.ece.ntua.gr
E-mail: gstam@cs.ece.ntua.gr

Ontologies expressed in the W3C’s Web Ontology Lan-

guage OWL [15] and its revision OWL 2 [10] are often

used for providing a formal and unified schema that de-

scribes the data that are stored in distributed and/or

heterogeneous data sources. A key application for such

systems is ontology-based data access (OBDA) [29],

where answers to user queries reflect both the data as

well as the ontology that describes them. However, rea-

soning and conjunctive query (CQ) answering in the

ontology languages OWL 2 DL, OWL DL, and OWL

Lite is of very high computational complexity in the

worst case [25,20]. Actually, no complete algorithm for

querying OWL 2 DL ontologies is currently known.

The need for efficient query answering has moti-

vated the development of many lightweight ontology

languages which provide reasoning services of at most

polynomial data complexity. One such language is DL-

Lite [8,2]. DL-Lite forms the logical underpinnings of

the ontology language OWL 2 QL, a well-known profile

of OWL 2 [23]. Query answering in DL-Lite is usually

performed via a technique called query rewriting [8,2,

28]. According to this technique a query q and a DL-

Lite ontology are transformed into another query q′,

called a rewriting, such that the answers of q′ over the

input data and discarding the ontology are precisely the

answers of q over the data and the ontology. Common

target languages for representing rewritings in DL-Lite

are non-recursive Datalog [32,13] or union of conjunc-

tive queries (UCQs) [8,9,27].

The nice properties of DL-Lite have motivated the

development of many algorithms and systems for com-

puting a rewriting, such as QuOnto [1], Requiem [27],

Presto [32], Nyaya [11], Quest [30] and Rapid [9]. For

a given query most of these systems will compute a re-

writing by applying (usually in a brute-force manner)

a certain set of equivalence-preserving transformations

2 Tassos Venetis et al.

to the query discarding any information computed for

previously rewritten queries. However, it is quite often

the case that user queries have very small differences

with previously executed ones. For example, in Web

search scenarios it has been shown that users usually

first ask some ‘general’ query and then, according to

the returned results, they refine it by adding further

constraints making their request more precise [17,26,

16]. Consequently, a query can be refined several times

until the user (possibly) finds the intended information.

For example, a user might initially ask to retrieve

from a student database all those students who are ath-

letes using the following conjunctive query:

{x | Student(x),Athlete(x)}

where x is a variable that needs to be replaced with

actual students from the database while Student and

Athlete are concept atoms (unary predicates). Then, the

user can refine the search by requesting only those ath-

letes who are female by extending the previous query

with the new concept atom Female(x) giving raise to

the following query:

{x | Student(x),Athlete(x),Female(x)}.

Finally, the new query can be further extended request-

ing only those female athlete students who take a spe-

cific course. This can be done by adding the role atom

(binary predicate) takesCourse(x, y). In all these cases

all aforementioned DL-Lite systems would compute a

rewriting for the extended queries by running their al-

gorithm each time from scratch discarding any informa-

tion computed during previous runs. However, due to

the overlap between the queries much of the previously

computed information would need to be re-computed

by each system.

In the current paper we study the problem of com-

puting a rewriting for queries that have been extended

with new atoms. More precisely, given a DL-Lite on-

tology, a query, a rewriting computed (possibly previ-

ously) for this query and a new atom that would extend

the original one, we study how to compute a rewriting

for the new query by ‘extending’ the input rewriting

and avoid computing one from scratch. We study the

problem theoretically and design a detailed practical al-

gorithm. Roughly speaking, the algorithm computes a

rewriting for a query that is relevant only to the newly

added atom and then combines this with the input re-

writing using proper operations. This way the algorithm

performs only the additional work that is required to

compute a rewriting for the extended query.

Interestingly, our techniques for rewriting extended

queries imply a novel approach for computing a rewrit-

ing for fixed queries. More precisely, given a (fixed)

query one can pick one of its atoms compute a rewriting

for it and then iteratively add the rest of the atoms by

extending the previously computed rewriting. When all

the atoms of the input query have been processed a re-

writing for the given query would have been computed.

Based on this idea we present a detailed query rewriting

algorithm for conjunctive queries over DL-Lite ontolo-

gies. Subsequently, in order to improve its efficiency we

also present several novel optimisations.

Finally, we have implemented all the proposed algo-

rithms and we have conducted an extensive experimen-

tal evaluation comparing our algorithms against several

available state-of-the-art rewriting systems. The evalu-

ation shows that computing a rewriting incrementally

is in the vast majority of cases faster than the currently

fastest DL-Lite system. Especially, the comparison with

the original DL-Lite algorithm [8] with which our algo-

rithm shares many common features showed that the

new algorithm is several orders of magnitude faster.

This can be justified by the more guided rewriting strat-

egy that processes each atom at a time in contrast to

the brute-force approach followed by most existing sys-

tems. In summary our paper makes the following major

contributions:

– It studies the problem of computing a rewriting for

queries that have been extended with new atoms

given a rewriting for them.

– It shows how the reduction step of the original algo-

rithm for DL-Lite [8] can be optimised in order to

avoid an exponential blow-up of redundant queries.

– It presents a novel query rewriting algorithm that

incrementally processes the atoms of the query.

– It presents several optimisations by which the per-

formance of the incremental query rewriting algo-

rithm can be significantly improved.

– It provides an extensive experimental evaluation of

the proposed algorithms, also contrasting them with

existing state-of-the-art query rewriting systems.

Besides the immediate practical benefits, our study

has several theoretical consequences and gives many

interesting opportunities for future research. First, it

shows that rewriting in DL-Lite can largely be per-

formed in parallel. That is, one can complete all ‘re-

writing’ work for each atom independently and then

combine the results without referring to the rewriting

module again. To the best of our knowledge, this is the

first complete and practical algorithm for query rewrit-

ing that is based on this approach. Second, the exper-

imental evaluation shows that with relatively few op-

timisations incremental rewriting behaves very well in

practice. Hence, it would be interesting to apply such a

strategy over other ontology languages such as Linear-

Datalog± [11] or OWL 2 EL [23].

Incremental Query Rewriting for OWL 2 QL Ontologies 3

2 Preliminaries

In this section we first briefly recall some notions from

graph theory. Then, we present the Description Logic

DL-LiteR [8], a lightweight knowledge representation

formalism which consists of the logical underpinnings

of the ontology language OWL 2 QL. Subsequently, we

define the syntax and semantics of conjunctive queries

and unions of conjunctive queries and finally, we pro-

vide a brief overview of the so-called PerfectRef query

rewriting algorithm for DL-LiteR ontologies [8].

2.1 Directed Graphs

A (directed) graph is a tuple G = 〈V,E〉, where V is a

set of vertices and E ⊆ V × V is a binary relation over

V . We often abuse notation and use G to refer to the

set of edges of the graph; in that case it is understood

that V is exactly the set of endpoints of elements of E.

Hence, adding a pair 〈a, b〉 to G creates a new graph

G = 〈V ∪ {a, b}, E ∪ {〈a, b〉}〉.
For a, b ∈ V , we say that b is reachable from a in G,

written a G b, if c0, . . . , cn with n ≥ 0 exist where

c0 = a, cn = b and 〈ci, ci+1〉 ∈ E for each 0 ≤ i < n.

Note that, according to this definition, each c ∈ V is

reachable from itself. Finally, an element c ∈ V is called

top in G if for each c′ ∈ V we have c G c′.

2.2 The DL-LiteR language

A DL-LiteR signature is the disjoint union of a count-

ably infinite set C of atomic concepts (unary predi-

cates), R of atomic roles (binary predicates) and I of

individuals (constants). A DL-LiteR-role is either an

atomic role P ∈ R or its inverse P−. Let A ∈ C

be an atomic concept and R a DL-LiteR-role; then, a

DL-LiteR-concept is either an atomic concept A or a

concept of the form ∃R.

Let Bi be DL-LiteR-concepts and Ri be DL-LiteR-

roles. A DL-LiteR-TBox, denoted by T , is a finite set

of axioms of one the following forms:

B1 v B2 R1 v R2

An ABox is a finite set of assertions of the form A(c)

or P (c, d) for A ∈ C, P ∈ R and c, d ∈ I. A DL-LiteR-

ontology O = T ∪ A is the union of a TBox and an

ABox.1 In the following, since we are concerned with a

1 Note that, in DL-LiteR one can also allow for concept
(role) disjointness axioms of the form B1 v ¬B2 (R1 v ¬R2).
However, these axioms do not have any effects in query an-
swering when T ∪A is consistent [8,28]; hence we will discard
them here.

Table 1: The translation of DL-LiteR-axioms and on-

tologies into FOL sentences. Note that, B is a concept,

R is a role, and a, b are individuals.

π(B1 v B2) = ∀x.(πx(B1)→ πx(B2))

π(R1 v R2) = ∀x, y.(πx,y(R1)→ πx,y(R2))

π(A(c)) = A(c)

π(P (c, d)) = P (c, d)

π(O) =
∧
α∈O

π(α)

Table 2: The translation into FOL formulas.

πx(B) = B(x)

πx,y(R) = R(x, y)

πx,y(R−) = R(y, x)

πx(∃R) = ∃y.πx,y(R)

particular DL language, we simply speak of roles, con-

cepts, TBoxes, and ABoxes referring only to those ex-

pressible in DL-LiteR.

DL-LiteR can be seen as a fragment of First-Order

Logic (FOL); thus, it can be given formal semantics

via a translation to FOL, where concepts are translated

into formulae with one free variable, roles into formulae

with two free variables, axioms into FO-sentences, and

TBoxes, ABoxes and ontologies into FO-sentences. The

transformation π(·) for axioms and ontologies is given

in Table 1, while the translation of concepts is defined

as given in Table 2.

An ontology O is consistent if π(O) has a model,

while entailment (|=) is defined as usual in FOL.

2.3 Conjunctive Queries

We use standard notions of (function-free) term, vari-

able and substitution from First-Order Logic. For α

an atom and σ a substitution, the result of applying

σ to α is denoted as ασ. Moreover, we use the nota-

tion dom(σ) to denote the domain of a substitution σ.

Furthermore, every substitution σ induces a directed

graph G = 〈V,E〉, where t ∈ V iff t is a term in σ and

〈x, t〉 ∈ E iff x 7→ t ∈ σ.

A concept atom is of the form A(t) with A an atomic

concept and t a term. A role atom is of the form R(t, t′)

for R an atomic role, and t, t′ terms. A conjunctive

query (CQ) q is an expression of the form:

{x | α1, . . . , αm}

where x = (x1, . . . , xn) is a tuple of variables called

distinguished (or answer) and each αi is a concept or

role atom called body atom. Each distinguished variable

appears in at least some atom αi; all other variables of

4 Tassos Venetis et al.

the query are called undistinguished. A variable that is

either distinguished or appears in at least two different

atoms αi, αj with i 6= j in q is called bound, otherwise

it is called unbound. For an atom α we use var(α) to

denote the set of its variables; var can be extended to

queries in the obvious way. Moreover, by avar(q) we

denote all the distinguished variables of q. Finally, a

union of conjunctive queries (UCQ) is a set of CQs.

For a query q we will often abuse notation and use

q to refer to the set {α1, . . . , αm} of its body atoms.

Hence, for β an atom by q∪{β} we denote the new CQ

of the form {avar(q) | α1, . . . , αm, β}.
Given CQs q1, q2 with distinguished variables x and

y, respectively, we say that q2 subsumes q1 (or that q2 is

a subsumer of q1), if there exists a substitution σ from

var(q2) to var(q1) such that [{Q(y)} ∪ q2]σ is a subset

of {Q(x)}∪q1, where Q is a predicate of the same arity

as x (y) that does not appear in q1 and q2. For a UCQ

u and CQ q, we say that q is redundant in u if another

query q′ in u exists that subsumes q; otherwise it is

called non-redundant in u.

A certain answer to a CQ q with respect to an on-

tology O is a tuple c = (c1, . . . , cn) of individuals such

that O entails the FOL formula obtained by building

the conjunction of all atoms αi in q, replacing each dis-

tinguished variable xj with cj and existentially quan-

tifying over undistinguished variables. We denote with

cert(q,O) the set of all certain answers to q w.r.t. O.

W.l.o.g. we assume that CQs are connected. More

precisely, let q be a CQ. We say that q is connected if,

for all terms t, t′, there exists a sequence t1, . . . , tn such

that t1 = t, tn = t′ and, for all 1 ≤ i < n, there exists

a role R such that R(ti, ti+1) ∈ q.

2.4 Query Answering and Rewriting for DL-LiteR

Query answering over DL-Lite-ontologies is performed

with a technique known as query rewriting [8,28]. Given

a TBox T and query q, the technique computes another

query q′, called a rewriting for q, T , with the following

property: for each ABox A such that O = T ∪ A is

consistent we have:

cert(q,O) = cert(q′,A) (1)

Query rewriting has been extensively used for query

answering over ‘lightweight’ ontologies [8,32,9]. A re-

writing can be computed by applying certain transfor-

mations over the input TBox T and query q. Several

techniques and algorithms have been proposed so far

in the literature [8,28,32,9,11,19] and many of them

differ quite substantially from each other. For exam-

ple, several techniques have proposed the use of non-

recursive Datalog for representing the rewriting q′ [32,

13], while others return q′ in its equivalent disjunctive

normal form—that is, as a union of conjunctive queries

u which we next call a UCQ rewriting for q, T . Non-

recursive Datalog provides a more compact (polynomial

size) structure for computing rewritings in contrast to

the worst case exponential size of UCQs [18]. However,

it has been advocated [31] that UCQs provide a more

suitable form when it comes to actually evaluating the

computed rewriting over the stored data. Additionally,

recent optimisation techniques show how the structure

of the data (structure of the ABox) can be used to sig-

nificantly reduce the size of the UCQ [30,31].

Next, we briefly present the PerfectRef algorithm

proposed by Calvanese et al. [8] as our algorithm uses

several of its techniques. Given a CQ q and a TBox T ,

PerfectRef computes a UCQ rewriting for q, T , by ap-

plying exhaustively a reformulation and reduction step.

Each one of them takes as input a CQ and possibly some

axiom from T and generates a new CQ. This process

terminates when no new query is generated.

In the reformulation step the algorithm picks a CQ

q, an atom α in the CQ and an axiom I in T and

checks whether I can be used to replace α in q with a

new atom, hence creating a new CQ. For example, for

the CQ q1 = {x | S(x, y), S(y, z)} and the axiom I1 =

B v ∃S reformulation would replace S(y, z) producing

a new query q2 = {x | S(x, y), B(y)}. Next, if an axiom

of the form I2 = ∃S− v B exists in T then this can

also be used to replace B(y) in q2 producing the query

q3 = {x | S(x, y), S(w, y)}, where w is a new variable

not appearing in q2. More formally, for an atom α of a

query and an axiom I ∈ T , the function gr(α, I) returns

a new atom as defined in Table 3. If for some axiom I

and some atom α one of the conditions in Table 3 holds,

then we say that I is applicable to α, and applying I

to some α in some CQ q creates a new CQ of the form

q[α/gr(α, I)]—that is, a new query that contains the

atom gr(α, I) instead of the atom α.

In the reduction step a new CQ is generated by ap-

plying to some CQ q the most general unifier (mgu) of

two of its atoms. For example, applying reduction on

query q3 from above generates the new query q4 = {x |
S(x, y)}, since S(w, y) unifies with S(x, y).

3 Rewriting Under Atom Extensions

In this section we study the problem of computing a

UCQ rewriting for queries that have been extended

with new atoms, by extending a previously computed

UCQ rewriting for them. First, we provide an overview

of the algorithm emphasising several of its technical

points, after which we present the algorithm in detail.

Incremental Query Rewriting for OWL 2 QL Ontologies 5

Table 3: Function gr defined for an atom α and an axiom

I.

– if α = A(x) and
1. I = B v A, then gr(α, I) = B(x);
2. I = ∃P v A, then gr(α, I) = P (x, y) for y

a new variable in q;
3. I = ∃P− v A, then gr(α, I) = P (y, x) for

y a new variable in q.
– if α = P (x, z), z is unbound in q and

1. I = A v ∃P , then gr(α, I) = A(x);
2. I = ∃S v ∃P , then gr(α, I) = S(x, y) for y

a new variable in q;
3. I = ∃S− v ∃P , then gr(α, I) = S(y, x), for

y a new variable in q.
– if α = P (z, x), with z unbound, then

1. I = A v ∃P−, then gr(α, I) = A(x);
2. I = ∃S v ∃P−, then gr(α, I) = S(x, y),

where y is new in q;
3. I = ∃S− v ∃P−, then gr(α, I) = S(y, x),

where y is new in q.
– if α = P (x, y) and

1. I = S v P or I = S− v P−, then
gr(α, I) = S(x, y);

2. I = S v P− or I = S− v P , then
gr(α, I) = S(y, x).

3.1 An Overview

Consider the following TBox about an academic do-

main and the CQ which retrieves all individuals that

teach someone:

T = {Professor v ∃teaches, ∃teaches− v Student}
q = {x | teaches(x, y)}

The following set is a UCQ rewriting for q, T computed

using the PerfectRef algorithm:

u = {q, q1}, where q1 = {x | Professor(x)}.

More precisely, q1 is produced by applying the first

TBox axiom on atom teaches(x, y) of q, replacing it

with Professor(x).

Suppose now, that the initial query is extended in

order to retrieve only individuals that teach students—

that is, q is extended with atom α = Student(y) and

the new query is the following:

q′ = {x | teaches(x, y),Student(y)}.

Again, using the PerfectRef algorithm, we can compute

the following UCQ rewriting for q′, T :

u′ = {q′, q′1, q, q1}

where q′, q, and q1 are as defined previously, and q′1 =

{x | teaches(x, y), teaches(z, y)}. More precisely, q′1 is

obtained from q′ by applying the second TBox axiom

on atom Student(y), replacing it with teaches(z, y) for

z a fresh variable, while q is obtained from q′1 by ap-

plying reduction on its two atoms. Note that variable

y in query q′1 is bound since it appears in both atoms

teaches(x, y) and teaches(z, y), while after reduction it

becomes unbound. Hence, finally, the algorithm can

produce query q1 from q as shown earlier.

From the above example we can observe that when

run for q′, T , the PerfectRef algorithm has to recom-

pute queries q and q1, although these have been com-

puted previously for q, T . To avoid repeating this work

it would be beneficial to perform any rewriting work

only for the newly added atom and then appropriately

‘combine’ the result with the previously computed re-

writing (which in the following we informally call ref-

erence rewriting).

Consider the query qα = {y | Student(y)}. The set

uα = {qα, q′α}, where q′α = {y | teaches(z, y)} for z

a fresh variable, is a UCQ rewriting for qα, T com-

puted using the PerfectRef algorithm. It can be easily

seen that query q′ of u′ can be constructed by adding

the atoms of qα to q (which has been computed pre-

viously in u), while query q′1 can also be constructed

by adding the atoms of q′α to q. However, note that

adding the atoms of qα to q1 ∈ u creates the CQ {x |
Professor(x),Student(y)} which is not part of u′.

The above considerations suggest that given a re-

writing u for q, T and an atom α, a rewriting for q ∪
{α}, T can be computed by computing a rewriting uα
for a ‘special’ query qα and then properly extending the

CQs in u with the body atoms of queries from uα. More

precisely, for α, u, q and T the algorithm will compute a

UCQ rewriting uα for the query qα = {var(α)∩ var(q) |
α} and then add the atoms of a query q′α ∈ uα to the

atoms of a query q′ ∈ u if avar(q′α) ⊆ var(q′).

Intuitively, the above approach is possible because

the PerfectRef algorithm is to a large extent ‘local’ with

respect to the atoms of a query. For example, the appli-

cation of the reformulation step on some query atom is

independent from the rest of the query atoms. Unfor-

tunately, the second operation of the PerfectRef algo-

rithm, that of reduction, involves more than one atoms

in the query and hence refutes our independence ar-

gument. A straightforward approach would be to also

use reduction between queries from the two rewritings.

In our running example, atom teaches(x, y) in query q

unifies with atom teaches(z, y) in query q′α. The result

of unifying these two queries indeed produces the CQ q

of u′. However, this approach has two issues. Firstly, it

is well-known that, in terms of performance, reduction

is an inefficient step that can create a large number

of (possibly redundant) queries [28,32,12]. Secondly,

6 Tassos Venetis et al.

even with this operation we still cannot produce query

q1 ∈ u′.
The reduction step was initially introduced because

an axiom I might only be applicable to a reduction

of some CQ. In our running example, q1 is produced

from q because variable y that was bound in q′1 became

unbound in q after reduction. An advantage in our case

is that we already know from the reference rewriting

that q1 can be produced from q. Hence, our algorithm

only needs to check whether some CQ in uα can be

‘unified’ into q in such a way that all queries that are

produced due to q in the reference rewriting can still be

produced without producing all possible unifications. If

such a query exists, then q and all queries ‘produced

by’ q (in our case q1) should be part of the result. The

algorithm presented in the next section identifies such

cases using the function mergeCQs defined next.

Definition 1 Let q, q′ be two queries. Then, function

mergeCQs(q′, q) returns the smallest set Σ of substitu-

tions such that:

– If there exists atom α ∈ q′ ∩ q, then Σ contains

{x 7→ x | x ∈ var(α)};
– If there exist R(z, y) ∈ q′, R(x, y) ∈ q or R(y, z) ∈
q′, R(y, x) ∈ q and x, y, z are all distinct, then Σ

contains {z 7→ x}.

Note that, our restricted reduction approach is similar

to the factorisation step proposed by Gottlob et al. [11].

However, since DL-Lite only allows for predicates with

at most two variables (cf. FO translation in Table 2) the

checks we need to perform (i.e., the ones of Definition 1)

are much more tailor made and lightweight. Whereas,

to implement the factorisation step one has to check

applicability of certain TBox axioms over an atom, that

is, try to actually apply a rewriting step.

As the next example shows, the substitutions re-

turned by function mergeCQs indicate how a query can

be merged into another one and this is key to our algo-

rithm.

Example 1 Consider the following TBox and CQ:

T = {A v ∃R} q = {x | R(x, y)}

with the UCQ rewriting:

u = {q, q1}, where q1 = {x | A(x)}.

Consider now that we extend q with atom α1 = R(z, y)

and that we want to compute a UCQ rewriting for

q′ = q ∪ {R(z, y)} and T using the approach described

earlier. First, we construct qα1
= {y | R(z, y)} since y

is the only variable in var(a)∩var(q) and then the UCQ

rewriting uα1
= {qα1

} for qα1
, T . Finally, a UCQ u′ is

computed as follows: The atoms of qα1 are added to

q creating the CQ q′ = q ∪ {R(z, y)}, while query qα1

merges into q since mergeCQs(qα1
, q) contains {z 7→ x};

hence, q and q1 are added to u′. It can be verified that

u′ = {q′, q, q1} is a UCQ rewriting for q′, T .

Suppose now that we want to further extend q′ with

the atom α2 = B(z) and that we want to compute a

UCQ rewriting for q′′ = q′ ∪ {B(z)} and T . One such

rewriting computed using PerfectRef is the following:

u′′ = {q′′, q′1, q′2}, where q′1 = {x | R(x, y), B(x)}
and q′2 = {x | A(x), B(x)}.

Suppose now that we want to compute u′′ using our

approach. Hence, we create the CQ qα2
= {z | B(z)},

compute the UCQ rewriting uα2
= {qα2

} for qα2
, T

and then combine queries from u′ and uα2 . Adding the

atoms of qα2
to q′ creates query q′′, however, for all

other queries qi ∈ u′ we have avar(qα2
) * var(qi) and

hence no other query of u′′ can be constructed. ♦

The problem in the previous example is that after we

merged qα1
into q our reference to variable z was lost as

this was mapped to x. This information is critical when

we later further extend the input query and we want to

decide whether it is possible to extend queries from u′

with queries from uα2
. To correctly handle these cases,

instead of the subset condition between variables, our

algorithm uses the more involved method canBeJoined
defined next.

Definition 2 Let q be a query, let σ be a substitu-

tion, and let vars be a set of variables. Then, function

canBeJoined(q, σ, vars) returns true if for each z ∈ vars
there exists x ∈ var(q) such that z G x for G the

graph induced by σ.

Example 2 Consider query q′′, UCQs uα2
and u′, and

substitution σ from Example 1. For queries qα2 ∈ uα2

and q ∈ u′ we have that canBeJoined(q, σ, avar(qα2
)) =

true. Hence, the atoms of qα2
(i.e., B(z)) can be added

to those of q. Note, however, that due to σ the new

query that should be created is the query q ∪ {B(z)σ},
which is precisely q′1 from Example 1. Similarly, for the

CQ q1 ∈ u′ we have canBeJoined(q1, σ, avar(qα2
)) =

true, hence the query q1 ∪ {B(z)σ} (i.e., q′2) is also

created. Consequently, u′′ of Example 1 can be con-

structed. ♦

Summarising the above, when there exist queries

qi ∈ uα and qj ∈ u such that mergeCQs(qi, qj) 6= ∅
(i.e., qi can be ‘merged’ into qj) first, we need to know

which queries have been generated in u due to qj , in

order to ‘copy’ them to the result, and second, which

variable mappings are used in the merge. To capture

Incremental Query Rewriting for OWL 2 QL Ontologies 7

this information, in contrast to previous approaches,

our algorithm operates over graphs G and Gα of queries

which store the dependencies between queries and the

used mappings rather than on UCQs u and uα.

Definition 3 Let q be a CQ and let T be a TBox.

A rewriting graph for q, T is a directed labeled graph

G = 〈u,H,m〉, where u is a UCQ rewriting for q, T , H
is a binary relation over u, and m maps each qi ∈ u

to a set of variable mappings. Moreover, G satisfies the

following properties:

– If 〈q1, q2〉 ∈ H, then q2 is produced from q1 by the

application of a reformulation or reduction step.

– For each 〈q1, q2〉 ∈ H if q2 is produced by a refor-

mulation step, then m(q2) = m(q1), while if it is

produced by a reduction step with σ the mgu, then

m(q2) = m(q1) ∪ σ.

Concluding our algorithm overview, an important

question is whether we can compute a UCQ rewriting

for an extended query given any reference UCQ rewrit-

ing. As the following example shows this is not always

possible.

Example 3 Consider the following TBox and CQ:

T = {A v ∃R} q = {x | A(x), R(x, y)}.

Then, G1 = 〈u1,H, ∅〉 where u1 = {q, q1}, q1 = {x |
A(x)} and H = {〈q, q1〉} is a rewriting graph for q, T .

However, q is redundant in u1. Thus, G2 = 〈{q1}, ∅, ∅〉
is also a rewriting graph for q, T .

Now suppose that we want to extend q with the

atom α = B(y) creating the query q′ = q ∪ {B(y)}.
A UCQ rewriting for q′, T computed using PerfectRef
consists of the UCQ u′ = {q′}.

Consider now the query qα = {y | B(y)}. Using

PerfectRef we compute the UCQ rewriting uα = {qα}.
Clearly, it is not possible to compute u′ from G2. How-

ever, u′ can be constructed from G1. More precisely,

adding the atoms of qα to q creates q′. ♦

The problem in the previous example is that although

q is redundant in u1 due to q1, neither q1 nor any other

query related or produced by q1 by the extension is part

of the final UCQ rewriting. Hence, q and all queries that

are produced by q are ‘relevant’ for computing a UCQ

for q ∪ {α} and are not redundant. Next, we formalise

a property that is sufficient for computing a rewriting

graph for an extended query.

Definition 4 Let q be a query, let T be a TBox, let

G = 〈u,H,m〉 be a rewriting graph for q, T . We say

that G is reformulation-closed for q, T if the following

properties are satisfied:

Algorithm 1 ExtendRewritingForNewAtom(T ,G, α)

input: A TBox T , a rewriting graph G = 〈u,H,m〉 for
some q, T and a new atom α.

1: Gα := ex-PerfectRef({var(α) ∩ var(q) | α}, T)
2: G′ := joinGraphs(G,Gα, var(α) ∩ var(q), avar(q))
3: return G′

1. q is a top element in G.

2. For each top element qi in G we have m(qi) = ∅.
3. If a query q2 can be produced using a single reformu-

lation step on some query q1 ∈ u, then 〈q1, q2〉 ∈ H.

4. If q1 ∈ u and atoms R(z, y) and R(x, y) or atoms

R(y, z) and R(y, x) appear in q1, then 〈q1, q2〉 ∈ H,

where q2 = q1{z 7→x}.

It is easy to see that the rewriting graph G2 from Ex-

ample 3 is not reformulation-closed for q, T since q does

not appear as a top element, while G1 is.

3.2 The Rewriting Extension Algorithm

Our algorithm for computing a rewriting graph for a

query q extended with an atom α is shown in Algo-

rithm 1. The algorithm accepts a TBox T , a rewriting

graph G for q, T , and an atom α and it returns a re-

writing graph for q ∪ {α}, T . First, it computes a re-

writing graph Gα for the query {var(α) ∩ var(q) | α},
which explicates from T the knowledge that regards

atom α. This is accomplished using the sub-routine

ex-PerfectRef, which consists of a straightforward ex-

tension of the standard PerfectRef algorithm [8]. More

precisely, apart from applying the standard reformula-

tion and reduction steps this algorithm also stores the

dependencies between the queries using a relation as

well as the mappings that are created due to the reduc-

tion steps. Subsequently, Algorithm 1 ‘combines’ G and

Gα using algorithm joinGraphs and computes a rewrit-

ing graph for the extended query.

Algorithm joinGraphs is shown in Algorithm 2. Intu-

itively, it computes the Cartesian product of the two in-

put rewriting graphs. The intuition is that if 〈q, q′〉 ∈ G
(i.e., q′ is produced by q) and qα is a vertex in Gα, then

the same step would also be applicable to query q∪qα—

that is, q ∪ qα will produce the CQ q′ ∪ qα. Similarly,

for q a vertex in G and 〈qα, q′α〉 ∈ Gα.

More precisely, the algorithm uses queues Q and Qα
in order to traverse G and Gα, respectively. In line 5 it

picks an element qh from G and checks if the query can

be extended with atoms of queries in Gα (line 6). If

it does, then a CQ qα is also picked from Gα (line 9)

and a new query qc from qh and qα is created (line 11)

that has as distinguished variables the variables in nv.

8 Tassos Venetis et al.

Algorithm 2 joinGraphs(G,Gα, jv, av)

input: A rewriting graph G = 〈u,H,m〉 for some q, T
and a rewriting graph Gα, the set jv of the join-points,
and a set of variables av.

1: Initialise a UCQ u′ := ∅, a binary relation H′ := ∅,
and a mapping m′ = ∅

2: G′ := 〈u′,H′,m′〉
3: Initialise a queue Q with the CQ q
4: while Q 6= ∅ do
5: Remove the head qh of Q and let κ := m(qh)
6: if canBeJoined(qh, κ, jv) then
7: Initialise a queue Qα with a top element of Gα
8: while Qα 6= ∅ do
9: Remove the head qα of Qα

10: nv := avar(qh) ∪ (var((qα)κ) ∩ av)
11: qc := {nv | qh ∪ (qα)κ}
12: m′(qc) := κ
13: Add qc to u′

14: for all σ ∈ mergeCQs((qα)κ, qh) do
15: Add 〈qc, (qh)σ〉 to G′
16: for all q′ s.t. qh G q′ do
17: if dom(σ) ⊆ var(q′)∪ dom(m(q′)) then
18: µ′ := buildSubst(σ,m(q′))
19: m′({nv | q′}µ′) := µ′

20: for all 〈q′, q′′〉 ∈ G do
21: µ′′ := buildSubst(σ,m(q′′))
22: Add 〈{nv | q′}µ′ , {nv | q′′}µ′′〉

to G′
23: end for
24: end if
25: end for
26: end for
27: for all 〈qh, q′〉 ∈ G do
28: buildChildren(qc, q′, qα,G,G′, av, jv)
29: Add q′ to Q
30: end for
31: for all 〈qα, q′〉 ∈ Gα do
32: buildChildren(qc, qh, q′,G,G′, av, jv)
33: Add q′ to Qα
34: end for
35: end while
36: end if
37: end while
38: return G′

Moreover, m(qh) is set as the mapping for qc (line 12).

Subsequently, the algorithm checks if qα can be merged

into qh. If it does, then it adds 〈qc, (qh)σ〉 ((qh)σ being

the query produced after applying σ to qh) to the new

graph (line 15) and then also ‘copies’ to the result the

part of G that has been produced due to qh (lines 16–25)

applying also a proper substitution µ. This substitution

is constructed using function buildSubst.

Definition 5 Let σ and κ be two sets of mappings.

Then, function buildSubst(σ, κ) returns a new set of

mappings µ constructed in the following steps:

1. Set µ := κ ∪ σ
2. For each z 7→ y ∈ σ if z 7→ y′ in κ exists then replace

z 7→ y′ in µ with y 7→ y′.

Algorithm 3 buildChildren(qc, q, qα,G,G′, av, jv)

input: qc, q, qα are CQs, G = 〈u,H,m〉 and G′ =
〈u′,H′,m′〉 are graphs and av, jv are sets of variables.

1: κ := m(q)
2: if canBeJoined(q, κ, jv) then
3: nv := avar(q) ∪ (var((qα)κ) ∩ av)
4: qn := {nv | q ∪ (qα)κ}
5: m′(qn) := κ
6: Add 〈qc, qn〉 to G′
7: for σ ∈ mergeCQs((qα)κ, q) do
8: Add 〈qn, qσ〉 to G′
9: for all q′ s.t. q G q′ do

10: if dom(σ) ⊆ var(q′) ∪ dom(m(q′)) then
11: µ′ := buildSubst(σ,m(q′))
12: m′({nv | q′}µ′) := µ′

13: for all 〈q′, q′′〉 ∈ G do
14: µ′′ := buildSubst(σ,m(q′′))
15: Add 〈{nv | q′}µ′ , {nv | q′′}µ′′〉 to G′
16: end for
17: end if
18: end for
19: end for
20: end if

H

q1

q3q2

(a)

Hα

q1α

q2α

(b)

q1 ∪ q1α

q3 ∪ q1αq2 ∪ q1α q1 ∪ q2α

q3 ∪ q2αq2 ∪ q2α
(c)

Fig. 1: Rewriting graphs of Example 4.

Note that, this function is important when for q′ a

‘copied’ query we have m(q′) 6= ∅.
After checking if a query can be merged, the algo-

rithm iterates through the queries that are produced by

qh (lines 27–30) as well as over those that are produced

by qα (lines 31–34) and constructs proper successors of

qc. This is done using the sub-routine buildChildren, de-

picted in Algorithm 3, which follows a similar approach

as before. That is, it computes the join between qh (a

child of qh) and some child of qα (and qα) and then also

checks if two queries can be merged, in which case it

copies the relevant sub-graph to the result. Finally, the

children of qh (qα) are added to Q (Qα).

Note that G and Gα can be cyclic. Hence, the al-

gorithm needs to keep track which nodes it has visited

(copied) and avoid revisiting (recopying) them. This

can be done using standard graph traversal techniques.

Example 4 Consider the following rewriting graphs:

G = 〈{q1, q2, q3},H,m〉 and Gα = 〈{q1α, q2α},Hα,mα〉

where H and Hα are as shown in Figures 1 (a) and (b),

respectively. Assume also that m(qi) = ∅ for each 1 ≤
i ≤ 3 and that all queries qi can be extended. Figure 1

Incremental Query Rewriting for OWL 2 QL Ontologies 9

(c) depicts the rewriting graph that is computed by

Algorithm 1 for G and Gα, assuming that for each qjα ∈
uα and for each qi ∈ u, we have mergeCQs(qjα, qi) = ∅—
that is, no merges occur. More precisely, we have the

following steps:

– At the first iteration we have Q = {q1} and Qα =

{q1α}, hence qh = q1 and qα = q1α. In line 11, CQ

q1 ∪ q1α is created (recall that m(q1) = ∅). Then, in

the for-loop in lines 27–30, queries q2∪q1α and q3∪q1α
are created, they are set as children of q1 ∪ q1α and

q2, q3 are added to Q. Subsequently, in the for-loop

in lines 31–34 CQ q1∪q2α is created, it is set as child

of q1 ∪ q1α and q2α is added to Qα.

– In the next iteration Qα = {q2α}, hence q2α is picked

and now qh = q1 and qα = q2α. Then, in line 11,

CQ q1 ∪ q2α is created, and then, in a similar way as

described before, CQs q2∪q2α and q3∪q2α are created

and pairs 〈q1 ∪ q2α, q2 ∪ q2α〉 and 〈q1 ∪ q2α, q3 ∪ q2α〉 are

added to the result.

– In the next iteration, the algorithm picks q2 from

Q and Qα is again initialised to {q1α}. Then, again

query q2 ∪ q1α will be constructed and ‘connected’

with query q2 ∪ q2α that was constructed previously.

– Finally, the algorithm picks q3 from Q and again

constructs q3 ∪ q1α and ‘connects’ it with q3 ∪ q2α.

Then, the algorithm terminates.

♦

Concluding this section we show the correctness of

Algorithm 1.

By the definition of the function mergeCQs it is clear

that our algorithm does not apply the standard re-

duction of the PerfectRef algorithm. For example, for

the query {x | R(x, y), R(y, z)} the standard reduc-

tion will produce the query {x | R(x, x)}; however, for

q1 = {x | R(x, y)} and q2 = {x | R(y, z)}, we have

mergeCQs(q2, q1) = ∅ and hence q2 is not merged into

q1. Correctness of our merge approach follows by the

following lemma which proof is given in the Appendix.

Lemma 1 Let q1, q2 be two CQs such that q2 subsumes

q1 and let q′1 be the result of applying an axiom I to q1.

If q2 does not subsume q′1, then either I is applicable to

q2 and the result subsumes q′1 or for 1 ≤ i ≤ n, atoms

of the form P (u, v), P (zi, v) or P (v, u), P (v, zi) exist in

q2 such that for 1 ≤ i, j ≤ n, i 6= j we have zi 6= zj and

for λ = {zi 7→ u | 1 ≤ i ≤ n}, I is applicable to (q2)λ
and the result subsumes q′1.

As explained in Section 3.1, the reduction step was

introduced because an axiom I might only be appli-

cable to a reduction q′ of some CQ q. However, it is

well-known that if q′ is the reduction of q, then q sub-

sumes q′. Hence, if some I is applicable to q′ but not

to q, Lemma 1 dictates that only a restricted form of

reductions over atoms in q are necessary to obtain a CQ

over which I is applicable. Such reductions are precisely

those used to decide whether a query from uα can be

merged into a query in the reference rewriting.

Consider a CQ q, a TBox T , an atom α, a rewriting

graph G for q, T and a rewriting graph Gα computed by

Algorithm 1 in line 1. Assume also that u is the UCQ

rewriting computed using the standard PerfectRef algo-

rithm over q ∪ {α}, T . To show correctness we will use

induction over the number of steps that the PerfectRef
algorithm has been applied over q ∪ {α}, T . For exam-

ple, assume that ui ⊆ u is the UCQ computed at step i

and that for every qi ∈ ui some qh in G and some qα in

Gα exist such that {nv | qh ∪ (qα)κ}, where κ = m(qh)

and nv = avar(qh)∪ (var((qα)κ)∩ avar(q)) subsumes qi.

Then, assume that at step i+1 some axiom I is applied

to qi producing qi+1. By Lemma 1 either I is applicable

to {nv | qh∪(qα)κ} and the result subsumes qi+1 or sev-

eral restricted reductions are applicable. In the former

case I is either applicable to some atom in qh producing

some query q′h for which we will have 〈qh, q′h〉 ∈ G or I

is applicable to (qα)κ. Hence, in the former case we will

have some q′h in G such that {nv | q′h∪ (qα)κ} subsumes

qi+1. In the latter case the existence of some q′α in Gα
such that 〈qα, q′α〉 ∈ Gα and {nv | qh ∪ (q′α)κ} subsumes

qi+1 follows by the following lemma which we show in

the Appendix.

Lemma 2 Let q be a CQ that contains exactly one body

atom and let κ be a substitution such that some axiom I

is applicable to qκ producing q′. Then I is also applicable

to q and for q′′ the result we have q′′κ = q′ (modulo

renaming of fresh variables).

Finally, the following theorem establishes the cor-

rectness of the algorithm. The proof is given in the Ap-

pendix and consists of a systematic analysis of all of the

aforementioned cases.

Theorem 1 Let q be a CQ, let T be a TBox, let α

be an atom such that var(α) ∩ var(q) 6= ∅ and let G be

a reformulation-closed rewriting graph for q, T . Let G′
be the graph returned by Algorithm 1 when applied to

G, α and T ; then G′ is a reformulation-closed rewriting

graph for q ∪ {α}, T .

4 An Incremental Query Rewriting Algorithm

Algorithm 2 can form the basis for developing a UCQ

rewriting algorithm for fixed queries over TBoxes. More

precisely, for a fixed CQ q one can pick some atom

α ∈ q, compute a rewriting graph for the query q1 =

{var(α) ∩ avar(q) | α} over T using ex-PerfectRef and

10 Tassos Venetis et al.

Algorithm 4 IncrementalRew(q, T)

input: A CQ q and a TBox T .

1: Let S be the set of body atoms in q
2: Remove an atom α from S s.t. var(α) ∩ avar(q) 6= ∅
3: G := ex-PerfectRef({var(α) ∩ avar(q) | α}, T)
4: cv := var(α)
5: while S 6= ∅ do
6: Remove an atom α′ from S s.t. var(α′) ∩ cv 6= ∅
7: jv := cv ∩ var(α′)
8: Gα′ := ex-PerfectRef({jv | α′}, T)
9: G := joinGraphs(G,Gα′ , jv, avar(q))

10: cv := cv ∪ var(α′)
11: end while
12: return removeRedundant(G)

then extend this rewriting graph by iteratively adding

the rest of the body atoms of q using Algorithm 2.

The above idea is illustrated in Algorithm 4. The

algorithm first selects some atom α such that some

of its variables appear as distinguished variables in q

(line 2) and computes a rewriting graph G for the query

{var(α) ∩ avar(q) | α} (line 3). At this point a rewrit-

ing graph for a query that contains only atom α of q,

variables cv = var(α) of q and distinguished variables

var(α)∩avar(q) of q have been computed. Then, the al-

gorithm selects one-by-one the remaing atoms and ex-

tends the previously computed rewriting graph (lines 5–

11). More precisely, at the i-th iteration the algorithm

has computed a rewriting graph G for a query qi that

contains i+ 1 atoms of q, has as distinguished variables

the variables in var(qi) ∩ avar(q), while cv contains the

variables of q that appear in qi. Hence, the algorithm

picks an atom α′ such that some of its variables also

appear in cv (line 6), it computes a rewriting graph Gα′
for the query {var(α′) ∩ cv | α′} (line 8) and then, it

joins G with Gα′ using Algorithm 2 (line 9). Finally,

the algorithm uses the well-known redundancy elimi-

nation algorithm proposed in [27] to remove the redun-

dant (subsumed) queries (line 12) and return a UCQ.

Note that the latter is possible since we assume that

the query is fixed.

Theorem 2 Let q be a CQ and let T be a TBox. When

applied to q and T Algorithm 4 terminates. Let u be

the UCQ produced by the algorithm; then, u is a UCQ

rewriting for q, T .

The theorem follows by Theorem 1 and induction over

the atoms of q that have been added by Algorithm 4.

We now comment on the maximum number of CQs

generated by our rewriting algorithm. Since our algo-

rithm computes a UCQ rewriting it is thus of the same

worst case complexity as other systems, like QuOnto,

Nyaya, and Requiem, i.e., exponential w.r.t. the size of

the input CQ [18].

Lemma 3 Let T be a DL-Lite TBox, let q be a CQ,

and let G = 〈u,H,m〉 be the output of Algorithm 4.

Then, the maximal size of |u| is O((|T | · |q|)|q|).

Proof Let m be the number of concepts and roles ap-

pearing in T and n the number of atoms in q. Let

also ui be the UCQ computed at the i-1-th iteration

of the while-loop of Algorithm 4. In the next iteration,

ui+1 is computed by first computing a rewriting graph

Gαi = 〈uαi ,Hαi ,mαi〉 for an atom αi of q and then us-

ing the queries in uαi and ui to build new queries by

either extending or merging. Since the query for which

uαi is computed contains exactly one atom, then there

can be at most m · (2 + 1)2 different queries in uα (the

factor ‘2 + 1’ is because the atom can be a role so there

are two variables plus 1 for possibly freshly introduced

variables). Next, the algorithm extends the queries in ui
with atoms from the queries in uαi . Hence, there can be

|ui| ·m · 32 CQs generated by extension. Moreover, the

algorithm checks if queries from uα can be merged to

CQs by computing all possible merges. For each merge,

all CQs in ui ‘below’ the merged query are copied.

Since the queries in ui have at most i atoms (i atoms

have been processed thus far), there can be at most

i · |ui| ·m ·32 CQs computed due to merging. Summaris-

ing, |ui+1| contains at most (i+1)·|ui|·m·32 CQs. By re-

cursively analysing |ui| and since |u0| = uα0
we can con-

clude that |un| contains at most n·(n−1)·. . .·2·mn ·32·n
CQs. Since m is bounded by |T | and n by |q| we have

that |u| = |un| = O(|T ||q| · |q|! ·32·|q|) = O(|T ||q| · |q|!) =

O((|T | · |q|)|q|). ut

Clearly, in absence of any optimisations or refine-

ments Algorithm 4 is not likely to behave well in prac-
tice. In the following sections we present several optimi-

sations which aim at improving its performance. Note

that these optimisations intend to improve the compu-

tation time of the algorithm rather than reduce the size

of the UCQ. Recall, however, that recent techniques

show how we can also significantly reduce the size of

the UCQ using the input data when we finally want to

evaluate the rewriting [30,31].

4.1 Optimising the Last Iteration

As explained in Section 3, Algorithm 2 computes the

Cartesian product between the input rewriting graphs.

The structure of the computed graph is important for

subsequent additions of atoms, however, it is not im-

portant after processing the last atom of a fixed query

using Algorithm 4. Consequently, when the last atom α′

is selected in line 6, Algorithm 4 can proceed as follows:

First, in line 8 it can compute a UCQ rewriting uα′ for

Incremental Query Rewriting for OWL 2 QL Ontologies 11

the query {jv | α′} using the standard PerfectRef al-

gorithm, instead of a rewriting graph Gα′ . Then, when

joining G and uα′ it can call a simplified version of Al-

gorithm 2 that constructs a UCQ rather than a rewrit-

ing graph. Algorithm 5 depicts the simplified algorithm.

Roughly speaking, it is obtained from Algorithm 2 by

removing the for-loops in lines 27–34 and adding the

computed queries to a UCQ u′ rather than a graph.

Another way to further improve the performance

of Algorithm 5 is to identify cases where queries from

G do not need to be further processed and extended

with atoms of queries from uα. The next proposition

demonstrates a case where ‘copying’ a query from the

reference rewriting to u′ due to a merge is sufficient to

discard certain queries from G.

Proposition 1 Let G = 〈u,H,m〉 be a rewriting graph,

let uα be a UCQ, let nv be a set of variables and let

qh ∈ u. If there exists a query qα in uα and substitution

λ such that for all {z 7→ x} ∈ mergeCQs((qα)λ, qh) we

have z 6∈ var(qh), then for each q′ such that qh G q′,
each q′α in uα and each substitution κ, the CQ {nv |
q′}µ′ where µ′ = buildSubst({z 7→ x},m(q′)) subsumes

{nv | q′ ∪ (q′α)κ}.

Consider Algorithm 5 and assume that for some

query qh in line 4, some query qα in line 6 and some

{z 7→ x} ∈ mergeCQs((qα)λ, qh) in line 9 the algorithm

adds to u′ all CQs {nv | q′}µ′ such that qh G q′

(line 14). If z 6∈ var(qh), then by the properties of

reformulation and reduction for all such q′ we have

z 6∈ var(q′) and hence also no mapping of the form

z 7→ y appears in m(q′). Moreover, we clearly have

that q′m(q′) = q′. Hence, for any such query q′ and for

µ′ = buildSubst({z 7→ x},m(q′)) we have q′µ′ = q′ and

thus {nv | q′}µ′ trivially subsumes {nv | q′ ∪ (q′α)κ} for

any κ and q′α. Consequently, Algorithm 5 adds the suc-

cessors of a selected query qh to the queue in line 19 only

if Σ = ∅ or there exists {z 7→ x} ∈ Σ with z ∈ var(qh)

since otherwise the extensions of such queries is known

to lead to redundant queries.

4.2 Optimising Redundancy Elimination

As described in the previous section, in line 12 Algo-

rithm 4 applies the well-known redundancy elimination

algorithm [27]. It has been shown by several experi-

mental evaluations [27,9] that this method usually does

not perform well in practice because it consists of two

nested for-loops over the (potentially large) computed

UCQ u′. More precisely, the algorithm needs to check

whether each CQ q1 ∈ u′ is subsumed by some other

CQ q2 ∈ u′. In order to improve the performance of

Algorithm 5 OptimisedExtensionStep(G, uα, jv, av)

Input: A rewriting graph G = 〈u,H,m〉, a UCQ uα, and
two sets of variables jv and av.

1: Initialise a queue Q with a top element in G
2: Initialise a UCQ u′ := ∅
3: while Q 6= ∅ do
4: Remove the head qh of Q and let κ := m(qh)
5: if canBeJoined(qh, κ, jv) then
6: for all qα ∈ uα do
7: nv := avar(qh) ∪ (var((qα)κ) ∩ av)
8: Add {nv | qh ∪ (qα)κ} to u′

9: Σ := mergeCQs((qα)κ, qh)
10: for all σ ∈ Σ do
11: for all q′ s.t. qh G q′ do
12: if dom(σ) ⊆ var(q′)∪ dom(m(q′)) then
13: µ′ := buildSubst(σ,m(q′))
14: Add {nv | q′}µ′ to u′

15: end if
16: end for
17: end for
18: if (Σ = ∅ or {z 7→ x} ∈ Σ ∧ z ∈ var(q)) then
19: Add each q′ such that 〈qh, q′〉 ∈ G to Q
20: end if
21: end for
22: end if
23: end while
24: return u′

this method our algorithm uses three approaches which

attempt to reduce the size of the sets over which the

algorithm would execute these for-loops.

First, it tries to identify on the fly, during the ex-

ecution of Algorithm 5, queries that if produced and

added to u′ are going to be redundant. The more re-

dundant queries are identified the smaller the size of u′

over which algorithm removeRedundant would be exe-

cuted. However, u′ can still be very large. Hence, sec-

ond, it tries to identify queries that are going to be

non-redundant in the computed set u′. Such queries can

then be excluded from the final check reducing the size

of the first for-loop of method removeRedundant. More

precisely, if u′nr is the set of non-redundant queries then

only the CQs in u′ \u′nr need to be checked against the

CQs in u′. Third, it tries to identify queries that are

non-subsumers. This can be used to reduce the size of

the second for-loop of the method. More precisely, if

u′ns contains all such queries then each CQs in u′ \ u′nr
needs to be checked only against the CQs in u′ \ u′ns.

4.2.1 Pruning Redundant Queries

The following proposition presents two properties by

which we can identify that a query possibly generated

by Algorithm 5 will be redundant in the final UCQ.

Proposition 2 Let G = 〈u,H,m〉 be a rewriting graph,

let uα be a UCQ, let jv, av be sets of variables, and let u′

12 Tassos Venetis et al.

be the output of Algorithm 5 when applied to G, uα, jv,

and av. Let a CQ q ∈ u with canBeJoined(q,m(q), jv) =

true, let nv be the set of variables constructed for q in

line 7, and assume that q is subsumed by some other

CQ q′ ∈ u; then the following properties hold:

(R1) If {nv | q′} ∈ u′, then {nv | q} is redundant in u′.

(R2) If canBeJoined(q′,m(q′), jv) = true, q′ ⊆ q, and

m(q′) = m(q), then for each qα ∈ uα the CQ {nv |
q ∪ (qα)m(q)} is redundant in u′.

Proof Property (R1) holds straightforwardly, hence we

only show Property (R2).

First, we show that for all qα ∈ uα the CQ {nv | q∪
(qα)m(q)} is subsumed by the CQ {nv′ | q′ ∪ (qα)m(q′)}
where nv′ is the set of variables constructed for q′ in

line 7. More precisely, since q′ ⊆ q and m(q′) = m(q)

the for all qα ∈ uα we have q′∪ (qα)m(q′) ⊆ q∪ (qα)m(q).

Moreover, for the same reasons nv is equal to nv′; hence

{nv′ | q′ ∪ (qα)m(q′)} subsumes {nv | q ∪ (qα)m(q)} for

each qα ∈ uα.

Now, since canBeJoined(q′,m(q′), jv) = true, upon

termination of Algorithm 5 we have that for each qα ∈
uα either the CQ {nv′ | q′ ∪ (qα)m(q′)} has been added

to u′ (line 8) or another query that subsumes it. In

either case {nv | q ∪ (qα)m(q)} is redundant in u′. ut

Proposition 5 can be used to avoid adding redun-

dant queries to the result u′ when Algorithm 4 calls

Algorithm 5 in the last iteration. However, to check for

Properties (R1) and (R2) we need to know the sub-

sumption relations between the CQs in G. To iden-

tify these relations, before calling Algorithm 5, Algo-

rithm 4 executes the standard subsumption checking al-

gorithm over G and stores all such relations. Note that,

no queries are removed at this point as G needs to be

reformulation-closed for Algorithm 5 to produce a UCQ

rewriting. Furthermore, note that the size of G at this

point of iteration is expected to be significantly smaller

than that of the final UCQ, hence the subsumption al-

gorithm is expected to behave well in practice. Then,

Algorithm 5 uses Properties (R1) and (R2) as follows:

– In line 14, it does not add the query {nv | q′}µ′ to

u′ if q′ is subsumed by some q′′ in G and {nv | q′′}
has already been added to u′.

– Let qh be a query selected in line 4. If qh is sub-

sumed by some q′ in G and either {nv′ | q′} has al-

ready been added to u′, or q′ ⊆ qh, m(q′) = m(qh),

and canBeJoined(q′,m(q′), jv) = true, then the algo-

rithm ‘skips’ qh—that is, it adds each q′′ such that

〈qh, q′′〉 ∈ G to Q and it continues with the next

iteration.

Note that, although the conditions of Property (R2)

seem rather strict, it is actually very often the case in

practice that a query q′ subsumes a query q under the

identity substitution and that m(q′) = m(q) = ∅. More-

over, regarding Property (R1), note that in the vast

majority of cases the set of variables nv constructed for

each CQ in line 7 is the same for all queries, while in

line 10 for σ = {z 7→ x} we usually have z 6∈ var(q′);
hence, in line 14 we will have that {nv | q′}µ′ = {nv |
q′}. Consequently, both conditions of Proposition 2 can

be very effective in practice as also supported by our

experimental evaluation.

Example 5 Assume that for some CQ and TBox, Al-

gorithm 4 has at some point computed the graph G =

〈u,H,m〉, where u contains q1 = {x | A(x), R(x, y)}
and q2 = {x | A(x)} and also m(q1) = m(q2) = ∅.
Clearly, q1 is subsumed by q2, however, the algorithm

cannot remove this query from G at this point. In the

final step, assume that Algorithm 5 is called for G and

uα = {qα}, where qα = {x | B(x)}. When the algo-

rithm processes q1 and qα it is easy to see that the con-

ditions of Property (R2) are satisfied. More precisely,

q1 is subsumed by q2, q2 ⊆ q1 and m(q1) = m(q2).

Hence, Algorithm 5 can avoid creating query q = {x |
A(x), R(x, y), B(x)} from q1 and qα. Indeed the algo-

rithm will at some point pick q2 and qα and it will pro-

duce the query q′ = {x | A(x), B(x)} which subsumes

q; hence, q is indeed going to be redundant if added to

the result u′. ♦

4.2.2 Tracking Non-Redundant Queries

It is quite often the case that extending a query that is

non-redundant in step i produces a query that is also

non-redundant in step i+1. Since usually the largest

number of CQs in the final UCQ are non-redundant,

it would be beneficial for the algorithm if these could

be identified during the course of Algorithm 5. Such

queries can then be excluded from the final reduction

elimination check (line 12 of Algorithm 4), hence re-

ducing significantly the size of the for-loops that this

method needs to execute.

The following proposition provides means to iden-

tify non-redundant queries during the execution of Al-

gorithm 5 assuming we have identified the subsumption

relations in the input rewriting graph.

Proposition 3 Let G = 〈u,H,m〉 be a rewriting graph,

let uα be a UCQ, let jv, av be sets of variables, and let u′

be the output of Algorithm 5 when applied to G, uα, jv,

and av. Let a CQ q ∈ u with canBeJoined(q,m(q), jv) =

true, let nv be the set of variables constructed for q in

line 7, and assume that q is non-redundant in u; then

the following properties hold:

(N1) {nv | q} is also non-redundant in u′.

Incremental Query Rewriting for OWL 2 QL Ontologies 13

(N2) Let κ = m(q) and consider a CQ qα ∈ uα. If

none of the predicates of the body atoms of qα appear

in any CQ q′ ∈ u different from q and for each

q′α ∈ uα we have mergeCQs((q′α)κ, q) = ∅, then the

query {nv | q ∪ (qα)κ} is also non-redundant in u′.

Proof (Property (N1)) Let q′ be an arbitrary CQ in

u different from q. Upon termination, either a CQ of

the form {nv′ | q′}µ′ for some µ′ or a CQ of the form

{nv′ | q′ ∪ (qα)κ} for some qα ∈ uα is added to u′

by Algorithm 5. Assume that {nv′ | q′}µ′ subsumes

{nv | q}. Then a θ exists such that q′µ′◦θ ⊆ q and so,

q′θ′ ⊆ q for θ′ = µ′ ◦ θ, contrary to our assumption;

similarly if we assume that {nv′ | q′∪(qα)κ} subsumes q.

Hence, we can conclude that none of the aforementioned

queries can subsume {nv | q}. Since q′ was an arbitrary

CQ it follows that no query in u′ subsumes {nv | q}
and hence this is non-redundant in u′.

(Property (N2)) Since q is non-redundant in u then

for all q′ ∈ u different from q and for all substitutions

θ, we have [{Q(avar(q′))} ∪ q′]θ 6⊆ [{Q(avar(q))} ∪ q].
Let q′ be one such arbitrary CQ and let θ be an arbi-

trary substitution. If Q(avar(q′))θ 6= Q(avar(q)), then

the property trivially holds as qα is irrelevant. Hence,

assume that Q(avar(q′))θ = Q(avar(q)). This implies

that there must be some atom At in the body of q′

such that Atθ ∈ q′θ and Atθ 6∈ q. Consider now an

arbitrary query qα ∈ uα such that none of the pred-

icates of its body atoms appear in any body atom of

q′. This implies that Atθ 6∈ qα and Atθ 6∈ (qα)κ for

any substitution κ and hence also Atθ 6∈ q ∪ (qα)m(q).

Consequently, neither {nv′ | q′}µ′ for any substitution

µ′ nor {nv′ | q′ ∪ (q′α)m(q′)} for any q′α ∈ uα subsume

{nv | q∪(qα)m(q)}. Furthermore, for each query q′α ∈ uα
we have mergeCQs(q′α, q) = ∅ and again because no

predicate name of q′α appears in any other CQ, no query

of the form {nv | q}µ′ for µ′ a substitution is ever added

to u′ by Algorithm 5. Summarising, {nv | q ∪ (qα)m(q)}
is non-redundant in u′. ut

Let G = 〈u,H,m〉 be the graph and uα the UCQ

with which Algorithm 5 is called. Then, in order to use

Properties (N1) and (N2) the algorithm is modified as

follows:

– At the beginning it initialises an empty set NR of

non-redundant queries.

– In line 14, if {nv′ | q′}µ′ = {nv | q′} and q′ is non-

redundant in u, then it adds {nv | q′}µ′ to NR.

– In line 8, it adds {nv | qh ∪ (qα)m(q)} to NR if qh
is non-redundant in u, none of the predicates in qα
appear in any query in u and if for each q′α ∈ uα we

have mergeCQs(q′α, q) = ∅.
– Finally, it returns both the UCQ u′ and the set NR.

Subsequently, the returned set NR is used by method

removeRedundant (line 12 of Algorithm 4) to exclude all

these queries from redundancy checking.

Again, note that checking whether for each qα no

predicate appears in a body atom of a query in u re-

quires iterating for each qα ∈ uα through all queries in

u. However, this can be performed only once at the be-

ginning of Algorithm 5 and moreover, as mentioned be-

fore, at this point of the algorithm the set u is expected

to be moderate in size. Furthermore, as we will show

in the evaluation section, in several cases this technique

helps us to significantly decrease the cost of checking re-

dundancy of the set u′ and in many cases even avoid it

completely if u′ = NR. This significantly outperforms

its implementation overhead.

Example 6 Consider again G, u, and uα from Exam-

ple 5. If u contains no other queries, then it is easy

to see that for q2 ∈ u and qα ∈ uα the conditions of

Property (N2) are satisfied. More precisely, q2 is non-

redundant in u, none of the predicates of qα appear in

any other CQ in u and mergeCQs(qα, q2) = ∅. Hence,

the CQ produced by q2 and qα—that is, q′ from Exam-

ple 5, is non-redundant in the result. However, assume

that besides q1 and q2 the UCQ u also contained the

CQ q3 = {x | S(x, z)} and uα also contained the CQ

q′α = {x | S(x, z)}. Now, Property (N2) is not satisfied

for q2 and q′α, since the predicate of q′α appears in q3.

Hence, we cannot guarantee that q2 and q′α will pro-

duce a non-redundant query. Actually, the query that

they produce (i.e., {x | A(x), S(x, z)}) is going to be

subsumed by the query produced from q3 and q′α (i.e.,

{x | S(x, z)}). However, the query q′ produced by q2
and qα is still non-redundant. ♦

4.2.3 Tracking Non-Subsumers

Finally, the following proposition presents a property

by which we can identify that a query generated during

the execution of Algorithm 5 will not subsume any other

CQ generated by the same algorithm.

Proposition 4 Let G = 〈u,H,m〉 be a rewriting graph,

let uα be a UCQ, let jv, av be sets of variables, and let u′

be the output of Algorithm 5 when applied to G, uα, jv,

and av. Let a CQ q ∈ u with canBeJoined(q,m(q), jv) =

true, let nv be the set of variables constructed for q in

line 7, and assume that q does not subsume any CQ in

u; then the following property holds:

(S) Let a CQ qα ∈ uα. If none of the predicates of the

body atoms of qα appear in any CQ in u (includ-

ing q), then the query {nv | q ∪ (qα)m(q)} does not

subsume any CQ in u′.

14 Tassos Venetis et al.

Proof Since q does not subsume any CQ in u, we have

qθ 6⊆ q′ for all q′ ∈ u different from q and substitutions

θ. Hence, for each θ there exists an atom At in the

body of q such that Atθ ∈ qθ and Atθ 6∈ q′. To show

that {nv | q ∪ (qα)m(q)}, called qn in the following, is

not a subsumer of any CQ in u′ consider an arbitrary

CQ q′ ∈ u. Upon termination, Algorithm 5 can add to

u′ either the CQ {nv′ | q′}µ′ for some µ′ or the CQ

{nv′ | q′ ∪ (q′α)κ} for some (possibly different) q′α ∈ uα.

We will show that qn does not subsume any such CQ.

By assumption none of the predicates of the atoms

in qα appear in q′. Hence, there clearly exists some At′ ∈
qn (actually some that appears in qα) such that for

any θ we have At′θ 6∈ {nv′ | q′}µ′ ; hence, qn does not

subsume {nv′ | q′}µ′ . Moreover, by these arguments it

also follows that qn does not subsume {nv′ | q′∪ (q′α)κ}
for any κ and any q′α ∈ uα different from qα.

Finally, consider the CQ {nv′ | q′ ∪ (qα)κ}. Recall

that for every θ there exists Atθ ∈ qθ such that Atθ 6∈ q′.
Hence, again by assumption since none of the atoms

in qα appear in q we have Atθ 6∈ qα and hence also

Atθ 6∈ {nv′ | q′ ∪ (qα)κ}.
Since q′ was an arbitrary query, it follows that qn

cannot subsume any CQ produced by Algorithm 5. ut

Similarly as before, Algorithm 5 uses additional sets to

store such queries which are then excluded from the

for-loops of algorithm removeRedundant.

Example 7 Consider again Examples 5 and 6, and the

UCQ u = {q1, q2, q3}. Then, it is easy to see that for

q1 ∈ u and qα ∈ uα the conditions of Property (S) are

satisfied. More precisely, q1 does not subsume any CQ

in u and none of the predicates of the body of atoms

of qα appear in any CQ in u. Hence, the CQ produced

by q1 and qα—that is q′ = {x | A(x), R(x, y), B(x))}
is not going to subsume any CQ in the result. How-

ever, assume that uα also contained the CQ q′α = {x |
R(x, z)}. Now, Property (S) is not satisfied for q1 and

q′α, since the predicate of q′α appears in q1. Hence, we

cannot guarantee that q1 and q′α will produce a query

that is not going to subsume any other CQ in the re-

sult. Actually the query that they produce (i.e., {x |
A(x), R(x, y), R(x, z))}) subsumes the query produced

by q2 and q′α (i.e., {x | A(x), R(x, z)}). ♦

5 Implementation and Evaluation

We have implemented Algorithms 1–5 in a prototype

tool called IQAROS.2 We have also implemented an

extended PerfectRef algorithm, called PerfectRef+, that

uses a restricted reduction step based on Lemma 1.

2 http://code.google.com/p/iqaros/

We have conducted three experimental evaluations.

The first one compares PerfectRef with PerfectRef+ to

assess how much the restricted reduction step improves

the performance of the original PerfectRef algorithm.

In the second one we compared several versions of the

IQAROS system using each time a different set of the

optimisations presented in Section 4. In addition, we

compared against PerfectRef+ to assess how much the

incremental step-by-step algorithm improves the origi-

nal strategy. Finally, in the third experiment we com-

pared IQAROS against several state-of-the-art query

rewriting systems. More precisely, we were able to com-

pare with Rapid [9], Nyaya [11] and Presto [32], while

we did not compare against Requiem [27] because Rapid

significantly outperforms it [9].

For the evaluation we used the framework proposed

in [27]. It consists of nine ontologies, namely V that

captures information about European history, P1 and

P5 that are two hand-crafted artificial ontologies, S

that models information about European Union finan-

cial institutions, U that is a DL-LiteR version of the

well-known LUBM3 ontology and A that is an ontol-

ogy capturing information about abilities and disabil-

ities. Moreover, we also used the ontologies P5X, UX

and AX that consist of normalised versions4 of the on-

tologies P5, U and A. For each ontology, a set of five

hand-crafted queries is proposed. All experiments were

conducted on a MacBook Pro with a 2.66GHz processor

and 4GB of RAM, with a time-out of 600 seconds.

5.1 Comparing PerfectRef and PerfectRef+

Table 4 presents the results of running PerfectRef (de-

noted as PR in the table) and PerfectRef+ (denoted

as PR+ in the table) over the test queries and on-

tologies. The table presents the size of the computed

UCQs before applying the final redundancy elimination

algorithm, then the corresponding computation times,

and finally the time to execute the redundancy elimi-

nation algorithm in the computed UCQ. Furthermore,

the column marked as]NR presents the size of the

non-redundant UCQ that systems should have com-

puted. Note that this is the size of the UCQ computed

by both system after the final redundancy elimination.

Also, note that we do not present results for ontology

P1 as it is trivial for the tested systems.

From the table we can observe that in many cases,

most notably in ontologies P5, P5X, and S the size

3 http://swat.cse.lehigh.edu/projects/lubm/
4 In the normalised ontologies each axiom of the form A v
∃R.B in the original ontology is rewritten into the axioms
A v ∃Rn, Rn v R, and ∃R−n v B for Rn a new role.

Incremental Query Rewriting for OWL 2 QL Ontologies 15

Table 4: Comparison between PerfectRef, PerfectRef+ and various versions of IQAROS

O
Q

S
iz
e
o
f
C
o
m
p
u
te
d

U
C
Q

]N
R

U
C
Q

C
o
m
p
u
ta

ti
o
n

T
im

e
R
e
d
u
n
d
a
n
c
y
E
li
m
in
a
ti
o
n

T
im

e
P
R

P
R
+

In
c 1

In
c 2

In
c 3

P
R

P
R
+

In
c 1

In
c 2

In
c 3

P
R

P
R
+

In
c 1

In
c 2

In
c 3

V

1
1
5

1
5

1
5

1
5

1
5

1
5

5
4

7
6

6
1

1
1

1
1

2
1
1

1
0

1
0

1
0

1
0

1
0

8
5

8
6

8
3

3
2

2
1

3
7
2

7
2

7
2

7
2

7
2

7
2

5
6

4
6

2
4

1
2

1
4

8
5

9
3

4
1

3
7

0
4

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
0
1

8
1

4
1

2
2

3
1

5
3

3
8

4
5

3
4

0
5

1
5
0

1
5
0

3
0

3
0

3
0

3
0

1
1
1

1
2
6

1
1

1
0

1
7

1
2
5

1
1
5

3
1
3

P
5

1
6

6
6

6
6

6
1

1
1

1
1

1
0

0
1

0
2

1
1

1
0

1
0

1
0

1
0

1
0

1
5

1
1

7
3

5
2

2
1

1
1

3
2
2

1
3

1
3

1
3

1
3

1
3

2
5
6

1
5
2

7
6

1
9

1
9

3
3

2
2

1
4

4
5

1
5

1
5

1
5

1
5

1
5

1
8
2
8

8
7
5

2
8
8

1
7
3

1
2
3

1
2

3
5

2
5

9
0

1
6

1
6

1
6

1
6

1
6

3
2
2
5
5

5
7
0
6

8
3
8

3
0
6

3
6
2

1
0

3
4

2

P
5
X

1
1
4

1
4

1
4

1
4

1
4

1
4

0
0

0
0

0
0

0
0

1
1

2
8
6

8
1

8
1

2
5

2
5

2
5

2
3

2
3

1
2

2
4

1
1

3
5
3
0

4
1
3

4
1
3

1
3
3

1
0
3

5
8

3
6

2
4

2
4

6
1
7

1
9

1
6

7
1

1
3

1
4

4
3
4
7
6

2
0
7
0

2
0
7
0

6
7
0

3
6
9

1
7
9

6
5
6

3
2
5

1
8
7

4
6

1
2
3

7
3

7
6

1
2
6

2
3
7

3
8
2

5
2
3
7
4
4

1
0
3
5
2

1
0
3
5
2

3
3
5
2

1
8
8
5

7
1
8

4
1
4
5
4

6
7
6
2

8
2
8

2
1
4

4
1
8

1
3
2
7

1
3
4
0

1
9
8
9

8
6
4

8
7
9

S

1
6

6
6

6
6

6
0

0
0

0
1

0
0

0
0

0
2

2
0
2

2
0
2

2
0
4

1
2

2
2

1
2

1
5

1
2

4
5

1
1

0
0

0
3

1
0
0
5

9
9
5

8
6
4

9
6

4
4

1
9
0

1
8
0

6
0

8
1
6

4
5

5
1

0
4

1
5
4
8

1
5
4
8

1
4
2
8

8
4

4
4

2
5
4

2
4
7

1
0
4

9
1
4

5
5

1
2

1
0

5
8
6
9
3

7
8
5
5

6
0
4
8

6
7
2

8
8

8
2
1
6

5
8
8
8

1
0
1
8

2
2
7

1
6
0

9
0

8
5

1
2
8

9
0

U

1
2

2
2

2
2

2
0

1
1

1
2

0
0

0
0

0
2

1
8
9

1
8
9

1
9
0

5
1

1
2
4

1
7

1
2

3
2

1
1

0
0

0
3

2
9
6

2
9
6

3
0
0

2
0

4
4

1
1
2

1
1
2

7
7

5
8

2
1

2
0

0
4

1
7
6
3

1
7
4
6

1
6
8
8

4
5

2
2

8
2
6

8
0
8

2
5
3

8
2
2

7
5

5
0

0
5

3
4
1
8

3
4
1
0

3
3
7
5

9
0

1
0

1
0

2
6
8
0

2
6
2
4

5
2
7

1
7

4
1

1
7

1
6

5
5

1
0

U
X

1
5

5
5

5
5

5
0

1
1

1
6

0
0

0
1

0
2

2
8
6

2
8
6

2
8
7

7
1

1
1
4

7
1
0

4
7

0
1

1
0

0
3

1
2
4
8

1
2
4
8

1
2
6
0

8
4

1
2

1
2

1
1
8

1
2
1

8
0

1
0

3
4

1
0

1
0

2
4

1
1

0
4

5
3
8
5

5
3
2
5

5
1
3
7

1
2
9

5
5

8
2
9

8
1
8

2
0
1

1
1

2
4

2
0

1
9

4
2

4
0

5
9
2
2
0

9
2
0
0

8
9
5
5

2
2
5

2
5

2
5

2
6
2
5

2
7
3
1

4
2
7

3
1

6
1

9
5

9
7

1
6
6

3
6

0

A

1
4
0
2

4
0
2

3
5
7

7
7

7
7

2
7

2
4

2
8

1
7

5
1
6

1
3

1
6

1
2

1
0
3

1
0
3

1
0
3

5
4

5
4

5
0

1
2
4

1
2
4

3
9

1
2

1
0

0
1

0
3
1

0
3

1
0
4

1
0
4

1
0
4

1
0
4

1
0
4

1
0
4

6
5
6

6
7
7

1
7
3

1
0
3

6
5

5
6

4
2
2
5

0
4

4
9
2

4
9
2

4
7
1

3
2
0

3
2
0

2
2
4

1
2
3
7

1
2
6
4

1
7
0

5
8

5
7

1
7

1
6

2
7

7
2

1
5

6
2
4

6
2
4

6
2
4

6
2
4

6
2
4

6
2
4

3
5
5
5
7
1

3
2
4
0
0
6

3
4
1
2

2
5
8

8
1
2

1
6
6

1
4
5

2
5
5

2
3
3

5

A
X

1
7
8
3

7
8
3

7
9
4

4
3
1

4
3
1

4
1

3
0

2
7

1
8

4
7

4
5

6
4

3
2

1
8
1
2

1
8
1
2

1
8
1
2

1
6
5
3

1
5
4
5

1
4
3
1

1
4
1

1
4
1

5
7

2
6

3
4

6
2
0

5
4
6

6
9
5

7
4
6

6
3

4
7
6
3

4
7
6
3

4
7
6
3

4
4
6
6

4
4
6
6

4
4
6
6

7
0
7

7
0
1

1
8
6

4
8

1
4
4

7
9
8
5

7
1
4
1

9
8
3
2

7
9
5
8

4
7

4
7
2
5
1

7
2
5
1

7
2
2
9

6
6
3
9

4
4
7
9

3
1
5
9

1
2
8
2

1
3
8
4

1
9
2

3
7

8
8

3
5
2
7

3
3
2
2

4
6
9
9

3
5
4
2

4
9

5
7
8
8
8
5

7
8
8
8
5

7
8
8
8
5

7
4
0
2
5

3
2
9
4
4

3
2
9
2
1

3
1
9
6
8
1

3
3
7
6
4
9

4
3
6
1

6
6
5

1
5
5
9

-
-

-
-

8
4
0

16 Tassos Venetis et al.

of the UCQ computed by PerfectRef+ is much smaller

than the one computed by PerfectRef. Especially, in P5

and P5X this is because the test queries consist of a role

chain of the form {x | R(x1, x2), . . . , R(xi−1, xi)}, hence

the (standard) reduction of PerfectRef produces many

redundant queries like those presented before Lemma 1.

However, in all other cases the differences between the

systems are marginal.

Regarding performance, we note that PerfectRef+

demonstrates better performance than PerfectRef in all

tests where the former managed to compute fewer re-

dundant queries than the latter. However, in all other

cases both systems behave the same and sometimes

PerfectRef+ is actually slower than PerfectRef. This is

due to the overhead of implementing the checks for the

restricted reduction step. No significant differences were

observed in the execution of the final redundancy elim-

ination algorithm, not even in the ontologies where the

UCQ computed by PerfectRef+ is notably smaller that

that computed by PerfectRef.

5.2 Comparing IQAROS and PerfectRef+

Table 4 also shows the results of running three different

versions of IQAROS; the first one (called Inc1) imple-

ments Algorithms 4 and 2 without any optimisations,

the second one (called Inc2) uses Algorithm 5 instead

of Algorithm 2 when it adds the last atom of the query,

while the third one (called Inc3) refines Inc2 by also

implementing the various optimisations detailed in the

previous section for improving the efficiency of the re-

dundancy elimination algorithm.

First, we can observe that the sizes of the UCQs

computed by Inc1 and PerfectRef+ are almost identical

(with some minor differences in some queries and on-

tologies). This is because both systems are based on the

restricted reduction step and because in its core Inc1 is

based on the same reformulation algorithm for explicat-

ing knowledge from T . However, despite their similari-

ties in the computed UCQs we can observe that Inc1 is

significantly more efficient than PerfectRef+. For exam-

ple, in ontologies P5, P5X, S, U, and UX, Inc1 is several

times faster than PerfectRef+, while in query 5 in on-

tologies A and AX, it manages to be up to two orders

of a magnitude faster than PerfectRef+. Since in their

core both systems are based on the same approach for

materialising knowledge from T and since the restricted

reduction step implemented in PerfectRef+ did not im-

prove much the performance of the original PerfectRef
system, we concluded that this improvement is mainly

due to the incremental rewriting strategy. More pre-

cisely, the incremental approach provides a much more

guided and localised strategy (it processes a single atom

at a time), compared to the blind brute-force appli-

cation of the inference rules of PerfectRef(+). Finally,

since both systems compute UCQs of comparable size

the time for eliminating the redundant queries using al-

gorithm removeRedundant are quite similar. Note, how-

ever, that this algorithm heavily depends on the form

of input (e.g., the order that it processes the queries)

and hence small variations may occur.

Comparing the different versions of IQAROS we can

observe that the size of the computed UCQs decreases

as we move from Inc1 to Inc2 and finally to Inc3. For

example, in several cases Inc2 computes even up to 30

times smaller UCQs than Inc1 (see ontologies P5X, S,

U, and UX). This decrease can be justified by the fact

that Inc2 uses (the simpler) Algorithm 5 instead of Al-

gorithm 2, when it adds the last atom of the query.

Moreover, we can see that the use of a lightweight al-

gorithm for the last iteration of Algorithm 4 is also

reflected in the computation times of Inc2 compared

to Inc1. More precisely, in nearly all ontologies Inc2 is

several times faster than Inc1. The effects of comput-

ing much smaller UCQs for ontologies P5X and AX are

also reflected in the final redundancy elimination algo-

rithm. However, note that neither system can compute

a non-redundant UCQ for query 5 in ontology AX.

Finally, Inc3 produces the smallest UCQ rewriting

compared to all previous systems. This is due to the ad-

ditional implemented techniques for identifying redun-

dant queries that have been described in Proposition 2.

We can also observe that due to these optimisations,

in most cases the UCQ computed by Inc3 is actually

also non-redundant or it contains very few redundant

queries. Regarding computation time, Inc3 is generally

as fast as Inc2, however, we can observe that in several

cases it is slightly slower. This is due to the overhead

of implementing the various optimisations. However,

when considering the time for the redundancy elimina-

tion algorithm the benefits of tracking (non-)redundant

queries become most apparent. Inc3 is faster than all

other systems and much faster in all queries of ontology

AX. Especially, Inc3 is the only system that can com-

pute a non-redundant UCQ for query 5 in ontologies

A and AX. More precisely, from the 32960 queries that

the algorithm has computed after processing the last

atom of query 5 it has identified 31593 non-redundant

queries. These queries are then skipped from the redun-

dancy elimination step and hence the algorithm finishes

in less than 2.4 seconds.

5.3 Comparing IQAROS, Nyaya, Presto and Rapid

Table 5 presents a comparison between Inc3 and the sys-

tems Rapid, Nyaya and Presto (again we do not present

Incremental Query Rewriting for OWL 2 QL Ontologies 17

Table 5: Comparison between Rapid, Nyaya, Presto and IQAROS

O Q
Size of Computed UCQ UCQ Computation Time Redundancy Elimination Time

Rapid Nyaya Presto Inc3 Rapid Nyaya Presto Inc3 Incn1 Incn3 Rapid Nyaya Presto Inc3

V

1 15 15 15 15 13 84 793 6 6 6 0 0 1 1
2 10 10 10 10 13 121 4 8 3 4 0 0 1 1
3 72 72 72 72 78 360 42 14 15 9 0 0 21 0
4 185 185 185 185 102 442 52 31 30 25 0 0 36 0
5 30 52 30 30 98 476 12 17 5 8 0 24 2 13

P5

1 6 6 6 6 7 14 5 1 1 1 0 0 0 0
2 10 10 6 10 14 128 4 5 6 3 1 0 0 1
3 13 13 6 13 22 726 16 19 62 6 1 0 1 1
4 15 15 6 15 33 1 889 2 123 212 19 3 0 7 2
5 16 16 6 16 75 16 062 3 362 660 30 2 0 4 2

P5X

1 14 14 14 14 10 12 20 0 0 0 0 0 1 1
2 25 66 81 25 23 130 7 1 1 1 3 40 13 1
3 127 374 413 103 92 540 76 17 15 13 43 875 1 095 14
4 636 2 475 2 070 369 343 1 672 1 371 123 120 106 838 2 170 1 891 382
5 3 180 17 584 10 352 1 885 2 061 15 095 31 797 418 581 276 3 191 127 485 73 762 879

S

1 6 6 6 6 6 15 57 1 0 1 0 0 0 0
2 2 3 2 2 9 11 9 5 9 2 0 1 0 0
3 4 7 4 4 14 46 23 16 45 4 0 2 0 0
4 4 5 4 4 14 34 19 14 86 6 0 0 0 0
5 8 13 8 8 36 159 23 160 808 51 1 4 0 0

U

1 2 2 2 2 9 25 63 2 0 1 0 0 0 0
2 1 1 1 1 19 7 15 2 9 1 0 0 0 0
3 4 4 4 4 13 172 14 8 68 4 1 0 0 0
4 2 2 2 2 17 15 4 22 238 11 0 0 0 0
5 10 11 10 10 18 107 5 41 484 18 1 1 0 0

UX

1 5 5 5 5 11 24 74 6 0 3 0 0 0 0
2 1 1 1 1 13 6 13 7 6 3 0 0 0 0
3 12 12 12 12 20 166 7 34 64 24 1 0 0 0
4 5 5 5 5 17 15 23 24 160 13 0 0 0 0
5 25 26 25 25 26 115 6 61 358 36 4 5 0 0

A

1 27 248 402 77 18 1 231 778 16 15 14 0 73 41 1
2 54 93 103 54 43 4 928 12 10 37 6 2 39 2 0
3 104 105 104 104 97 35 451 15 65 145 31 0 40 5 0
4 333 455 492 320 170 17 121 47 57 153 49 38 390 65 1
5 624 - 624 624 383 - 160 812 3 243 624 1 - 197 5

AX

1 41 556 782 431 26 1 282 2 245 7 14 6 0 367 128 3
2 1 546 1 738 1 781 1 545 649 4 493 615 34 41 32 542 1 095 1 034 6
3 4 466 4 742 4 752 4 466 1 694 34 032 8 000 144 129 81 531 17 320 17 260 47
4 4 497 6 565 7 100 4 479 1 247 16 569 8 236 88 152 82 1 538 19 891 22 543 49
5 32 956 - - 32 944 3 810 - - 1 559 3 628 1 430 56 196 - - 840

the results for P1). Moreover, in the columns marked

as ‘UCQ Computation Time’ we also present two addi-

tional times. The first one, marked as Incn1 , is the time

required by Inc1 to process the last atom α of the input

query q using Algorithm 4, while Incn3 is the same time

but for the configuration Inc3 using Algorithm 5. Hence,

these times reflect only the time that is required to ex-

tend the rewriting graph G− computed so far for q−, T ,

where q− = q \ {α}, into a rewriting for q, T—that is,

if we were given G− for q−, T these times would reflect

only the time to extend the input rewriting into a new

UCQ rewriting for q− extended with α. Note here that

the output of Incn1 is a rewriting graph which can then

be further extended, while the output of Incn3 is a UCQ.

As before, after the final redundancy elimination all

systems return UCQ rewritings of the same size (those

reported in Table 4 column]NR), except for Presto
in queries 2–5 in ontology P5 and queries 2 and 4 in

ontology AX. After manually inspecting the ontologies

and computed UCQs and contrasted with the ones com-

puted by all other systems we concluded that Presto is

incomplete in these cases. More precisely, it fails to com-

pute queries which are not subsumed by other queries

that it computes. Hence, there exist an ABox for which

equation (1) fails; similarly, in ontology AX.

Compared to Nyaya, Inc3 (as well as all other ver-

sions of IQAROS from Table 4) is in general much

faster, in some cases even for several orders of mag-

nitude. Furthermore, Inc3 also computes much smaller

UCQs. Since Nyaya is also mainly based on the same

reformulation algorithm as PerfectRef for materialising

knowledge from T the reasons for this difference are

again similar to the ones mentioned before.

Compared to Presto, Inc3 computes smaller UCQs

with most distinct cases queries 2–5 in P5X, queries 1

and 2 in A and finally all the queries in AX. The effects

of computing much smaller UCQs are also reflected in

the UCQ computation time where Inc3 performs in gen-

eral much faster, even for several orders of magnitude

in some cases (query 1 in V, queries 4 and 5 in P5X,

query 1 in A, and all queries in AX) with most notable

one query 5 in AX where Presto fails to terminate in the

provided timeout. However there exist cases that Presto

18 Tassos Venetis et al.

is ‘notably faster’5 such as query 5 in UX and query 5 in

A. Additionally we can see that the redundancy elim-

ination algorithm of Inc3 is much more efficient than

that of Presto due to the several optimisations tech-

niques that are used to identify (non-)redundant and

non-subsumer queries.

Compared to Rapid, Inc3 computes similarly small

UCQs with some small exceptions (either against or

in favor) in queries 3–5 in ontology P5X, in query 1

in ontologies A and AX and in queries 2, 4 and 5 in

ontology AX. Moreover, Rapid is notably faster only in

queries 4 and 5 in P5 and 5 in S and A. However, even in

these cases the difference between the systems is rather

marginal as it never exceeds 253 milliseconds. In all the

other scenarios Inc3 is faster with most notable cases

queries 4 and 5 in P5X and 2–5 in AX. Moreover, we

can also see that the redundancy elimination algorithm

of Inc3 is much more efficient than that of Rapid with

again notable case query 5 in ontology AX. Once more,

this is justified by the optimisation techniques that are

used in Inc3 in order to identify (non-)redundant and

non-subsumer queries.

However, we can see that the most efficient approach

is Incn3 . Hence, indeed computing a UCQ rewriting by

extending a previously computed rewriting graph is the

fastest way to compute a UCQ rewriting for an ex-

tended query. However, as noted before, the output of

this algorithm is not a rewriting graph and hence can-

not be used for further extensions of the query. How-

ever, by observing the computation time of Incn1 we can

see that a rewriting graph can also be computed rel-

atively efficiently. Hence, we argue that when a query

q is extended with a new atom α Algorithm 5 can be

used to efficiently compute a new UCQ rewriting for

q′ = q ∪ {α}, while at the same time, as a background

process, Algorithm 4 (discarding redundancy elimina-

tion) can be used to compute a new rewriting graph for

q′, which can then be used in a similar way to compute

a UCQ rewriting and a rewriting graph for extensions

of q′.

Summarising, Figure 2 presents (using a logarith-

mic scale) the average computation time (both rewrit-

ing and final redundancy elimination) for each ontology,

query and system presented in Table 5. The results de-

picted in the figure verify our previous analysis—that

is, in the three non-trivial ontologies (i.e., V, P5X, and

AX5) we can observe that Incn3 is the most efficient sys-

tem followed by Inc3, Rapid and then Presto. However,

in most of the other ontologies all systems behave quite

close to each other and no significant differences can be

noted.

5 We consider a system X to be ‘notably faster’ than a
system Y if tY − tX > 20 ms.

Fig. 2: Average rewriting time for all queries for each

ontology.

Finally, we have conducted a brief analysis of the

memory required by each system in order to compute

the final UCQ. The maximum amount of memory re-

quired by Rapid is 140MB, followed by Nyaya with

150MB, then Presto with 180MB, and finally Inc3 with

200MB. These maximum numbers were observed in on-

tology AX query 5.

6 Related Work

To the best of our knowledge there is no previous work

in computing a rewriting of an extended query q based

on a previously computed rewriting for q in the presence

of logical constraints in either the ontology or database

literature. The only relevant problem studied in the

database literature is view adaptation [14,22], where

the problem is to compute the materialisation of a re-

defined materialised view. However, in both works the

focus is on updating the data (the materialisation of

the view) and additionally there are no database con-

straints (ontological axioms) involved.

However, much work has been spent the last cou-

ple of years towards studying the problem of query re-

writing over lightweight ontology languages both from

a complexity point of view [7,18,13] as well as from

the point of view of developing practical query rewrit-

ing systems [8,27,32,9,11,24]. Next, we briefly overview

the works that are most relevant to ours; a more exten-

sive and detailed literature survey on query rewriting

can also be found at [12].

The first algorithm for query rewriting over DL-

Lite ontologies was introduced by Calvanese et al. [8]

and was later implemented in the QuOnto system [1].

The algorithm rewrites an input query and TBox into

a union of conjunctive queries using the reformulation

and reduction steps. Then, Pérez-Urbina et al. [28] pre-

sented a resolution-based query rewriting algorithm for

DL-Lite. The algorithm was implemented in the system

Requiem [27] and the experimental evaluation showed

Incremental Query Rewriting for OWL 2 QL Ontologies 19

that it outperforms QuOnto. Requiem was the first sys-

tem to use query subsumption in order to reduce the

number of computed redundant queries. Subsequently,

Rosati and Almatelli [32] presented Presto that com-

putes a rewriting in the form of a non-recursive Dat-

alog program instead of a UCQ. Hence, the computed

rewriting is much smaller compared to the output of Re-

quiem and QuOnto. Also Presto was the first system to

provide a technique that avoids the exponential blow-

up of the reduction step of PerfectRef. Recently, Chor-

taras et al. [9] presented a highly optimised resolution-

based algorithm for DL-Lite that was implemented in

the system Rapid. It was shown that Rapid outper-

forms both QuOnto and Requiem. Finally, a new sys-

tem called Quest [30] uses similar rewriting techniques

to PerfectRef but with many additional optimisations

that use the structure of the input data to reduce the

size of the computed rewriting and speed up the pro-

cess.

Moreover, query rewriting has also attracted the at-

tention in the field of query answering over database

constraints. Cal̀ı et al. [3,5] have studied and presented

several lightweight classes of tuple-generating dependen-

cies as well as of the Entity-Relationship model [4,

6]. Moreover, in subsequent works Gottlob et al. [11]

also presented a practical query rewriting algorithm for

Linear-Datalog± which is the one implemented in the

Nyaya system. This algorithm is also based on the orig-

inal DL-Lite algorithm but improves it with many op-

timisations, like atom factorization which is intended

to reduce the number of redundant queries produced in

the reduction step. Subsequently, a new algorithm that

computes a non-recursive Datalog program for Linear-

Datalog± was also presented [24].

Finally, a slightly different approach than the previ-

ous ones, called combined rewriting, has been proposed

by Lutz et al. [21] for the DL language EL and by

Kontchakov et al. [19] for the DL language DL-LiteNhorn.

This approach computes small rewritings, however, it

also requires pre-processing of the database.

7 Conclusions

In the current paper we studied the problem of com-

puting a UCQ rewriting for queries that have been ex-

tended with new atoms, by extending a previously com-

puted UCQ rewriting for them and avoiding the com-

putation of a UCQ rewriting from scratch. We studied

the problem theoretically and presented detailed algo-

rithms. Our study also gave rise to a novel query re-

writing algorithm that is based on the incremental pro-

cessing of query atoms. More precisely, given a fixed

input query one can process one atom at a time and

extend a previously computed rewriting until a UCQ

for the input query has been computed. To improve its

efficiency we have proposed several novel optimisations

which greatly improve the computation time and reduce

the number of computed redundant queries. Finally, we

have implemented all algorithms and have conducted

a detailed experimental evaluation. Our results show

that the algorithm is highly efficient and generally out-

performs all state-of-the-art systems that are currently

available.

Apart from providing a novel efficient query rewrit-

ing system, our results have several important theo-

retical consequences and give many opportunities for

future work. First, they show that rewriting over DL-

Lite ontologies can largely be performed in parallel giv-

ing a complete efficient algorithm which, to the best

of our knowledge, was previously unknown. This direc-

tion has not been explored in this paper and can be

part of future work. Other directions of future work

can be the investigation and design of such incremental

algorithms for other lightweight languages, like Linear-

Datalog±, or for more expressive languages, like ELHI.

Furthermore, in the current paper we have not studied

other types of refinements for input queries, like the

removal of atoms and the addition/removal of distin-

guished variables. Last but not least, another interest-

ing problem that largely remains open in the area of

query rewriting is how to efficiently evaluate the com-

puted UCQ rewriting over a database. We feel that the

incremental algorithm can provide some new opportu-

nities in addressing this problem.

Acknowledgements Work by Giorgos Stoilos is supported
by a Marie Curie Career Reintegration Grant within Euro-
pean Union’s Seventh Framework Programme (FP7/2007-
2013) under REA grant agreement 303914.

A Omitted Proofs

Lemma 1 Let q1, q2 be two CQs such that q2 subsumes q1
and let q′1 be the result of applying an axiom I to q1. If q2
does not subsume q′1, then either I is applicable to q2 and
the result subsumes q′1 or for 1 ≤ i ≤ n, atoms of the form
P (u, v), P (zi, v) or P (v, u), P (v, zi) exist in q2 such that for
1 ≤ i, j ≤ n, i 6= j we have zi 6= zj and for λ = {zi 7→ u |
1 ≤ i ≤ n}, I is applicable to q2λ and the result subsumes
q′1.

Proof Since q2 subsumes q1, there exists a substitution θ s.t.
[{Q(avar(q2))} ∪ q2]θ ⊆ {Q(avar(q1))} ∪ q1; however, Q does
not appear in either q1 or q2, hence q2θ ⊆ q1. Moreover, since
q2 does not subsume q′1 we have q2θ * q′1. Hence, since q′1
is the result of applying I to q1 we have that I is applied
to an atom α ∈ q1 that is also in q2θ replacing it with a
new atom β that is not in q2θ. Next, α ∈ q2θ implies that
q2 contains an atom α0 such that α = α0θ, i.e., an atom
with the same predicate name as α, but possibly containing

20 Tassos Venetis et al.

different variables. By case analysis on the different types
of applications between axioms and query atoms we show
that either I is also applicable to α0 and for q′2 the result of
applying I to q2, θ can be extended to a new substitution σ
s.t. q′2σ ⊆ q′1, or for i ≥ 1 atoms of the form P (u, v), P (zi, v)
or P (v, u), P (v, zi) exist in q2 such that for λ = {zi 7→ u |
i ≥ 1}, I is applicable to q2λ and the result subsumes q′1.

Recall first that α ∈ q1, α ∈ q2θ, α0 ∈ q2, and β ∈ q′1. We
have the following cases:
1. If α = A(x), then I is of the form C v A, with C a

concept, β is of the form C(x), while α0 is of the form
A(u), with u 7→ x ∈ θ. Then, clearly, I is also applicable
to q2 creating a new query q′2 that contains C(u). Then,
we have the following cases:
– If I is of the form B v A, then β = B(x). In this case,
B(u) ∈ q′2, and for σ = θ we have B(x) ∈ q′2σ which
implies that q′2σ ⊆ q′1.

– If I is of the form ∃P v A, then β = P (x, y) for y
a new variable in q1. In this case, P (u, z) ∈ q′2 for z
a new variable in q2. Since z is new in q2, θ can be
extended to σ = θ ∪ {z 7→ y}. Then, P (x, y) ∈ q′2σ
which implies that q′2σ ⊆ q′1.

– The case where I is of the form ∃P− v A is symmetric
with the previous one.

2. If α = P (x, y) and I is of the form S v P (or equivalently
S− v P−), then β = S(x, y), while α0 is of the form
P (u, v) with {u 7→ x, v 7→ y} ⊆ θ. Then, clearly I is
also applicable to q2 and its application creates q′2 with
S(u, v) ∈ q′2, while for σ = θ we have S(x, y) ∈ q′2σ which
implies that q′2σ ⊆ q′1. The cases where I is of the form
S v P− or S− v P can be shown similarly.

3. If α = P (x, y), y is unbound in q1, and I is of the form
C v ∃P with C a concept, then β = C(x) and α0 =
P (u, v) with {u 7→ x, v 7→ y} ⊆ θ. If v is also unbound in
q2, then I is applicable to q2 and for q′2 the result we will
have A(u) ∈ q′2; hence, for σ = θ we will have A(x) ∈ q′2σ
and also q′2σ ⊆ q′1. If v is not unbound in q2 this implies
that there is another atom α2 in q2 that mentions v. α2

cannot be a concept atom of the form A(v) because due
to q2θ ⊆ q1 we would have A(v)θ = A(y) ∈ q1 and hence
y would not be unbound in q1 as well (it would appear in
A(y) and P (x, y)) leading to a contradiction; hence, α2

must be a role atom. However, α2 cannot be of the form
P (v, z), for z an arbitrary variable since then, again q2θ ⊆
q1 implies that P (v, z)θ = P (y, zθ) ∈ q1 and thus y would
not be unbound in q1. The only possible case is that α2 is
of the form P (z, v) with z 7→ x ∈ θ (again if z is mapped
to a different variable than x, this would imply that q1 has
two role atoms both having y as a second argument and
y would not be unbound in q1). Consequently, we have
α0θ = P (u, v)θ = P (z, v)θ = a2θ, which implies that the
two atoms unify. Now, let the substitution σ1 = {z 7→ u}.
As mentioned before, θ maps both z and u to x; hence,
for the defined σ1 we have q2σ1◦θ = q2θ and hence q2σ1

also subsumes q1. Consequently, all previous conditions
apply to q2σ1

—that is, either q2σ1
subsumes q′1, or I is

applicable to q2σ1
and the result subsumes q′1. If neither of

these is the case then again an atom P (z′, v) with z′ 6= z
must exist in q2σ1

, such that it unifies with P (u, v) and
a σ2 can be constructed such that q2σ1◦σ2

subsumes q1.
Since, there is only a finite number of atoms in a query,
at some point some λ = {zi 7→ u | i ≥ 1} exists such that
I is applicable to q2λ and the result subsumes q′1. Note
also that each σi is independent from the other and hence
they can be applied in an arbitrary order over q2.

4. If α = P (y, x), y is unbound in q1, and I is of the form
C v ∃P−, then β = C(x) and α0 = P (v, u) with {v 7→

y, u 7→ x} ⊆ θ. Following a similar reasoning as in the
previous case we can deduce that, either v is also unbound
in q2 so I is applicable to q2 and the result subsumes q′1,
or it is not and in this case a list of atoms P (v, zi) exists
such that for λ = {zi 7→ u}, I is applicable to q2λ and
the result subsumes q′1. ut

Lemma 2 Let q be a CQ that contains only one body atom
and let κ be a substitution such that some axiom I is appli-
cable to qκ producing q′. Then I is also applicable to q and
for q′′ the result we have q′′κ = q′ (modulo renaming of fresh
variables).

Proof If κ does not change any variables of q then the prop-
erty follows trivially. If it does, then we show the property by
performing a case analysis on the form of q.

1. q is of the form {x | A(x)}. Then, κ can be of the form
{x 7→ y} and I is of the form C v A, with C a concept.
In this case, q′ = {y | C(y)}, while I is also applicable
to q and the result is q′′ = {x | C(x)}. If C is an atomic
concept then clearly q′′κ = q′. If C is of the form ∃R for R
a role, then q′ = {y | R(y, z1)} and q′′ = {x | R(x, z2)},
for z1, z2 fresh variables and again (modulo renaming of
fresh variables) q′′κ = q′.

2. q is of the form {x | R(x, y)}. Then we have two cases
depending on I.
(a) If I is of the form C v ∃R, then κ cannot map y to x

(and vice versa), as this would make x (y) bound in
qκ. Hence, κ (possibly) maps x and/or y to different
variables. In any case q′ = {xκ | C(xκ)}. Clearly, I is
applicable to q and again as in case 1. we can deduce
that q′′κ = q′.

(b) If I is of the form P v R and κ is as in the previous
case, then the claim follows by a similar argument.
However, κ can be of the form {y 7→ x} (or {x 7→ y}).
Then, q′ = {x | P (x, x)} (or q′ = {y | P (y, y)}).
Clearly, I is also applicable to q and the result is q′′ =
{x | P (x, y)} for which q′′κ = {x | P (x, x)} (or q′′κ =
{y | P (y, y)}). In either case q′′κ = q′.

3. q is of the form {(x, y) | R(x, y)} and I is of the form
P v R. This case is similar to case 2b.

Theorem 1 Let q be a CQ, let T be a TBox, let α be an atom
such that var(α) ∩ var(q) 6= ∅ and let G be a reformulation-
closed rewriting graph for q, T . Let G′ be the graph returned
by Algorithm 1 when applied to G, α and T ; then G′ is a
reformulation-closed rewriting graph for q ∪ {α}, T .

Proof First, note that ex-PerfectRef extends PerfectRef, hence
for a given query q and TBox T it computes a rewriting graph
for q, T . Moreover, since PerfectRef applies exhaustively refor-
mulation and reduction and does not prune computed queries,
the output of the extended algorithm is reformulation-closed.

Let G = 〈u,H,m〉 be the input of Algorithm 1 and let
G′ = 〈u′,H′,m′〉 be its output. Moreover, for the following
of the proof, let jv = var(α)∩avar(q), let Gα = 〈uα,Hα,mα〉
be the rewriting graph computed by Algorithm 1 in line 1,
and let ui be a UCQ rewriting computed after i steps of the
PerfectRef algorithm when applied to q∪{α}, T—that is, after
generating i queries by an application of the reformulation or
the reduction step.

Correctness of the claim is strongly based of the following
property:

(?): For all i ≥ 0 and for all qj in ui a vertex qh in G
and a vertex qα in Gα exist such that, for κ = m(qh)
and nv = avar(qh) ∪ (avar(q) ∩ var((qα)κ)) we have
canBeJoined(qh, κ, jv) = true, and one of the following
conditions hold:

Incremental Query Rewriting for OWL 2 QL Ontologies 21

1. {nv | qh ∪ (qα)κ} subsumes qj , or
2. for some σ ∈ mergeCQs((qα)κ, qh) some CQ q′

exists such that qh G q′ and {nv | q′}µ′ , where
µ′ = buildSubst(σ,m(q′)) subsumes qj .

Assume for now that Property (?) holds. We will show
that G′ = 〈u′,H′,m′〉 is a reformulation-closed rewriting
graph for q ∪ {α}, T .

First, we show that u′ is a UCQ rewriting for q ∪ {α}, T .
Assume that when applied to q ∪ {α} and T the PerfectRef
algorithm terminates after n steps and that un is the com-
puted UCQ rewriting. But then, by Property (?), we know
that upon termination of Algorithm 1, for each CQ qn ∈ un
either a CQ of the form {nv | qh ∪ (qα)κ} or a CQ of the
form {nv | q′}µ′ that subsumes qn has been added to u′.
Moreover, functions canBeJoined, buildSubst, and the condi-
tion dom(σ) ⊆ var(q′) ∪ dom(m(q′)) of the respective algo-
rithms ensure that every CQ produced by our algorithm can
also be produced by the PerfectRef algorithm. Consequently,
u′ is both sound and complete, thus it is indeed a UCQ re-
writing for q ∪ {α}, T .

Now we show that G′ is reformulation-closed. First, by
definition of the mappings m′(q′n) for each CQ added to G′ it
follows that m′ satisfies the conditions in Definition 3. Fur-
thermore, upon termination of the algorithm also the relation
H′ satisfies the property of Definition 3. Moreover, again it
can be easily seen that the algorithm will create and set as a
top element of G′ the CQ q∪{α} with m′(q∪{α}) = ∅, while
for all top elements qi in G′ we will also have m(qi) = ∅ as
they inherit the mapping of q (we elaborate more on this in
the proof of Property (?) later on). Additionally, H′ is closed
under restricted reduction; if for some qh ∈ u, κ = m(qh) and
qα ∈ uα we have some σ ∈ mergeCQs((qα)κ, qh), then the al-
gorithm first adds q+ = {nv | qh ∪ (qα)κ} to G′ (line 13) and
then adds 〈q+, {nv | (qh)}σ〉 to G′ (line 15). Then, it copies
the sub-graph of H below qh, but H is also reformulation-
closed. The only interesting case is if for some q′ such that
qh G q′ we have z 7→ x ∈ σ and z 7→ x′ ∈ m(q′). The
latter implies that there exists q′′ such that 〈q′′, q′〉 ∈ H
and R(x′, y), R(z, y) are atoms in q′′ while q′ = q′′z 7→x′ , i.e.,
every occurence of z in q′′ has been mapped to x′. In the
new graph H′, the algorithm will rather contain the query
q′′σ , i.e., q′′σ will now contain atoms R(x′, y), R(x, y) instead
of R(x, y), R(z, y), i.e., occurences of z have been mapped to
x. Subsequently, a child of q′′σ needs to be created. For H′ to
be reformulation-closed the child needs to be a query where
now x, rather than z, is mapped to x′. This is accomplished
by function buildSubst. More precisely, since z 7→ x ∈ σ and
z 7→ x′ ∈ m(q′), the function returns a mapping µ that con-
tains z 7→ x and x 7→ x′ which is applied to q′ creating the
appropriate query. Consequently, G′ is reformulation-closed
for q ∪ {α}, T .

Now, we give the omitted proof of Property (?).

To show this property we use induction over the number
of steps i that algorithm ex-PerfectRef has completed when
applied to q ∪ {α}, T . For a CQ q we will use the notation
mq to denote the substitution m(q).

Base Case (i = 0): On the one hand, when algorithm
ex-PerfectRef is applied to q∪{α}, T , at step 0 it initialises a
UCQ u0 to contain the vertex q∪{α}. On the other hand, in
line 1 Algorithm 1 computes Gα for qα = {var(α)∩var(q) | α}
and T which uses ex-PerfectRef and hence at least contains qα
as a vertex. Moreover, since G is reformulation-closed for q, T ,
then q appears as a top element in G with mq = ∅. Hence, by
construction of qα and jv we have canBeJoined(q,mq, jv) =
true and also {nv | q ∪ (qα)mq

} is exactly q ∪ {α}. Conse-

quently, condition 1. is satisfied and hence also Property (?)
is satisfied at step i = 0.

Induction Step: Assume that Property (?) holds at step i
for each qj ∈ ui. Subsequently, suppose that at step i+ 1 the
algorithm produces the UCQ ui+1 by applying a reformula-
tion or a reduction step on some query qj in ui producing
a query qi+1. Moreover, by induction hypothesis, vertices qh
in G and qα in Gα exist such that Property (?) is satisfied—
that is, for κ = mqh , we have canBeJoined(qh, κ, jv) = true
and either the query {nv | qh ∪ (qα)κ} (called q+ in the fol-
lowing) subsumes qj , or for some σ ∈ mergeCQs((qα)κ, qh)
and some q′ such that qh G q′, we have that {nv | q′}µ′
(called qm in the following) subsumes qj . We now distinguish
between two cases according to whether qi+1 was produced
by a reformulation or a reduction step.

If a reduction step was applied to qj to produce qi+1,
then it is well-known by the properties of reduction that qj
subsumes qi+1. Hence, by the transitivity of the subsumes re-
lation and the induction hypothesis qi+1 is also subsumed by
either q+ or qm. Consequently, Property (?) is still satisfied.

Otherwise, assume that a reformulation step was applied
to qj to produce qi+1. This implies that some axiom I is ap-
plied to some body atom of qj producing qi+1. By induction
hypothesis, either q+ or qm subsume qj . If either of these
queries subsumes qi+1, then Property (?) is satisfied. If nei-
ther query subsumes qi+1, then by Lemma 1, either (i) I is
applicable to them and the result subsumes qi+1 or (ii) for
n ≥ 1 atoms of the form P (u, v), P (zi, v) or P (v, u), P (v, zi)
exist in q+ or in qm such that for λ = {zi 7→ u | 1 ≤ i ≤ n},
q+λ or qmλ subsumes qj , I is applicable to q+λ or qmλ and the
result subsumes qi+1. We now examine separately the cases
that q+ or qm subsume qj .

1. Assume that q+ subsumes qj and also that we have case
(i) from above—that is, I is applicable to q+ = {nv |
qh ∪ (qα)κ}. Since reformulation applies an axiom to a
single body atom of a query at each time, this implies that
I is either applicable to some body atom of qh and the
application creates a CQ of the form {nv | q′h∪(qα)κ}, or
it is applicable to some body atom of (qα)κ and the appli-
cation creates a CQ of the form {nv | qh∪q′α}. (Note that
reformulation does not change the distinguished variables
of the query) In the former case, since I is applicable to qh
producing q′h, qh is a vertex in G and G is reformulation-
closed, then 〈qh, q′h〉 ∈ H with mq′

h
= κ and avar(qh) =

avar(q′h). Moreover, canBeJoined(q′h,mq′h , jv) = true; this
is because I is applicable to {nv | qh ∪ (qα)κ}, hence
its application can only remove variables that do not ap-
pear in (qα)κ. Consequently, condition 1. is satisfied and
thus also Property (?). Now we study the case when I is
applicable to (qα)κ: First, note that qα contains exactly
one body atom; this follows straightforwardly by the fact
that the query for which Gα is computed contains exactly
one atom and by the fact that the PerfectRef calculus
always produces a new query that contains at most the
same number of atoms as one from which it is produced.
Hence, by Lemma 2, I is also applicable to qα and for the
result q′′α we have (q′′α)κ = q′α. But since qα ∈ uα and
Gα is reformulation-closed, then q′′α ∈ uα. Consequently,
again condition 2. is satisfied thus also Property (?).
Assume now that we have case (ii) from above—that is,
for n ≥ 1 there are atoms of the form P (u, v), P (zi, v)
or of the form P (u, v), P (zi, v) in q+ such that for λ =

{zi 7→ u | 1 ≤ i ≤ n}, I is applicable to q+λ = {nvλ |
(qh)λ ∪ (qα)κ◦λ} and the new CQ produced by applying

I on q+λ , called qf , subsumes qi+1. We will show that

our algorithm can compute queries q+λ and qf . First note

22 Tassos Venetis et al.

that the existence of atoms of the above form in q+ im-
plies that several restricted reduction steps are applicable
between body atoms P (zi, v) and the atom P (u, v) in q′j .
Moreover, since (qα)κ contains a single atom, then these
reductions are either applicable over two atoms from qh
or between an atom from qh and the atom in (qα)κ. In
the former case, an application of one of these reductions
would produce the CQ (qh)λi∪(qα)κ◦λi . Since graph G is
reformulation-closed and by the form of these reductions,
also 〈qh, q′h〉 ∈ G, with q′h = (qh)λi and mq′

h
= κ ◦ λi;

hence, canBeJoined(q′h,mq′h , jv) = true. If none of these
reductions is performed between (qα)κ and qh, then for λ
as defined before we will have qh G (qh)λ withm(qh)λ =
κ ◦ λ and hence also canBeJoined((qh)λ,m(qh)λ , jv) =
true. Then, axiom I is applicable to (qh)λ and since G
is reformulation-closed we also have 〈(qh)λ, q′′〉 ∈ H and
mq′′ = mqhλ . Finally, {nv′ | q′′ ∪ (qα)mq′′ } for nv′ =
avar(q′′)∪ (avar(q)∩ var((qα)mq′′)) is qf and it subsumes
qi+1, hence Property (?) is satisfied.

Assume now that for some k ≤ n, (qα)κ contains atom
P (zk, u) and one reduction step involves (qα)κ and atoms
from qh. In this case since (qα)κ contains one atom then
this reduction actually eliminates this atom from q+ and
hence q+λk is of the form {avar(q)λk | (qh)λk}. Conse-

quently, applying the rest of reductions the final CQ q+λ
would be of the form {avar(q)λ | (qh)λ} and qf can
be produced by applying I on this CQ. Now, since G
is reformulation-closed all reductions but λk have been
applied on queries in G starting from qh, hence a CQ
(qh)ν , with ν = λ\λk exists in G such that qh G (qh)ν .
Moreover, since (qh)ν does not contain the atom that is
in (qα)κ I is applicable to it and hence 〈(qh)ν , q′′〉 ∈ H.
Then, by definition of function mergeCQs, we have that
mergeCQs((qα)ν , (qh)ν) contains {λk}. Hence, the CQ
q′′λk is actually qf that subsumes qi+1 and Property (?)
is satisfied again.

2. Assume now that qm, i.e., {nv | q′}µ′ where qh G q′,
µ′ = buildSubst(σ,m(q′)) and σ ∈ mergeCQs((qα)κ, qh)
subsumes qj . Again by Lemma 1 either I is applicable to
qm and the result (call it qf) subsumes qi+1 or further
restricted reduction steps are applicable to qm produc-
ing a CQ over which I is applicable and the result (call
it again qf) subsumes qi+1. Since q′m(q′) = q′ and since

µ′ is constructed from σ and m(q′), then {nv | q′}µ′ is
like q′ but perhaps with some variable z ∈ var(q′) re-
named due to a mapping z 7→ y ∈ σ. Moreover, since
{nv | q′}µ′ does not mention z (it has been renamed by
µ′), then neither of the previous steps (application of I
or restricted reductions) does involve z. Now, due to µ′

either q′ has fewer bound variables than {nv | q′}µ′ or µ′

frees a bound variable that is not free in q′ after which
some axiom might be applicable. In the former case (q′

has fewer bound variables), at least the same sequence of
reformulation or restricted reduction steps as to qm are
applicable to q′. Since these do not involve variable z, af-
ter applying them, a CQ q′′ such that {nv | q′′}µ′′ = qf ,
where µ′′ = buildSubst(σ,m(q′′)) is generated, as µ′′ built
from σ will perform the same variable renaming on z. Ad-
ditionally, since G is reformulation closed q′′ is in G. Now
consider the latter case, i.e., µ′ frees a bound variable
in q′. This implies that µ′ induces a mapping {z 7→ x}
that frees some bound variable in q′. Consequently, a re-
stricted reduction with unifier σ′ = {z 7→ x} is appli-
cable and since G is reformulation-closed we have that
〈q′, q′σ′〉 ∈ H. Subsequently, the same sequence of refor-
mulation and restricted reduction steps as to qm are ap-

plicable to q′σ′ . Hence again, we will have a query q′′ such
that {nv | q′′}µ′′ = qf , where µ′′ = buildSubst(σ,m(q′′))
is produced in G. In any case Property (?) is satisfied.

ut

References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D.,
Lenzerini, M., Palmieri, M., Rosati, R.: Quonto: Query-
ing ontologies. In: Proceedings of the 20th International
Conference on Artificial Intelligence (AAAI-05). (2005)

2. Artale, A., Calvanese, D., Kontchakov, R., Za-
kharyaschev, M.: The DL-Lite family and relations. Jour-
nal of Artificial Intelligence Research 36, 1–69 (2009)

3. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-
based framework for tractable query answering over on-
tologies. In: Proceedings of the Twenty-Eigth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2009, pp. 77–86 (2009)

4. Cal̀ı, A., Gottlob, G., Pieris, A.: Tractable query answer-
ing over conceptual schemata. In: Proceedings of the
28th International Conference on Conceptual Modeling
(ER 2009), pp. 175–190 (2009)

5. Cal̀ı, A., Gottlob, G., Pieris, A.: Advanced processing for
ontological queries. Proceedings of the VLDB Endow-
ment 3(1), 554–565 (2010)

6. Cal̀ı, A., Gottlob, G., Pieris, A.: Ontological query an-
swering under expressive entity-relationship schemata.
Inf. Syst. 37(4), 320–335 (2012)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini,
M., Rosati, R.: Data complexity of query answering in
description logics. In: Proceedings of the 10th Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 06), pp. 260–270 (2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini,
M., Rosati, R.: Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. Jour-
nal of Automated Reasoning 39(3), 385–429 (2007)

9. Chortaras, A., Trivela, D., Stamou, G.: Optimized query
rewriting in OWL 2 QL. In: Proceedings of the 23rd In-
ternational Conference on Automated Deduction (CADE
23), Polland, pp. 192–206 (2011)

10. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B.,
Patel-Schneider, P., Sattler, U.: OWL 2: The next step for
OWL. Journal of Web Semantics (JWS) 6(4), 309–322
(2008)

11. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Re-
writing and optimization. In: Proceedings of the 27th
International Conference on Data Engineering (ICDE
2011), pp. 2–13 (2011)

12. Gottlob, G., Orsi, G., Pieris, A.: Ontological query an-
swering via rewriting. In: Proceedings of the 15th inter-
national conference on Advances in databases and infor-
mation systems, pp. 1–18. Springer-Verlag (2011)

13. Gottlob, G., Schwentick, T.: Rewriting ontological
queries into small nonrecursive datalog programs. In:
Proceedings of the 13th International Conference on
Principles of Knowledge Representation and Reasoning
(KR 2012) (2012)

14. Gupta, A., Mumick, I.S., Rossl, K.A.: Adapting materi-
alized views after redefinitions. In: Proceedings of ACM
SIGMOD International Conference on Management of
Data, pp. 211–222 (1995)

15. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.:
From SHIQ and RDF to OWL: the making of a web

Incremental Query Rewriting for OWL 2 QL Ontologies 23

ontology language. Journal Web Semantics 1(1), 7–26
(2003)

16. Jansen, B.J., Spink, A., Blakely, C., Koshman, S.: Defin-
ing a session on web search engines: Research articles.
Journal of the American Society for Information Science
and Technology 58, 862–871 (2007)

17. Jansen, B.J., Spink, A., Pedersen, J.: A temporal compar-
ison of altavista web searching: Research articles. Jour-
nal of the American Society for Information Science and
Technology 56, 559–570 (2005)

18. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On
(in)tractability of OBDA with OWL 2 QL. In: Proceed-
ings of the 24th International Workshop on Description
Logics (DL 2011) (2011)

19. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Za-
kharyaschev, M.: The combined approach to query an-
swering in DL-Lite. In: Proceedings of the 20th Inter-
national Conference Principles of Knowledge Represen-
tation and Reasoning (KR 2010) (2010)

20. Lutz, C.: The complexity of conjunctive query answering
in expressive description logics. In: Proceedings of the 4th
International Joint Conference on Automated Reasoning,
IJCAR 2008, pp. 179–193 (2008)

21. Lutz, C., Toman, D., Wolter, F.: Conjunctive query an-
swering in the description logic EL using a relational
database system. In: Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI
2009), pp. 2070–2075 (2009)

22. Mohania, M.: Avoiding re-computation: View adaptation
in data warehouses. In: In Proceedings of 8 th Interna-
tional Database Workshop, pp. 151–165 (1997)

23. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue,
A., Lutz, C.: OWL 2 Web Ontology Language Profiles
(2009)

24. Orsi, G., Pieris, A.: Optimizing query answering under
ontological constraints. PVLDB 4(11), 1004–1015 (2011)

25. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity
of query answering in expressive description logics via
tableaux. Journal of Automated Reasoning 41(1), 61–98
(2008)

26. Pass, G., Chowdhury, A., Torgeson, C.: A picture of
search. In: Proceedings of the 1st international con-
ference on Scalable information systems (InfoScale 06).
ACM (2006)

27. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient Query
Answering for OWL 2. In: Proc. of the International Se-
mantic Web Conference (ISWC2009), pp. 489–504 (2009)

28. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable
query answering and rewriting under description logic
constraints. Journal of Applied Logic 8(2), 186–209
(2010)

29. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G.,
Lenzerini, M., Rosati, R.: Linking data to ontologies.
Journal on Data Semantics X, 133–173 (2008)

30. Rodriguez-Muro, M., Calvanese, D.: High performance
query answering over DL-Lite ontologies. In: Proceedings
of the 13th International Conference Principles of Knowl-
edge Representation and Reasoning, KR 2012, (2012)

31. Rosati, R.: Query rewriting under extensional constraints
in DL-Lite. In: Proceedings of the International Work-
shop on Description Logics, DL-2012 (2012)

32. Rosati, R., Almatelli, A.: Improving query answering over
DL-Lite ontologies. In: Proceedings of the International
Conference on Principles of Knowledge Representation
and Reasoning (KR-10) (2010)

33. Venetis, T., Stoilos, G., Stamou, G.: Query rewriting un-
der query extensions for OWL 2 QL ontologies. In: Pro-
ceedings of the 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS2011),
Bonn, Germany (2011)

