
Noname manuscript No.
(will be inserted by the editor)

Semantic Enrichment of
GSM-Based Artifact-Centric Models

Riccardo De Masellis · Domenico Lembo · Marco Montali · Dmitry

Solomakhin

Received: date / Accepted: date

Abstract We provide a comprehensive framework for

semantic GSM artifacts, discuss in detail its properties,

and present main software engineering architectures it is

able to capture. The distinguishing aspect of our frame-

work is that it allows for expressing both the data and

the lifecycle schema of GSM artifacts in terms of an

ontology, i.e., a shared and formalized conceptualization

of the domain of interest. To guide the modeling of data

and lifecycle we provide an upper ontology, which is

specialized in each artifact with specific lifecycle ele-

ments, relations, and business objects. The framework

thus obtained allows to achieve several advantages. On

the one hand, it makes the specification of conditions

on data and artifact status attribute fully declarative,

and enable semantic reasoning over them. On the other,

it fosters the monitoring of artifacts and the interopera-
tion and cooperation among different artifact systems.

To fully achieve such an interoperation, we enrich our

framework by enabling the linkage of the ontology to

autonomous database systems through the use of map-

pings. We then discuss two scenarios of practical interest

R. De Masellis
Sapienza, Università di Roma Via Ariosto 25, 00185 Rome,
Italy
E-mail: demasellis@dis.uniroma1.it

D. Lembo
Sapienza, Università di Roma Via Ariosto 25, 00185 Rome,
Italy
E-mail: lembo@dis.uniroma1.it

M. Montali
Free University of Bozen-Bolzano Piazza Domenicani 3, 39100
Bolzano, Italy
E-mail: montali@inf.unibz.it

D. Solomakhin
Free University of Bozen-Bolzano Piazza Domenicani 3, 39100
Bolzano, Italy
E-mail: solomakhin@inf.unibz.it

that show how mappings can be used in the presence

of multiple systems. For one of these scenarios we also

describe a concrete instantiation of the framework and

its application to a real-world use case in the energy

domain, investigated in the context of the EU project

ACSI.

Keywords data-aware process modeling · artifact-

centric processes · Guard Stage Milestone lifecycle ·
ontologies · ontology-based data access · process

monitoring

1 Introduction

Recent work in business processes, services and

databases brought the necessity of considering both

data and processes simultaneously while designing en-

terprise systems. This holistic view of considering data

and processes together has given rise to a line of research

known under the name of data-aware business processes

(Nigam and Caswell (2003); van der Aalst et al (2001);

Abiteboul et al (2009); Meyer et al (2011)), aiming to

avoid the notorious discrepancy of traditional activity-

centric models where these two aspects are considered

separately. One of the first proposals in this area is the

artifact-centric approach (see, e.g., Nigam and Caswell

(2003); Cohn and Hull (2009)), which relies on the no-

tion of artifact, a business-relevant conceptual entity

in a given domain which combines both static proper-

ties, describing the data of interest, and the dynamics,

induced by processes that manipulate such data.

Even though the tight integration of data and pro-

cesses is central for artifact-centric systems, the infor-

mation managed by artifacts is typically captured by

means of rather simple structures, such as lists of rel-

evant attributes. A rich, conceptual, and well-founded

2 Riccardo De Masellis et al.

modeling of the data component is yet to come. Further-

more, a suitable balance between data and processes is

often missing, leading to artifacts which rely on data

structures essentially tailored to the process they have

to serve, instead of richer structures able to fully reflect

the complexity of the domain of interest.

The main negative consequence is that it is difficult

to exploit the artifact data that go beyond those of the

specific process execution. This, in turn, makes difficult

to: (i) govern the entire enterprise system, (ii) inter-

connect the data manipulated by the different artifacts

so as to construct a unique, high-level view of them,

(iii) evolve the system so as to incorporate new features

impacting on the data component, and (iv) support

interoperation with new processes and external systems.

By leveraging on the recent, extensive work on

ontology-based data access (see e.g., Poggi et al (2008);

Cal̀ı et al (2009); Kontchakov et al (2010)), our pri-

mary goal is to overcome these limitations by proposing

a framework for the semantic enrichment, governance,

and management of artifact-centric systems. In partic-

ular, we propose to shift artifacts to the business level

of abstraction, bringing into artifact models the idea of
modeling the domain of interest in terms of an ontology,

which thus become the heart of the whole artifact system.

At the same time, ontology-based data access techniques

enable the (efficient) realization of several, recurring ar-

chitectural solutions adopted in software engineering to

attack the complexity of the system-to-be.

Ontologies provide indeed a formal and explicit con-

ceptualization of the domain of interest (Gruber (1993)),

and are increasingly adopted in the development of in-

formation systems, as they facilitate comprehension,

sharing, and communication of domain knowledge, at

the same time providing a plethora of reasoning ser-

vices for intelligent data access and integration. This

is possible because (domain) ontologies have a formal

underpinning in Description Logics (DLs) (Baader et al

(2007))1, which are decidable fragments of first-order

logic (FOL) that can be used to represent structural

knowledge of a domain of interest in an unambiguous,

formally grounded way. The plethora of reasoning ser-

vices associated to DLs2, including, e.g., query answer-

ing, consequently allow for a run-time, live exploitation

of ontologies, which goes far beyond their usage for

modeling purposes only.

1 DLs are the logical counterpart of OWL, the W3C
standard for ontology specification http://www.w3.org/TR/

owl2-overview/
2 See, for instance, the services offered by the DL-based

reasoners presented by Haarslev and Möller (2001); Sirin et al
(2007); Tsarkov and Horrocks (2006); Calvanese et al (2011);
Civili et al (2013); Rodriguez-Muro and Calvanese (2012).

Even though the contribution of this work is orthog-

onal to the artifact/process modeling language of choice,

we show how our framework can be concretely exploited

by grounding it in the recently proposed GSM (Guard-

Stage-Milestone) artifact modeling language (Hull et al

(2011); Damaggio et al (2011)).

The choice of GSM is motivated by three main rea-

sons: (i) GSM has a precise execution semantics which

provides a solid basis supporting both implementation-

related aspects and formal investigation; (ii) it particu-

larly benefits from capturing data at the conceptual level,

as its declarative nature intensively relies on queries

posed over the data to properly drive the execution and

evolution of processes and artifacts and (iii) its main

constructs have been recently adopted by the Object
Management Group (OMG) in the standard for Case

Management Modeling Notation (CMMN) (cf. Object

Management Group (OMG) (2013)).

The contributions of this paper can be summarized

as follows:

– We provide a formal definition of the semantic GSM

model. Differently from the classical GSM, in seman-

tic GSM the information model is given in terms

of an ontology, and conditions on data and arti-

fact status attributes, used in the specification of

GSM lifecycles, are all expressed over the ontology.

Furthermore, in our formalization the GSM lifecy-

cle schema itself is modeled through an ontology.

The advantage of this feature is twofold: on the one

hand it allows for advanced forms of querying over

the status of GSM; on the other hand, the frame-

work provides a common, uniform representation for

both the lifecycle and the data schema. To guide

the modeling of both such aspects, we provide an

upper ontology which constitutes the (abstract) core

of the overall conceptual schema to be defined in

each artifact. Each specific artifact provides then its

own specialization of this upper layer, enriching the

ontology with its own lifecycle elements, relations,

and business objects.

– We enrich the semantic GSM framework by en-

abling the linkage of the ontology towards au-

tonomous database systems, possibly with heteroge-

neous schemas. To this aim, we borrow the notion of

mapping from the data integration (Lenzerini (2002);

Doan et al (2012)) and ontology-based data access

(Poggi et al (2008)) literature. The mapping actu-

ally establishes a semantic correspondence between

data stored in data sources and the instances of the

ontology. This correspondence consequently fosters

collaboration and communication among different

artifact-centric systems, heterogeneous and legacy

data management systems, and multiples applica-

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

Semantic Enrichment of GSM-Based Artifact-Centric Models 3

tions, as they can continue to work with their own

data formats and schemas, but the data they main-

tain can be understood in terms of the ontology. In

particular, we discuss two main software engineering

scenarios of practical interest in which these needs

clearly arise:

– a system constituted by a back-end information

subsystem, controlled by a set of semantic GSM

artifacts, and multiple front-end applications run-

ning their own processes, which however need to

access data produced by the back-end;

– a system encompassing multiple interacting sub-

systems running their own internal processes, on

the top of which an ontology is posed to provide

a global view of the manipulated data, which in

turn allows to monitor and govern the underlying

processes at the business level.

– We discuss an istantiation of the framework for se-

mantic monitoring and governance of artifact sys-

tems adopted within the EU project ACSI – Artifact

Centric Service Interoperation3, and its application

to a real-world use case in the energy domain, investi-

gated in such a project. Examples provided through-

out the paper are also taken from the ACSI energy

use case. In fact, this use case triggered the research

presented in this paper, providing at the same time

the fundamental motivations for introducing our

framework, and a valid test-bed for experiencing it.

In principle, the framework we present in this paper is

parametric with respect to the language used for repre-

senting the ontology and for querying it, as well as with

respect to the forms of mappings that can be adopted

to link the ontology with external data management
systems. The only requirement we need to impose is the

adoption of an ontology language that is able to encode

the upper ontology we put at the core of the framework

and to extend it to the domain-specific component of the

artifact ontology. We notice that the language expressiv-
ity requested to meet this requirement is quite limited,

and that many common basic ontology languages es-

sentially provide it. As for the query language, we only

impose that it has to guarantee decidable query answer-

ing. For the sake of concreteness, we propose accordingly

the use of a query language which allows for decidable

query answering even over expressive ontologies, and at

the same time ensures enough expressibility for model-

ing purposes. Even though a complete investigation of

the computational problems related to reasoning that

arise in the presence of specific choices for the mentioned

languages is out of the scope of the present paper, we

in depth discuss these issues for the instantiation of the

framework that we investigated in the ACSI project.

3 http://www.acsi-project.eu/

The rest of the paper is organized as follows. In Sec-

tion 2 and in Section 3, we provide some preliminaries on

the GSM model, and on DLs and their linkage to data,

respectively. In Section 4, we propose our framework for

semantic GSM artifacts. In Section 5, we discuss the

architecture in which multiple front-end applications

access the data produced by a set of back-end GSM

semantic artifacts. In Section 6, we present the archi-

tecture in which the ontology is used as a conceptual,

global entry-point to understand the data produced

by multiple running (relational) processes, and discuss
how the framework can be exploited towards semantic

monitoring and governance of such processes. In Sec-

tion 7, we describe the instantiation of such framework

for semantic governance of processes as realized within

the ACSI project. Then, in Section 8, we discuss some

related work, and, in Section 9, we close the paper with

a final discussion and conclusions.

2 The Guard-Stage-Milestone model

In this section we describe the main characteristics of
the GSM model. We first provide an informal description

and then give precise formalization of the model.

Informal Introduction. Artifacts, or artifact types,

are key business entities of a given domain, which are

characterized by:

– a data schema (also called information model) that

captures the data maintained by the artifact,

– a lifecycle schema that specifies the possible progres-

sions of the artifact, and how the underlying data

are manipulated as the result of a progression step.

– a set of artifact instances, which are instantiations

of the corresponding data and lifecycle models of

the artifact type. The description of a particular
business process may involve several instances of

different artifacts types.

The GSM artifact modeling language, recently intro-

duced by Hull et al (2011) and Damaggio et al (2011),

provides means for specifying business artifact lifecycles

in a declarative manner, using intuitively natural con-

structs that correspond closely to how executive-level

stakeholders think about their business. The main GSM

notions and components of an artifact are:

– the data schema (Att) – a set of (possibly nested)

attributes, used to capture the domain of interest,
which can be either

– data attributes, which represent data relevant to

the business,

– status attributes, which hold information about

the progress of the artifact instance along its

lifecycle.

http://www.acsi-project.eu/

4 Riccardo De Masellis et al.

– Sentries – data-aware expressions, involving events

and conditions over the artifact data schema. Sentries

have the form on e if cond, where e is an event

and cond is a condition over data. Both parts are

optional, supporting pure event-based or condition-

based sentries.

– Tasks – units of atomic business-relevant work that

are to be performed by an external agent (either

human or machine) in order to update the data

schema of an artifact instance.

– Milestones (Mst) – a set of sentries, corresponding
to business operational objectives, achieved on the

basis of triggering events and/or conditions over the

data schema.

– Stages (Stg) – a set of elements, which correspond to

clusters of activities intended to achieve milestones,

and may be organized into a hierarchy, as they can

be either:

– atomic stages, containing exactly one atomic task.

– composite stages, containing other sub-stages.

At a given moment in time, a stage may be activated

(having a status open), which corresponds to a state

when activities within the stage are being executed.

Along the process, any stage may be executed multi-

ple times, but it cannot have two occurrences that

are being executed simultaneously.

– Guards (Grd) – a set of sentries, which control when

a stage can be activated for execution.

– Events – set of typed events, which describe the

interaction between artifact instances and the envi-

ronment and which can be either:

– task invocation, whose instances are populated

by the data from data schema and then sent to
the environment in order to perform a task;

– task termination, whose instances represent the

corresponding answer from the environment and

are used to incorporate the obtained result back

into the artifact data schema;

– status event, which correspond to any change of

a status attribute, such as opening a stage or

achieving a milestone, and can be further used

to govern the artifact lifecycle.

– one-way events, which are sent by the environ-

ment and which are used to trigger specific guards

or milestones.

The operational semantics for GSM is centered

around two notions:

– snapshot – at any point in time it is the state of any

given artifact instance, which is stored according to

its data schema, and is characterized by: (i) values

of attributes in the schema, (ii) status of its stages

(open or closed) and (iii) status of its milestones

(achieved or invalidated).

– business step, or B-step (formally defined in Damag-

gio et al (2011)), which corresponds to a transition

from one snapshot of the system (before process-

ing the event) to a new one, resulting from the in-

corporation of an event sent by the environment.

Incorporation of an event corresponds to process

all the effects that the event triggers in the system.

Such effects are determined based on a set of Event-

Condition-Action (ECA) rules and result in issuing a

set of status events, each of which can trigger further

changes.
In order to guarantee that the set of status events gen-

erated during a B-step is actually finite, a GSM schema

has to be well-formed. Indeed, since the ECA rules can

contain negation, they suffer from the same well-known

issues in logic programming and datalog, namely they

can keep firing indefinitely. Such an undesired behavior

is avoided by requiring a sort of stratification (see, e.g.,

Apt et al (1988); Gelder (1989)), which imposes ECA

rules to be acyclic and fire in a specific order.

Formal Basis. This section formalizes the concepts

introduced previously and gives a brief intuition of the

incremental semantics for GSM.

Definition 1 (GSM schema) A GSM schema is a

tuple (x,Att, Stg,Mst, Lcyc), where:

1. x is a variable that ranges over (IDs of) instances of

the artifact;

2. Att, Mst and Stg are the sets described above and
they are called the data schema of the artifact;

3. Lcyc = (Substage, Task,Owns,Guards,Achv) is

the lifecycle schema, where

(a) Substage is a hierarchical relation over Stg;

(b) Task is a function from atomic stages in Stg to

the set of possible tasks;

(c) Owns is a function from Stg to finite, non-empty

subsets of Mst;

(d) Guards is a function from Stg to finite sets of

sentries (see below);

(e) Achv is a function from Mst to finite sets of

sentries;

While sets Stg and Mst are simply the set of

stages and milestones respectively, the sett Att is the

union of two disjoint sets: attd, the data attributes

and atts, the status attributes, plus a special attribute

LastIncEventType that stores the type of the event

that is currently being consumed. Formally, Att =

attd ∪ atts ∪ LastIncEventType. The set of status at-

tributes is composed by boolean attributes s for each

stage s ∈ Stg, which is true if s is currently open or

false otherwise, and boolean attributes m for each mile-

stone mj ∈Mst, which specifies whether m is achieved

(true) or invalidated (false).

Semantic Enrichment of GSM-Based Artifact-Centric Models 5

We now introduce some preliminary definitions re-

quired to define the lifecycle schema. We assume to

have a set of event names event and a domain ∆ that

includes individuals used to interpret data attributes

and the two boolean values true and false.

Definition 2 (Snapshot) A snapshot of a GSM data

schema is an assignment function from attribute names

to the domain and the set of event names Σ : Att →
∆ ∪ event such that:

– Σ(a) ∈ {true, false} for each a ∈ atts and

– Σ(LastIncEventType) ∈ event.

A snapshot Σ is a snapshot for a GSM schema if it

satisfies the following invariants:

– GSM-1: A stage and its milestone(s) cannot be both

true, i.e., for each stage s and each milestone m

owned by s, Σ(s) and Σ(m) cannot be both true;

– GSM-2: No activity in closed stage. If ¬Σ(s) for

stage s ∈ Stg and s′ is substage of s, then ¬Σ(s′).

We now briefly introduce the condition language that

will be used for specifying the sentries. The syntax of

such a language is formally presented in Linehan (2011)

and is out of the scope of this paper. We just mention

that the variables of the language correspond to at-

tributes in Att and event names in event. Hence, in or-

der to evaluate a formula, we need to associate variables

(x1 . . . xn) occurring in it to ∆∪event. Given a formula

Φ with variables (x1 . . . xn), we write Σ |= Φ(x1 . . . xn)

when Φ(Σ(x1) . . . Σ(xn)) evaluates to true accordingly

to the semantics of the condition language. The language

can also refer to the so-called status events. A status

event for a GSM data schema is an expression of the

form ¬a ∧ a′ or a ∧ ¬a′ where a ∈ atts. To ease the no-

tation, from now on we use +a as a shortcut for ¬a∧ a′
and −a for a ∧ ¬a′. The intuitive meaning is that +a is

true when a shifted from false to true during the course

of a B-step, and analogously for −a. A status event can

hence refer to two snapshots, Σ and Σ′, where we es-

tablish the convention, as customary in the verification

community, that primed snapshots Σ′ are constructed

after Σ. Consequently, in formulas, we will use primed

variable symbols for variables that should be associated

to elements in ∆ according to Σ′, and unprimed vari-

ables symbols for variables that should be associated to

elements in ∆ according to Σ. Formally, given a formula

Φ(x1 . . . xn, x
′
1 . . . x

′
m) where x1 . . . xn, x

′
1 . . . x

′
m ∈ Att,

the pair (Σ,Σ′) satisfies Φ, denoted (Σ,Σ′) |= Φ

if Φ(x1/Σ(x1) . . . xn/Σ(xn), x′1/Σ
′(x1) . . . x′m/Σ

′(xm))

evaluates to true, where (xi/Σ(xi) substitues to xi the

value Σ(xi) in Φ.

We are now ready to define the set sentry of sentries

for a GSM schema. A sentry for a GSM data schema is

a boolean formula of the form τ ∧ γ, where:

– τ is either of the following:

– empty;

– LastIncEventType = E or

– {+,−}a for some status attribute a ∈ atts.
– γ is a formula that contains no event type variables

nor status events.

Notice that a sentry τ ∧ γ can be expressed in the

classical form as on τ if γ.

We now turn to the notion of event. We already

discussed status events above (and the way they can be

used in sentries), so we now focus on events that allow

artifacts to communicate with the environment. The

environment represents the external world, or, in other

words, everything that is not modeled as an artifact. The
environment performs external tasks, such as human

tasks, that are invoked by the artifacts through business

events. One-way events are sent unsolicitedly from the

environment to an artifact or from an artifact to another

artifact. An incoming one-way (event) type is a triple

E = (N,O,ψ), where N ∈ event is the event name, O

is the event payload structure which is a list of attributes

in attd, and ψ is a (post-)condition whose variables

refers to attributes in O. A one-way event instance, or

simply a one-way message event is a pair e = (N, p)

where p : O → ∆ is the payload such that p |= ψ. The

condition ψ in a one-way event type formally represents

restrictions on the output attributes.

Before formally introduce task invocation and task

termination event types, we define tasks. Let task be

a set of task names, disjoint from the other sets of

names already established. A task is a tuple (T, I,O, ψ)

where T ∈ task is a task name, I ⊆ attd are the input

attributes, O ⊆ attd are the output attributes and ψ is a

logical formula in the condition language expressing the

postconditions of the task. Given that the postcondition

should refer to two different snapshots Σ and Σ′, where

Σ is the snapshot of the system when the task is invoked

and Σ′ is the next snapshot when it finishes, ψ refers

to attributes in I without primes and attributes in O

with primes. A task invocation event type is then a pair

E = (T, I) where T is a task name and I are the input

attributes of T . A task invocation event instance of type

E is a tuple e = (T, p) where p : I → ∆ is the input

payload of the event. A task termination event type is

a triple E = (T, I,O) where T is a task name, and I

and O are the input and output attributes of T . A task

termination event instance is a triple e = (T, p, p′) where

(T, p) is a task invocation event instance, p′ : O → ∆ is

the output of the task and (p, p′) |= ψ evaluates to true.

Here p is called the input payload of e and p′ is called

the output payload of e.

6 Riccardo De Masellis et al.

CPAID CPID month year pub_date

CPAIDMeasID

CPAID value

location

company

CPAs

CPAMeas

ManMeas
date manager control_date

CPAID valuecompany
AutoMeas

date

MeasID

MeasID

Fig. 1 Graphical representation of the control point assessment
artifact data schema described in Example 1.

MRApps ReceivedRequesting CPADrafting

MR1
Received

ReqMR1

waitMR1

MR2
Received

ReqMR2

waitMR2

Legend: = guards = stages

= milestones = tasks

valsWrttn

EqualMeas

wrMeas

valsChsn
Auto

DiffMeasAuto

chsAuto

valsChsn
ManchsMan

published

DiffMeasMan

= creation
 guard

Fig. 2 Graphical representation of the control point assessment
artifact lifecycle described in Example 1.

Next, we present our running example, which is

extracted by a real-world use case scenario developed

for the FP7 European Project ACSI.

Example 1 From a high-level perspective, the electric

supply system is a net of control points (CPs) which

generate and distribute the energy for a whole country.

Each control point is a point in the net where two

electric companies exchange energy between each other.

A centralized organization called system operator is

in charge of planning the production and monitoring

the energy trade. Every month, for a certain control

point, each company participating in the CP submits

a so-called monthly report application to the system

operator, which contains a set of measurements, each

describing energy trade for a specific day with the other

company connected to the control point. Such values

are determined by companies either automatically by

hardware or manually by an energy manager. When

the system operator receives two applications for each

control point, it cross-checks data and publishes a control

point assessment, possibly after a manual inspection

when values do not match.

We model such a process in GSM by introducing a

control point assessment (CPA) artifact. We assume a

relational representation of data, and Figure 1 provides

a graphical representation of it. The data schema of the

artifact provides information about both the assessment

to be published for a specific CP and the measures

received by the two companies connected to the CP.

Relation CPAs stores the id of the control point

assessment (CPAID); the id and location of the control

point (CPID and location); the month and the year

the assessment refers to and its publication date. Rela-

tion CPAMeas keeps track of the measures (MeasID)

chosen by the system operator for a given CPA. This

measure is among those which have been proposed (in

the monthly report application) by the two companies

connected to the control point. Later on we explain how

such values are chosen. The other two relations store the

set of measurements performed by the companies. In

particular, manually-determined values are kept in the

ManMeas table, which contains the id of the measure,
the company name, the value of the measure, the date

it refers to, the manager in charge of the manual input

and the input date. Automatically determined values,

on the other side, are stored in the AutoMeas, in which

the id of the measure, the company, the date and the

value of the measure are the only relevant information.

Figure 2 shows a graphical representation of the

CPA artifact lifecycle. When an instance of CPA arti-

fact is created (for a specific CP) by a one-way creation

event from the environment, Requesting stage opens.

The scope of associated activity is to request monthly

measures from the two companies connected to the CP.
Indeed, ReqMR1 and ReqMR2 open in parallel and their

tasks send a task invocation event to the environment.

When a response event is consumed, its payload, con-

taining all the information for a monthly request appli-

cation, is written in the data schema of the artifact (pre-

cisely in the ManMeas and AutoMeas relations in Fig-

ure 1) and milestone MR1Received (or MR2Received) is

achieved. When both ReqMR1 and ReqMR2 closes, mile-

stone MRAppsReceived is achieved and stage Requesting
closes. Stage CPADrafting opens when MRAppsReceived
and its three substages take care of analyzing the mea-

surement for each day. In particular, EqualMeas opens

if there exist a couple of measurements provided by the

two companies which agree on their values for a specific

date. In this case, indeed, such a measure is written

in table CPAMeas. In other words, task wrMeas takes

care of writing measurements which the two companies

agree on. Substage DiffMeasAuto opens when there are

two measurements that disagree (for a specific day) but

one of them has been performed automatically. In this

case, indeed, the system operator will chose the auto-

matic measure to be written in CPAMeas. The last

substage, DiffMeasMan covers the case in which the mea-

surements disagree and they are both been performed

automatically or manually. A manual inspection is then

needed in order to choose one of those.

Table 1 and 2 show sentries for guards and milestone

for the energy example, respectively. Such sentries are

expressed as first order logic formulas.

Semantic Enrichment of GSM-Based Artifact-Centric Models 7

Stage
Guard sentry

on if

Requesting CPACreationEvent −
RequestMR1 +Requesting −
RequestMR2 +Requesting −
CPADrafting +MRAppsReceived −

EqualMeas +CPADrafting

∃id,m1id,m2id, c1, c2, d, v.CPAs(id,−,−,−,−,−) ∧ c1 6= c2 ∧m1id 6= m2id∧
((ManMeas(m1id, id, c1, d, v,−,−) ∧ManMeas(m2id, id, c2, d, v,−,−))∨

(Auto meas(m1id, id, c1, d, v) ∧Auto meas(m2id, id, c2, d, v))∨
(ManMeas(m1id, id, c1, d, v,−,−) ∧AutoMeas(m2id, id, c2, d, v)))

DiffMeasAuto +CPADrafting
∃id,m1id,m2id, c1, c2, d, v.CPAs(id,−,−,−,−,−)∧

c1 6= c2 ∧ v1 6= v2 ∧m1id 6= m2id∧
ManMeas(m1id, id, c1, d, v1,−,−) ∧AutoMeas(m2id, id, c2, d, v2)

DiffMeasMan +CPADrafting

∃id,m1id,m2id, c1, c2, d, v1, v2.CPAs(id,−,−,−,−,−)∧
c1 6= c2 ∧ v1 6= v2 ∧m1id 6= m2id∧

((ManMeas(m1id, id, c1, d, v1,−,−) ∧ManMeas(m2id, id, c2, d, v2,−,−))∨
(AutoMeas(m1id, id, c1, d, v1) ∧AutoMeas(m2id, id, c2, d, v2)))

Table 1 Guards for the lifecycle in Figure 2.

Milestone
Milestone sentry

on if

MR1Received WaitMR1TermEvent −
MR2Received WaitMR2TermEvent −

MRAppsReceived − MR1Received ∧MR2Received

valsWrttn wrMeasTermEvent −
valChsnAuto chsAutoTermEvent −
valChsnMan chsManTermEvent −

published
+valsWrttn ∨+valsChnsAuto∨

+valsChsnMan
(valsWrttn ∨ ¬EqualMeas) ∧ (valsChsnAuto ∨ ¬DiffMeasAuto)∧

(valsChsnMan ∨ ¬DiffMeasMan)

Table 2 Milestones for the lifecycle in Figure 2.

3 Description Logic Ontologies and their

Linkage to Data

In this section we recall some basic notions on Descrip-

tion Logic ontologies, and on mechanisms to map on-
tologies to databases, which are taken over from the

research on data integration (Lenzerini (2002); Doan

et al (2012)).

Description Logic Ontologies. Description Logic

(DL) ontologies model the domain of interest in terms

of objects (a.k.a. individuals), concepts, which are ab-

stractions for sets of objects, roles, which denote binary

relations between objects, value-domains, which denote

sets of values, and attributes, which denote binary re-

lations between objects and values. In the rest of the

paper we refer to an alphabet Γ , starting from which

DL expressions are built. Γ is the disjoint union of ΓP ,

containing symbols for atomic concepts, atomic value-

domains, atomic attributes, and atomic roles, and ΓC ,

which contains symbols for constants (each denoting

either an object or a value). Complex expressions are

constructed starting from atomic elements, and apply-

ing suitable constructs. Different DLs allow for different

constructs.

A DL ontology is constituted by two main compo-

nents: a TBox (i.e.,“Terminological Box”), that stores

a set of universally quantified FOL assertions stating

general properties of concepts and roles, thus represent-

ing intensional knowledge of the domain, and an ABox

(i.e.,“Assertional Box”), that is constituted by assertions

on individual objects, thus specifying extensional knowl-

edge. Again, different DLs allow for different kinds of

TBox and/or ABox assertions. Formally, a DL ontology

O over an alphabet Γ is a pair 〈T ,A〉, where T is a

TBox and A is an ABox, whose predicate symbols and

constants are from Γ .

The semantics of a DL ontology O over an alpha-

bet Γ is given in terms of FOL interpretations for Γ

(cf. Baader et al (2007)). We denote with Mod(O) the

set of models of O, i.e., the set of FOL-interpretations

that satisfy all TBox axioms and ABox assertions in

O, where the definition of satisfaction depends on the

DL language in which O is specified. An ontology O
is satisfiable if Mod(O) 6= ∅. A logical sentence, i.e., a

closed formula, φ, expressed in a certain language L, is

entailed by an ontology O, denoted O |= φ, if φ is satis-

fied by every interpretation in Mod(O) (where, again,

the definition of satisfaction depends on the language

8 Riccardo De Masellis et al.

L). All the above notions naturally apply to a TBox T
alone.

Various reasoning services can be performed over

DL ontologies, and are supported by state-of-the-art

automated reasoners (see, e.g., Haarslev and Möller

(2001); Sirin et al (2007); Tsarkov and Horrocks (2006)).

Among such services, intensional ones do not consider

the ontology ABox, and disclose properties only im-

plicitly specified in the ontology, as well as permit to

verify the quality of the modeling. Instead, extensional

reasoning also involve the ABox. The most important

reasoning service of this kind is query answering, which

we describe below.

In presenting our framework, we do not refer to a

specific ontology language. We only assume that the

language we use is expressive enough to capute the up-

per ontology (in fact a TBox) that we will introduce in

Section 4, and for specializing it into domain-specific

ontologies. As already said in the introduction, also
basic ontology languages essentially fulfill these require-

ments. Among such languages we often refer to DL-Lite,

which is in fact a family of lightweight DLs (Calvanese

et al (2007b, 2013)), constituting the formal underpin-

ning of OWL 2 QL, one of the tractable profiles of

OWL 2 (Motik et al (2009)), the W3C standard lan-

guage for ontology specification (Motik et al (2012)).

DLs of the DL-Lite family allow for specifying basic

ontology constructs, such as subsumption between con-

cepts, subsumption between properties (i.e., roles or at-

tributes), typings of properties, mandatory participation
of concepts into properties, functionality of properties.

Such DLs guarantee tractability of standard reasoning

services over ontologies, and in particular enable for

FOL-rewritable query answering, which is a crucial re-
quirement when ontologies are linked to databases, and

which we formalize below in the paragraph on querying
DL ontologies.

In the rest of the paper, for the sake of simplicity, we

will provide only graphical representation of ontologies

(or, better, of approximations thereof) given through

Entity-Relationship diagrams. Of course, such diagrams

are in fact encoded into suitable logical axioms, whose

semantics is given in terms of FOL intepretations, as

said above.

Querying DL Ontologies. Given a language L, an

L-query over a DL ontology (or TBox) with alphabet Γ

is a (possibly open) L-formula over Γ . Let q(x) be an

L-query with free (a.k.a. distinguished) variables x over

an ontology O. Then, a tuple t of constants from ΓC is

a certain answer for q(x) if O |= q(t), where q(t) is the

closed formula, i.e., a sentence, obtained by substituting

x with t. The above definition applies to a boolean

L-query (i.e., a formula with no free variables) in the

standard way: 〈〉 is the certain answer to q if O |= q,

and we say that the query is certainly true; conversely,

if O 6|= q, the set of certain answers is empty, and we

say that the query is certainly false. Then, the query

answering reasoning service is defined as follows: given a

DL ontology O, and an L-query q over O, compute the

set of certain answers to q over O. We denote such set by

cert(q,O). It is easy to see that this is a form of reasoning

under incomplete information. An important notion

related to query answering is that of FOL-rewritability,

which intuitively means that one can obtain the certain
answers to a query q over an ontology O = 〈T ,A〉 by

first rewriting q into a new first-order query qr over

O and then evaluating qr over the ABox A seen as a

database. Such a rewriting has to depend only on the

TBox. We call qr the FOL-rewriting of q with respect

to T (we refer to Calvanese et al (2007b) for the formal

definition). Notably, a FOL query can be translated into

SQL, and therefore can be evaluated over any relational

DBMS managing the underlying ABox. This has of

course a crucial impact in performances and even in

practical realizability of the query answering reasoning

service for ontologies.

We notice that our framework is parametric with

respect to the language used for querying ontologies.
However, for computational reasons, the expressivity

of such language has to be somehow controlled in the

practice. For example, it is well-known that answering

FOL queries in the presence of incomplete information

is undecidable (Abiteboul et al (1995)), whereas the

most expressive language for which decidability of query
answering over various DL ontologies has been shown is

that of union of conjunctive queries (UCQs) (e.g., Cal-

vanese et al (2007b); Glimm et al (2008)).

In the rest of the paper, we refer to a query language

proposed in Calvanese et al (2007a), which allows for

the use of all FOL constructs in queries in a semanti-

cally controlled way. Intuitively, decidability (and even

tractability, in some notable cases) of query answer-

ing is preserved in such language since reasoning over

incomplete information is needed only to answer the

UCQ-subcomponents of the queries. This is obtained

by virtue of a particular semantic interpretation of the

queries allowed in this language, based on the use of

an epistemic operator. More precisely, one such a query,

called ECQ, over a DL ontology O is a (possibly open)

domain independent formula of the form:

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q | x op y

where q is a UCQ over O, op is one among =, 6=,>,<,≥,

and≤, and [q] denotes that q is evaluated under the (min-

imal) knowledge operator (cf. Calvanese et al (2007a)).

To compute the certain answers cert(Q,O) to an ECQ

Semantic Enrichment of GSM-Based Artifact-Centric Models 9

Q over an ontology O, we can compute the certain an-

swers over O of each UCQ embedded in Q, and evaluate

the first-order part of Q over the relations obtained as

the certain answers of the embedded UCQs.

Interestingly, query answering of UCQ in DL-Lite is

FOL-rewritable, as shown by Calvanese et al (2007b).

As a consequence of this, also query answering of ECQ

queries in DL-Lite is FOL-rewritable.

Linking data to ontologies. In the last years, a new

paradigm for information integration, called ontology-

based data access (OBDA), has been proposed, which

is based on the use of an ontology (in fact a TBox) act-

ing as mediated (a.k.a. global) schema suitably linked

to data sources (Poggi et al (2008)). In OBDA, data

sources are seen as a relational database. As in (virtual)

data integration, linkage towards data sources is real-

ized through mapping assertions. The most expressive

mapping assertions considered in the data integration

literature are the so-called GLAV assertions (Lenzerini

(2002)), which are expressions of the form φ(x) ; ψ(x),

where φ(x) is a query over the data sources and ψ(x) is

a query over the global schema (the ontology in OBDA).

Intuitively, such a mapping assertion specifies that the

tuples returned by the evaluation of φ(x) over the source

database semantically correspond (in a sense that will

be clarified below) to the formula ψ(x), and therefore

create the bridge between the data in the sources and the

objects satisfying the predicates in the ontology. When

the formula φ(x) is a single atom formula of the form

R(x), with R a source relational predicate, the mapping

assertion is called LAV (Local-As-View). When the for-

mula ψ(x) is a single atom formula of the form S(x),

with S an ontology predicate, the mapping assertion is
called GAV (Global-As-View).

Formally, an OBDA specification is a triple S =

〈T ,M,D〉, where T is a DL TBox, D is a database,

and M is a set of mappings between T and D. Its se-

mantics is given in terms of FOL interpretations I over

the alphabet of T , such that (i) I satisfies T , and (ii)

I satisfies M, i.e., for each assertion φ(x) ; ψ(x) in

M we have that for every tuple t in the evaluation of

φ(x) over D it holds that ψ(t) evaluates to true in I,

where the notions of evaluation of φ(x) over D and ψ(t)

over I depend on the particular language in which such

queries are specified. Notice that the above (classical)

notion of mapping satisfaction actually considers map-

ping assertions as sound implications from the database

to the ontology. The different notion of complete map-

pings considers them as opposite implications, i.e., in

this case I satisfies an assertion of the form above if

for every tuple t such that ψ(t) evaluates to true in

I it holds that ψ(t) is in the evaluation of φ(x) over

D (cf. Lenzerini (2002)). The interpretations satisfying

both the ontology and the mapping are the models of

the OBDA specification S, and the set of such models

is denoted by Mod(S).

A query posed over and OBDA specification S =

〈T ,M,D〉 is a query posed over its TBox T . Given one

such query q, the notion of certain answers to q over

S, denoted cert(q,S), is the natural generalization of

the analogous notion given for stand-alone ontologies.
Analogously, we can naturally extend the notion of FOL-

rewritability to OBDA specifications.

We notice that, for computational reasons, it is nec-

essary in practice to control the expressive power of the

languages used to specify queries in the mapping. We

notice however that the query φ(x) in a mapping asser-

tion is posed over a database, where query answering

actually amounts to simple query evaluation. We can

therefore assume that such a query is a generic FOL

query (possibly expressed in SQL), whereas will consider

ψ(x), which is a query over the ontology, expressed in

the language ECQ given above.

4 Semantic GSM

In this section we propose Semantic GSM, a novel

artifact-centric model which merges the expressing

power of ontologies for modeling and querying the data

of interest with the capability of GSM to express data

evolution. Two solutions can be adopted to obtain such

a coupling. In the first, the ontology models the domain

of interest only, whereas the lifecycle is defined as in

classic GSM. The second one amounts to use an inte-

grated ontology that describes both the data and the

lifecycle schema. Here, we present the second option,

with the aim of providing a unified view of the whole

framework that allows for answering complex queries.

Therefore, arbitrary queries over the lifecycle are now

enabled, as we can access the whole lifecycle structure,

i.e., both status and data attributes. As an example,

we can directly inquire which atomic stages are wait-

ing for a task termination event from the environment,

or which composite stages have an achieved milestone,

namely, those which have already been executed. Notice

that, in classic GSM, answering such queries requires an

extra effort since the lifecycle schema is not explicitly

represented.

Let us assume an alphabet Γ for concepts, value-

domains, attributes, roles and constants. Intuitively,

the integrated ontology describes, in common language,

both the data and the lifecycle schema and provides as

its core, a domain independent “upper” ontology which

has to be specialized by means of a “lower” ontology,

in order to represent the schema of a specific process.

10 Riccardo De Masellis et al.

Status
Object

Artifact
Type

Artifact
Instance

SO
refersTo

belongsTo

Stage
Instance

Milestone
Instance

Event
Instance

sent

outputs

inputs

received

1..1
1..1

1..11..1

LastEvent

Task

inv

term

owns

1..1
Sentryach

1..1

substage

formula

Open Closed True False

1..*
1..*

guards

1..1
1..1

condition

id

performs

0..1

1..1

0..*
1..1

1..1

1..1

Business
Object

Fig. 3 Upper ontology for semantic GSM artifacts

Figure 3 shows a graphical representation of the up-

per ontology, in which EventInstance, ArtifactInstance,
BusinessObject and StatusObject are the main concepts.

Intuitively, business objects represent (the classic GSM)

data attributes, while status objects (and relation-

ships between them) the lifecycle. An artifact instance

belongsTo a specific ArtifactType. An artifact type is a

particular BusinessObject in that it has a lifecycle, i.e.,

a set of StatusObjects connected to itself (through the

SOrefersTo role). A status object is either a milestone or

a stage and this specialization is disjoint and complete.

Stages, being either open or closed, can be hierarchically

organized by the transitive substage role and should have

at least one guard (which is a sentry) and a milestone.

Milestones have an achieving sentry, and they are either

true or false. We distinguish invocation events and task

termination events, either of which can be the event

currently being consumed by the system. The LastEvent
class is actually a singleton class, i.e., it allows for one

instance only, given that a GSM system processes one

event at a time. Finally, tasks are performed by stages

and they have a invocation and a termination event.

The above upper TBox does not describe a specific

artifact process, as it lacks all the domain-dependent en-

tities. However, it can be specialized to model an actual

GSM schema. The main concept of the lower ontology,

i.e., the one that is intended to have an associated life-

cycle, specializes ArtifactType, while all other concepts

specialize BusinessObject. Having two separate concepts

for artifact types and instances allows us to decouple

data from the execution, as we can have artifacts data

even when they are not evolving. Notice that in clas-

sic GSM, instead, artifacts always have an associated

lifecycle. Moreover, EventInstance generalizes all event

type instances required by the process and the same

holds for Task. Also roles can be specialized in order

to connect the specialized concepts. Precisely, inv, term,

inputs and outputs should relate specific concepts, as

well as substage, guards, ach and owns.

Definition 3 A semantic GSM schema is a TBox T
over Γ containing the upper ontology in Figure 3.

According to its definition, a semantic GSM schema

has to be expressed in an ontology language that al-

lows for the specification of the ontology in Figure 3,

and for specializing it in the schema of the applica-
tion at hand. Namely, this means that such language

has to capture basic ontology constructs, such as ISA

between named concepts or roles (e.g., LastEvent is

a subconcept of EventInstance), disjointnesses between
named concepts (e.g., Open is disjoint from Closed), role

typings (e.g., the role owns is typed on StageInstance
and MilestoneInstance), covering of concepts (e.g., a

StageInstance is either Open or Closed), mandatory par-

ticipation of concepts to roles (e.g., each Task performs

at least a StageInstance), and functionality of roles (e.g.,

each Task performs at most a StageInstance). We point

out that such constructs are all expressible in the W3C

OWL standard, but also in less expressive DL languages

such as those used to capture classical conceptual mod-

eling languages (see, e.g., the UML class diagram en-

coding described in Berardi et al (2005)). Notably, all

the above mentioned constructs, with the exception of

concept convering, are all enabled also in lightweight

ontology languages such as DL-Lite, or some languages

in the Datalog+/− framework (Cal̀ı et al (2009)). In such

languages, however, the ability of expressing concept

covering can be re-gained, without increasing the com-

plexity of reasoning, through the use of some additional

constraints, i.e., logical axioms whose intepretation is

based on the use of an epistemic operator, in the spirit

of the approach proposed by Calvanese et al (2007b).

Intuitively, each such constraint can be seen as a boolean

ECQ query q (cf. Section 3), which is satisfied by an on-

tology O if and only if O entails q. This actually means

that the constraint is not an axiom to be exploited for in-

ferring implicit knowledge by the ontology, as enabled in

expressive ontology languages, but is rather an assertion

that has to be satisfied over the acutal data. In other

terms, an ABox compliant with our upper ontology ex-

pressed in DL-Lite enriched with epistemic constraints

has to always explicitly assert whether a StageInstance
is Closed or Open, and a MilestoneInstance is True or

False. We argue that in practical cases this is not a

Semantic Enrichment of GSM-Based Artifact-Centric Models 11

real approximation, since we expect to have always com-

plete information on the closed/open stages or true/false

milestones.

We are now ready to provide the notion of snapshot

for a semantic GSM schema is given below.

Definition 4 A semantic snapshot for a semantic data

schema T is an ABox A such that:

1. 〈T ,A〉 is satisfiable;

2. (T ,A) |= ∀s,m.owns(s,m) → (True(m) →
Closed(s));

3. (T ,A) |= ∀s, s′.substage(s, s′) → (Closed(s′) →
Closed(s)).

Intuitively, (2) and (3) corresponds to GSM-1 and GSM-

2 invariants, respectively, explained in Section 2.

The condition language used for specifying semantic

sentries is a variation of the condition language adopted

for classic GSM (cf. Section 2), in the sense that the

queries over the ontologies it uses are interpreted under

the certain answer semantics.

A semantic status event is an expression of the form:

+Stg(s) ≡ Stg(s) ∧ Close(s) ∧ Open′(s) or −Stg(s) ≡
Stg(s) ∧ Open(s) ∧ Close′(s) where Stg is a subclass

of StageInstance, or +Mst(m) ≡ Mst(m) ∧ False(m) ∧
True′(m) or −Mst(m) ≡ Mst(m) ∧ True(m) ∧ False′(m)
where MstName is a subclass of MilestoneInstance. To

simplify the notation, in sentries we write Stg instead

of Stg(s) since, given an artifact instance, in the ABox

there is only one individual for each concept Stg subclass

of StageInstance (analogously for milestones).

Semantic status events are formulas that refers to

two semantic snapshots (A,A′). The intuitive seman-

tics is similar to that presented in Section 2, but, once

more, formulas are interpreted under the certain answer

semantics.

Definition 5 A semantic sentry for a semantic GSM

data schema is a boolean formula of the form τ ∧ γ,

where:

– τ is either of the following:

– empty;

– Event, where Event is the most specific class of
the (singleton) individual belonging to concept

LastEvent;
– {+,−}Stg {+,−}Mst, where Stg and Mst are as

before;

– γ is a formula that contains neither Event nor status

events.

Notice that in semantic GSM there is no need for

formal definitions of events and tasks, as their properties

are already captured by the ontology.

MntRep

basedOnCPA App

refersTo editedBy

CtrlPnt CompconnTo

MeastakenAt takenBy

cont

1..12..2

1..1 1..1

2..2

date

month
year

loc

name

dateval

Man Auto

ID

1..1 1..1

1..2

published
In

0..1

Fig. 4 Fragment of the semantic GSM schema for the energy
process in Example 1 describing the domain.

The operational semantics of semantic GSM is

grounded on that for classic GSM, as its fundamental

concepts are, from an high-level perspective, orthogonal

to the logical representation of data. Hence we again
rely on the notion of snapshot, which is now as in Defi-

nition 4, and B-step, during which the ECA rules are

processed. From the technical viewpoint, in semantic

GSM ECA rules contain queries over the ontology, and

then answering them means reasoning to compute their

certain answers (cf. Section 3). For this reason, the check

for well-formedness is in general more involved than in

classic GSM. However, when query answering is FOL-

rewritable, checking well-formedness can be actually

performed as in the classical GSM setting, modulo the
computation of FOL-rewritings of the queries occur-

ring in the ECA rules. In other terms, we are able in

these cases to reduce a complex check, which requires

to reason over incomplete information, to a standard

GSM well-formedness check. This is for example the

case of ECQ queries issued over DL-Lite ontologies (cf.

Section 7). Well-formedness in other, more expressive,

settings requires further investigation which we leave

for future studies.

Example 2 We model the energy process described in

Example 1 with a semantic GSM schema T . Figure 4

shows a graphical representation of the portion of T
which describes the domain of interest. As usual, such a

graphical representation is useful for presentation pur-

poses, whereas the ontology TBox is in fact specified

through a set of logical axioms (possibly going beyond

the ER expressiveness showed in the figure). In this

example, the reader may consider the ontology modeled

in OWL, or even in DL-Lite, provided some suitable ap-

12 Riccardo De Masellis et al.

Stage
Guard sentry

on if

Requesting CPACreationEvent −
RequestMR1 +Requesting −
RequestMR2 +Requesting −
CPADrafting +MRAppsReceived −

EqualMeas +CPADrafting
∃ap1, ap2.App(ap1) 6= App(ap2)∧

[∃a,m1,m2, d, v.basedOn(a, ap1) ∧ basedOn(a, ap2) ∧ cont(ap1,m1) ∧ cont(ap2,m2)∧
date(m1, d) ∧ date(m2, d) ∧ val(m1, v) ∧ val(m2, v)]

DiffMeasAuto +CPADrafting
∃ap1, ap2, v1, v2.App(ap1) 6= App(ap2) ∧ v1 6= v2∧

[∃a,m1,m2, d.basedOn(a, ap1) ∧ basedOn(a, ap2) ∧ cont(ap1,m1) ∧ cont(ap2,m2)∧
date(m1, d) ∧ date(m2, d) ∧ val(m1, v1) ∧ val(m2, v2) ∧Man(m1) ∧Auto(m2)]

DiffMeasMan +CPADrafting

∃ap1, ap2, v1, v2.App(ap1) 6= App(ap2) ∧ v1 6= v2∧
[∃a,m1,m2, d.basedOn(a, ap1) ∧ basedOn(a, ap2) ∧ cont(ap1,m1) ∧ cont(ap2,m2)∧

date(m1, d) ∧ date(m2, d) ∧ val(m1, v1) ∧ val(m2, v2)∧
((Man(m1) ∧Man(m2)) ∨ (Auto(m1) ∧Auto(m2)))]

Table 3 Guards for Example 2.

Stage
Instance

Requesting ReqMR1 ReqMR2

Milestone
Instance

MR1
Received

MR2
Received

ReqMR2
Substg

ReqMR1
Substg

Req
Mst

MR1
Received

ReqMR1
Mst

ReqMR2
Mst

1..1 1..11..1
1..1

1..1

1..1

1..1 1..1

1..1 1..1

...

...

Fig. 5 Fragment of the semantic GSM schema for the energy
process in Example 1 partially describing the process’ lifecycle.

proximations, as discussed in before and, more in detail,

in Section 7. The CPA concept specializes ArtifactType of

the upper ontology in Figure 3, while all other concepts

are intended to specialize BusinessObject as a disjoint

and complete hierarchy. A monthly report contains a

set of (energy) measures and is either a control point

assessment or an application. A control point assessment

is based on exactly two applications (each one edited by

a company) and refers to a control point, which connects

exactly two companies. Measures can be either manual

or automatic and they are taken at a specific control

point by a specific company.

In Figure 5, a partial fragment of T which describes

the lifecycle of the process is graphically represented.

Concepts Requesting, ReqMR1 and ReqMR2 specialize

stage instance. Their individuals represent a stage in-

stance of a specific artifact. Roles ReqMR1Substg and

ReqMR2Substg specialize the substage role of the up-

per ontology (once more such a generalization is not

pictured) and ReqMst, ReqMR1Mst and ReqMR2Mst,
specializing the owns role, make the relation between

states and milestones explicit.
Table 3 shows the guards of the energy ex-

ample, now expressed in ECQs over the ontol-

ogy, where CPADrafting, EqualMeas, DiffMeasAuto and

DiffMeasMan are subclasses of StageInstance. It is easy

to see that, despite their length due to joins, they are

easier to manage than the ones in Table 1, referring to

the non-semantic GSM modeling of the same process.

For example, no unions are requested in the guard for

EqualMeas stage.

We notice also that we can now easily pose over the

ontology complex queries (possibly not among those
designed for the process that the artifact realizes) that

could not be immediately expressed over the data

schema of a classical GSM artifact as the one given
in Figure 1. For example, we can easily get information

about measures sent by a company C to the system oper-

ator that are not included in the control point assessment
for which they are produced. The queryQ1(id , y ,m, d , v)

described below returns indeed the CP identifier, the

year, month and date of the control point assessment,

and the value of the excluded measure4.

∃cpa,ms.[∃app, cp.CPA(cpa) ∧ refersTo(cpa, cp)∧
ID(cp, id) ∧month(cpa,m) ∧ year(cpa, y)∧
basedOn(cpa, app) ∧ editedBy(app,C) ∧ cont(app,ms)∧
date(ms, d) ∧ val(ms, v)] ∧ ¬[cont(cpa,ms)]

It should be easy to see that in order to extract the

above information from the schema in Figure 2, a more

involved query is needed. Indeed, while in the ontol-

ogy we can exploit the concept Meas, which generalizes

both automatic and manual measures, and the role cont
which relates generic measures to generic reports, in

4 We assume that the constant C used in the query denotes
the object representing the company C.

Semantic Enrichment of GSM-Based Artifact-Centric Models 13

the information model schema of classic GSM we have

to explicitly access both the AutoMeas and ManMeas

relations and separately consider the association of such

measures to reports. Such an advantage become more

significant as the number of specialized concepts in-

creases.

We also notice that queries over semantic GSM can

naturally involve both data and the lifecycle, as done

in the query Q2(s) described below, which returns the

closed stages for an artifact instance that is processing

the control point assessment of January 2013 for CP

with ID 17.

∃a, cpa, cp.artifactInstance(a) ∧ SOrefersTo(a, s)∧
closed(s) ∧ belongsTo(a, cpa) ∧month(cpa, ′January′)∧
year(cpa, 2013) ∧ refersTo(cpa, cp) ∧ ID(cp, 17)

In classic GSM such a query it is not naturally express-

ible, as stage instances cannot be returned as the result

of a query. It is in principle possible to modify the clas-
sic GSM information model to represent the lifecycle

schema, but this would require to use extra data struc-

tures in the data attributes, thus loosing the conceptual

distinction between business data and lifecycle data. The

upper ontology, instead, provide a natural and clean

way to combine such aspects.

Finally, query Q3(cpa) returns the CPAs for which

there exists a stage with a child that has already been

executed and one still open. From the business perspec-

tive, Q3 returns the artifacts that are still active and

are about to evolve. This information can be useful for

the system operator to allocate or deallocate in advance

some specific resources.

∃id , ps, s1 , s2 ,m.belongsTo(id , cpa)∧
SOrefersTo(s1 , id) ∧ SOrefersTo(s2 , id)∧
SOrefersTo(ps, id) ∧ SOrefersTo(m, id)∧
substage(s1 , ps) ∧ substage(s2 , ps)∧
Open(s1) ∧ Owns(s2 ,m) ∧ True(m)

Notably the above query is domain and lifecycle inde-

pendent. Indeed, not only it does not refer to the lower

ontology, but it is also general enough to fit any lifecycle.

This is possible by making use of distinctive constructs

of ontologies, such as generalization.

Another interesting example of query over the on-

tology described above is showed in Section 7. Such a

further query makes it even more evident the impor-

tance of reasoning in query answering in semantic GSM.

The example above makes clear the advantages of

using semantic GSM. In the first place, the ontology

captures entities of the domain and relationships be-

tween them in a clearer and more elegant way than

a relational model, which is usually built to serve the

implementation level, and not for describing the domain

per se. For example, the ontology specifies properties,

as for instance the fact that a CPS is based on two

applications, which are hidden in the data schema of

classical GSM. Furthermore, it allows easier and more

expressive queries: on the one hand sentries are more

manageable as they can be formulated considering the

reasoning services the logics provides (such as certain

answer computation), and on the other hand, due to the

unified view of the schema, user queries can now directly
refer to both data and lifecycle. Finally, it allows for

specifying business relevant high-level queries that can

be used on all instantiations of semantic GSM, and they

are robust to lifecycle refinements.

5 Linking Semantic GSM with Multiple

Front-End Applications

In this section, we discuss a combination of GSM, on-

tologies and mappings that is suitable in the common

situation where the architecture of the system is decom-

posed into a unique back-end and multiple (possibly

legacy) front-ends.

More specifically, we consider the case where:

– a unique back-end hosts the business processes that

manipulate (i.e., read, write and update) the whole

data related to the entire application domain.

– multiple front-end applications, conforming to dif-

ferent local database schemas, are employed to show

(i.e., read and visualize) the data produced by the

back-end, and to realize services on top of these data;

each such an application can also write its own data

into the corresponding local database, but without

affecting the information maintained by the back-

end, that is, local updates in this setting should not

be propagated towards the ontology.

Example 3 Consider a company whose main asset is

knowledge management in e-agriculture. In particular,

the company employs domain experts who manage live,

evolving information about plants, insects, parasites,

phytosanitary products, weather forecasts, and so on.

A plethora of web sites and portals, possibly developed

by third parties, rely on this information to realize e-

services in the agricultural domain.

A suitable architecture for the company’s informa-

tion system is one for which a controlled set of back-end

business processes with restricted access is used to in-

sert and update the relevant data. On the other hand,

the web sites are front-end applications, completely de-

coupled from the lifecycle of the back-end processes,

14 Riccardo De Masellis et al.

1

Semantic
process

Ontology

Databases

LAV mappings

Applications

(a) Architectural view

1

LAV mappings

Semantic
process

TBox

DB schema

ABox1 ABox2 ABox3 ABox4

DB inst1 DB inst2 DB inst3 DB inst4

(b) Runtime view

Fig. 6 Semantic GSM with LAV mappings exploited by mul-
tiple front-end applications

and relying on their own local database schemas (in-

dependent from the “global” schema employed by the

back-end). However, they need to access the back-end

information system to fetch the relevant data stored

there.

Figure 6(a) shows how the semantic technologies

presented in this work can be combined to support such

an architecture, with a twofold advantage: the back-end

can manipulate the relevant data at the conceptual level,

while seamlessly access and “understand” such data in

terms of their local schemas.

More specifically, in Figure 6(a) an ontology is used

to capture the domain knowledge. Semantic GSM is then

employed to construct the back-end processes working

on top of the domain ontology, by retaining all the

advantages discussed in Section 4. At the same time,

multiple (external) database schemas are used by the

front-end applications. The most critical aspect of the

architecture is therefore the link between the ontology

and such multiple databases. Fortunately, the techniques

recalled in Section 3 for linking data to ontologies can be

exploited to attack this challenging problem. Recall that,

in this setting, (part of) the data maintained by the

front-end databases must be obtained from the back-end

ontology (which is then accessed by front-end databases

in read-mode). This suggests that the form of mapping

assertions to formally capture the link is the one of LAV

mappings. In fact, to specify that a relation R in one

of the local, front-end databases, has to be fed with

data taken from the ontology, we can devise a mapping

assertion of the form R(x) ; ψ(x), which actually

expresses that R(x) is a (local) view constructed on

top of the query ψ(x) posed over the ontology. In other

terms, such a LAV assertion describes the content of

the relation R in terms of the ontology, which is exactly

what we need here. Notice, however, that since in this

setting the data flow is from the back-end ontology to the

front-end databases, mapping assertions are interpreted

as complete rather then sound assertions (cf. Section 3).

Also, to avoid that local updates on data propagate

towards the ontology, we impose that front-end relations
mapped to the ontology are only accessible in read mode

by local processes (except for the import of data coming

from the ontology – cf. below).

Figure 6(b) provides an abstract representation of

the evolution of data present in the ontology and the lo-
cal databases at execution time. Every time a (semantic)

action is performed, the ABox of the back-end ontology

is updated according to the action effects. Through the
LAV mapping assertions, this change in the ontology can

be also understood by the front-end databases, putting

together their own local data with the data present

in the ontology. From the operational point of view,

this abstract picture can be grounded in the system by

exploiting the mapping assertions in two ways:

– effectively transfer data extracted from the ontology

to the local database.

– answer queries posed over the local database by

transparently accessing the ontology on-demand.

Data transfer. In data transfer approach, some data

maintained by the ontology are now replicated in the
local database, similarly to data exchange (cf. Kolaitis

(2005)). The disadvantage of this approach is that it

introduces redundancy, and consequently corresponding

mechanisms must be implemented to regularly align the

data maintained by the local database with the ones

present in the ontology. Remember, in fact, that there

are back-end processes running on top of the ontology,

which could lead to changes that should be propagated

to R. On the other hand, the advantage of this approach

is that the back-end and the front-end only interact at

specific, pre-determined moments in time: a connection

between the ontology and the local database is required

only when there is an alignment request issued to the

local database. Beside these synchronisation points, the
two systems operate completely independently from

each other.

As an example, let us consider again the e-

agricultural company of Example 3. Supposing that

the back-end stores fresh forecast data every day before

midnight, a front-end application requiring those data

can simply trigger an alignment just after midnight, im-

porting the new information into its own local database,

Semantic Enrichment of GSM-Based Artifact-Centric Models 15

then using this local “copy” to provide its specific ser-

vice, without the need of further interaction with the

back-end.

Transparent access. With the transparent access ap-

proach, the local database does not replicate the data

present in the ontology. However, when queries are is-

sued over the local database, mapping assertions are
exploited to suitably include in the returned result set

also data present in the ontology. From the viewpoint of

a front-end application, there is no difference between

this approach and the data transfer one, i.e., transparent

access constitutes a form of “virtual” data transfer.

While this approach requires a stable, long-running

connection between each front-end application and the

back-end ontology (making it possible to access the

ontology on-demand, every time a query is issued over

one of the local databases), it has the advantage that

front-end applications always access the fresh, latest

data, without incurring in alignment issues.

We point out that the architecture described in

this section to link semantic GSM artifacts with a rela-

tional storage, independently from the approach adopted

(data transfer or transparent access), goes fairly beyond

OBDA. Indeed, access to data in our setting is possible

both through the (back-end) ontology and through the

(front-end) databases. In particular, from the point of

view of the front-end databases, the ontology is seen

as a data source, but differently from OBDA, where

data sources are always plain databases, it is a source

with incomplete information. In this respect, both trans-

ferring and on-the-fly querying of data turn out to be

computationally challenging. A simple, but effective,

way to deal with this situation is to assume that in each

mapping assertion R(x) ; ψ(x), the relation R is a

view corresponding to the certain answers of ψ(x) over

the ontology. This in fact means to weaken the semantic

interpretation of the mapping (w.r.t. the completeness

assumption discussed above), and at the same time

makes the front-end database rely only on the query an-

swering service exported by the back-end ontology (thus

somehow hampering the modularization of the overall

system in independent components). We point out that

a similar approach has been advocated in the context of

peer-to-peer (P2P) information management and inte-

gration (cf. Calvanese et al (2004b) and Franconi et al

(2003)), where analogous computational problems have

been faced and various solutions proposed, ranging from

the above possible weakening of the mapping, to the

devising of topological restrictions in the P2P network

and in the languages used in the peer schemas or on-

tologies (see also Adjiman et al (2006); Calvanese et al

(2004a); De Giacomo et al (2007); Fuxman et al (2005);

Halevy et al (2003)).

Example 4 Let us now consider again our previous run-

ning example, and have a closer look at the processes and

data managed by the companies which provide monthly

report applications to the system operator. Each such

company has indeed its own processes, possibly mod-

eled as GSM artifacts, which are executed independently

from the processes of the system operator, as well as

from the other companies. For these reasons, from the

point of view of the control point assessment artifact,

such processes are operating in the external environ-

ment, and no details on them or on the information
schemas they use are needed for the control point as-

sessment to be executed (cf. Figure 1 and Figure 2).

At the same time, databases locally used by various

companies can be seen, for the processes they serve, as

front-end databases fed from a back-end ontology for

what concerns the official measures published by the

system operator in a control point assessment. Such a

situation resembles exactly those in Figure 6(a).

Assume now that a company C wants to store in-

formation about measures it sends to the system op-

erator that are not included in the control point as-

sessment. To this aim C maintains locally a relation
R(CP ID, year,month, date, value), whose attributes de-

note respectively the identification number of the con-

trol point, the year and the month of the control point

assessment, the date and the value of the rejected mea-

sure. This information can be gathered from the ontol-

ogy through the mapping assertion R(id , y ,m, d , v) ;

Q1(id, y,m, d, v), where Q1 is the ontology query in

Example 2.

6 Semantic Monitoring and Governance of

Relational Artifacts

We discuss now an architectural solution that comple-

ments the one discussed in Section 5, but is as much

common in a typical industrial setting. The operation

of a company is typically encapsulated in a plethora of

different intra- and inter-organisational processes, each

meant to discipline the work of a branch/group/area

inside the company, as well the interaction with other

related areas and/or external stakeholders. Such pro-

cesses may have a very different nature (flexible, rigid,

unpredictable, . . .), involve different persons and devices

(employees, domain experts, consultants, managers, . . .),

and be partly not under the control of the company,

but of third-parties (partner companies, customers, sell-

ers, suppliers, . . .). Furthermore, from the architectural

point of view, the data they manipulate are typically

scattered around into several (typically relational) data

sources with different schemas.

16 Riccardo De Masellis et al.

Example 5 Consider a company that maintains a web

magazine, accessed by a community of users and con-

taining banners and advertising information for partner

companies. Different processes, possibly with different

underlying databases, are designed and implemented by

the company to accomplish its business objectives. An

internal process is executed to feed the web magazine

information system with fresh news. A CRM system is

used to record information about the partner companies.

A related process is followed to negotiate advertising

contracts with such companies, and to store the banners
to be shown on the web. Finally, a set of web processes

are executed to let the users register to the magazine

and surf the news, at the same time tracking statistical

information of banners’ views and clicks.

Despite this architectural fragmentation, however,

all the processes rely on and concur in the provision

of data of interest for the company. In particular, the

scattered data sources contribute altogether to provide

the extensional information used by business experts

and managers to assess the state of affairs, take strategic

decisions, refine the company’s goals, and restructure

the processes. To understand and communicate such

information, a common conceptualization of the domain

is needed, and is indeed sometimes adopted, typically
represented using graphical specification languages such

as E-R, UML, or ORM diagrams. Of course, such con-

ceptualization can be naturally captured by a formal

ontology.

Since in this case the purpose is to understand data

in the data sources through the ontology, i.e., (virtually)

transfer data from the source schemas to the conceptual
schema, the most natural form of mapping to adopt to

interconnect the two layers is the one of GAV. To define

a concept N in the ontology in terms of queries posed

over the underlying data sources, a set of assertions of

the following form may be employed: φ1(x) ; N(x), . . . ,

φn(x) ; N(x). Similarly, to define a role (i.e., a binary

relation) P in the ontology, GAV mapping assertions

of the following forms may be used: φ1(x, y) ; P (x, y),

. . . , φn(x, y) ; P (x, y).

Example 6 Consider again our running example on the

ACSI energy use case. Assume now that the ontology

we have described in Example 2 is used for monitoring

at the semantic level the relational artifact described

in Example 1. We therefore have to specify suitable

mappings from the ontology towards the data schema

of the relational artifact, which is described in Figure 1.

We report below some simple GAV mapping asser-

tions that specify how some instances of the ontology

can be built starting from the values stored in the un-

derlying data schema5.

SELECT CPAID

FROM CPAs
; CPA(CPAID)

SELECT MeasID, CPAID

FROM CPAMeas
; publishedIn(MeasID,CPAID)

SELECT MeasID, concat(CPAID,company) AS AppID

FROM ManMeas

;

cont(MeasID,AppID)

We also notice that in this scenario we can also easily

specify mappings towards the data schema of various

relational artifacts, possibly run by different electric

companies, thus fostering semantic process integration.

For example, let us assume that another company uses

a different artifact whose data schema contains the

following two relational tables to store reports containing

claimed measures on a daily basis for a certain control

point in a certain month:

R1(MRA ID,CP ID,month, year)
R2(MSR ID,MRA ID, date, time, value, type).

MRA ID is the database code (indeed a primary key in

R1) assigned to a control point application, CP ID is the

code of the control point, month and year are respectively

the month and the year the application refers to, MSR ID
is the database code assigned to measures (indeed a

primary key in R2), date, time, and value are respectively

the date, the time, and the value associated to a measure,

and type indicates if the measure is taken manually, in

this case it has the value ’M’, or in an automatic way,

in which case it assumes the value ’A’.

We notice that the company, for other own purposes,

stores in fact various measures with the same MRA ID
and the same date, all having a different times (i.e.,

MRA ID, date, and time form together a key in R2).

Only the measure with the greater value for time within

a certain date is then communicated to the system

operator.

The following SQL query QSQL(msr) selects only

sent measures taken manually.

SELECT X1.MSR ID AS msr FROM R2 AS X1

WHERE X1.type = ’M’ AND

not exists (SELECT * FROM R2 AS X2

WHERE X2.MSR ID <> X1.MSR ID AND X2.MRA ID = X1.MRA ID

AND X2.date = X1.date AND X1.time > X2.time)

The above query can be then used as database query in

a mapping assertion QSQL(msr) ; Man(msr), where

Man is the concept denoting manual measures in the

ontology given in Figure 4.

5 In the third assertion we construct the identifiers of in-
stances of MntRep by concatenating CPAID and company.

Semantic Enrichment of GSM-Based Artifact-Centric Models 17

Ontology

Databases

GAV mappings

Relational
processes

1 1 1 1

Users

(a) Architectural view

GAV mappings

Relational
process(es)

TBox

DB schema(s)

ABox1

DB inst1

ABox2 ABox3 ABox4

DB inst2 DB inst3 DB inst4

1

(b) Runtime view

Fig. 7 Relational processes with GAV mappings and a unify-
ing ontology

As recalled in Section 3, ontology-based data access

(OBDA) techniques have been extensively employed

to enable the concrete usage of a domain ontology to

integrate and access the company’s data. We discuss

here how these benefits carry over the setting where the

underlying data sources are manipulated by artifacts

and their corresponding processes. Figure 7(a) gives an

overview of the system architecture that arises in this

setting. The difference between a classical OBDA setting

is that the underlying data sources are regularly subject

to changes due to the running processes. This can be ap-

preciated by considering Figure 7(b), which provides an

abstract representation of the system evolution. Ideally,

every action execution at the relational level triggers a

change in at least one of the data sources. Through the

mapping assertions, this translates into a corresponding

change in the (extensional knowledge of the) ontology

(the ABox). The new, resulting snapshot can then be

queried at the conceptual level through the ontology

itself.

Analogously to what we did in Section 5, this ab-

stract picture can be concretely instantiated in two ways:

by applying an effective data transfer from the data

sources to the ontology, or by exploiting the ontology

to access the underlying relational data on-demand.

Data Transfer. In the data transfer scenario, data are

effectively migrated from the underlying data sources to

the ontology. Since GAV mapping assertions are sound

w.r.t. the data sources, we can in this case effectively ma-

terialize the ABox of the ontology by simply evaluating

the queries used in the left-hand side of the correspond-

ing assertions, and populating the ABox with the union

of the obtained result sets. For example, for the afore-

mentioned concept N , its population can be obtained as

the answer of the query
∨

i∈{1,...,n} ϕ(x) (similarly for

roles).

This approach resembles the one of data warehousing,

though in this case the central repository is constituted

by a rich, conceptual model. Business managers and

analysts can in fact exploit the ontology to query the

obtained integrated data at a high level of abstraction,
and by exploiting a “business-level” vocabulary. This,

in turn, provides the basis for reporting and analysis.

The data transfer approach can also fruitfully ex-

ploited to support external audits. In fact, part of an

audit is typically dedicated to analyse (a portion of)

the real data maintained by the company’s informa-

tion system, to check compliance with regulations and

best practices. Obviously, this analysis can be facilitated

if, instead of directly accessing the data sources with

their heterogeneous schemas, compliance queries are

expressed in terms of the ontology.

Another important application of the data transfer

approach is in process mining (van der Aalst and et al.

(2011)). See the discussion about the “semantic event

log”, provided below.

Transparent Access. Transparent, on-demand access

to the concrete data sources through the ontology can be

obtained by relying on the classical framework of OBDA.

Here, to achieve transparency, no data is materialized

in the ABox, but query answering is realized through

query rewriting, which reformulates the user query into

a new query expressed in the alphabet of the sources,

whose evaluation over the source database returns the

certain answer of the user query. Such reformulation

takes into account the TBox ontology and the mappings.

Poggi et al (2008) and Rodriguez-Muro and Calvanese

(2012) provide notable examples in which the above

rewritings can be expressed in SQL, thus allowing for

delegating its evaluation to the underlying relational

data management systems.

The described framework can be used in our setting

to obtain meaningful information about the current

state of affairs, reached as a result of the execution

of (possibly multiple) business artifacts working over

the relational sources and the corresponding processes.

Understanding the semantics of data contained in this

low-level sources is important to:

– Conceptual query answering, with the same advan-

tages discussed in Section 4. In particular, if the

underlying relational processes are specified in terms

of GSM artifact lifecycles, then part of the ontology

can be dedicated to capture GSM itself, as shown,

18 Riccardo De Masellis et al.

e.g., in Figures 3 and 5. Concepts and relationships

used to model the lifecycle can be easily mapped

to the status attributes maintained by the under-

lying GSM information schemas through suitable

GAV mapping assertions, supporting the possibility

of flexibly pose conceptual queries asking about the

current process status, possibly relating it also to

the current data, as shown in Example 2.

– Govern the underlying processes, blocking the fi-

nalization of those process actions that manipulate

the data leading to a globally inconsistent situation,
where some semantic constraint in the ontology is

violated (see Figure 8). Obviously, this requires a

mechanism to evaluate the action effects before ef-

fectively enforcing them, triggering an exceptional

behaviour if a violation is detected. In particular,

this must be propagated down to the process re-

sponsible of the action, which in turn can activate

a compensation phase, finding an alternative execu-

tion path. To show how this approach can be applied

also with classical process specifications, Figure 9

sketches the meta-model of a BPMN task execution

that exploits a transaction to coordinate with the

ontology governance service, triggering a roll-back

(and a corresponding compensation sub-process) in

the case of non-conformance.

– Relate different artifacts that share information,

though possibly with very different representation, in

their artifact instances. This is even more critical in

the case of inter-organizational processes combining

artifacts of multiple companies.

– Discipline the introduction of new artifacts and pro-

cesses in the system, checking whether they seam-
lessly integrate with the already existing artifacts

and processes, and supporting various forms of con-

formance tests.

– Facilitate the realization and enforcement of autho-

rization views, proposed by Limonad et al (2012)
in the context of so-called artifact interoperation

hubs (see Hull et al (2009)), to formally regulate to

which pieces of information the various stakeholders

participating to the hub share an access.

An example of a real-world application in which we

adopted the framework for semantic monitoring of re-

lationl artifact discussed in this section is given in Sec-

tion 7.

Semantic Event Log. We discuss now a particular

scenario in which the approach presented in this section

is exploited to provide the basis for process analysis, im-

provement, and re-engineering. In particular, we sketch

how the combination of ontology and mapping asser-

tions from the process data sources to the ontology can

Process

1

D1a
D1b D1c

Artifact System Snapshot

D2a
D2b D2c

Artifact System Snapshot

Mappings Mappings

Semantic snapshot
TBox

 ABox1

TBox

 ABox2

Semantic snapshot

violation

Task

Fig. 8 Ontology-based governance of a relational artifact
system

Pr
oc

es
s

Task Transaction

Task
ok

violation

Cancelation Handler

check conformance

Ontology

+

... ...

Fig. 9 Meta-model of an ontology-governed BPMN task.

be used as a basis for process mining (van der Aalst and

et al. (2011)).

Process mining combines business process analysis

with data mining, to the aim of discovering, monitoring,

diagnosing and ultimately improving business processes.

Traditionally, process mining is applied to post-mortem

data, i.e., data related to already completed process

instances. Recently, its applicability has been broaden

including also a plethora of operational decision support

tasks that are exploited at run-time, i.e., by considering

live data of running process instances.

Independently from the phase in which process min-

ing techniques are exploited, central for their applica-

bility is the availability of process event logs, which

explicitly trace all the relevant events (and the cor-

responding data) occurred so far due to the process

execution. The availability of event logs of good qual-

ity poses a twofold challenge. On the one hand, the

meaningful information associated to the events is typi-

cally scattered around different tables in the underlying

database, and possibly even in several data sources. On

the other hand, standard formats for event logs, such

as XES (http://www.xes-standard.org/), have been

proposed to make it possible to apply process mining

algorithms and tools without the need of customizing

how they are fed with input data on a per-company

basis.

For these reasons, the extraction of a unique, stan-

dard event log from a company’s information system is

http://www.xes-standard.org/

Semantic Enrichment of GSM-Based Artifact-Centric Models 19

contains

defines

Trace contains

name

overlap

timestamp

Conceptual
Event

Organiz.
Event

Lifecycle
Event

role groupresource

Eventcontains

1..*

1..*1..1 1..1

TimeEvent

transition

key

Attribute

value

Boolean
Attribute

Int
Attribute

Date
Attribute

Float
Attribute

String
Attribute

valuevaluevaluevalue

Classifier

Log

contains

contains

contains

Fig. 10 E-R diagram capturing a portion of the XES meta-
model; the dashed part is reported for clarity, but is concretely
realized in XES through the notion of extension and corre-
sponding required attributes for the events.

far from trivial. In this respect, OBDA can be effectively

applied to:

– Include in the ontology a set of concepts and rela-

tionships dedicated to capture event logs according
to the chosen format representation standard (see,

e.g., Figure 10).

– Establish mapping assertions from the data sources

to this portion of the ontology, in such a way to be

able to understand event-related data in terms of

the standard representation.

In this setting, the data transfer scenario can be ex-

ploited to extract an event log containing post-portem

data, and to apply process mining techniques off-line.

Conversely, the on-demand access approach can be used

for monitoring purpose, writing compliance queries on

top of the event log, and consequently checking whether

a process execution trace is currently respecting or vi-

olating certain business rules, in the style of Chesani

et al (2009); Montali et al (2013).

7 Instantiation of the Framework for Semantic

Monitoring in the ACSI Project

In this section we briefly describe how the framework

proposed in this paper has been instantiated within

the European Project ACSI (Artifact-Centric Service

Integration), for semantic governance and verification of

artifact systems. We point out that such instantiation

has been concretely applied within a real-world use

case, called the energy use case, concerning the context

of Spanish electric supply system and focused on the

energy exchange between different electric companies,

controlled by a central system operator. An excerpt of

such a scenario has been already presented throughout

the paper in the form of a running example. To describe

semantic governance of artifact systems in ACSI, we

continue to refer to such a scenario.

Within ACSI, the processes of interest in the energy

use case were extensively modeled in terms of (classical)

GSM artifacts. Example 1 describes one of them, namely

the control point assessment (CPA) artifact. Other ar-

tifacts that have been realized refer to submission of

possible objections issued by a company concerning the

measures published by the system operator, and to the

final liquidation process related to the energy exchange.

The realized artifacts were effectively deployed in the

so-called ACSI Interoperation Hub, an environment for

the execution of independent GSM artifacts operating

for a common goal.

In a parallel activity, we designed an ontology for

the energy setting, by leveraging on the upper level

ontology given in Figure 3, and by specializing it into

a specific ontology representing the domain of interest

for the energy use case, similarly to what is described
in Example 2. We specified the resulting overall ontol-

ogy in DL-Lite. A graphical representation of a portion

of this ontology is given in Figure 4 and 5. We point

out that some properties represented in such figures,

non-expressible in native way in DL-Lite, such as the

covering of the concept Meas, or the maximum cardi-
nality 2 on roles basedOn, connTo and cont, have been

suitably approximated by means of epistemic constraints

(cf. Section 4). On the other hand, we fully exploited

the expressive power of DL-Lite, which also allows for

specifying additional constraints that are not rendered

graphically in the form of ER-constructs, such as the

following identification assertions:

– no two applications based on the same CPA are

edited by the same company (i.e., App is identified by

its participation in the roles editedBy and basedOn);

– it is not possible for two CPAs to have the same

year-month and refer to the same control point.

In a second phase, we connected the artifact and

semantic layers by linking the data schema of the un-

derlying GSM artifacts to the concepts and relations of

the ontology, for governance and monitoring purposes.

In accordance with the framework described in Section

6, the linkage of the ontology towards the underlying

data schema was realized through GAV mapping asser-

tions. Each such assertions associates an element of the

ontology with an SQL query over the data schema of

the artifact layer (see Example 6). This allowed a trans-

parent access to the data stored in the artifcat layer, by

fetching information only on-demand, without perform-

ing any (costly) materialization of the data maintained

by the artifacts in terms of an ABox instantiating the

TBox of the ontology.

20 Riccardo De Masellis et al.

Fig. 11 Semantic Artifact Monitoring ACSI tool

Some prototype tools have been developed within

ACSI for the management and exploitation of the seman-

tic layer. One such a tool has the purpose of maintaining

and documenting the ontology, of storing and inspecting

the mappings and, most notably, of providing support

for querying the ontology. A snapshot of the querying

environment provided by this tool is given in Figure 11.

We stress that the system we realized is coupled with an

OBDA reasoner featuring a sound and complete tech-

nique for query answering over ontologies. Specifically,

within ACSI we employed Mastro (Civili et al (2013)),

an OBDA reasoner able to process unions of conjunctive

queries expressed in SPARQL syntax, and posed over

OBDA specifications where the TBox is expressed in

DL-Lite, and the mappings are GAV. Mastro is also

able to process ECQ queries specified in a proprietaty

syntax. To process queries, Mastro proceeds in two steps.

In the first step, called ontology rewriting, it computes

the FOL-rewriting of the input query with respect to

theTBox of the OBDA specification. In the second step,

called mapping rewriting, it further rewrites the FOL-

rewriting obtained in the previous step by considering

the contribution of the mappings, following a classical

unfolding procedure (Lenzerini (2002)). Intuitively, this

procedure substitutes each ontology predicate in the

query with the SQL view that the mapping associates

to it. Notably, the final rewriting is expressed into a

standard SQL query that can be directly processed at

the artifact layer, i.e., OBDA specifications managed

by Mastro support FOL-rewritable query answering (cf.

Section 3).

We effectively exploited this tool for monitoring

artifact systems by issuing queries over the ontology.

Through such queries, we were able to understand at

the conceptual level the impact of the evolution of the

artifact system in terms of the managed information,

and govern it. For example, we had the possibility of re-

lying on specific queries so as to identify execution steps

which, once executed at the artifact layer, would lead to

a new (virtual) semantic snapshot that is inconsistent

with the ontology TBox.

An example of monitoring query is given in the

following:

∃ rep,ms1 ,ms2 , d .[MntRep(rep) ∧ cont(rep,ms1)∧
cont(rep,ms2) ∧ date(ms1 , d) ∧ date(ms2 , d)]∧
ms1 6= ms2

This query is an ECQ asking for the existence of a

monthly report that contains two distinct measures

referring to the same date. This is an unwanted situation,

since every report has to exhibit only a single measure

per day6.

To show the benefit of writing queries at the seman-

tic level, we briefly discuss how Mastro processes the

aforementioned query, and how the final SQL rewriting

looks like. According to the semantics of ECQs, answer-

ing the above query amounts to first compute the certain

answers of the CQ Q = MntRep(rep)∧ cont(rep,ms1)∧
cont(rep,ms2) ∧ date(ms1 , d) ∧ date(ms2 , d), and then

verify the inequality ms1 6= ms2 over such certain an-

swers. To this aim, Mastro first computes the ontology

rewriting Qo, which is the FOL query (in fact a UCQ

with inequalities) partially reported below:

∃ rep,ms1 ,ms2 , d .((App(rep) ∧ cont(rep,ms1)∧
cont(rep,ms2) ∧ date(ms1 , d) ∧ date(ms2 , d))

∨(CPA(rep) ∧ publishedIn(rep,ms1)∧
publishedIn(rep,ms2) ∧ date(ms1 , d) ∧ date(ms2 , d))

∨ . . .)
∧ ms1 6= ms2

We notice that Qo is obtained by rewriting the con-

junctive query Q and then imposing the inequality

ms1 6= ms2 over the rewriting. Intuitively, to rewrite Q

Mastro exploits inclusions between concepts and roles,

typings of roles, and mandatory participations of con-

cepts into roles asserted in the ontology (for further

details we refer the reader to Calvanese et al (2007b)).
In the above example, since App is a sub-concept of

MntRep, and publishedIn is a sub-role of cont, the rewrit-

ing algorithm substitutes the predicates MntRep and

cont in Q with App and publishedIn respectively, generat-

ing all disjuncts the stem from all possible substitutions.

In total, Mastro generates an overall number of ap-

proximately 50 disjuncts. To finalize the FOL-rewriting,

Mastro then computes the mapping rewriting of Qo by

unfolding it according to the mapping assertions (which

we partially described in Example 4). This produces

a final number of disjuncts which is in general expo-

nential w.r.t. the number of atoms in Qo. We notice

6 Notice that the above query in fact constitutes an epis-
temic constraints specified over the TBox.

Semantic Enrichment of GSM-Based Artifact-Centric Models 21

that the ontology rewriting phase, and therefore the

reasoning over the ontology, turned out to be crucial in

this query: unfolding directly the original query would

have returned an empty query, since MntRep and cont
are in fact not directly associated with any query in the

mappings.

We close this section by discussing the impact of

choosing DL-Lite as the ontology language for express-

ing the dynamics of an artifact-centric system. The

choice of DL-Lite is supported by the fact that the same

benefits of the FOL-rewritability property for query an-

swering and ODBA also apply to the system dynamics.

Such benefits hold not only when the dynamics of the

artifact system is directly specified at the semantic level,

as in the case of semantic GSM (cf. Section 4), but also
when the dynamics is specified at a lower level, which is

relational in the majority of cases (as in standard GSM),

and declarative dynamic constraints are expressed over

the semantic layer posed on top of the relational one.
In the first setting, the semantic GSM specification of

an artifact can be automatically manipulated by tech-

nologies like Mastro to be translated into a correspond-

ing standard GSM specification (by simply rewriting

each sentry). The resulting specification can then be

directly executed using the ACSI Interoperation Hub

(or any execution engine for relational GSM artifacts).

In the second setting, temporal/dynamic properties are

added to the semantic layer, so as to express conceptual

constraints on the expected or forbidden evolutions of

concepts and relations. Within ACSI, we used in par-

ticular a first-order variant of µ-calculus, virtually the

most powerful logic for verification, to express such dy-

namic constraints. In this variant, local properties are in

fact ECQs over the alphabet of the ontology TBox. No-

tably, Calvanese et al (2012) show that, by virtue of the

FOL-rewritability, the rewriting of dynamic constraints

(taking into account both TBox assertions and GAV

mappings) can be directly posed over the data schema

of relational artifacts. This result has been effectively

implemented in the OBGSM tool (Bagheri Hariri et al

(2013c)) and it is applicable in the setting described

in Section 6, that is, when relational GSM artifacts

are linked to a (DL-Lite) ontology through GAV map-

pings. This tool implements the reformulation technique

described by Calvanese et al (2012), and returns a cor-

responding temporal formula which, together with the

specification of GSM artifacts, can be directly fed into

the GSMC model checker proposed by Gonzalez et al

(2012) for verification of GSM artifacts.

In summary, the key property of FOL-rewritability

enjoyed by DL-Lite makes it possible to start from a

rich semantic artifact framework and reformulate it so

as to use traditional ontology-agnostic tools for query

answering, execution, and verification of artifact sys-

tems.

8 Related work

Since the introduction of artifact-centric processes as

a means to integrate processes and data (Nigam and

Caswell (2003)), extensive research has been done along

two main lines: foundational approaches for formally

representing and verifying artifact-centric systems (such

as, e.g., Deutsch et al (2009); Belardinelli et al (2012a)),

or proposals of modeling languages and corresponding

execution environments (such as, e.g., Hull et al (2011);

Sun et al (2012)).

The majority of approaches related to artifact-centric

systems assumes that artifacts maintain relational data.

Furthermore, as far as we know only a few works exploit

the artifact information model beyond just its use to

support the artifact execution. An example is Sun et al

(2012), where a unifying view encompassing two different

artifact modeling languages (GSM and EZ-flow) is used
to wrap the execution of hybrid artifact-centric systems,

implemented partly in GSM and partly in EZ-flow. The

reconciliation between the underlying information mod-

els and the common, abstract one is done by exploiting

very simple mapping assertions, and could be therefore

accommodated by the framework here presented.

As for the verification of artifact-centric (or, more

in general, data-centric) business processes, the same

trend discussed above can be seen: the majority of pro-

posed frameworks relies on the relational model for the

data component (Deutsch et al (2009); Belardinelli et al

(2012a); Bagheri Hariri et al (2013b)). A notable excep-

tion is constituted by the so-called DL Knowledge and

Action Bases (KABs, see Bagheri Hariri et al (2013a)).

KABs are constituted by a knowledge component mod-

eled by means of a data-oriented DL ontology called

DL-Lite, and by an action component containing a set

of actions (and a process built on top of them) used to

progress the knowledge component. In this respect, the

work here presented can be considered as a concretiza-

tion of the KAB framework, where the action component

is grounded in the GSM language. Verification of (clas-

sical) GSM artifacts has been tackled only very recently,

with some preliminary but promising theoretical results

(Belardinelli et al (2012b); Solomakhin et al (2013)) and

practical developments (Gonzalez et al (2012)). One

could wonder whether verification of GSM could be ex-

tended to the semantic GSM presented here. Thanks

to Solomakhin et al (2013), we have, in principle, an

affirmative answer. In fact, to show verifiability of GSM

artifacts, Solomakhin et al (2013) present a translation

22 Riccardo De Masellis et al.

mechanism into a formal framework whose action com-

ponent closely corresponds to the one of KABs. Since

the translation is orthogonal w.r.t. the data component,

it can be seamlessly applied to obtain a KAB starting

from a semantic GSM specification, consequently en-

abling the possibility of applying the verification results

obtained for KABs.

In Calvanese et al (2012), a framework for the verifi-

cation of data-centric processes is proposed, which mixes

a formal representation of relational artifacts with the

notion of ontology as considered here. Differently from
KABs, processes progress their execution at the rela-

tional layer, and the ontology is used to understand and

govern the execution at a higher level of abstraction.

The link between the underlying relational information

models and the unified conceptual representation pro-

vided by the ontology is established through mapping

assertions, i.e., relying to ontology-based data access.

This work exactly provide the formal underpinning for

the governance and monitoring architectural framework

presented in Section 6, showing that this two-level ar-

chitecture can be subject to verification. In particular,

it recasts the query unfolding approach typically used

in DL-Lite ontology-based data access to the more gen-

eral case of temporal properties composed by tempo-

ral operators combined with queries over the ontology.

Such a result constituted the basis for the verification

framework described in Bagheri Hariri et al (2013c) (cf.

Section 7).

9 Discussion and Conclusion

In this paper we have provided a comprehensive frame-

work for semantic GSM artifacts. The key characteristic

of the framework is that it allows for expressing both the

data and the lifecycle schema of GSM artifacts in terms

of an ontology. We have provided an upper ontology for

the semantic GSM model, which is specialized in each

artifact with specific lifecycle elements, relations, and

business objects. We have then enriched our framework

by enabling the linkage of the ontology to autonomous

database systems through the use of mapping asser-

tions, as done in data integration and ontology-based

data access. We have discussed two main scenarios of

practical interest where the use of mappings turn out

to be crucial for enabling collaboration and communi-

cation among different and heterogeneous systems. We

have discussed a concrete instantiation of our framework

based on the use of DL-Lite ontologies and have shown

a real-world application of it in the energy domain,

investigated in the context of the EU project ACSI. No-

tably, FOL-rewritability of query answering enjoyed by

DL-Lite ontologies allowed us to rely in the practice on

the same artifact management tools based on relational

technology used for classical GSM artifacts. We leave

to future studies the investigation of those cases where

ontology languages are more expressive than DL-Lite.

However, from the computational point of view we can

already notice that in these more expressive settings a

purely intensional approach based on query rewriting

is difficult to achieve. Indeed, as shown in Calvanese

et al (2013), DL-Lite is one of the maximal ontology

languages enjoying FOL-rewritability of query answer-

ing, and even limited extensions of it lead to inherently
more complex query answering, which can therefore not

be encoded into evaluation of a FOL query (which can

be directly translated into SQL and therefore managed

under relational technology). We argue that in these

cases, approaches (even partially) based on some data

manipulation should be pursued, to achieve reasonable

performances.

A natural follow up of this paper is to study, from

both the practical and the theoretical perspective, the

scenario that results from the merging of the systems

described in Section 5 and in Section 6. In this sce-

nario, global semantic GSM artifacts, operating over

the ontology, and relational GSM artifacts, operating

over autonomous databases, coexist, and act both as

consumers and producers of information. Therefore, all

forms of mapping assertions and semantic assumptions

on them considered in this paper need to be adopted,

in order to guarantee both semantic governance of rela-

tional artifact and access to ontology data by front-end

systems. On the one hand, this scenario sets the stage for

advanced and completely distributed semantic reasoning

over artifacts, and on the other, it presents challenging

computational issues. For example, data manipulation

at the ontology level in this setting is closely related

to the longstanding problem of view updates Winslett

(1988).

Acknowledgments This work has been supported by

the EU FP7 project ACSI (grant no. 257593) and by

the FP7 large-scale integrating project Optique (grant

no. 318338).

References

van der Aalst WMP, et al (2011) Process mining mani-

festo. In: Proc. of BPM Workshops, Springer, LNBIP,

pp 169–194

van der Aalst WMP, Barthelmess P, Ellis CA, Wainer

J (2001) Proclets: A framework for lightweight in-

teracting workflow processes. Int J of Cooperative

Information Systems 10(4):443–481

Semantic Enrichment of GSM-Based Artifact-Centric Models 23

Abiteboul S, Hull R, Vianu V (1995) Foundations of

Databases. Addison-Wesley

Abiteboul S, Bourhis P, Galland A, Marinoiu B (2009)

The AXML artifact model. In: Proc. of TIME 2009,

pp 11–17

Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon

L (2006) Distributed reasoning in a peer-to-peer set-

ting: Application to the Semantic Web. J of Artificial

Intelligence Research 25:269–314

Apt KR, Blair HA, Walker A (1988) Towards a theory of

declarative knowledge. In: Foundations of Deductive
Databases and Logic Programming., Morgan Kauf-

mann, pp 89–148

Baader F, Calvanese D, McGuinness D, Nardi D, Patel-

Schneider PF (eds) (2007) The Description Logic

Handbook: Theory, Implementation and Applications,

2nd edn. Cambridge University Press

Bagheri Hariri B, Calvanese D, De Giacomo G, De Masel-

lis R, Felli P, Montali M (2013a) Description logic

knowledge and action bases. J of Artificial Intelligence

Research

Bagheri Hariri B, Calvanese D, De Giacomo G, Deutsch

A, Montali M (2013b) Verification of relational data-

centric dynamic systems with external services. In:

Proc. of PODS

Bagheri Hariri B, Calvanese D, Montali M, Santoso A,

Solomakhin D (2013c) Verification of semantically-

enhanced artifact systems. In: Proc. of ICSOC,

Springer, LNCS

Belardinelli F, Lomuscio A, Patrizi F (2012a) An abstrac-

tion technique for the verification of artifact-centric

systems. In: Proc. of KR, pp 319–328

Belardinelli F, Lomuscio A, Patrizi F (2012b) Verifica-
tion of gsm-based artifact-centric systems through fi-

nite abstraction. In: Proc. of ICSOC, Springer, LNCS,

pp 17–31

Berardi D, Calvanese D, De Giacomo G (2005) Rea-

soning on UML class diagrams. Artificial Intelligence
168(1–2):70–118

Cal̀ı A, Gottlob G, Lukasiewicz T (2009) A general

Datalog-based framework for tractable query answer-

ing over ontologies. In: Proc. of PODS, pp 77–86

Calvanese D, De Giacomo G, Lembo D, Lenzerini M,

Rosati R (2004a) What to ask to a peer: Ontology-

based query reformulation. In: Proc. of KR, pp 469–

478

Calvanese D, De Giacomo G, Lenzerini M, Rosati R

(2004b) Logical foundations of peer-to-peer data inte-

gration. In: Proc. of PODS, pp 241–251

Calvanese D, De Giacomo G, Lembo D, Lenzerini M,

Rosati R (2007a) EQL-Lite: Effective first-order query

processing in description logics. In: Proc. of IJCAI,

pp 274–279

Calvanese D, De Giacomo G, Lembo D, Lenzerini M,

Rosati R (2007b) Tractable reasoning and efficient

query answering in description logics: The DL-Lite

family. J of Automated Reasoning 39(3):385–429

Calvanese D, De Giacomo G, Lembo D, Lenzerini M,

Poggi A, Rodriguez-Muro M, Rosati R, Ruzzi M, Savo

DF (2011) The Mastro system for ontology-based data

access. Semantic Web Journal

Calvanese D, De Giacomo G, Lembo D, Montali M,

Santoso A (2012) Ontology-based governance of data-

aware processes. In: Proc. of RR, Springer, LNCS, vol
7497, pp 25–41

Calvanese D, De Giacomo G, Lembo D, Lenzerini M,

Rosati R (2013) Data complexity of query answering

in description logics. Artificial Intelligence 195:335–

360

Chesani F, Mello P, Montali M, Riguzzi F, Sebastianis

M, Storari S (2009) Checking compliance of execution

traces to business rules. In: Proc. of BPM Workshops,

Springer, LNBIP, vol 17, pp 134–145

Civili C, Console M, De Giacomo G, Lembo D, Lenzerini

M, Lepore L, Mancini R, Poggi A, Rosati R, Ruzzi

M, Santarelli V, Savo DF (2013) MASTRO STUDIO:

Managing ontology-based data access applications.

PVLDB 12:1314–1317

Cohn D, Hull R (2009) Business artifacts: A data-centric

approach to modeling business operations and pro-

cesses. IEEE Bull on Data Engineering 32(3):3–9

Damaggio E, Hull R, Vacuĺın R (2011) On the equiva-

lence of incremental and fixpoint semantics for busi-

ness artifacts with guard-stage-milestone lifecycles.

In: Proc. of BPM, Springer, LNCS, pp 396–412

De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007)
On reconciling data exchange, data integration, and

peer data management. In: Proc. of PODS, pp 133–

142

Deutsch A, Hull R, Patrizi F, Vianu V (2009) Automatic

verification of data-centric business processes. In: Proc.
of ICDT, ACM, pp 252–267

Doan A, Halevy AY, Ives ZG (2012) Principles of Data

Integration. Morgan Kaufmann

Franconi E, Kuper G, Lopatenko A, Serafini L (2003) A

robust logical and computational characterisation of

peer-to-peer database systems. In: Proc. of DBISP2P

Fuxman A, Kolaitis PG, Miller RJ, Tan WC (2005)

Peer data exchange. ACM Trans on Database Systems

31(4):1454–1498

Gelder AV (1989) Negation as failure using tight deriva-

tions for general logic programs. J Log Program

6(1&2):109–133

Glimm B, Horrocks I, Lutz C, Sattler U (2008) Conjunc-

tive query answering for the description logic SHIQ.

J of Artificial Intelligence Research 31:151–198

24 Riccardo De Masellis et al.

Gonzalez P, Griesmayer A, Lomuscio A (2012) Verifying

gsm-based business artifacts. In: Proc. of ICWS, IEEE,

pp 25–32

Gruber TR (1993) Towards principles for the design of

ontologies used for knowledge sharing. In: Guarino N,

Poli R (eds) Formal Ontology in Conceptual Analysis

and Knowledge Representation, Kluwer Academic

Publishers

Haarslev V, Möller R (2001) RACER system description.

In: Proc. of IJCAR, Springer, LNAI, vol 2083, pp 701–

705
Halevy A, Ives Z, Suciu D, Tatarinov I (2003) Schema

mediation in peer data management systems. In: Proc.

of ICDE, pp 505–516

Hull R, Narendra NC, Nigam A (2009) Facilitating

workflow interoperation using artifact-centric hubs.

In: Proc. of ICSOC, Springer, LNCS, vol 5900, pp

1–18

Hull R, Damaggio E, De Masellis R, Fournier F, Gupta

M, Heath FT III, Hobson S, Linehan M, Maradugu S,

Nigam A, Sukaviriya PN, Vaculin R (2011) Business

artifacts with guard-stage-milestone lifecycles: man-

aging artifact interactions with conditions and events.

In: Proc. of DEBS, ACM

Kolaitis PG (2005) Schema mappings, data exchange,

and metadata management. In: Proc. of PODS, pp

61–75

Kontchakov R, Lutz C, Toman D, Wolter F, Za-

kharyaschev M (2010) The combined approach to

query answering in DL-Lite. In: Proc. of KR, pp 247–

257

Lenzerini M (2002) Data integration: A theoretical per-

spective. In: Proc. of PODS, pp 233–246
Limonad L, Boaz D, Hull R, Vacuĺın R, Heath F (2012)

A generic business artifacts based authorization frame-

work for cross-enterprise collaboration. In: Proc. of

SRII, pp 70–79

Linehan M (2011) GSM expression language. Tech. rep.,
IBM Research, available on request.

Meyer A, Smirnov S, Weske M (2011) Data in business

processes. EMISA Forum 31(3):5–31

Montali M, Maggi FM, Chesani F, Mello P, van der

Aalst WMP (2013) Monitoring business constraints

with the event calculus. ACM Trans on Intelligent

Systems and Technology 5(1):17

Motik B, Fokoue A, Horrocks I, Wu Z, Lutz C,

Cuenca Grau B (2009) OWL 2 web ontology lan-

guage profiles. W3C Recommendation, World Wide

Web Consortium, available at http://www.w3.org/

TR/owl-profiles/

Motik B, Cuenca Grau B, Horrocks I, Wu Z, Fok-

oue A, Lutz C (2012) OWL 2 Web Ontology Lan-

guage profiles (second edition). W3C Recommen-

dation, World Wide Web Consortium, available at

http://www.w3.org/TR/owl2-profiles/

Nigam A, Caswell NS (2003) Business artifacts: An

approach to operational specification. IBM Systems

Journal 42(3):428–445

Object Management Group (OMG) (2013) Case Man-

agement Model And Notation vers. 1.0 - Beta 1.

http://www.omg.org/spec/CMMN/1.0/Beta1/PDF/

Poggi A, Lembo D, Calvanese D, De Giacomo G, Lenz-

erini M, Rosati R (2008) Linking data to ontologies.

J on Data Semantics X:133–173
Rodriguez-Muro M, Calvanese D (2012) High perfor-

mance query answering over DL-Lite ontologies. In:

Proc. of KR, pp 308–318

Sirin E, Parsia B, Cuenca Grau B, Kalyanpur A, Katz

Y (2007) Pellet: A practical OWL-DL reasoner. J of

Web Semantics 5(2):51–53

Solomakhin D, Montali M, De Masellis R, Tessaris S

(2013) Verification of artifact-centric systems: Decid-

ability and modeling issues. In: ICSOC, pp 252–266

Sun Y, Xu W, Su J, Yang J (2012) Sega: A mediator

for artifact-centric business processes. In: Proc. of

CoopIS, Springer, LNCS, vol 7567, pp 658–661

Tsarkov D, Horrocks I (2006) FaCT++ description logic

reasoner: System description. In: Proc. of IJCAR, pp

292–297

Winslett M (1988) A model-based approach to updating

databases with incomplete information. ACM Trans

on Database Systems 13(2):167–196

http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.omg.org/spec/CMMN/1.0/Beta1/PDF/

	Introduction
	The Guard-Stage-Milestone model
	Description Logic Ontologies and their Linkage to Data
	Semantic GSM
	Linking Semantic GSM with Multiple Front-End Applications
	Semantic Monitoring and Governance of Relational Artifacts
	Instantiation of the Framework for Semantic Monitoring in the ACSI Project
	Related work
	Discussion and Conclusion

