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Abstract Ontologies for enabling semantic interoperabil-
ity is one of the branches in which agreement between a het-
erogeneous group of stakeholders is of vital importance. As
agreements are the result of interactions, appropriate meth-
ods should take into account the natural language used by the
community during those interactions. In this article, we first
extend a fact-oriented formalism for the construction of so-
called hybrid ontologies. In hybrid ontologies, concepts are
described both formally and informally and the agreements
are being grounded in community interactions. We further-
more present GOSPL, a collaborative ontology engineering
method on top of this extension and describe how agree-
ments on formal and informal descriptions are complemen-
tary and interplay. We show how the informal descriptions
can drive the ontology construction process and how com-
mitments from the ontology to the application are exploited
to steer the agreement processes. All of the ideas presented
in this article have been implemented in a tool and used in
an experiment involving 40+ users, of which a discussion is
presented.
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1 Introduction

The formal semantics of a (computer-based) system quite
simply is the correspondence between this system and some
real world as perceived by humans. It is usually given by
a formal mapping of the symbols in the system’s descrip-
tion to objects in that real world, such that relationships
and logical statements in the specification language can be
assigned a truth-value depending on whether a certain state
of affairs among objects exists in the real world. As the real
world is not accessible inside a computer, storing and rea-
soning about semantics requires the world to be replaced
by an agreed conceptualization. This conceptualization is
often in the shape of a formal (mathematical) construct. A
computer-based, shared, agreed formal conceptualization is
what is known as an ontology. Ontologies constitute the key
resources for realizing a Semantic Web. Ontologies also help
tackling the difficulty of interoperating autonomously devel-
oped and maintained information systems in a meaningful
way.

As a consequence, ontologies, in general, will evolve
while such agreements are developed and put in place. These
ontologies are approximations of a real world; in fact to the
Web services involved, ontologies are the world. Ontologies
represent an externalization [12] of the semantics outside
of the information system. The basic techniques and archi-
tecture for semantic interoperation are based on annotation
(of an application system) and reasoning (about the concepts
involved, in terms of the ontology).

However, the problem is not what ontologies are, but
how they become community-grounded resources of seman-
tics, and at the same time how they are made opera-
tionally relevant and sustainable over longer periods of time.
In the DOGMA framework [37], fact-oriented approaches
such as NIAM/ORM [29,72] have been proven useful for
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engineering ontologies. A key characteristic here is that the
analysis of information is based on natural language fact
types. A fact type is the generalization of facts, a collec-
tion of objects linked by a predicate. “[Person] knows [Per-
son]” would be an example of a fact type, and “[Christophe]
knows [Robert]” would be a fact in this example. This brings
the advantage that “layman” domain experts are facilitated
in building, interpreting, and understanding attribute-free1,
hence semantically stable ontologies, using their own ter-
minology. The semantics in ontologies are the result from
agreements within a community to use particular labels for
referring to certain concepts.

Ontology construction must be viewed as a complex,
social and distinct methodological activity. It must lead to for-
malized semantic agreement involving its stakeholder com-
munities and the various social processes within those com-
munities. An important tool in reaching those agreements is
the use of glosses, natural language descriptions interpretable
by humans. The use of glosses while reasoning and dis-
cussing concepts among humans aids in the disambiguation
of different concepts, discovery of implicit relations between
concepts, discovery of gaps in the ontology, etc. We call
the process of describing with a natural language descrip-
tion articulation. Enabling semantic interoperability should,
therefore, explicitly involve the hybrid aspects of informa-
tion; i.e. the co-existence of formal reasoning and “informal”
human interactions (with natural language).

In previous work [18], we presented a formalism for
constructing the so-called hybrid ontologies [51]. In hybrid
ontologies, communities are promoted to first-class citizen,
part and parcel of the formalism, such that the interactions
within the evolving community result in series of ontology
evolution operators. The natural language aspect is vital, as
the closer the link between human communication and the
resulting system and/or business communication, the more
likely such systems will work as intended by their various
stakeholders. In [19], we presented a method built on top of
that framework—called GOSPL—as well as a tool for this
method. GOSPL is a teachable and repeatable collaborative
ontology evolution method supporting stakeholders in inter-
preting and modeling their common ontologies in their own
terminology and context, and feeding back these results to
the owning community.

This article starts in Sect. 2 with related work on col-
laborative ontology engineering and tool support, in which
we identify a gap between methods (and their tool sup-
port) that take into account a special linguistic resource
and social processes leading to agreements. Our approach
is described over several sections. Section 3 describes the

1 There are only fact types, no distinction between relations and
attributes. The constraints on roles in these fact types determine the
“attributeness” of a fact type.

hybrid ontology-engineering framework—also describing
the properties of agreements on formal and informal con-
cept descriptions—and the collaborative method on top of
this framework is presented in Sect. 4. Section 5 describes
how the evolution of glosses leads to new fact types and con-
straints for the formal part of the hybrid ontology. Section 6
then focuses on the exploitation of application commitments,
which are descriptions of how one individual application
commits to an ontology, are used in community interactions.
Application commitments are used to find counterexamples
to claims made by community members and thus guide the
discussions. Section 7 presents the tool supporting the ideas
presented in Sects. 3, 4, 5 and 6 next to the results of a usabil-
ity study presented elsewhere. We conclude the paper with a
discussion in Sect. 8 and conclusions in Sect. 9.

The main contributions of this paper are the state-of-the-
art in Sect. 2, the translation of ontologies into Description
Logic in Sect. 3 and the exploitation of glosses and applica-
tion commitments in Sects. 5 and 6, respectively.

2 Related Work

Ontology engineering is defined as the set of activities that
concern the ontology development process, the ontology life
cycle, the principles, methods and methodologies for build-
ing ontologies, and the tool suites and languages that support
them [25]. One can generally identify two phases in an ontol-
ogy engineering method: elicitation and application [14]. In
elicitation, knowledge is extracted from various resources
such as documents of any kind or the experience of domain
experts within a specific context. In the subsequent applica-
tion phase, an ontology is used in an application context.

Quite a few surveys on the state of the art on ontology engi-
neering methods exist [25,61,62]. For this paper, the meth-
ods we take into account are CYC [27,44], Business Seman-
tics Management (BSM) [11], DILIGENT [58,59], DOGMA
[37] and DOGMA-MESS [52], HCOME [40,41], Holsapple
and Joshi [33], Karapiperis and Apostolou [38], METHON-
TOLOGY [3,22], NeOn [9,24], On-To-Knowledge [63,64],
OntoEng [1], Ontology 101 [56], the Unified Method [68,69]
and UPON [15,16]. We furthermore took both Web-Protégé
[67] and Collaborative-Protégé [66] into account. Both are
collaborative tools for ontology engineering developed by the
same group of Ontology 101, but do not refer to a specific
method.

Table 1 compares the different methods with respect to
following aspects:

– Explicitly intended for distributed and collaborative
construction? The values are (Y) yes; (N) no; and (C)
collaborative aspects are touched upon, but not explicitly
mentioned.
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92 C. Debruyne et al.

– Natural language descriptions of concepts? (Y) yes;
(N) no; (D) support for documentation in which natural
language definitions can be provided; and (A) adoption
of existing resources to align with concepts of the ontolo-
gies.

– Special linguistic resource as software artifact? This
aspect investigates whether there is a special linguistic
resource next to the formal descriptions of the ontology.
The values are (Y) yes; (N) no; and (W) use of an existing
linguistic resource. Both OntoEng and UPON do explic-
itly refer to a glossary in their papers, but it is not stored
as a software artifact. Their entries are, therefore, marked
with an asterisk.

Ontologies should be considered as evolving entities.
Argumentation and negotiation processes to discuss the evo-
lution of ontologies are thus critical. A negotiation process is
defined as a specification conversation about a concept (e.g.,
a process model) between selected domain experts from the
stakeholders (community of organizations) [13]. To substan-
tiate their perspectives, domain experts must formulate argu-
ments. The following aspects look to what extent the methods
have support for specific social processes and whether their
tools provide support for those.

– Tool support? (Y) there is specific tool support for this
method; (N) no specific tool support for this method has
been proposed; (A) adopting/extending existing ontology
engineering tools for the method; and (O) authors refers
to other existing (type of) tools for some tasks.

– Tool support for dialogue? (Y) Yes; (N) no or not pro-
posed; and (E) via external (integrated) service or tool.
The most accepted argumentation model is Issue-Based
Information System (IBIS) [43], which provides a simple
and abstract infrastructure for non-trivial problems that
cost a lot to solve in terms of time, money, etc. IBIS was
the model that DILIGENT, HCOME, and NeOn adopted.
DILIGENT processes are still under control of knowl-
edge engineers (the completion of some activities is par-
tially dependent on the decisions of a board of experts),
whereas HCOME aims at empowering users to be com-
pletely autonomous in their actions and decisions. The
first is also true for NeOn. The NeOn toolkit provides
support for discussing issues (based on DILIGENT) via
a plugin that is connected with Cicero [21], a platform
for keeping track of discussions between the develop-
ers and users of an ontology. On-To-Knowledge pro-
posed a plugin that is based on existing commercial soft-
ware for the brainstorming and elicitation of competency
questions. Competency questions state which queries the
ontology should support (cfr. [70]). Both NeOn and On-
To-Knowledge are, therefore, regarded as using external
(integrated) services and tools.

– Social processes for agreements on formal descrip-
tions? This aspect investigates to what extent methods
explicitly describe or prescribe special social processes
for agreeing on formal descriptions of concepts. Infor-
mal here means that concepts are described by means
of natural language descriptions rather than a formalism.
The values are (Y) yes; (N) no; and (I) “implied” by the
(tool) support for dialogue. Methods with a tool support-
ing dialogue rely on the dialogue support to support the
social processes. DOGMA-MESS proposed a meaning
evolution system. The two methods described in [33] and
[38] defined processes for achieving consensus and both
OntoEng and the Unified Method mentioned the use of—
amongst others—brainstorming sessions to elicit knowl-
edge for the formal descriptions. On-To-Knowledge does
not provide such support as the dialogue framework is
only used for the elicitation of competency questions.
The dialogue is thus used to agree what questions should
be supported by the ontology, but not how the ontology
should look like.

– Tool support for social processes on formal descrip-
tions? This aspect compares to what extent the method
provides tool support for some of the processes described
for the previous point. The values are (Y) yes; (N) no or
not proposed; (P) partial; (I) “implied” by the (tool) sup-
port for dialogue; and (–) not applicable as there is no tool
support or the authors referred to other existing (type of)
tools.
DILIGENT, HCOME and NeOn have taken argumenta-
tion frameworks into account, which are reflected in the
tool support and, therefore, these processes can be con-
sidered implied. Web Protégé offers support for dialogue
in a forum-like manner, and recently provided special
requests for formal changes that are fairly frequent in the
medical domain [2]. Also the Business Semantics Glos-
sary for BSM supports dialogue via their wiki technol-
ogy. DOGMA-MESS is considered to provide specific
tool support for their meaning evolution support system
(MESS) module. In DOGMA-MESS, so-called “tickets”
are sent around to the stakeholders for rendering their
perspectives [12]. The stakeholders receive the assign-
ment to provide their perspective that are then stored on
the server. The meaning negotiation processes for evolv-
ing the ontology, however, were only described and not
implemented in a tool. Only some support for analyzing
conflicts between the different perspectives was proposed
to lead the MESS process, usually a knowledge engineer
or core domain expert [12].

– Social processes for agreements on informal descrip-
tions? This aspect investigates to what extent methods
explicitly describe or prescribe special social processes
for agreeing on informal descriptions of concepts. The
values are (Y) yes; (N) no or not proposed; (P) partial;
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Grounding Ontologies with Social Processes and Natural Language 93

and (I) “implied” by the (tool) support for dialogue. Again
here, the methods with a tool supporting dialogue rely
on the dialogue system to support the social processes.
Only OntoEng proposed social processes for the con-
struction of natural language definitions of concepts,
albeit as keywords such as “brainstorming”. Unfortu-
nately, OntoEng does not propose tool support for these
processes. This aspect for Ontology 101 (collab) is con-
sidered partial as the authors proposed special interac-
tions for formal changes, but not for informal descrip-
tions. They did, however, provide a request to introduce
terms in which they foresaw a field for a natural language
definition.

– Tool support for social processes on informal descrip-
tions? This aspect compares to what extent the method
provides tool support for some of the processes described
for the previous point. The values are (Y) yes; (N) no or
not proposed; (I) “implied” by the (tool) support for dia-
logue; and (–) not applicable as there is no tool support
or the authors referred to other existing (type of) tools.

– Agreement leads to ontology evolution? This aspect
looks to what extent agreements lead to ontology evo-
lution. Ideally, agreements should automatically lead
to ontology evolution. The values for this aspect are
(A) automatically; (M) manually; (N) not; and (–) not
applicable as method is not explicitly intended for dis-
tributed collaboration.
Most methods that take the collaborative aspects of ontol-
ogy engineering into account manually evolve the ontol-
ogy after agreement has reached. Only Ontology 101
(collab) proposed some special requests which—after
agreement—automatically evolves the ontology [2]. The
requests are stored as annotations in the ontology. The
only method not really taking this aspect into account is
BSM. The wiki supporting this method [17] allows any-
one with sufficient rights to add new knowledge, with-
out discussion. The formal parts of the ontology, how-
ever, do have a status attribute stating whether some
part is a candidate, accepted, etc. The informal parts
of the ontology do not have such properties. The wiki
paradigm allows someone to make changes and discus-
sions to happen afterwards. This approach has several
problems:

– The ontology is not guaranteed to be stable at any
time. The authors actually state that a stable version
of the ontology has to be then “compiled” for use for
the specific interoperability requirements (e.g., into
UML, XSD, etc.).

– Community members could already commit to the
knowledge they entered, even it has not been accepted
yet. This would hamper the possibility of finding
compromises.

The reason why most methods require the manual evo-
lution of ontology is that either someone elicits knowl-
edge without tool support and then enters the results
or the argumentation frameworks allow users to dis-
cuss issues, solutions, etc. rather than discuss changes.
If the latter would have been adopted, motivating and
discussing the change, then ontology evolution could be
automated.

– “Owner” of the ontology? This aspect compares who
the “owners” of an ontology are for a particular method.
Here, the word “owner” refers to the users who can
change the ontology. The values for this aspect are (C) the
community of stakeholders (possibly including knowl-
edge engineers) is the owner; (H) stakeholders are the
owner of their ontology, knowledge engineering ensure
the evolution of the shared space; (K) knowledge engi-
neers have ownership; (N) not proposed; and (–) not
applicable as method is not explicitly intended for dis-
tributed collaboration;
BSM is the only method that allows a community to
develop and maintain their ontologies. In most meth-
ods, the knowledge engineers to be the owners of the
ontology. DOGMA-MESS, HCOME and DILIGENT
allow individual stakeholders to maintain a “local”
view on matters, but the shared perspective is man-
aged by the knowledge engineers. DOGMA-MESS
has the notion of organizational ontologies, HCOME
refers to it as personal spaces and DILIGENT as local
ontologies. A board of stakeholders with sufficient
rights will then try to find a consensus or compro-
mise from the different perspectives to evolve the ontol-
ogy. The stakeholders remain thus owner of their ontol-
ogy.
The problem with this method is that even though a con-
sensus is sought, people describe their perspective on
matters in a formal way and could thus already commit
to their own descriptions. Not only that, they could as well
already annotate their existing systems with their pred-
icates. Rather than discussing changes in the ontology,
changes are performed locally and then discussed upon.
And one would indeed benefit from keeping as much as
possible their desired changes. This could thus hamper
or delay reaching a consensus as it is possible that stake-
holders need to revert and commit to the new version
of the ontology as decided upon by the board (with the
involvement of all stakeholders, of course). OntoEng did
not explicitly state who the owners of an ontology are.
The owner of the ontology in Ontology 101 (collab) is
presumed to be the knowledge engineer as the authors did
not explicitly refer to a method in their papers describing
Web- and Collaborative-Protégé, but a case study in the
medical domain hinted the use of knowledge engineers
[57].
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94 C. Debruyne et al.

One can conclude from above that the methods and tools
described in the state-of-the-art do not take into account the
social processes for constructing natural language definitions
of concepts. Most of the methods that provide support for
social interactions rely on this without specifying any specific
processes or considering the natural language definitions as
an equal import artifact next to the ontology. Definitions are
often seen as annotations to the ontology (e.g., comments).

Web- and Collaborative-Protégé are not methods, but a
tools. These tools were taken into consideration as Ontology
101 (collab) as they were developed by the same group that
proposed Ontology 101 and developed Protégé. It is inter-
esting to note that in this comparison table, only the authors
of Collaborative Protégé propose the formalization of spe-
cific requests to evolve the ontology. This is an important
step towards agreement evolving ontologies as changes are
discussed, and not issues.

Also apparent is that most methods rely on knowledge
engineers are the owner of the ontology (either immedi-
ately, or via a setting in which they own the shared part).
Ontologies, however, should belong to the community and
the role of knowledge engineers should be reduced to a min-
imum or even removed. As Heylighen noted in [31]: “If the
process were directed by a single individual (say, the group
leader), who imposes a consensus view on the others, then
that perspective would not be more powerful than the per-
spective of the leading individual. In other words, the col-
lective would not be in any way more intelligent than its
leader.”

3 Hybrid Ontology-Engineering Framework

Modeling of ontologies within a community of stakeholders
and designers is a critical activity for the eventual success
of semantic interoperability. Fundamental to our approach
is the involvement of structured natural language as a vehi-
cle to elicit useful and relevant concepts from community
communication, and the mapping of these social processes
to evolutionary processes in the emerging ontology. The for-
malism and language presented here are, therefore, upstream
from the usual ontology languages such as RDF(S) and OWL
and should not be confused with those; in fact it is relatively
straightforward to compile the resulting ontologies into, for
example, RDF(S) and OWL at any time.

One fundamental principle of all large system designs is
the so-called separation of concerns resulting in architectures
that delegate respective functionalities to the stakeholders
responsible for them. For example, modules are provided by
the (generic) architecture of information systems driven by a
database and largely separate the concern of basic data man-
agement from that of application development, the famous
paradigm of data independence.

We reapply this principle in our approach by the rigorous
separation in conceptualizations of “fact modeling” from all
application-specific interpretations. It is this interpretation
process (formally, of statements shared in the application sys-
tem in terms of ontology concepts) that is usually called “rea-
soning” in the Semantic Web literature. However, there is lit-
tle or no attention to such separation of concerns in the usual
reasoning formalisms of Semantic Web in terms of Descrip-
tion Logics and its syntactical manifestations such as OWL
and its dialects. In our approach, this interpretation is exclu-
sively delegated to the mapping between application system
and the “lexon base” of the ontology. We shall call these map-
pings ontological commitments after [26], but we shall reify
them in a well-defined manner suited to our formalism.2 Intu-
itively, our commitments select the fact types needed, map
application symbols to ontology concepts, and contain the
rules and constraints—expressed in ontology terms—under
which application symbols, relationships and business rules
must be interpreted when they are to be shared with other
autonomous systems. Those systems will share the concepts,
but of course will have their own symbols, business rules, etc.

This separation of concerns allows a natural introduction
of formalized social processes in goal-oriented communities
such as exist in enterprises, professional networks, standard-
ization groups, etc. In fact, this is true in any “human agent”
context for which agreement about fact types is more effi-
cient than reasoning from axioms. Note that nearly all data
models for databases and business information systems were
arrived at in this manner for the last 50 or so years.

In [50] a formalism and method for ontology develop-
ment called DOGMA3 was defined that illustrated and imple-
mented these principles, now lifted to domain level from
the mere enterprise system level. As indicated above, such
descriptions must be seen as different from their eventual
implementations. In the method and lifecycle of seman-
tic systems, the creation of DOGMA ontology descriptions
belongs upstream from such implementation—although of
course in many cases one will have to “mine” or elicit the
required knowledge from existing information systems and
their enterprise environments.

Definition 1 (DOGMA Ontology Descriptions) A DOGMA
Ontology Description Ω is an ordered triple 〈Λ, ci, K 〉
where Λ is a lexon base, i.e. a finite set of lexons. A lexon
is an ordered 5-tuple 〈γ, t1, r1, r2, t2〉 where γ ∈ � is a con-
text identifier, t1, t2 ∈ T are terms, and r1, r2 ∈ R are role
labels. A lexon is a binary fact type that can be read in two
directions: t1 playing the role of r1 on t2 and t2 playing the

2 We do, however, capture what part of the conceptualization and its
axiomatization should be present in all commitments to ensure proper
semantic interoperation between the different systems (we refer to
Sect. 3.1 for more details).
3 Developing Ontology Guided Methods and Applications.
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role of r2 on t1. Here, the usual alphabets for constructing the
elements of T ∪ R are omitted for simplicity. ci : �×T → C
is a function mapping pairs of context identifiers and terms
to unique elements of C , a finite given set of concepts. K is a
finite set of ontological commitments. Each commitment is
an ordered triple 〈σ, α, c〉 where σ ⊂ Λ is a selection of lex-
ons from the DOGMA ontology description, α : � → T is
a mapping called an annotation from the set� of application
(information, system, database) symbols to terms occurring
in that selection, and c is a predicate over T ∪ R of that same
selection expressed in a suitable FOL language.

Context identifiers are pointers to the origin of a lexon,
and helps with the disambiguation of term- and role-labels.
Within a context γ ∈ � and t ∈ T, ci(γ, t) is the definition
itself of the concept agreed by all users. To emphasize this
explicit agreement, we shall avoid labeling concepts as such
in our formalism, and assuming they are “computed” by the
community from the term labels.

Example 1 provides an example of a set of lexons and a
commitment.

Example 1 Assuming lexon baseΛ containing the following
lexons:

– 〈Cultural Domain Expert 1, Artist, with, of, Name〉
– 〈Cultural Domain Expert 1, Artist, with, of, First Name〉
– 〈VCard, VCard, with, of, Email Address〉
– 〈Cultural Domain Expert 2, Artist, with, of, Age〉
– 〈Cultural Domain Expert 1, Artist, born on, of birth of,

Date〉
– 〈Offer #1 of Organization A, Offer, with, of, Title〉
– 〈Offer #1 of Organization A, Offer, valid, for, Date〉
– 〈RFP Documentation, RFP, with, matches, Offer〉
– 〈FOAF, Agent, with, of, Name〉
– 〈Cultural Domain Expert 3, Artist, contributing to, with

contribution of, Sculpture〉
– …

All context-term pairs evoke concepts, which are referred
to by the ci function. The owner of an information system
with a relational database with a table ARTIST with a field
FNAM containing the names of an Artist could commit to
this lexon base with a commitment κ ∈ K by selecting the
lexon (selection σ ): 〈Cultural Domain Expert 1, Artist, with,
of, First Name〉, constrain this lexon stating that artists have
at most one first name (constraints c): EACH Artist with AT
MOST 1 First Name, and finally annotate the field in this table
with this lexon (annotations α): MAP ’ARTIST’.’FNAM’ ON
First Name of Artist.

Note that the separation of concerns mentioned in the pre-
vious section is reflected here through the set of plausible
fact types in the lexon base on one side, and the constraints,

rules, etc. on a relevant selection of those lexons on the other.
In fact there are no constraints or any other reasoning sup-
ports included in the lexon base, making for a so-called light
ontology.

As the “unique concept” property mentioned above infor-
mally and intuitively results from a community agreement,
we argued to formalize a community as such a context [18].
We introduced the notion of a hybrid ontology in which the
context identifiers refer to communities and introduced a
special linguistic resource—called glossary—to support the
social processes leading to such agreements.

Definition 2 (Hybrid Ontology Description) A Hybrid
Ontology Description is an ordered pair HΩ = 〈Ω,G〉
where Ω is a DOGMA ontology description in which the
contexts in � are labeled communities and G is a glossary.
G is an ordered triple 〈g1, g2, E QG〉, where g1 is a finite
set of functions of the form g1 : � × T → Gloss, the
Term Glossary; g2 is a finite set of functions of the form
g2 : Λ → Gloss, the Lexon Glossary; Gloss is a set of
human-interpretable objects; E QG is a finite set of pairs
Gloss × Gloss containing the agreement that two glosses
refer to the same concept.

E QG will automatically contain 〈φ, φ〉 for each gloss φ
∈ Gloss. Below, we will give an example of a Hybrid Ontol-
ogy Description.

Example 2 Given the DOGMA Ontology Description Ω of
Example 1, the contexts of the lexons in the lexon base are
restricted to communities. The lexon base Λ will thus look
as follows:

– 〈Cultural Domain Community, Artist, with, of, Name〉
– 〈Cultural Domain Community, Artist, with, of, First

Name〉
– 〈Address Community, VCard, with, of, Email Address〉
– 〈Cultural Domain Community, Artist, with, of, Age〉
– 〈Cultural Domain Community, Artist, born on, of birth

of, Date〉
– 〈Vendor Community, Offer, with, of, Title〉
– 〈Vendor Community, Offer, valid, for, Date〉
– 〈RFP Community, RFP, with, matches, Offer〉
– 〈Address Community, Agent, with, of, Name〉
– 〈Cultural Domain Community, Artist, contributing to,

with contribution of, Sculpture〉
– …

With this lexon base, a glossary G to construct the Hybrid
Ontology Description could look as follows:

– g1 = {〈〈Cultural Domain Community, Date〉, “The day
of the month or year as specified by a number.”〉, 〈〈Vendor
Community, Date〉, “Time stated in terms of the day,
month, and year.”〉, . . .}
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– g2 = {〈〈Cultural Domain Community, Artist, contribut-
ing to, with contribution of, Sculpture〉, “The part played
by an artist in bringing about a result.”〉, . . .}

– E QG = {〈“The day of the month or year as specified by
a number.”, “Time stated in terms of the day, month, and
year.”〉, . . .}

3.1 The Commitment Layer

In the hybrid ontology-engineering framework, we distin-
guish two types of ontological commitments. The first is
called a community commitment and is introduced to add
structure to the agreement processes to construct ontologies
for reaching semantic interoperability. It is a selection of
lexons of the lexon base together with a set of constraints
on this selection. The selection of lexons and constraints
should capture the intention of the types of applications that
will commit to the community commitment. Agreements on
constraints are focused on identifying a set of attributes that
uniquely and totally identifies instances of a concept (as we
will describe later on); a necessity for proper interopera-
tion. Indeed, the number of concepts that should have such a
“reference-structure” depends on the semantic interoperabil-
ity requirements of the community.

The second type, called an application commitment, will
(i) commit to one or more community commitments and (ii)
provide mappings of its application symbols to terms and
relations in the selection. In addition, (iii) an application
commitment can commit to other lexons and constraints not
necessarily appearing in a community commitment. They
may provide more information on how this application uses
the concepts (e.g., in terms of extra constraints), or even
application-specific knowledge to ensure that the informa-
tion inside that application is properly connected. An exam-
ple would be the annotation of join-tables and identifiers that
are specific to the application.

Fig. 1 Different “layers” of the hybrid ontology-engineering frame-
work

Figure 1 depicts the different “layers” of the hybrid ontol-
ogy engineering framework graphically.

3.1.1 Constraints in a Commitment

The constraints in a commitment are largely based on Object
Role Modeling (ORM) [29] constraints. ORM is a fact-
oriented method for performing information analysis at the
conceptual level. We will describe the constraints we have
adopted, as well as constraints introduced for the purpose of
GOSPL.

From ORM, the constraints necessary for creating refer-
able terms are taken into account. A term is referable when
that term is either lexical (thus its instances can be printed
on a screen) or if that term has a unique reference, a set
of attributes that uniquely and totally identify instances of
concepts referred to by this term. The terms referred to in
those attributes (i.e., played by the co-role of the term) have
to be referable as well. “Uniquely” means a role played at
most once by every instance; “Totally” means that the role
is mandatory, this role has to be played by every instance (a
mandatory constraint); “Identifying” means that every com-
bination of instances of concepts referred to by each term
playing the co-role refers to only one instance.

Assume that a floor is uniquely and totally identified by
its floor number and the floor number is lexical in some com-
munity C1. Then, the constraints will look as follows:

<C1, Floor, with, of, Floor Number>
EACH Floor with AT MOST 1 Floor Number.
EACH Floor with AT LEAST 1 Floor Number.
EACH Floor IS IDENTIFIED BY (Floor Number
of Floor).

EACH Floor Number IS LEXICAL.

Floor thus has a unique simple reference. A simple refer-
ence is one unique, total and identifying attribute. A unique
composite reference has more than one attribute. Given the
description of floor from above, assume that each hotel room
is uniquely and totally identified by its room number (which
is lexical) and the floor in the same community. This would
look as follows:

<C1, Hotel Room, with, of, Room Number>
<C1, Hotel Room, with, of, Floor>
EACH Hotel Room with AT MOST 1 Room Number.
EACH Hotel Room with AT LEAST 1 Room Number.
EACH Hotel Room with AT MOST 1 Floor.
EACH Hotel Room with AT LEAST 1 Floor.
EACH Hotel Room IS IDENTIFIED BY
(Floor of Hotel Room) AND
(Room Number of Hotel Room).

EACH Room Number IS LEXICAL.

Sometimes the instances of a lexical term are limited to
a certain set, finite or not. These value constraints can be
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part of the domain and even shared. A value constraint is
described in terms of a value range, which can be an explicit
enumeration of elements, ranges or even regular expressions.
For example, if we want to limit the occurrences of category
type to “Single” and “Double”, we have

<C1, Hotel Room, with, of, Category Type>
EACH Category Type IS LEXICAL.
EACH Category Type IN (’Single’, ’Double’).

The interpretation of some role-label combinations can
be constrained by the community. For instance, the ‘Cultural
Domain’ community can declare that the combination “is a
/ subsumes” refers to the taxonomic relation with:

INTERPRET ’Cultural Domain Community’ is a / subsumes
AS TAXONOMY.

By doing so, all occurrences of lexons in the commit-
ment of that community with that role-label combination are
interpreted as such. The same can be done with meronomic
relations. By default, the “is a / subsumes” is considered
the taxonomic relation. Note that these interpretations are
grounded with the community.

3.2 Synonyms Within and Across Communities

Two communities γ1, γ2 ∈ � can agree that their respective
terms t1, t2 ∈ T refer to the same concept. This agreement is
capture with the relation ≡C , ci(γ1, t1) ≡C ci(γ2, t2) is the
agreement of both communities that their respective terms
refer to the same concept. Note that if γ1 = γ2, it refers to
this type of agreement within one community.

Example 3 Given the Hybrid Ontology Description in Exam-
ple 2, both vendor- and cultural domain community can agree
that their term “Date”, which happens to be used by both
communities, refers to the same concept. By agreeing, they
assert that ci(’Vendor Community’,“Date”)≡C ci(’Cultural
Domain Community’,“Date”) is part of both community
commitment’s constraints.

We note that assertions of gloss-equivalences and syn-
onymy are only symmetric, reflexive and transitive—i.e. an
equivalence relation—within one agreement process. This
constraint was put in place to avoid synonymy and gloss-
equivalences to be propagated without each of the commu-
nities validating the new relations inferred from these asser-
tions. These new relations can, however, be analyzed to make
additional ≡C assertions if those concepts indeed are synony-
mous across two ore more agreement processes.

The ≡C agreements are stored in the community commit-
ments. When one wishes to extend an application commit-
ment with application-specific knowledge about one of the
shared concepts in the community commitment, however, he
also needs to make explicit that the term he is using from

this concept is synonymous to that of the community. For
instance, assume that a particular application is committing
to the term “Artist” in the cultural domain community and
wishes to annotate his application-specific identifier belong-
ing to instances of artist in his database, he would add fol-
lowing lexon and synonym statement to his application com-
mitment (where the origin of this lexon is his organization):

<’MyOrganization’, Artist, with, of, AID>
LINK(’Cultural Domain Community’,Artist,

’MyOrganization’,Artist).

3.3 Implementing Commitments in OWL and DL

We now present a lossless schema transformation for commu-
nity commitments in GOSPL in the Description Logic (DL)
dialect DL-LiteA,id [7]. A lossless schema transformation
is a transformation of a schema that allows one to preserve
each permitted population. In other words, the populations
can be reconstructed unambiguously. As a consequence, a
bijective mapping between both sets of permitted populations
must exist. The “losslessness” of a transformation needs to
be shown.

There are several attempts to bridge the gap between
fact-oriented modeling approaches and logical formalisms.
Notable works include [32] and [23], presenting a transla-
tion into OWL 24 of ORM graphical representations. Most
of them identify a subset of ORM that can be semantically
translated to DLs. Authors in [32] directly transfer ORM
representations to DL formulas case by case. In [23], the
corresponding linear syntax was introduced. The syntax is
then given set-theoretic semantics and translation to DLs. But
instead of a direct translation, this approach uses some sort of
schema transformation in which the fact type is reified (i.e.
becomes a concept) and the object types playing role inside
that fact type are now playing roles with the newly intro-
duced concept. Both approaches try to capture the intended
meaning of ORM representations and express them in DL
formulas. However, we will show later in this section that
both approaches are not lossless.

To demonstrate that our proposed translation into DL-
LiteA,id is lossless, we translate both the model in the com-
munity commitment and the translation in DL-LiteA,id in a
set of first-order logic (FOL) formulas. The first is done by
adopting the formalization provided by [28] and the latter by
[4]. Then, we show that the extensions of both sets of FOL
formulas are equal. In other words, we will show that one is
a logical consequence of the other and vice versa.

Description logics are a decidable fragment of FOL. Con-
cept names are unary predicates and role names are binary
predicates. Concept descriptions correspond to FOL formu-

4 http://www.w3.org/TR/owl2-overview/
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las with one free variable, which will be bound when used in a
concept inclusion statement [4]. The translation of assertions
in a DL into FOL formulas is provided by [4]. The translation
of concept description C into a FOL formula with one free
variable τx (C) is defined as follows:

1. τx (A) := A(x) for all concept names A
2. τx (C 	 D) := τx (C) ∧ τx (D)
3. τx (C � D) := τx (C) ∨ τx (D)
4. τx (¬C) := ¬τx (C)
5. τx (∀r.C) := ∀y(r(x, y) → τy(C)), where y �= x
6. τx (∃r.C) := ∃y(r(x, y) ∧ τy(C)), where y �= x

Given a TBox T with concept-inclusions, the translation
τ(T ) of T is given by:

τ(T ) :=
∧

C�D∈T
∀x(τx (C) → τx (D))

3.3.1 Lexon

The translation of a lexon into DL-LiteA,id is shown below.
To prove that in this translation is lossless, we will demon-
strate their equivalence. To do so, we will first translate both
the fragments in DOGMA and their proposed translation in
DL in FOL and use a semantic tableau5 to demonstrate that
|� � ↔ � holds. Before we translate, we need to state that
all roles with the same label are translated in such a way,
the labels become unique. For instance, in 〈γ , A, r, s, B〉 and
〈γ , C, r, s, D〉 the labels of the first roles are the same, but
the roles are different: the first has domain A and range B,
the second domain C and range D. During translation, they
are thus transformed into r1 and r2 and the same happens for
both roles with label s.

A lexon 〈γ,A, R, S, B〉 is translated into FOL results in the
following formulas �:

∀x(∀y(R(x, y) → (A(x) ∧ B(y)))) (1)

5 Semantic tableaux are an efficient and convenient means to test
whether a formula φ is a logical consequence of a set of formulas � in
FOL. This is done by trying to makeφ false with respect to� by looking
for counterexamples for the sequent�◦φ. A sequent are two sets of for-
mulas φ1, . . . , φn andψ1, . . . , ψm separated by the symbols ◦. A evalu-
ation V is called a counterexample of a sequentφ1, . . . , φn◦ψ1, . . . , ψm
if V (φ1) = · · · = V (φn) = 1 and V (ψ1) = · · · = V (ψm) = 1. When
a formula φ occurs on both sides of the sequent, the evaluation of φ
returns both 1 and 0. In that case, the sequent contains a contradiction
and thus has no counterexample.
Formulas on the LHS of a sequent have to be made true and formulas on
the RHS of a sequent false. For instance, in�,α ∧ β ◦�,α ∧ β is true
if and only if both α and β are true, which then yields the subproblem
�,α, β ◦� (using the ∧L rule, where the ‘L’ stands for left). A branch
is considered closed if it contains the same formula both on the LHS
and RHS in one of the sequents of a branch. Otherwise the branch is
open and a counterexample is found. A counterexample is a model that
makes the LHS of the top sequent true, but the RHS false.

Fig. 2 Semantic tableau to show that � |� �

Fig. 3 Semantic tableau to show that � |� �

The corresponding DL-LiteA,id statements are

∃R.� � A (2)

∃R−.� � B (3)

Translated into FOL, the statements in� look as follows:

∀x(∃y R(x, y) → A(x)) (4)

∀x(∃y R(y, x) → B(x)) (5)

The semantic tableaus in Figs. 2 and 3 both close, meaning
there are no counterexamples. Since one is a consequence of
the other and vice versa, both sets of FOL formulas are equiv-
alent. As they are equivalent, so are their possible extensions.
Because of this equivalence, it follow naturally that both sets
of formulas are population equivalent.

3.4 Mandatory Constraints

The translation of a mandatory constraint into DL-LiteA,id

is shown below. As the reader can see below, both trans-
lations in FOL yield the exact same formula and are thus
equivalent. The constraint that states that EACH A R’s AT
LEAST 1 B is translated into FOL as follows: ∀x(A(x) →
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∃y(R(x, y))). The corresponding DL-LiteA,id statement is
A � ∃R.�. Translated into FOL, this statement looks as
follows: ∀x(A(x) → ∃y(R(x, y))).

3.5 Internal Uniqueness Constraints

In DL-LiteA,id , a role functionality assertion expresses the
functionality of a role. An attribute functionality assertion
expresses the functionality of an atomic attribute.

Since we only have lexons, we have to examine only five
cases: (1) no external uniqueness constraint, (2) one spanning
only the first role, (3) one spanning only the second role, (4)
one spanning the first role and one spanning the second role
(a so-called one-to-one relation) and finally (5) one spanning
both roles. Cases 1 and 5 are the same. In this section, we
thus only consider uniqueness constraints over the first role.
The third case is the same as the second merely needs to be
reversed and the fourth is a combination of cases 2 and 3.

The translation of EACH A R’S AT MOST 1 B into
FOL is ∀x(∀y(∀z((R(x, y) ∧ R(x, z)) → y = z))). In
DL-LiteA,id , this constraints is asserted with ( f unct R).
In turn, its translation into FOL yields the same formula:
∀x(∀y(∀z((R(x, y)∧R(x, z)) → y = z))). Again, the trans-
lation of DOGMA and DL-LiteA,id into FOL is equivalent.

3.6 External Uniqueness Constraints

To implement external uniqueness constraints in DL, we use
identification assertions. Identification assertions were first
introduced in [7]. Identification assertions are of the form
(id B π1, . . . , πn), where B is a basic concept and every
πi is a path. A path is either: an atomic role or the inverse
of an atomic role; an atomic attribute or the inverse of an
atomic attribute; a composition of two paths πa, πb denoted
as πa ◦πb, where ◦ denotes the composition operator on two
paths; a test relation ‘D?’ representing the identity relation
on instances of D (either a basic concept or a value-domain).
Test relations are used to impose involving instances of a
certain concept or value-domain in the paths. At least one of
the paths in an identification assertions has to have a length of
one, i.e., be an atomic role or attribute (or the inverse thereof).

The interpretation of an identification constraint states that
for any two instances of a1, a2 ∈ I (A), if the intersection of
the interpretation of each path π in the identification con-
straint for these two instances are not empty, then these two
instances are actually the same instance.

The translation of EACH A IS IDENTIFIED BY (B1 S1 A)
AND …AND (Bn Sn A) into FOL looks as follows:

∀x1(∀x2(∀y1(. . . ∀yn((R1(x1, y1) ∧ . . . ∧ Rn(x1, yn)

∧R1(x2, y1) ∧ . . . ∧ Rn(x2, yn)) → x1 = x2) . . .))) (6)

The statement in DL-LiteA,id that corresponds with this
statement is (id A R1 ... Rn), which again yields in the same
translation into FOL.

3.6.1 Subtyping

Translating concept hierarchies in DOGMA and DL-LiteA,id

into FOL is straightforward. The translation of a subtype
declaration—shown below—into FOL provided by [28] is
the same as the translation of the corresponding concept-
inclusion in DL-LiteA,id , and thus equivalent. The lexon
〈γ,A,is a,subsumes,B〉 is translated into FOL as follows:
∀x(B(x) → A(x)), which is also the FOL translation of
the corresponding DL-LiteA,id statement: B � A.

The problem with subtyping, however, is that the instances
of all object types that are not the child in a taxonomic rela-
tion are considered to be disjoint. Halpin calls these object
types primitive [28]. For any conceptual schema, there will
be a finite number of such primitive object types. The dis-
jointness of the instances of these object types are given with
the following rule: given A1, . . . , An primitive object types

∀x(¬(A1(x) ∧ A2(x)) ∧ ¬(A1(x) ∧ A3(x)) ∧
... ∧ ¬(An−1(x) ∧ An(x))) (7)

In other words, it is prohibited for an instance to be a
member of two object types from the set of primitive object
types.

In order to be population equivalent, this same restric-
tion needs to be modeled in the DL language we have
adopted. The problem, however, is that the DL-Lite dialect
we have adopted has no means for describing disjointness in
an explicit way. To solve this, the disjoint concepts need to be
modeled via binary Horn inclusions. In other words, for every
two concepts A, B that are disjoint, the following concept-
inclusion needs to be asserted A � ¬B, which states that an
instance of A is not in an instance of B. It is not necessary
to assert B � ¬A as well, as the translation of both concept
inclusions into FOL shows that both formulas are equivalent
as one is a quantification of the contraposition of the other
formula: ∀x(A(x) → ¬B(x)) ↔ ∀x(B(x) → ¬A(x)).

For every two object types in the primitive object types
of the DOGMA model, such a concept-inclusion is added
in the translation into DL-LiteA,id . Now we need to show
that the translation of these concept-inclusions into FOL is
equivalent with the FOL formulas in Eq. (7). We show this
by means of the two semantic tableaus in Fig. 4.

3.7 Relation with Related Work

In the last few years, several authors addressed the problem of
providing an encoding for ORM diagrams in DL knowledge
bases [23,32,35,36,39]. Only the work of Keet [39], and
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Fig. 4 Semantic Tableau

Franconi and Mosca [23] can be considered to have tackled
the problem from a formal perspective.6

The inadequacy of the mapping prosed in [32,35] can eas-
ily be shown by means of semantic tableaus. Note that the
translation in [32] contains quite a few syntactical errors, but
builds further upon the work presented in [35]. Given the
lexon: 〈γ,A, R, S, B〉. The translation proposed in [32,35] is
as follows:

A � ∀R.B (8)

B � ∀S.A (9)

R � S− (10)

Not only is the last statement incorrect and should be
replaced with R ≡ S−, after this correction one can find
a counter example for the translation of the binary fact type
into FOL according to Halpin and the translation of these DL
statements into FOL. The formulas below provide the latter
translation.

∀x(A(x) → ∀y(R(x, y) → B(y))) (11)

∀x(B(x) → ∀y(S(x, y) → A(y))) (12)

∀x(∀y(R(x, y) ↔ S(y, x))) (13)

Indeed, an interpretation I with I(R) = {〈d, e〉}, I(S) =
{〈e, d〉}, I(A) = {} and I(B) = {} is a model for above
FOL formulas, but not for the translation provided by Halpin:
∀x(∀y(R(x, y) → (A(x) ∧ B(y)))). In other words, there
are counter examples and, therefore, there is not a bijective
mapping between the two.

In [36,39], both Jarrar and Keet provided a translation of
ORM into a DL that support n-ary relations where n ≥ 2,
namely the dialect DLRi f d [8]. The problems with transla-
tion proposed by Jarrar were examined by Keet in the sec-

6 Franconi and Mosca published a technical paper containing more
information entitled “The formalisation of ORM2 and its encod-
ing in OWL2”. Available from https://www.inf.unibz.it/krdb/pub/TR/
KRDB12-2.pdf

ond version of this paper7. Keet criticized the inaccuracy of
Jarrar’s work with respect to the syntax and semantics. Fran-
coni, in turn, provides critique on Keet’s work on several
inaccuracies [23]. Both proposals are thus inadequate for our
translation, even though the idea was appealing. However, as
DOGMA limits itself to the use of binary lexons and DL-
LiteA,id provides constructs for a lossless translation, there
is no need for constructs to support arbitrary n-ary relations.

Franconi and Mosca provided a translation of ORM into
ALCQI, thus using the DL ALC extended with qualified
cardinality restrictions and inverse roles. In essence, they
“reify” fact types with uniqueness constraints spanning two
ore more roles by first introducing a new concept and then
transform each of the involved roles into a DL role where
the domain is the newly introduced concept and the range
the object type to which the ORM role connected to. Those
new roles are then declared to be functional. Indeed, each
instance of that relation only plays each role once. As they
claim, their translation is indeed sound and complete. Every
model of the ORM translation into FOL is also a model for
their DL translation into FOL. But, as will be seen, the inverse
is not true.

Their translation is actually a lossy schema transformation
(as shown in Fig. 5). The figure presents a binary fact type and
its lossless schema transformation using only attributive fact
types. Lets call this translation (A). The figure also contains
the “corresponding” ORM diagram for the DL translation
proposed by Franconi and Mosca. Lets call this translation
(B). Assuming that the FOL translation of (A) is contained
in � and that of (B) in �. It is easy to see that due to the
additional constraints in (A), every model of � is also a
model for �, but the inverse is not true. � is thus a logical
consequence of�, but not the other way round. Since the sets
of formulas are not equivalent, there cannot exist a bijective

7 The first version of her paper was published in 2007 in the Computer
Research Repository. Later on, she provided a second version of her
paper with corrections, more extensive related work, etc. in 2009. Both
versions of the paper can be found here: http://arxiv.org/abs/cs.LO/
0702089
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Fig. 5 A binary fact type, its lossless schema transformation using
only attributive fact types and the “corresponding” lossy translation by
Franconi and Mosca [23]

mapping between the two. Hence, the translation proposed
by Franco and Mosca is not lossless.

3.8 The Glossary

Gloss is a set of natural language descriptions—called
glosses—each providing an “explanation” for a term in T
or a lexon in Λ adequate within a given community.

Guidelines on the construction of glosses were given in
[34]. A gloss should (i) start with the term of principal or
super type of the concept being defined; (ii) be written in the
form of propositions; (iii) focus on the distinguishing char-
acteristics of the concept being defined; (iv) be supportive
(examples are encouraged); (v) be consistent with the formal
axioms in the ontology and (vi) be sufficient, clear and easy
to understand.

When two different terms are articulated with the exact
same gloss, one would assume that the glosses and, there-
fore, also the described terms refer to the same concept. If
this property holds, we call the hybrid ontology consistent.
In other words, if two terms in two communities point to
exactly the same gloss, then they must refer to the same con-
cept as well. For most purposes, however, this condition is
too limiting since often glosses will express “the same thing”
without being textually identical. It suffices that the commu-
nities agree on their equivalence; this leads to the following
definition.

Definition 3 (Gloss-equivalence) Given communitiesγ1, γ2

∈ � and terms t1, t2 ∈ T , the two term-glosses g1(γ1, t1) and
g1(γ2, t2) are said to be gloss-equivalent E QG if the two
communities agree that the described terms refer to the same
concept.

Note that there are two special cases of gloss equiva-
lence: one in which the communities are different and the
terms are the same (term-equivalence) and one in which
the terms are different but within the same community
(community-equivalence). We can now define the definition
for the glossary-consistency principle as follows:

Definition 4 (Glossary-consistency principle) A hybrid
ontology satisfies the glossary-consistency principle if for
every two pairs 〈γ1, t1〉, 〈γ2, t2〉 ∈ �×T , if E QG(g1(γ1, t1),
g1(γ2, t2)) then ci(γ1, t1) ≡C ci(γ2, t2). The converse does
not necessarily hold.

We do not impose that E QG(g1(γ1, t1), g1(γ2, t2)) impl-
ies ci(γ1, t1) ≡C ci(γ2, t2) to maintain glossary-consistency,
as both communities might carry other agreements with
other communities for their respective terms. An agreement
between those two communities is sufficient.

Gloss-equivalences are on the level of the glossary
whereas ≡C agreements are on the level of the formal
descriptions of the concepts (i.e. the lexons). We can impose
that for ≡C , the term must appear in a lexon as a term will
only be in the community commitment if and only if that term
plays at least one role (otherwise, the term has no purpose
for this community). If the term would end up in a taxon-
omy, then it plays the role of being the sub- or supertype
of another term (e.g., with the role-labels “is a/subsumes”),
hence satisfying the condition.

Communities can start gradually building their glossary
before formally describing their concepts. However, nothing
should prevent community members for having agreements
on the “sameness” of descriptions across or within their own
community. If the definition would impose ≡C on the formal
descriptions, the community first needs to agree on at least
one lexon concerning that term.

Another reason is validation of the equivalences. The
glossary-consistency principle will pinpoint the descriptions
used for terms that are E QG , but whose terms in those com-
munities are not ≡C . The glossary-consistency principle does
not become a property that needs to hold or else the ontology
project fail, instead it becomes a tool to drive the commu-
nity in establishing ≡C , double checking whether the gloss-
equivalence was not misleading and both terms really do refer
to the same concept.

This is particularly handy as the validity of the natural lan-
guage descriptions and the equivalence of two such descrip-
tions are relative to the communities participating in these
discussions. If glosses were not adequate and yet agreed
upon, the second agreement while the terms are formally
described are more than welcome and the community will
be able to rectify the mistakes.

Gloss-equivalence is a symmetrical property as it captures
the communities agreeing that their glosses to describe their
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terms refer to the same concept. Term-adoption, however, is
asymmetrical. The definition is given below.

Definition 5 (Term-adoption) Given a hybrid ontology
description HΩ = 〈Ω,G〉 and two communities γ1, γ2 ∈ �
and term t1 ∈ T, γ2 is said to adopt 〈γ1, t1〉 when gloss1 =
g1(γ1, t1) and gloss2 = g1(γ2, t1) are defined, and we have
(i) E QT (gloss1, gloss2), i.e. first “match” the two glosses;
and (ii) ci(γ2, t1) ⇐cea ci(γ1, t1), i.e. agree that both con-
cepts are equal with γ2 also incorporating the meaning agree-
ments inside ci(γ1, t1).

In this definition ⇐cea allows the adopting commu-
nity to incorporate the meaning agreements of the other
community by asserting ci ≡C ci(γ2, t1) for every ci

in cea(ci(γ1, t1)). In other words, by adopting the gloss
of another community-term pair, the adopting community
agrees with all existing ≡C agreements the adoptee has
with other communities. Term-adoption allows γ1 and γ2

to agree their respective glosses with reference to the same
concept (a symmetric condition) and γ2 agreeing to use t1
as a term to refer to γ1’s concept behind it (an asymmetric
condition).

4 Hybrid Ontology-Engineering Method

In the previous section, we introduced a framework for
hybrid ontology engineering on top of DOGMA, a fact-
oriented ontology engineering approach. In this section,
we present the method for hybrid ontology engineering. A
method prescribes certain guidelines and steps to be taken to
achieve a certain goal; the construction of a hybrid ontol-
ogy in this paper. The method uses the hybrid ontology-
engineering framework defined in the previous section. We
will introduce the social processes as we go along each of
the steps of the method. The social processes were defined
in [18] and allow a community to alter the hybrid ontol-
ogy towards a closer approximation of the community’s
domain.

Figure 6 summarizes the different phases in GOSPL. Start-
ing communities and their requirements that co-evolve, the
informal descriptions of key terms have to be gathered before
formally describing those concepts. These formal descrip-

tions can be constrained and then committed to by applica-
tion using a commitment language, e.g.,Ω-RIDL [71]. Dur-
ing the processes from creating the glossary to committing to
the hybrid ontology description, the communities can make
agreements on gloss-equivalences and synonyms. The hybrid
ontology and the data described with those commitments can
then be re-internalized by the community for another itera-
tion, gradually approximating the domain that needs to be
captured by the ontology.

4.1 Defining Semantic Interoperability Requirements

We restrict ourselves to communities of users represent-
ing autonomously developed and maintained information
systems with a need to exchange information for a pur-
pose. This need is translated into a semantic interoper-
ability requirement (SIR). The objectives of a SIR are
to ensure the application or components interoperate with
other specified information systems and their components
in a meaningful manner. The data need to be exchanged
between those components and be useable upon recep-
tion and the different components “know” how to con-
sult the data from other information systems or compo-
nents. A community is partly identified by its SIRs. As
we will see later on while describing the co-evolution
between communities and their SIRs, we will identify
communities by those requirements and its set of mem-
bers.

A SIR for a community γ ∈ � SI R(γ ) consists of
an ordered pair 〈K T,G O〉: a non-empty set of key terms
K T ⊂ � × T and a non-empty set of goals G O for which
descriptions of those key concepts are needed. The commu-
nity interacts and agrees upon the elements in those two sets.
The social processes for this phase are

– Request to add key term
– Request to remove key term
– Request to add goal
– Request to remove goal

4.2 Building the Glossary

Interoperability is achieved by annotating the symbols of an
information system with terms and relations in the hybrid

Fig. 6 The GOSPL method
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ontology. As the hybrid ontology and the glossary are initially
empty, we must ask ourselves how these ontologies come to
be. We have already described how—in a hybrid ontology—
terms are, on one hand, described “informally” by means
of natural language descriptions called glosses for humans
and described formally for annotating information systems
and their computerized systems on the other. To ensure all
members of a community are referring to the same refer-
ent for a particular label, the community needs to align their
ideas of the concept symbolized by the term. We call this
process alignment. Alignment is achieved by (1) describ-
ing the concepts referred to by these labels and (2) having
the community members agree on one such description per
label.

To facilitate alignment, GOSPL imposes terms to be artic-
ulated before formal descriptions are added, starting with the
list of key terms in the SIR.

In a first iteration, there are no lexons. A community needs
to wait for articulating lexons for when start emerging. Lex-
ons can be articulated with a gloss only if both its terms
are articulated. In GOSPL, a community is able to articulate
all the lexons. However, GOSPL strongly encourages artic-
ulating at least those lexons whose internal uniqueness does
not span only one role. In other words, GOSPL encourages
the articulation of “many-to-many” relations in ER termi-
nology. In the absence of an internal uniqueness constraint,
the uniqueness constraint is assumed to be spanning the two
roles. Such relations must correspond with a concept in the
domain that needs to be approximated by the ontology. This
is in contrast with the so-called “attributive” relations, which
can be too “trivial” to fully articulate. Take for instance the
lexon 〈C1, Person, working for, employing, Organization〉
where a person can work for many organizations and an orga-
nization can employ many employees. This many-to-many
relation could denote the concept of position. In the example
of 〈C2, Person, born on, of birth of, Date〉 with a person born
on at most one Date, date (of birth of) becomes an attribute
of Person. We, therefore, do not need to describe the rela-
tion as being the occurrence of persons having a birth date.
Our claim is that non-attributive relations denote concepts
and, therefore, need to be described by the community. The
relation between concepts and non-attributive relations will
become apparent after we will treat the constraint one can
put on lexons and reference structures of concepts.

The social processes in this phase are

– Request to add term-gloss
– Request to remove term-gloss
– Request to change term-gloss
– Request to add lexon-gloss
– Request to remove lexon-gloss
– Request to change lexon-gloss

4.3 The Creation of Lexons

Lexons can only be entered in the lexon base when one of
the terms in this lexon has already been articulated. Indeed,
it would be undesirable to describe a relation between two
terms if both terms playing the roles in that relation are not
described themselves, meaning that their intended meaning
has not yet been made explicit. If at least one of the terms
described, one can assume that the lexon proposed around
that term is in function of the informal definition and/or the
SIRs.

The social processes for constructing the domain-
conceptualization are

– Request to add lexon
– Request to remove lexon
– Change supertype of term

The last social process in the list above corresponds with
the management of the taxonomy. Changing the supertype
of a term when it has already a place in the taxonomy of the
hybrid ontology will result in the removal of the previous
relation.

4.4 Constraining Lexons

An application commitment contains (1) a selection of com-
munity commitments, loading all the lexons and constraints
agreed upon by those communities; (2) a selection of lexons
added by the application-owner; (3) constraints on lexons
(imported of added) that indicate how that particular applica-
tion uses those concepts; and (4) mappings from application
symbols to terms and roles in that selection.

Some of these constraints have to be shared and agreed
upon by the community to meet the semantic interoperability
requirements. Those constraints should not stem from the
individual applications, but be part of the domain that has to
be modeled. A classic example of such a constraint is a book
being uniquely and totally identified by its ISBN number.8

Those constraints are needed to ensure proper interoperation
between the different systems.

The community thus might need to agree on constraints to
meet the goals captured by their SIRs. We make a distinction
between two types of constraints: on terms and on roles of
lexons. In either case, the GOSPL method imposes the terms
to be articulated with a gloss. Indeed, it would be undesirable
to constrain the use of a term, a role, or a lexon with insuffi-
cient articulation, as this means that their intended meaning
has not yet been made explicit.

For the social process “Request to change superlexon of
lexon (role hierarchy)”, however, we require that the four
terms of both lexons involved be articulated. Indeed, how

8 Which is only true for only certain types of applications.
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can one imply that an instance playing a particular role “r1”
implies that same instance playing another role “r2” if the
terms or the relation itself are not specified. Remember that
lexons can be articulated as well only if both its terms are
defined.

The social processes for this phase are

– Request to create a constraint
– Request to remove a constraint
– Request to change superlexon of lexon (corresponds with

role-hierarchies and ORM subset-constraints).

4.5 Committing to the Hybrid Ontology

Once there is a close approximation of a (part of) the hybrid
ontology for meeting the SIRs, the stakeholders can start
annotating their information systems, with the hybrid ontol-
ogy by means of a commitment. The commitments enable
the exchange of information residing in those systems. With
every (closer) approximation of the domain with the hybrid
ontology, the commitments will provide access to instances
of concepts that can be used for defining and/or refining the
definitions, fact types and constraints in the hybrid ontology
description.
Ω-RIDL [71] is the application commitment language

we have adopted. It was extended to include references to
community commitments. Take for example the ER-diagram

for a fictitious database storing information about artists and
works of art in Fig. 7. The corresponding application commit-
ment is shown below the diagram. Notice the reference to the
cultural domain community, which will include all lexons and
constraints currently agreed upon by that community. This
particular commitment furthermore includes some applica-
tion specific knowledge to annotate the artificial IDs. The
commitment describes how these IDs uniquely and totally
identify instances of artists and works of art. Furthermore,
the terms “Artist” and “Work Of Art” inside the application’s
lexons are declared to be synonymous with that of the com-
munity. The lexons and constraints of the cultural domain
community in this example were assumed to include (where
‘C’ stands for “Cultural Domain Community”):

<C,Art Movement,with,of,Name>
<C,Artist,with,of,Art Movement>
<C,Artist,born in,of birth of,Year>
<C,Work Of Art,with,of,Title>
<C,Work Of Art,made in,of,Year>
<C,Artist,with,of,Gender>
<C,Artist,contributed to,with contributor,
Work Of Art>

<C,Gender,with,of,Code>
<C,Artist,having,of,Name>
EACH Name IS LEXICAL.
EACH Code IS LEXICAL.
EACH Year IS LEXICAL.
EACH Title IS LEXICAL.

Fig. 7 Example ER diagram and corresponding Ω-RIDL application commitment
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The lexical constraints limit instances of concepts denoted
by a term to “things” that can be printed on a screen.

4.6 Community and SIR Co-evolution

We explained how a community starts the development of a
hybrid ontology by first defining their SIRs, articulate the key
terms in those requirements and gradually construct agree-
ments on fact types, glosses, constraints, gloss-equivalences
and synonyms. Communities and their SIRs are, however,
not static. They are evolving and even co-evolving. With the
additional of a new stakeholder in the community, the com-
munity changed not only with the presence of a new member,
but also with the addition of new ideas, a possible different
perspective on matters and possible new requirements for
the community. Also requirements can change from exter-
nal forces, e.g. due to legislation changes. The community
constitution does not necessarily need to change for the SIRs
to evolve; a community can come to the conclusion that the
current approximation of the domain by the hybrid ontology
description does not meet their needs even though it com-
plied with the requirements. In that case, the community will
negotiate changes to the requirements. This can happen when
the community starts to better understand the domain.

5 Glossary Evolution

Now that we have presented the method, we will describe
how the evolution of glosses impacts the hybrid ontology.
We follow Jarrar that the purpose of a gloss is not to pro-
vide or catalogue general information and concepts about a
concept, as conventional dictionaries and encyclopedias do,
but is supposed to render factual knowledge that is critical to
understanding a concept in ontology engineering [34].

A gloss is composed of one ore more sentences con-
structed with the community’s usual alphabet. Those sen-
tences have to be themselves human-interpretable in order
for the gloss to become understandable. We denote S as the
set of all possible sentences that can be constructed with those
alphabets. We ignore whether this set contains sentences (or
parts thereof) that are valid syntax- and grammar wise. As
the community will choose and discuss the elements of this
set used for constructing a gloss, they will make sure that
what is chosen makes sense (at least for this community).
We will thus avoid talking about truth, since we are not in a
formal logical context. We exclusively use this word between
an ontology and semantics. Occasionally and carefully, we
will use this word for addressing the agreement on valid-
ity assumed to exist in the community. In other words, truth
is relative to the community; if there is an agreement, it is
assumed to be valid.

Every part of a gloss should contribute to a better under-
standing of the concept described. As a consequence, some
of these parts should correspond with (parts of) the formal
description of that concept. In other words, as the glosses
evolve, so should the lexons and constraints. We will describe
how glosses can evolve, and their impact on commitments.

Glosses evolve for a reason, which is captured by the moti-
vation of the change and the communities’ discussion. How
the gloss changes can be formalized. There are two types
of gloss updates. A first is a complete change of a gloss.
We deem this kind of update to happen only accidentally;
as such a change would imply that the community—as a
whole—misinterpreted the term being described in the con-
text of that community (and their goals).

The second type of change is a (more gradual) refinement
of the gloss. Glosses are composed of one or more sentences.
Sentences or parts of sentences can be added or removed. The
sentences that have been added or removed serve (or served
in the case of the latter) a particular purpose for that gloss.
That purpose captures and describes how the gloss and those
sentences were related. One can define many such purposes.
In this paper, the set of purposes is referred to by Θ .

Definition 6 (Gloss evolution) Within a community γ ∈ �,
gloss evolution is defined as mappings of the form Θ

γ

i :
2S → 2S , where a glossary Gloss → Θ

γ

i (Gloss) =
Gloss′ by means of the application of a purpose element
inΘ . This creates a discrete gloss evolution. Gloss evolution
is a mapping ε : � × N → 2S , in which (γ, t) → Gloss(t)
where t is a point in time, such that ε(γ, 0) = ∅ and
∃g ∈ Gloss, ∃s ∈ S : Gloss(t) = {Gloss(t − 1) \ {g}} ∪
{Θγ

i (g, s)}.

The linguistic amalgamation operators to add or remove
(a part of a) sentence from a gloss are defined as: ⊕ : Gloss×
Θ × S → Gloss for adding an element of S to a gloss and
� : Gloss × Θ × S → Gloss for removing an element of
S from a gloss.

For simplicity’s sake, the exact places where sentences
would be added or which occurrence of a part is removed are
“ignored”. Those are assumed to be additional parameters of
the above-mentioned operators. The changes in text neces-
sary for it to be proper to the communities’ language, such
as readjusting capitalization, are also “ignored” for the same
reason.

5.1 The Elements of Θ

This section will provide a proposal for the elements in Θ .
To this end, inspiration is drawn from discourse theory, and
more concretely Rhetorical Structure Theory [49]. Elements
from RST are furthermore refined and complemented with
elements introduced specific for GOSPL. One such element
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specific to GOSPL is gloss-adoption, where one community
explicitly states to adopt the gloss of another community.

The goal is not to provide an exhaustive list, as it can
vary depending on the type of community or even the type of
language they employ. The framework is, therefore, defined
in such a way that new elements can be introduced to Θ .

A distinction is made between elements that affect the
community commitment and elements that merely serve to
provide additional text to (better) understand the concept
described.

The application of some gloss-amalgamation operators
might imply the introduction of lexons, constraints and even
instances in the community commitment. Lexons and con-
straints are useful for populating the lexon base and commu-
nity commitments. The instances to validate the constraints
explicitly agreed upon by the community.

5.1.1 Drawing Inspiration from RST

For the elements of Θ , inspiration is—as already stated
above—first drawn from RST. RST was originally devel-
oped as part of research on computer-based text generation.
RST was intended to describe texts by means of two types of
“relations”, each at a different level. The first is the “nucleus-
satellite relation” and is the most frequent structural pattern.
It captures that two spans of text (usually adjacent) are related
such that one of them has a specific role relative to the other.
The other type is “multinuclear relations”, grouping a set
of nuclei. RST thus offers means to annotate the role (the
purpose) that a part in the text plays on another part.

Before moving on, the reader needs to be aware that in
RST, the purposes that spans serve to other spans are some-
what confusingly labeled “relations”. A term obviously not
suitable for a computer science text. The authors of RST are
linguists and the “relations” they proposed actually refer to
“functionalities”, a purpose. From here onwards, the use of
the word “relation” in the context of RST will be avoided.

RST thus allows one to describe how two segments of
discourse are connected to one another. With elements of the
first type, the nucleus (N) is part of the text onto which the
satellite (S) will play a particular role.

Example 4 For instance, in the sentence: “Employees are
urged to complete new beneficiary designation forms for
retirement or life insurance benefits whenever there is a
change in marital or family status” The part “whenever there
is a change in marital or family status” is the satellite and
expresses a condition for “Employees are urged to complete
new beneficiary designation forms for retirement or life insur-
ance benefits”, the nucleus.

Glosses need to briefly describe terms or lexons employed
by the community. They also need to be agreed upon by that

same community. Opinions or statements in favor of a partic-
ular gloss are part of the discussion leading to an agreement,
and not part of a gloss. As RST provides “relations” with
a subjective nature (e.g., the antithesis that describes ideas
favored by the author), only a subset of these “relations”
that is deemed relevant for gloss evolution will be presented,
together with examples. This is in line with the guidelines on
the construction of glosses given in [34] mentioned in Sect. 3.
But first, the purposes provided by RST that were not taken
into consideration are

1. Purposes for expressing opinions: antithesis, concession,
and justify.

2. Purposes aimed at enabling the reader in undertaking
actions: enablement.

3. Purposes at interpreting and evaluating text: interpreta-
tion and evaluation.

4. Purposes concerned with relating information with causes
and effects: non-volitional cause/result, volitional cause/
result.

The purposes involving a nucleus and a satellite we
adopted are

– With background, S is used to facilitate the understand-
ing of N.

– Circumstance is used to denote that S sets the framework
for interpreting N.

– A condition is used to state that the truth-value accorded
to the proposition in N depends on the truth-value
accorded to the proposition in S. Related functions are
Unconditional, Otherwise, Unless.

– Elaboration denotes the addition of information to
already available information. There are several spe-
cializations of elaboration. Examples are Specialization,
Part-whole, etc.

– Evidence is a piece of information that supports a claim,
in this case, the gloss. Examples are typically used as evi-
dence; they support the definition contained in the gloss.
Examples, however, are already present as a special case
of the elaboration function (instantiation). We, therefore,
limit the type of evidence to information supporting a
claim.

– Means is used to denote S presenting an instrument used
for achieving the concept described in N.

– In preparation, S is used to prepare the reader to expect
and interpret N.

– Purpose is used to describe that an activity in N needs
to be initiated to achieve what is described in S. In other
words, S thus describes the purpose for doing the activity
described in N.

– In RST, “solutionhood” describes the function that N
presents a solution to the problem described in S. As
this function is one of the few where the description of
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the function is more intuitive from N to S and all other
functions presented here described the function of S on
N, we choose to rename this function into problem-for.
This way, the meaning of each function is presenting a
role S is playing on N.

The elements of Θ currently described involved a satel-
lite playing a role on a nucleus. However, RST also described
other “relations” which involves multiple nuclei. All but two
of this type are taken into account. The multinuclear restate-
ment was not considered for the same reason as the restate-
ment purpose. Also the joint purpose was not considered, as
it is used to “glue” two pieces of text that are not related. As
a gloss needs to present a brief description of the described
term, all parts in that gloss need to be relevant.

The purposes involving multiple nuclei used in this paper
are

– Conjunction. The items are conjoined to form a unit in
which each item plays a comparable role. Items can be
combined with words such as “and” and “nor”.

– Disjunction. An item presents an alternative for the
other(s). The disjunction is not necessarily an exclusive
disjunction.

– Contrast is used for at most two nuclei. The two are
understood to be similar (or the same) in many respects
and to differ in a few respects, and both are compared
with respect to those differences.

– List for linking items is comparable to each other and
sequence for linking items with a logical succession, e.g.,
steps to perform a task.

5.1.2 Remaining Gloss Evolution Purposes

RST provides a foundation for choosing gloss-evolution
purposes. The hybrid ontology-engineering framework we
adopted, however, also provides processes that result in gloss
evolution not related with these purposes.

Given two communities γ1, γ2 ∈ � and their respective
terms t1, t2 ∈ T and γ2 have articulated t2 with a gloss g.
Community γ1 is able to adopt g for describing t1. It is obvi-
ous that this operation evolves the gloss for 〈γ1, t1〉. The
implications of the adopted gloss on the hybrid ontology
remain within the original community, but are known to the
adopting community as this operator links both terms.

Also important is the identification of the set of attributes
that uniquely and totally identify instances of a concept. To
this end, a special kind of attribute-purpose is introduced:
the identifies. With this purpose, one will later on be able to
identify these attributes and distill the necessary constraints
for it.

5.2 Glossary, Lexon Base and Commitment Co-evolution

The elements in Θ and the amalgamation operators enable
the support of the co-evolution of communities, ontologies
and glossaries. Changes in the requirements of the commu-
nity are reflected in the formal part of the ontology and possi-
bly require the refinement of the glosses based on the newly
defined gloss evolution operators. In turn, those changes
might start a series of social processes for the formal part of
the hybrid ontology to reflect those changes accordingly. At
any time, changes in both the lexon base and the glossary will
influence the communities’ next decisions. Some elements of
Θ provide only additional information to the community for
understanding the gloss. Other elements, however, can and
should have an impact on the hybrid ontology. These ele-
ments influence the hybrid ontology at three levels:

1. The introduction of one or more pre-lexons in the lexon
base.

2. The introduction of pre-constraints.
3. The introduction elements in the population of a term or

a lexon.

Pre-lexons are “raw” lexons that have not yet been refined
by the community (e.g., proper stemming of verbs in roles,
the introduction of the co-role, etc.). Some gloss-evolution
purposes result in lexons of which roles, concepts or gener-
alization of concepts are known. For instance, when describ-
ing a specialization of a concept, the roles is a / subsumes—
interpreted as the taxonomic relation—will be proposed. Pre-
constraints are constraints in terms of the pre-lexons.

Example 5 Given some community γ wishing to articulate
the term “Car” with a gloss. The application of the general-
ization (a type of elaboration): “A car”⊕Generalization(“is
a road vehicle”) results in the following pre-lexon.

– 〈γ Car, is a, subsumes, road vehicle 〉

The roles are underlined as they are pre-filled and have
a special interpretation. Nothing prevents community mem-
bers to refine this pre-lexon and change its role-labels. But as
the gloss has evolved with a generalization, one would expect
that this would reflect with the addition of a taxonomic rela-
tion in the hybrid ontology.

Once refined, the execution of this gloss evolution triggers
social processes for adding this lexon.

Example 6 Taking the following gloss g for “Car” in some
community γ ∈ �: “A car is a road vehicle”. One can elabo-
rate on this term by adding the following sentence s “powered
by an internal combustion engine and able to carry a small
number of people.”. The sentence s is actually the result of a
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conjunction s′ ⊕ Conjunction(s′′) where s′ = “powered by
an internal combustion engine” and s′′ = “and able to carry
a small number of people.” Elaborating g with the conjunc-
tion contained in s with g ⊕ Elaboration(s) results in the
following pre-lexons:

– 〈γ ,Car,powered by,.,an internal combustion engine〉
– 〈γ ,Car,able to carry,.,a small number of people〉

These pre-lexons have to be refined by the community
and social processes are started to include these lexons in the
hybrid ontology.

– 〈γ ,Car,powered by,powers,Internal Combustion Engine〉
– 〈γ ,Car,carrying,carried by,Group〉

Instances can be distilled from glosses and used as a test
population in hybrid ontology engineering.

Example 7 Given a gloss g = “A planet, in astronomy,
is one of a class of celestial bodies that orbit stars.” for
the term “planet”. One can elaborate this gloss by giving
examples. s = “Examples are Mercury, Mars and Earth.”
g ⊕ I nstantiation(s) = “A planet, in astronomy, is one
of a class of celestial bodies that orbit stars. Examples
are Mercury, Mars and Earth.” The instances of planets
are proposed to be taken into account, and will – once
accepted – serve as a test population for ontology engineer-
ing. Population(γ, Planet) = {Mercury,Mars, Earth}

There are several ways to discover constraints in glosses.
For example, the conditional can express subset constraints
between roles of lexons. Others, such as the elaboration, con-
tain hints on frequency or totality constraints within a pre-
lexon.

Example 8 Given a gloss g =“A proposal results in a
project” for the term “Proposal” in a certain community
γ ∈ � and assuming that the lexon 〈γ , Proposal, results in,
result of, Project〉 is already present. By adding a condition
by applying g ⊕Condition(“when the proposal is accepted
by the review board.”), the following pre-lexon and subset
constraint are distilled:

– 〈γ ,Proposal,is accepted by,.,review board〉
– Subset constraint from “is accepted by” to “results in”.

The community can refine the pre-lexon as well as the
subset constraint and trigger social processes to accept these
in the formal part of the hybrid ontology.

The extraction of possible lexons, constraints and instances
for the community commitment can be to some extent auto-
mated by applying natural language processing (NLP) tech-
niques.

GENERALIZATION

"A car" "is a road vehicle."

MERONYMY

"It has four wheels."

N S

N S

GENERALIZATION

"A car" MERONYMY

"is a road vehicle." "It has four wheels."

N S

N S

Fig. 8 Tree representation of differently structured glosses that appear
the same

While extracting the pre-lexons for a purpose f1, the
detection of terms in the nucleus will often follow the same
steps. In essence, if the nucleus is a sentence, then noun-
extraction will be applied on this sentence. However, if the
satellite is a purpose f2, then the nucleus of that purpose
should be examined. If the purpose f1 would be applicable
to the nucleus of this purpose f2, then the structure of this
gloss would look different. This becomes clear if the applica-
tion of elements ofΘ for glosses are visualized as a tree (see
Fig. 8). Above, the wheels are part of the car, which is the
nucleus of the purpose. Below, however, the meronymic rela-
tion is pointing to the road vehicle. It is up to the community
to ensure that the structure of the gloss corresponds makes
sense. When the gloss is defined by means of prepositions,
those prepositions can easily be structured according to these
rules. In case of a multi-nucleic relationship, the terms will
be detected in each element of that relationship. The multi-
nucleic relationships are mainly exploited to distill a series
of pre-lexons that play a particular purpose. For instance,
in the case of an identification purpose, the disjunction will
denote distinct reference structures, whereas the conjunction
will indicate which attributes belong together.

6 Application Commitments in the Feedback Loop

Application commitments provide valuable information abo-
ut which terms and lexons the different members of the com-
munity representing their organization commit to. This selec-
tion is exploited by informing those members when changes
are requested (and occur) in the ontology as to stimulate dis-
cussion.
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Fig. 9 Feedback loop from the
ontologies to the community by
not merely taking into account
the lexons committed to by the
application, but the data in the
annotated organization
information systems as well

The mapping α in those commitments is furthermore used
to delve into the annotated data in search for support or coun-
terexamples for certain statements made by the community,
e.g. to notify the community whether proposed constraint is
true for all annotated information systems currently known
in the community. This process will guide the community in
its dialogue to achieve agreement. This is done by generating
the necessary queries using the commitments of each of the
applications, populating the lexons in the conceptual schema
and then reason over the data in terms of lexon populations.
This tool is called Ω-DIPPER. Figure 9 extends and depicts
the place of Ω-DIPPER in the feedback loop.

6.1 Semantics of Constrained Lexons

We presented in Sect. 3 the encoding of lexons and con-
straints in Description Logics (DLs) so that we can utilize
DL-reasoners for reasoning tasks over the resulting ontolo-
gies. The Open World Assumption (OWA) in DLs allows
the existence of unknown information. However, in many
cases, we want information to be as complete as possible to
support business—as defined by the semantic interoperabil-
ity requirements of a community of stakeholders. In other
words, the instances in the annotated information systems
must follow certain business rules to ensure proper busi-
ness. For example, in some cultural domain, we want that
every “Event must have at least one explicit associated Loca-
tion”. The OWA, however, cannot capture our intuition of
constraints that need to be imposed, thus we assign differ-
ent semantics for constraint lexons to treat them as OWL
integrity constraints (ICs) [54,65].

Our purpose is twofold: (1) using ontologies to provide
shared conceptualization and to enrich data, and (2) using
constraints as integrity constraints for data inside each appli-
cation. To achieve this, we combine the Open World Assump-
tion and Closed World Assumption (CWA). OWA is used in
reasoning to derive new knowledge, and CWA is adopted
when validating the integrity of the application data. We
present a survey of existing approaches for OWL integrity
constraints. Note that some authors refer to an ontology as
a knowledge base. This knowledge base is denoted as a pair
〈T ,A〉, where TBox T consists of terminological axioms

and ABox A consists of assertions or data sets. For the hybrid
ontology engineering framework, we agree that [30] that in an
ontology, the description of concepts and relations should be
separated from its instances. For simplicity’s sake, however,
we consider both the axioms and assertions when discussing
the integrity constraints in this section, and we use a set of
assertions as an abbreviation of a model.

Definition 7 (ICs by consistency [42]) An ontology O sat-
isfies an integrity constraint I C if and only if O ∪ I C is
satisfiable.

Example 9 Suppose that O1 consists of the following axioms

∃has−.� � Location (14)

MusicEvent � Event (15)

MusicEvent (boomtown) (16)

and I C1 contains only

Event � ∃has.� (17)

It is easy to see that, under OWA, O1 ∪ I C1 is satisfiable. So
O1 satisfies I C1 by Definition 7. However, it does not fit our
intention of using the constraint to ensure that every event
has explicit locations; boomtown is an event but its location
is not explicitly presented.

Definition 8 (ICs by entailment [60]) An ontology O satis-
fies an integrity constraint I C if and only if O |� I C .

Example 10 We consider another example in which I C2

only contains (17). Ontology O2 consists of all axioms of O1

together with {has(boomtown, ghent), Location(ghent)}.
Intuitively, one might think that ontology O2 satisfies I C2.
However, there is also a model I1={MusicEvent(boomtown),
Event(boomtown), Event(polepole), has(boomtown, ghent),
Location(ghent)} of O2 for which I1 �|� I C2. By Defini-
tion 8, O2 does not satisfy I C2. That contradicts the intuition.

Definition 8 states that all models must entail the integrity
constraints. However, the example above suggests that entail-
ment in this definition should be restricted to minimal models
of O. I is a minimal model of O if and only if I is a model of
O and there is no model J of O such that J ⊂ I. Therefore,
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Definition 8 should be formalized as follows: O satisfies I C
if and only if all minimal models of O entails I C . This idea
has been nicely captured in [54,53], where ontology axioms
are expressed as FOL formulas [5] and skolemization [55] is
applied to deal with existential quantifiers.

Definition 9 (ICs by minimal models and skolemization
[54,53]) Let π(O) and π(I C) be FOL formulas that express
axioms in O and I C , respectively, sk(O) be the set of formu-
las obtained by skolemization of π(O). O satisfies integrity
constraint I C if and only if I |� π(I C) for every mini-
mal Herbrand model I of sk(O). We shall sometimes write
I |� I C instead of I |� π(I C).

Definition 10 (Herbrand-based model) Given an ontology
O = {T ,A}.I is a Herbrand-based model of O if I is a
model of O,�I consists of ABox’s individuals, and every
individual is mapped to itself. A Herbrand-based model I of
an ontology O is minimal if there is no Herbrand-based model
J of O such that: �I ⊂ �J and interpretation function ·J
contains every mapping in the interpretation function ·I .

Now we reconsider Examples 9 and 10 with respect
to Definition 9. In Example 9, the only minimal Her-
brand model of O1 is I ′

1 = {MusicEvent (boomtown),
Event (boomtown)}. By Definition 9, O1 does not satisfy
I C1 because I ′

1 �|� I C1. It follows the intuitive interpre-
tation of avoiding an unknown Location for Event . In
Example 10, the only minimal Herbrand model of O2 is
I2 = I1 \ {Event (polepole)} and I2 |� I C2, then O2 sat-
isfies I C2. This also fits the intuitive interpretation; however
in some cases, the skolemization could lead to unexpected
consequences.

Example 11 Let O3 consists of following axioms:

∃has−.� � Location (18)

MusicEvent � Event (19)

Event � ∃has.� (20)

MusicEvent (boomtown) (21)

I C3 contains only the axiom MusicEvent � ∃has.�
The minimal Herbrand model of ontology O3 is of

the form I3 = {MusicEvent(boomtown), Event(boomtown),
Location(u), hasLocation(boomtown, u)} where u is gener-
ated by skolemization of axiom (18) and (20). We see that
I3 |� I C3, so O3 satisfies the I C3 although the exact location
of boomtown is unknown.

Definition 9 almost captures the intuition of ICs, but it
has some drawbacks discussed in [65]. To avoid the prob-
lem of unknown individual and avoid unintuitive mean-
ing of integrity constraints, we use an alternative seman-
tics for OWL integrity constraints. Before that, however, the

Herbrand-based model of an DL ontology is first defined,
which is similar to the Herbrand model in FOL.

Now the integrity constraint interpretation is defined to
interpret the translated GOSPL constraints. For each ontol-
ogy, there is at most one such interpretation. In case of unsat-
isfiable ontologies, there is no such interpretation.

Definition 11 (Constraint interpretation) Given an ontology
O = {T ,A} and M = {I1, . . . , In} is a set of its minimal
Herbrand-based models. Concept name A, role R, and indi-
vidual d in integrity constraints are interpreted by the follow-
ing integrity constraint interpretation II C = {�II C , ·II C },
where �II C is a set of all individuals in A, as follows:

AII C = {dII C | dJ ∈ AJ , for all J ∈ M}
RII C = {(cII C , dII C ) | (cJ , dJ ) ∈ RJ , for all J ∈ M}
dII C = d

The extension of II C to inverse roles and complex concepts
is done as normal.

We will use integrity constraint interpretation to define
how an ontology satisfies an integrity constraint. Note that
we only consider satisfiable ontologies whose integrity con-
straint interpretation exists.

Definition 12 (Integrity constraint satisfaction) Given an
ontology O and its integrity constraint interpretation II C ,O
satisfies an integrity constraint IC if and only if II C |� I C .

We reconsider the previous examples and check whether
Definition 12 captures our intuition of integrity constraints.

Example 12 Reconsidering Example 9 with respect to Defin-
ition 12. The only minimal Herbrand-based model of O1 is of
the form I = {MusicEvent(boomtown), Event(boomtown)}.
We have EventII C = {boomtown} but (∃has.�)II C = ∅.
Thus, O1 does not satisfy I C1. This matches the intuition of
the constraint.

It is easy to check that Definition 12 also matches the intu-
ition in Example 10. Now, we reconsider Example 11 in the
light of Definition 12.

Example 13 Every minimal Herbrand-based model of O3 is
of the form Ii = {MusicEvent(boomtown), has(boomtown,
ui ), Event(boomtown), Location(ui )} Where ui is different
in each Ii . We have MusicEventII C = {boomtown}, but
(∃has.�)II C = ∅. Thus O3 does not satisfy I C3 as expected.

In the next part, we briefly present the process of checking
integrity constraints.

6.2 Checking Constraints over Annotated Data

Our proposal resembles the IC-interpretation in [65]. We
differ from [65] in using minimal Herbrand-based models
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instead of classical models. To validate integrity constraints,
we follow the approach in [65]. However, we adopt the
Unique Name Assumption instead of the Weak Unique Name
Assumption [65].

We have implemented a prototype supporting the com-
mon ORM constraints [29]: mandatory constraint, internal
uniqueness constraint, and external uniqueness constraint.
Some SPARQL queries to check the validity of those integrity
constraints and get the counter examples are presented below.
To get complete answers, we use HermiT9 reasoner to clas-
sify the ontology and then perform materialization before
running those SPARQL queries. Note that our method works
correctly with ontology languages in which classification
task can be done without taking assertions into account.

Mandatory constraint C � ∃R.�

PREFIX ont: <http://path.to.my.ontology/#>
SELECT ?x WHERE {

?x a ont:C.
OPTIONAL {?x ont:R ?y.}
FILTER (!BOUND(?y))

}

Internal uniqueness constraint ( f unct R)

PREFIX ont: <http://path.to.my.ontology/#>
SELECT ?x WHERE {

?x ont:R ?y1.
?x ont:R ?y2.
FILTER (?y1 != ?y2)

}

External uniqueness constraint (id C R1 ... Rn)

PREFIX ont: <http://path.to.my.ontology/#>
SELECT ?x1 ?x2 WHERE {

?x1 a ont:C.
?x1 ont:R1 ?y1.
...
?x1 ont:Rn ?yn.
?x2 a ont:C.
?x2 ont:R1 ?y1.
...
?x2 ont:Rn ?yn.
FILTER (?x1 != ?x2).

}

7 GOSPL: The Tool

The tool is developed in Java and runs inside an application
container such as JBoss. It contains two layers: the base layer

9 http://www.hermit-reasoner.com

Fig. 10 Screenshot of the lexons and constraints of one communities’
hybrid ontology description

contains all the domain classes and communication with the
server and a web application providing the interface layer.
The base layer can also be consulted by other software agents,
making the development of standalone clients possible. Fig-
ure 10 shows a screenshot of the GOSPL tool. It shows a
screen with the lexons and constraints of one communities’
hybrid ontology description (1) and glossary (2), links to
the discussions (3), community management (4), the com-
mitments of applications to the ontology (5) and the OWL
implementation of the hybrid ontology (6).

GOSPL is discussion-oriented and both the ontology and
glossary evolve only if the community reaches an agree-
ment.10 This results in traceability not only at change level
but also on decision level. In Fig. 11, several discussions are
shown. Different discussions can be started, one for each of
the social processes defined in Sect. 4. Depending whether
a person is a member of the community, some discussions
might not be available. However, all users can leave com-
ments and all users can start “informal” discussions (even
when they are not part of the community). In other words,
we not only record who changes what, but also the reasons
certain changes have been made by linking changes to dis-
cussion on the platform. This was possible by formalizing
the social processes and its corresponding operators.

A voting system is used to gather the opinion of people
without the need of participating in the discussion.

The application commitments belonging to community
members describe how the application symbols of their sys-
tem commit to the ontology, allowing the information in those
database systems to be retrieved through the ontology. Of
course, the discovery of counterexamples does not necessar-
ily mean that the statement is false; however, this information

10 Or a part of the community that felt the need to participate in a
particular discussion.
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Fig. 11 Discussions (social processes) in GOSPL

Fig. 12 Finding counterexamples for statements

might direct the discussion into another direction. Figure 12
shows a dataset has over 13,000 counterexamples for the
mandatory constraint on “has” between “Person” and “Other
Name”.

Figure 13 depicts the description of community-term pair
〈CERIF Project Ontology, Project〉. GOSPL also shows the
communities adopting this gloss or the glosses that the
CERIF Project Ontology has adopted for this term. Glosses
are a very important means to achieve consensus within and
across communities. Others can easily start a discussion to
state that this gloss is equivalent with another gloss (3). The
application furthermore suggests the community members to
introduce concepts, fact types, etc. distilled from this gloss
(2). Glosses thus provide “food for thought” to refine or com-
plete the formal part of the hybrid ontology, a process that
can be facilitated by the tool. This information can be then
exploited to guide the discussion processes, by transforming
certain statements into queries that will look for counterex-
amples.

Figure 14 depicts a simple “scenario” with the tool. After
logging in, users are presented a list of communities (A),
users can take a look in each community—for instance the
Venue community in (B) and the discussions of that commu-
nity (C). The image in (B) corresponds with the screenshot in
Fig. 10. Depending whether the user is a member of a com-
munity, the user has access to a number of social processes

Fig. 13 Displaying the gloss of a community-term pair

he can start within that community. In (D), we show how a
discussion to add a gloss is started. The discussion presented
in (E) stems from the experiment we will describe later on.
Once a term is articulated, lexons can be built around this
term (F) and constraints on the created lexons (G). After a
while, the community has obtained a closer approximation
of their domain and can start creating/updating their appli-
cation commitments (H). These commitments can be (users
are not obliged) registered to the platform, which can then be
used to test statements made in a discussion, e.g., by looking
for counter-examples (H). When users are not part of a com-
munity, the interactions they can start only involves general
requests (e.g., request an edit, or request to become a mem-
ber), they have no access to requests on the glossary or lexon
base. If that user is part of another community, he can trigger
processes to discuss the “sameness” of glosses or terms.

Information on synonymy and gloss-equivalences is shown
on a separate page (a community-term page), accessible by—
for instance—clicking on one of the terms of the accepted
lexons. The GOSPL tool supports a community in applying
the method for ontology engineering, but its purpose is indeed
not to replace other means of interaction that can be more
effective when possible (e.g., face-to-face meetings when
community members are near, or even teleconferences). The
outcome of these interactions outside of the tool, however,
needs to be properly written down when concluding a dis-
cussion.

In [10], we reported on the user satisfaction with the
GOSPL ontology-engineering platform. Based on this study,
we identified the main (usability) problems and drew valu-
able conclusions and recommendations for improvement.

Satisfaction was measured using the standardized Post-
Study System Usability Questionnaire (PSSUQ) [45,46]
developed by IBM. PSSUQ originally consisted of 19 ques-
tions, each question being a statement about the usability of
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Fig. 14 Screenshots corresponding with different social processes supported by the tool

the system. Participants need to answer each statement using
a Likert scale of 7 points, where 1 indicates that the user
“strongly agrees” with the statement whilst 7 indicates that
the user “strongly disagrees” with it. PSSUQ is based on a
comprehensive psychometric analysis, providing scales for
three sub-factors, namely: (1) system usefulness; (2) infor-
mation quality; and (3) interface quality. The short (and most
recent) version of PSSUQ, illustrated in Table 2, was used,
in order to save time.

In Table 2, the questions correspond with the sub-factors
as follows:

– System usefulness: the avg. of items 1 through 6;
– Information quality: the avg. of items 7 through 12;
– Interface quality: the avg. of items 13 through 16;
– Overall: the avg. of items 1 through 16.

In summary, the participants were successful in deliver-
ing ontologies following the method and tool. Taking the
satisfaction results obtained from PSSUQ and the user com-
ments, we derived the following conclusions [10]: out of the
three sub-factors identified by PSSUQ, the system usefulness
measure performed best and the information quality of the
system is the sub-factor that needs to be improved the most.
This also corresponds to the (Information Quality-related)
problems the most cited by the users: usability problems 1, 2
and 3 in Table 3. An improvement regarding problem 1 is to
introduce more information support for the user in the form
of intelligible error messages or supportive documentation.
From [10], we report only the major problems in this article.

Regarding the “delete” and “edit” options, most of the
participants would be content with a feature that allows a
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Table 2 PSSUQ-short version
[47] Item Item text

Q1 Overall, I am satisfied with how easy it is to use this system

Q2 It was simple to use this system

Q3 I was able to complete the tasks and scenarios quickly using this system

Q4 I felt comfortable using this system

Q5 It was easy to learn to use this system

Q6 I believe I could become productive quickly using this system

Q7 The system gave error messages that clearly told me how to fix problems

Q8 Whenever I made a mistake using the system, I could recover easily and quickly

Q9 The information provided with this system was clear

Q10 It was easy to find the information I needed

Q11 The information was effective in helping me complete the tasks and scenarios

Q12 The organization of information on the system screens was clear

Q13 The interface of this system was pleasant

Q14 I liked using the interface of this system

Q15 This system has all the functions and capabilities I expect it to have

Q16 Overall, I am satisfied with this system

Table 3 Summative user
satisfaction

INF information quality, INT
interface quality, SYS system
usefulness

Usability problem Nature # of reports

1 The (error) messages displayed
by the system were often not
clear to the user. There was in
general no online help or
documentation available

INF 6

2 There is no “undo” or “edit”
option available

INF, INT 5

3 No (top menu) link to the
current community in the
discussion page

INT, INF 5

4 It took a while to understand
how the system works

SYS 1

5 Sometimes, listing items in the
dynamic tables did not go
well when after returning to a
page it displayed the first item
again

INT 3

6 There was no “delete” option
for the communities that
“died” during the process

INF, INT 2

7 The user name is not clear (just
email addresses appear)

INT 1

8 Sometimes, more clicking
necessary that one would
expect (e.g. when browsing
through several discussions)

SYS 1

post to be edited within a number of seconds. Regarding the
problems related to communities, the participants wished the
ability to delete communities, in particular the communities
that became obsolete as the different communities evolved.
Even though they understood that even those communities
might once again become active, they would be happy to be
able to “filter” the dead communities from the list and tog-
gle that filter. Also the organization of the information could

be improved (e.g. show more entries by default—the default
number of items shown in a table is 10 and users wish to aug-
ment this number for caret browsing). Other improvements
would be a list of changes after the last visit and displaying
which discussions have been not yet looked at by the user.

Concerning the method we observed that terms that were
articulated before lexons around this term were entered into
a community commitment were less likely to have changes
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in their formal description than those that were not [20]. We
analyzed the interactions involving terms in a community
with the following criteria: (1) the term had to be non-lexical,
meaning that instances of this concept cannot be printed on
a screen, only its lexical attributes can, (2) the term was
the subject of at least 4 interactions (not including gloss-
equivalences and synonyms, thus focusing on the formal and
informal descriptions around this term), and (3) the term took
part in at least one lexon. We took into account terms with a
fair amount of activity. This is due to the fact that the commu-
nities employed terms only relevant to their application and,
therefore, only inspired discussions within that group. These
discussions are not interesting as the community tended to
agree on what has been decided for their application.

We then analyzed how much of these terms changed in
terms of their formal description if when the gloss is pro-
vided. With these criteria, we identified 49 terms. Of these
49 terms, 38 started with the natural language description as
described by the GOSPL method. Of these 38 terms, 11 of
them had changes in their formal description (29 %). And of
the remaining 11 terms that did not start with the informal
description, 5 of them changes in their formal description
(45 %).

The reason we left out lexicals is that they often play in
an attributive role. Lexons are supposed to be entered when
at least one of the terms is articulated. At the start, the key
terms are often described first. And when the second term
concerns a lexical in an attributive role, the community tends
to agree on the meaning of this attribute based on the label
of that term. If we were to take lexicals into account, we
again observe that terms that did not start with an informal
description are more likely to change its formal description:
18 terms out of 46 that started with a gloss and 6 terms out
of 12 that did not start with a gloss.

8 Discussion

Every method needs to be teachable, repeatable and trace-
able. The GOSPL method for hybrid ontology engineering
complies with all three criteria. The first two criteria have
already been proven in industry; we went beyond the cur-
rent state of affairs with the third criterion by formalizing the
social processes involved. This allows us to store the whole
dialogue within the community, supporting decision-making
that could result in ontology evolution.

Teachable. The DOGMA framework for ontology engineer-
ing, on which GOSPL is based upon, drew inspi-
ration from database design methods and tech-
niques such as NIAM and ORM. NIAM/ORM
and, therefore, also DOGMA are fact-oriented

approaches in which stakeholders communicate
fact types expressed in natural language.
Fact-oriented approaches differ from frame-
oriented approaches (e.g., UML) by eliminat-
ing the distinction between attributes and rela-
tions; every thing is a fact between concepts.
This reduces the learning curve. Unlike UML,
fact-orientation was not intended to capture the
dynamic aspects of a system (e.g., methods).
The use of natural language to express these fact
types also facilitates the knowledge elicitation
processes.

Repeatable. Ontology engineering processes and possible
interactions have been described and, there-
fore, repeatable by a community who have been
trained or have access to the documentation.
Because the method is repeatable, the third
aspect—traceability—is a logical consequence.

Traceable. To support ontology evolution, one needs to
record the changes over time. As in software
engineering, it is a good practice to also docu-
ment why certain changes have been made. The
different evolution operators on the formal parts
are, therefore, traceable (who, why, when, etc.),
what is not often captured is the whole process
of reaching a decision, with GOSPL, the social
processes leading to a change in the ontology
will have been formalized and stored for future
reasoning.

The GOSPL tool supports a community in applying the
method for ontology engineering, but its purpose is indeed
not to replace other means of interaction that can be more
effective when possible (e.g., face-to-face meetings when
community members are near, or even teleconferences). The
outcome of these interactions outside of the tool, however,
needs to be properly written down when concluding a discus-
sion. For a closer integration of other means of interaction
such as teleconferences, we could draw inspiration from [48]
where they presented a customizable collaborative environ-
ment focused to support ontology-based enterprise interop-
erability.

9 Conclusion

In computer science, the problem is not what ontologies
are, but how they become to be shared and explicit agree-
ments useable for semantic interoperability within a com-
munity. In this article we have presented a method and tool
for hybrid ontology engineering called GOSPL, which stands
for Grounding Ontologies with natural Language and Social
Processes. Hybrid ontologies are ontologies in which con-
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cepts are both described formally and informally, where the
latter uses a special linguistic resource called Glossary. For
the formal descriptions, we adopted a fact-oriented ontology
framework where the knowledge building blocks are binary
fact types, also grounded in natural language. All agreements
within and across communities of stakeholders are the result
of social interactions, which are captured. In more detail, this
article presented:

– A framework for hybrid ontology engineering, which
constitutes the adoption of an existing fact-oriented ontol-
ogy engineering approach in which the context of fact
types is limited to communities. We also introduced a
glossary for the informal descriptions and introduced the
notion of community- and application commitment. The
first capturing a communities’ engagement to comply
with a selection of fact types and constraints to ensure
proper business and the latter a description of how one
individual application commits to the ontology.

– We explained the nature of the agreements of “sameness”
at both informal and formal level, and how the two inter-
play. We also provided a motivation why an agreement
why the agreement of two glosses—used to describe two
terms in two different communities—being considered
referring to the same concept should not automatically
imply that the terms are synonymous.

– The framework merely provides a setting in which hybrid
ontologies are built, but no method to guide the com-
munity in this process. The GOSPL method was pre-
sented where—starting from key terms of the semantic
interoperability requirements—one ideally starts from an
informal description to describe the concepts formally. To
drive the social interactions in the method, we described
how we exploit glosses and application commitments.
The glossary is used to extract potential new knowledge
to feed the discussions. The application commitments are
used to analyze some claims made by the community that
is presented as additional information during the commu-
nities’ interactions.

All these ideas were implemented in a tool, used in the
context of a Linked Data project in Brussels. The usability
study conducted in [10] showed that the method and tool
helped the participants in constructing hybrid ontologies,
but there were some suability problems that needed to be
addressed. Furthermore, the usability study showed that the
there was a need for additional documentation and informa-
tion from the tool in guiding the users; a tutorial and reading
material on the method and tool were deemed not sufficient
for the users. An updated version of the method, documen-
tation and tool will, therefore, be used in an new experi-
ment with a similar number of participants, but in a differ-

ent domain. Part of future work will be to examine to what
extent GOSPL can be applied for all semantic interoperability
projects.

The community model was intentionally kept simple to
avoid groupthink [31]. Part of ongoing research, however, is
to explore to what extent community leaders can be identified
based on the interactions they have with other community
members, other communities and the platform. The aim is to
provide community leaders with additional privileges only
to steer the discussions.
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