
J Data Semant (2015) 4:81–101
DOI 10.1007/s13740-014-0040-x

ORIGINAL ARTICLE

Preference-Based Query Answering in Probabilistic Datalog+/–
Ontologies

Thomas Lukasiewicz · Maria Vanina Martinez ·
Gerardo I. Simari · Oana Tifrea-Marciuska

Received: 16 December 2013 / Accepted: 7 April 2014 / Published online: 22 May 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The incorporation of preferences into informa-
tion systems, such as databases, has recently seen a surge in
interest, mainly fueled by the revolution in Web data avail-
ability. Modeling the preferences of a user on the Web has
also increasingly become appealing tomany companies since
the explosion of popularity of social media. The other surge
in interest is in modeling uncertainty in these domains, since
uncertainty can arise due to many uncontrollable factors. In
this paper, we propose an extension of the Datalog+/– fam-
ily of ontology languages with two models: one represent-
ing user preferences and one representing the (probabilistic)
uncertainty with which inferences are made. Assuming that
more probable answers are in general more preferable, one
asks how to rank answers to a user’s queries, since the prefer-
ence model may be in conflict with the preferences induced
by the probabilistic model—the need thus arises for prefer-
ence combination operators. We propose four specific oper-
ators and study their semantic and computational properties.
We also provide an algorithm for ranking answers based on
the iteration of the well-known skyline answers to a query
and show that, under certain conditions, it runs in polyno-
mial time in the data complexity. Furthermore, we report on
an implementation and experimental results.

T. Lukasiewicz (B)·M.V.Martinez ·G. I. Simari ·O.Tifrea-Marciuska
Department of Computer Science, University of Oxford, Oxford, UK
e-mail: thomas.lukasiewicz@cs.ox.ac.uk

M. V. Martinez
e-mail: vanina.martinez@cs.ox.ac.uk

G. I. Simari
e-mail: gerardo.simari@cs.ox.ac.uk

O. Tifrea-Marciuska
e-mail: oana.tifrea@cs.ox.ac.uk

1 Introduction

There has recently been a marked push in the research and
development of technology surrounding the Web and, per-
haps most centrally, its vast repositories of data. Ontology
andquery languages are examples of such technology, used to
share, integrate, andquery large-scale and less structured data
and knowledge bases, such as those occurring on the Web.
One of the central issues in this domain is that Web search
is still centered around the paradigm of receiving keywords
from a user and returning a list of links to Web documents
that are considered to be pertinent. Semantic search, on the
other hand, has been proposed as an evolution of this para-
digm that identifies objects, rather than whole documents, as
candidates to answering the users’ queries. At the same time,
we have recently been witnessing another revolution in the
rapid growth of what is generally referred to as the Social
Web (which is often also implicitly connected to the Seman-
tic Web [3]); the Social Web is centered around a (mostly)
loosely coupled set of platforms that people make use of with
the objective of sharing, viewing, and searching for infor-
mation (in the form of pictures, text documents of varying
lengths, videos, etc.) in a social and sometimes collabora-
tive environment. The use of semantic search in the Social
Web is of central importance, due to themissing link structure
betweenWebpages,which iswell-known from ranking (such
as PageRank) in standard Web search. In addition, the fun-
damentally human component of these systems makes each
user’s personal preferences have a much more prevalent role
than what was observed before this paradigm shift. Finally,
the presence of uncertainty in the Web in general is unde-
niable [10,17,21,25]: information integration (as in travel
sites that query multiple sources to find hotels and flights),
automatic processing of Web data (analyzing an HTML
document often involves uncertainty), as well as inherently

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-014-0040-x&domain=pdf

82 T. Lukasiewicz et al.

uncertain data (such as user comments) are all examples of
uncertainty thatmust be dealtwith in answering queries in the
Social Web. The current challenge for Web search is there-
fore inherently linked to (1) leveraging the social compo-
nents of Web content towards the development of some form
of semantic search and query answering on the Web as a
whole, and (2) dealing with the presence of uncertainty in a
principled way throughout the process.

In this paper, we develop a novel integration of ontology
languages with both preference and uncertaintymanagement
mechanisms by developing an extension of the Datalog+/–
family of ontology languages [6] with a preference model
over the consequences of the ontology, as well as a proba-
bilistic model that assigns probabilities to them—note that
all previous work on extending Datalog+/– with uncertainty
(cf. [12] and references therein) does not deal with prefer-
ences. The former is assumed to model a user’s (or group
of users’) preferences, while the latter is assumed to model
the uncertainty in the domain. The specific mechanisms by
which these models are given are left unspecified, since our
focus is on the study of how to rank answers to a query when
the two models may be in disagreement regarding the rank-
ing: assuming that higher-probability consequences aremore
preferable than lower-probability ones, it is clear that such
situations can arise.

The main contributions of this paper can be briefly sum-
marized as follows.

– We introduce the PP-Datalog+/– framework, which com-
bines ontology languages with both preferences as in
relational databases and probabilistic uncertainty. To our
knowledge, it is the first such extension.

– We formalize the concept of preference combination
operators, which take as input a preference relation in
the form of a strict partial order (SPO) and a score-based
SPO (a weak order), and produce a new preference rela-
tion satisfying certain basic properties.

– We develop four specific preference combination algo-
rithms, two egalitarian ones (ComPrefsGen and Com-
PrefsRank) and two user-biased ones (ComPrefsPT
and ComPrefsSort). They satisfy the requirements of a
preference combination operator as well as other desir-
able properties, among which are several postulates from
the literature for a less general case. They can also be
implemented to run in polynomial time in the data com-
plexity, modulo the cost of computing probabilities.

– Wegive an algorithm for answering k-rank queries, a gen-
eralization of top-k queries based on the iterative com-
putation of classical skyline answers, for disjunctions of
atomic queries (DAQs), along with proofs of correctness
and running time, showing that answering DAQs in PP-
Datalog+/– is possible in polynomial time in the data
complexity, modulo the cost of computing probabilities.

– We illustrate PP-Datalog+/– along a real-world applica-
tion with preference-based query answering in the con-
text of the Internet Movie Database (IMDB).

– We also report on an implementation of PP-Datalog+/–
alongwith extensive experimental results, evaluating and
analyzing the running time of our algorithms over a com-
bination of real-world and synthetic data.

The rest of this paper is organized as follows. In Sect. 2, we
present preliminary concepts on classical Datalog+/–. Sec-
tion 3 introduces the general preference and probabilistic
models that are used in this work, motivates the need to
combine the user preferences with those induced by prob-
ability values by means of preference combination opera-
tors, and then goes on to present the syntax and semantics
of PP-Datalog+/–. In Sects. 4 and 5, we present algorithms
for the implementation of four preference combination oper-
ators and study their semantic and computational properties.
Section 6 presents skyline and k-rank queries and a basic
algorithm to answer them, and proves its correctness and
running time, showing that under certain conditions, k-rank
queries can be answered in polynomial time in the data com-
plexity. In Sects. 7 and 8, we provide a real-world application
and report on an implementation along with extensive exper-
imental results, respectively. Finally, Sects. 9 and 10 discuss
related work and conclude, respectively.

2 Preliminaries on Datalog+/–

In this section, we briefly recall some basics on Datalog+/–
[6], namely, on relational databases, (Boolean) conjunctive
queries ((B)CQs), tuple- and equality-generating dependen-
cies (TGDs and EGDs, respectively), negative constraints,
the chase procedure, and ontologies in Datalog+/–.

2.1 Databases and Queries

We assume (i) an infinite universe of (data) constants �

(which constitute the “normal” domain of a database), (ii) an
infinite set of (labeled) nulls �N (used as “fresh” Skolem
terms, which are placeholders for unknown values, and can
thus be seen as variables), and (iii) an infinite set of variables
V (used in queries, dependencies, and constraints). Different
constants represent different values (unique name assump-
tion), while different nulls may represent the same value. We
assume a lexicographic order on � ∪ �N , with every sym-
bol in �N following all symbols in �. We denote by X the
sequences of variables X1, . . . , Xk with k � 0. We assume a
relational schema R, which is a finite set of predicate sym-
bols (or simply predicates).

A term t is a constant, null, or variable. An atomic formula
(or atom) a has the form P(t1, . . . , tn), where P is an n-ary

123

Preference-Based Query Answering 83

predicate and t1, . . . , tn are terms. A database (instance) D
for a relational schemaR is a (possibly infinite) set of atoms
with predicates from R and arguments from �. A conjunc-
tive query (CQ) over R has the form Q(X)= ∃Y �(X, Y),
where �(X, Y) is a conjunction of atoms (possibly equal-
ities, but not inequalities) with the variables X and Y, and
possibly constants, but no nulls. A Boolean CQ (BCQ)
over R is a CQ of the form Q(), often written as the set
of all its atoms, without quantifiers. Answers to CQs and
BCQs are defined via homomorphisms, which are mappings
μ : � ∪ �N ∪ V → � ∪ �N ∪ V such that: (i) c∈ �

implies μ(c)= c, (ii) c∈ �N implies μ(c)∈ � ∪ �N , and
(iii) μ is naturally extended to atoms and sets/conjunctions
of atoms. An answer to a CQ Q(X)= ∃Y �(X, Y) over D,
denoted Q(D), is a tuple t over � for which there exists
a homomorphism μ : X ∪ Y → �∪ �N such that μ(�(X,

Y))⊆ D and μ(X)= t. The answer to a BCQ Q() over D is
Yes, denoted D |� Q, iff Q(D) �= ∅.

Given a relational schema R, a tuple-generating depen-
dency (TGD) σ is a first-order formula ∀X∀Y �(X, Y) →
∃Z �(X, Z), where �(X, Y) and �(X, Z) are conjunctions
of atoms overR (without nulls), called the body and the head
of σ , denoted body(σ) and head(σ), respectively. Such σ is
satisfied in a database D forR iff, whenever there is a homo-
morphism h that maps the atoms of �(X, Y) to atoms of D,
there is an extension h′ of h that maps the atoms of �(X, Z)

to atoms of D. As TGDs can be reduced to TGDs with only
single atoms in their heads, in the sequel, every TGD has
w.l.o.g. a single atom in its head. A TGD σ is guarded iff
its body has an atom that contains all universally quantified
variables of σ . The leftmost such atom is the guard atom (or
guard) of σ .

Query answering under TGDs, i.e., the evaluation of CQs
and BCQs on databases under a set of TGDs is defined as
follows. For a database D forR and a set of TGDs � onR,
the set of models of D and �, denoted mods(D, �), is the
set of all (possibly infinite) databases B such that (i) D ⊆ B
and (ii) every σ ∈ � is satisfied in B. The set of answers for
a CQ Q to D and �, denoted ans(Q, D, �), is the set of all
tuples a such that a ∈ Q(B) for all B ∈mods(D, �). The
answer for a BCQ Q to D and� is Yes, denoted D∪� |� Q,
iff ans(Q, D, �) �= ∅. Note that query answering under gen-
eral TGDs is undecidable [2], even when the schema and
TGDs are fixed [5]. Decidability and tractability in the data
complexity of query answering for the guarded case follow
from a bounded tree-width property.

Negative constraints (or simply constraints) γ are first-
order formulas of the form ∀X �(X)→ ⊥, where �(X)

(called the body of γ) is a conjunction of atoms (with-
out nulls). Under the standard semantics of query answer-
ing of BCQs in Datalog+/– with TGDs, adding negative
constraints is computationally easy, as for each constraint
∀X �(X)→ ⊥, we only have to check that the BCQ �(X)

evaluates to false in D under �; if one of these checks fails,
then the answer to the original BCQ Q is true, otherwise
the constraints can simply be ignored when answering the
BCQ Q.

Equality-generating dependencies (or EGDs) σ are first-
order formulas ∀X �(X)→ Xi = X j , where �(X), called
the body of σ , denoted body(σ), is a conjunction of atoms
(without nulls), and Xi and X j are variables from X.
Such σ is satisfied in a database D for R iff, whenever
there is a homomorphism h such that h(�(X, Y))⊆ D, it
holds that h(Xi)= h(X j). Adding EGDs over databaseswith
TGDs along with negative constraints does not increase
the complexity of BCQ query answering as long as they
are non-conflicting [6]. Intuitively, this ensures that if the
chase (see below) fails (due to strong violations of EGDs),
then it already fails on the database D; and if it does
not fail, then whenever “new” atoms (from the logical
point of view) are created in the chase by the application
of the EGD chase rule, atoms that are logically equiva-
lent to the new ones are guaranteed to be generated also
in the absence of the EGDs, guaranteeing that the EGDs
do not influence the chase with respect to query answer-
ing.

We usually omit the universal quantifiers in TGDs, neg-
ative constraints, and EGDs, and we implicitly assume that
all sets of dependencies and/or constraints are finite.

2.2 The Chase

The chasewasfirst introduced to enable checking implication
of dependencies, and later also for checking query contain-
ment. By “chase”, we refer both to the chase procedure and
to its output. The TGD chase works on a database via so-
called TGD chase rules (see [6] for an extended chase with
also EGD chase rules).

TGD Chase Rule. Let D be a database, and σ be a TGD
of the form �(X, Y) → ∃Z �(X, Z). Then, σ is applicable
to D if there exists a homomorphism h that maps the atoms
of �(X, Y) to atoms of D. Let σ be applicable to D, and
h1 be a homomorphism that extends h as follows: for each
Xi ∈ X, h1(Xi) = h(Xi); for each Z j ∈ Z, h1(Z j) = z j ,
where z j is a “fresh” null, i.e., z j ∈ �N , z j does not occur
in D, and z j lexicographically follows all other nulls already
introduced. The application of σ on D adds to D the atom
h1(�(X, Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs�

consists of an exhaustive application of the TGD chase rule
in a breadth-first (level-saturating) fashion, which outputs a
(possibly infinite) chase for D and �. Formally, the chase
of level up to 0 of D relative to �, denoted chase0(D, �),
is D, assigning to every atom in D the (derivation) level
0. For every k � 1, the chase of level up to k of D rel-
ative to �, denoted chasek(D, �), is constructed as fol-

123

84 T. Lukasiewicz et al.

lows: let I1, . . . , In be all possible images of bodies of
TGDs in � relative to some homomorphism such that (i)
I1, . . . , In ⊆ chasek−1(D, �) and (ii) the highest level of
an atom in every Ii is k − 1; then, perform every corre-
sponding TGD application on chasek−1(D, �), choosing the
applied TGDs and homomorphisms in a (fixed) linear and
lexicographic order, respectively, and assigning to each new
atom the (derivation) level k. The chase of D relative to �,
denoted chase(D, �), is defined as the limit of chasek(D, �)

for k → ∞.
The (possibly infinite) chase relative to TGDs is a univer-

sal model, i.e., there is a homomorphism from chase(D, �)

onto every B ∈mods(D, �) [6]. This implies that BCQs Q
over D and � can be evaluated on the chase for D and �,
i.e., D ∪ � |� Q is equivalent to chase(D, �) |� Q. For
sets of guarded TGDs �, such BCQs Q can be evaluated on
an initial fragment of chase(D, �) of constant depth k · |Q|,
which is possible in polynomial time in the data complexity.

2.3 Datalog+/– Ontologies

ADatalog+/– ontology KB= (D, �), where� = �T ∪�E ∪
�NC, consists of a database D, a set of TGDs�T , a set of non-
conflicting EGDs �E , and a set of negative constraints �NC.
We sayKB is guarded (resp., linear) iff�T is guarded (resp.,
linear). Example 1 illustrates a simple Datalog+/– ontology,
which is used in the sequel as a running example.

Example 1 Consider the following simple Datalog+/– ontol-
ogy O = (D, �) for movies with:

D = {biography(m1), psy_thriller(m2), biography(m3),

thriller(m4), documentary(m5), psy_thriller(m6),

hasActor(m1, a1), hasActor(m2, a2),
hasActor(m2, a3), hasActor(m3, a4),
hasActor(m4, a2), hasDirector(m4, d1)};

� = {documentary(T) → movie(T),

thriller(T) → movie(T),

biography(T) → documentary(T),

psy_thriller(T) → thriller(T),

movie(T) → ∃A hasActor(T, A),

movie(T) → ∃D hasDirector(T, D)}.

Intuitively, D encodes that m1 is a biography with actor
a1, m2 is a psychological thriller with actors a2 and a3, m3

is a biography with actor a4, m4 is a thriller with actor a2
and director d1,m5 is a documentary, andm6 is a psycholog-
ical thriller. The set of TGDs � encodes a classification for
movies based on the genre, i.e., documentaries and thrillers
are both movies, biographies are documentaries, and psy-
chological thrillers are thrillers. The last two TGDs say that
every movie has an actor and a director. �

3 PP-Datalog+/–: Syntax and Semantics

In this section, we introduce the PP-Datalog+/– language,
an extension of Datalog+/– with both a preference model
and a probabilistic model; this formalism is based on the
one first presented in [23], which extends Datalog+/– with
preferences (but not probabilities). To this end, we assume
the following sets giving rise to the logical languages for
ontologies, preferences, and probabilitymodels:�Ont,�Pref,
and �M are finite sets of constants,ROnt,RPref, andRM are
finite sets of predicate symbols such that RM ∩ ROnt = ∅,
and VOnt, VPref, and VM are infinite sets of variables. In the
following, we assume w.l.o.g. that RPref ⊆ ROnt, �Pref ⊆
�Ont, andVPref ⊆ VOnt. These sets give rise to corresponding
Herbrand bases, denotedHOnt,HPref, andHM, respectively,
consisting of all possible ground atoms that can be formed.
Clearly, we haveHPref ⊆ HOnt, i.e., preference relations are
defined over a subset of the possible ground atoms.

3.1 Preference Models

A preference relation is any binary relation � ⊆ HPref ×
HPref. In this paper, we are interested in strict partial orders
(SPOs), which are irreflexive and transitive (and thus asym-
metric) relations—we consider these to be the minimal
requirements for a preference relation to be useful in the
applications that we envision. One way of specifying such a
relation, which is especially compatible with our approach,
is the preference formula framework of [7]. In this work,
we assume the existence of a general preference model P
specifying an SPO over a subset of HOnt, denoted �P ;
in general, we treat �P as a set of ordered pairs. When
an SPO � is induced by an assignment of a numeric score
score(a) to each element a in such a way that a1 � a2 iff
score(a1) > score(a2), then � is score-based.

Example 2 ContinuingExample 1, a preference relationmay
be specified by a user over the movie atoms; an example of
such a relation is the transitive closure of the graph shown
in Fig. 1 (left side). This preference relation can, e.g., be
obtained from a user with the following preferences:

– Prefers all movies where actor a2 appears to any other
movie, e.g., movie(m2) and movie(m4) are preferred and
not comparable with each other.

– Prefers thrillers and psychological thrillers to documen-
taries, e.g., we have that movie(m6) is preferred over
movie(m1), movie(m3), and movie(m5).

– As a particular preference, the user prefers movie(m1) to
movie(m5). �

123

Preference-Based Query Answering 85

Fig. 1 User preference relation
�P for Example 1 (left side),
and preference relation �M
induced by probability values
(right side)

3.2 Probabilistic Models

Formodeling uncertainty, we assume the existence of a prob-
abilistic model M that represents a probability distribution
PrM over some set X = {X1, . . . , Xn} of Boolean variables
such that there is a 1-to-1 mapping from X to the set of all
ground atoms over RM and �M. Examples of the type of
probabilistic models that we assume in this work are Markov
logic and Bayesian networks. The probabilistic extension of
Datalog+/– adopted here was first introduced in [22]; prob-
abilistic query answering (without preferences) in a version
of this model using Markov logic was also studied in [12].

A substitution is a mapping from variables to variables
or constants. Two sets S and T unify via a substitution θ

iff θ S = θT , where θ A denotes the application of θ to all
variables in all elements of A; here, θ is a unifier. A most
general unifier (mgu) is a unifier θ such that for all other
unifiers ω, there is a substitution σ such that ω = σ ◦ θ .

Definition 1 Let M be a probabilistic model. Then, a (prob-
abilistic) annotation λ relative to M is a (finite) set of expres-
sions 〈Ai = xi 〉, where (i) Ai is an atom over RM, VM, and
�M, and (ii) xi ∈ {0, 1}. A probabilistic annotation is valid
iff for any two different expressions 〈A= x〉, 〈B = y〉 ∈ λ,
no substitution exists that unifies A and B.

Intuitively, a probabilistic annotation is used to describe
the class of events in which the random variables in a prob-
abilistic model M are compatible with the settings of the
random variables described by λ, i.e., each Xi has the value
xi . A probabilistic scenario is a valid probabilistic annota-
tion λ for which |λ| = |X | and all 〈A = xi 〉 ∈ λ are such that
A is ground. We use scn(M) to denote the set of scenarios in
M .

Example 3 Continuing with the running example, suppose
that an online movie rating system is used to derive a proba-
bilisticmodel that assigns probabilities specifying how likely
it is that the user will like each movie in the knowledge
base. The system in question could be aggregating infor-
mation from user feedback, their friends’ feedback, and any

other information available to it. Thus, the system informs
the user of the probability associated with each movie atom;
this could be done by extending the ontology fromExample 1
by replacing such atoms in the database with formulas of the
form movie(M) : {enjoy(M)= 1}, where enjoy(M) denotes
the probabilistic event that movie M will be enjoyed by the
user—we are assuming here that the model is designed for a
single user. Figure 1 (right side) gives an example of such a
probability assignment (derived as explained in the semantics
section below), along with the preference relation in graph
form that is induced by these values, assuming that higher
probabilities are more preferable. �

3.3 Syntax of PP-Datalog+/–

As seen in Fig. 1, the particular challenge encountered in PP-
Datalog+/– ontologies is that the preference model yields a
certain precedence relation that may disagree with the one
induced by the probabilistic model. To address this, we make
use of preference combination operators, which take two
preference relations (an SPO and a score-based SPO) and
produce a third one satisfying two basic properties.

Definition 2 Let �P be an SPO and �M be a score-based
SPO.A preference combination operator⊗(�P ,�M) yields
a relation �∗ such that (i) �∗ is an SPO, and (ii) if a1 �P a2
and a1 �M a2, then a1 �∗ a2.

The two properties required by Definition 2 are the min-
imal required to produce a “reasonable” combination of the
two relations; as we show in Sect. 4 below, particular imple-
mentations may satisfy further desirable properties.

We are now ready to define PP-Datalog+/– ontologies.

Definition 3 A PP-Datalog+/– ontology (or PP-KB) is of
the form KB= (O, P, M, ⊗), where O is a set of elements
of the form σ : λ such that σ is a ground atom, TGD, EGD,
or constraint, and λ is a probabilistic annotation relative to
M , P is a preference model, M is a probabilistic model with
Herbrand basesHOnt,HPref, andHM, respectively, such that

123

86 T. Lukasiewicz et al.

HPref ⊆ HOnt, and ⊗ is a preference combination operator.
If O is a guarded Datalog+/– ontology, then KB is guarded.

3.4 Semantics of PP-Datalog+/–

We now define the semantics of PP-Datalog+/– ontolo-
gies. Let KB= (O, P, M,⊗) be PP-Datalog+/– ontology;
the semantics of PP-Datalog+/– arises as a direct combina-
tion of the semantics of Datalog+/– and that of the preference
and probabilistic models. Relative to the probabilistic model,
we have that PrKB(a)= p iff

p =
∑

λ∈scn(M), Oλ|�a

PrM (λ).

Here, Oλ is the Datalog+/– ontology induced from O by λ,
which is the set of all formulas σ such that there exists σ : λ′
in O and λ is a ground instance of λ′. We refer to the score-
based preference relation induced by PrM , denoted �M , as
the probabilistic preference relation associated with KB. Let
�∗= ⊗(�P ,�M); we say that KB |� a1 �∗ a2 iff:

(i) O |� a1 and O |� a2; and
(ii) a1 �∗ a2.

Intuitively, the consequences of KB= (O, P, M,⊗) are
computed in terms of the classical consequences of the
Datalog+/– ontology O , and the preference combination
operator yields a preference relation over pairs of atoms in
HOnt.

3.5 Skyline and k-Rank Queries

We next define the types of queries that we address in this
paper. In detail, we are interested in skyline queries [4],
a well-known class of queries that can be issued over
preference-based formalisms, and the iterated computation
of skyline answers [7] that allows us to rank atoms relative
to an SPO� as follows: rank(a,�) = 1 iff there is no atom b
such that b � a; otherwise, rank(a,�) = k where k is the
maximumnumber such that there exists an atom bwith b � a
and rank(b,�) = k − 1. Note that rank(a,�) = score(a)

for SPOs � based on a score function score.
In the following, we focus on a specific kind of classical

queries, called disjunctive atomic queries (DAQs), which are
disjunctions of atoms.

Definition 4 Let KB = (O, P, M,⊗) be a PP-Datalog+/–
ontology, �∗= ⊗(�P ,�M), and Q(X)= q1(X) ∨ · · · ∨
qn(X) be a DAQ. Then, an answer to Q is any θqi entailed
by O , where θ is a ground substitution for the variables
in Q(X). A skyline answer to Q relative to �∗ is any θqi
entailed by O such that no θ ′ exists with O |� θ ′q j and
θ ′q j �∗ θqi , where θ and θ ′ are ground substitutions for the

variables in Q(X). For transitive relations, a k-rank answer
to Q(X), k � 0, is a sequence S = 〈θ1ql1 , . . . , θk′qlk′ 〉 ofmax-
imal length of ground instances θi qli of atoms qli in Q(X),
built by subsequently appending the skyline answers to
Q(X), removing these atoms from consideration, and repeat-
ing the process until either (a) the length of S is k or (b) no
more skyline answers to Q(X) remain.

Intuitively, both types of answers to DAQs are atomic con-
sequences of O that satisfy the query: skyline answers are
sets of atoms that are not dominated by any other such atom,
while k-rank answers are k-tuples of atoms sorted according
to the preference relation. We refer to these as answers in
atom form. Note that k-rank answers are only defined when
the preference relation is transitive; they are a generalization
of traditional top-k answers [30] that are still defined when
�∗ is not aweak order, and their name arises from the concept
of rank introduced in [7].

In the next section, we present algorithms for implement-
ing particular preference combination operators, which (as
we show through a series of properties) produce a new
preference relation �∗ that is useful in answering k-rank
queries and that adequately reflects both the initial prefer-
ences expressed by the user as well as the fact that higher-
probability answers are more desirable.

4 Preference Combination Operators

In this section, we study two families of preference combi-
nation operators and the semantic properties of several par-
ticular instantiations. In Sect. 6, we then provide an algo-
rithm that uses these operators for answering k-rank queries
to PP-Datalog+/– ontologies in polynomial time in the data
complexity (modulo the cost of computing probabilities with
respect to the probabilistic model M).

4.1 An Egalitarian Class of Combination Operators

The first class of operators thatwe propose, called egalitarian
operators, in principle allows the combination of its input
preference relations to closely resemble either one.

4.1.1 A General Preference Combination Operator

Algorithm ComPrefsGen in Fig. 2 implements a family of
preference combination operators using a value t ∈ [0, 1] that
allows the user to choose howmuch influence the probabilis-
tic model has on the output preference relation; we use �∗

t
to denote the output relation. The algorithm iterates through
all pairs of elements in �P and, if (i) �M disagrees with
�P , (ii) the difference in score is greater than t , and (iii)
inserting the pair according to �M does not produce a cycle,
then the pair is inserted in reverse order into the output; oth-

123

Preference-Based Query Answering 87

Fig. 2 An algorithm for combining an arbitrary SPOwith aweak order
in the form of a score-based SPO

erwise, the output contains the same pair as �P . Finally,
the algorithm outputs the transitive closure of this relation.
Note that if t = 0, then the probability-induced relation
has precedence; at the other end of the spectrum, if t = 1,
then ComPrefsGen(�P ,�M , t) = �P (these properties
are presented formally in Theorem 3). The following is an
example of how the algorithm works.

Example 4 Consider again the running example. Figure 3
(top) shows the result of running ComPrefsGen over the
two SPOs with t = 0 (left side) and t = 0.3 (right side)—note
that, for clarity, the transitive closures are not shown in these
figures. Figure 3 (bottom) shows the result of computing the
rank via the iterative computation of the skyline answers for
the three SPOs.Here, the user’s original preferences (�P) are
preserved to a greater extent in �∗

0.3 than in �∗
0: the answers

in the former have a difference in rank of at most 1, whereas
those in the latter have a difference of 2 (out of a total of 4)

in multiple cases. This reflects the greater influence that �P

has in the result for t = 0.3 as compared to t = 0. �

The following result shows that ComPrefsGen encodes
indeed a family of preference combination operators (cf.Def-
inition 2); given t ∈ [0, 1], we denote the corresponding
operator with ⊗gen

t .

Theorem 1 Let �P be an SPO, �M be a score-based SPO,
t ∈ [0, 1], and �∗

t = ComPrefsGen(�P ,�M , t). Then, for
any value of t ,

(i) �∗
t is an SPO, and

(ii) if a1 �P a2 and a1 �M a2, then a1 �∗
t a2.

Proof (i) Wemust show that�∗ is irreflexive and transitive.
Let �′ be the intermediate result of the ComPrefsGen
algorithm just before computing the transitive closure.By
assumption, �P is irreflexive, and (as �′ cannot contain
any new self-edges) this property is preserved in �′. By
construction,�∗ is the transitive closure of�′. Since this
operation does not add cycles, �∗ is also irreflexive, in
addition to clearly being transitive.Overall,�∗ is anSPO.

(ii) A necessary condition forComPrefsGen to change the
order of a pair in �P is that the pair in �M be reversed.
As by assumption, this is not the case; the statement
follows. ��

We now study the properties satisfied by the output of
ComPrefsGen. The following theorem states that the out-
put for t = 0 is invariant to changes in the assigned scores,
as long as the order is the same. This is an important prop-
erty, as it implies that approximation algorithms can be used

Fig. 3 Combinations of user
preferences and
probability-induced preferences
with the ComPrefsGen
algorithm (transitive closure not
shown)—top, left side: t = 0;
top, right side: t = 0.3. Bottom:
answers to query movie(X)

according to their rank relative
to the original preference
relation (Fig. 1, left side) and the
two combinations

123

88 T. Lukasiewicz et al.

to compute the probability values that induce �M—as long
as the relative order of the atoms is guaranteed to be cor-
rect, there is no need to compute the exact values when
t = 0.

Theorem 2 Let �P be an SPO, and �M and �M ′ be score-
based SPOs. If �M = �M ′ , then:

ComPrefsGen(�P ,�M , 0)=ComPrefsGen(�P ,�M ′ , 0).

Proof For t = 0, the algorithm checks (in line 3) if there
exist pairs (ai , a j) in �P such that Pr(a j) > Pr(ai). Since
�M = �M ′ , by assumption, Pr(a j) > Pr(ai) relative to �M

iff this is the case relative to �M ′ , and thus the outputs in
both cases must be identical. ��

The next theorem shows the behavior of the operator for
the extreme values of the parameter t .

Theorem 3 Let �P be an SPO and �M be a score-based
SPO. Then,

(i) rank(a,ComPrefsGen(�P ,�M , 0)) = rank(a,�M),
for every atom a; and

(ii) ComPrefsGen(�P ,�M , 1) = �P .

Proof (i) For t = 0, the output relation is the result of com-
paring all pairs in �P and replacing them with the order
imposed on their elements by �M . Thus, given that �P

is transitive, the sequence of atoms giving rise to the rank
of each atom is reordered in the resulting relation accord-
ing to the rank of each element in �M , and the statement
follows.

(ii) Direct consequence of the condition in line 3 of the algo-
rithm: since the difference in probabilities can never be
greater than 1, the output relation is a copy of �P . ��

Finally, the following theorem studies a property that is
analogous to the “sensitivity postulates” presented in [34],
[33, pp. 12–14,63–64]. Note, however, that these postulates
were designed to combine two score-based preference rela-
tions,whereas our setting ismore general—the “faithfulness”
postulate in [33] is already guaranteed by our definition of
preference combination operator.

Theorem 4 Let KB = (O, P, M, ⊗gen
t) be a PP-

Datalog+/– ontology, Q be a DAQ, k � 0, and �∗
t =

⊗gen
t (�P , �M), with t ∈ [0, 1]. For every atom a that is

an answer to Q but does not belong to any k-rank answer
to Q over KB relative to �∗

t , there exists a probabilistic
model M ′ and t ′ ∈ [0, 1] such that a belongs to some k-rank
answer to Q over KB′ = (O, P, M ′,⊗gen

t ′) relative to SPO
�′
t ′ = ⊗gen

t ′ (�P ,�M ′).

Proof By assumption, there exist atoms a1, . . . , an such that
ai �∗

t a. Now, let t ′ = 0, and set the probabilities in M ′ such
that PrM ′(a) > PrM ′(ai), for 1 � i � n. By construction,
a �′

t ′ ai , and the statement follows. ��

Fig. 4 User preferences for Example 5 (top) and the results of applying
AlgorithmComPrefsGen for two different values of t (bottom). In the
table, “yes” and “no” mean whether or not the edge is reversed in the
result—in the negative cases, the reason is given in parenthesis

4.1.2 An Egalitarian Operator Based on Rank

In this section, we study a different kind of combination oper-
ator, which is based on a tradeoff between generality and the
properties that can be proved about the result.

The following example shows a shortcoming of the ⊗gen
t

operator in that it fails to exhibit a kind of monotonicity that
might be expected when the two input relations disagree on
a given pair (a1, a2). In particular, if the operator chooses the
order imposed by �M , then it may not continue to do so for
smaller values of t . On the other hand, if the operator chooses
the order imposed by �P , then it may also fail to do so for
greater values of t .

Example 5 Consider the SPO in Fig. 4 (top), where the
directed edges between nodes describe an SPO �P and the
numbers beside each node define score-based SPO �M . The
table at the bottom specifies what happens when the two
are input to ComPrefsGen, and the edges are inspected
in the specified order, for two values of t . Note row 4,
where edge (a, c) becomes (c, a) under t = 0.1, but stays
unaltered under t = 0.05, and row 6, where edge (a, b)
stays unaltered under t = 0.05, but becomes (b, a) under
t = 0.1. �

As shown in Example 5, the cause of this unpredictabil-
ity is the potential presence of cycles when merging SPOs.
Algorithm 2 (Fig. 5) avoids this issue by combining the two
relations into a score-based one using the rank of each atom

123

Preference-Based Query Answering 89

Fig. 5 Algorithm for a rank-based combination of anSPOwith a score-
based SPO

Table 1 Score-based SPOs produced by ComPrefsRank for two dif-
ferent input functions (min and max)

Atom Rank (�P) Rank (�M) min max

movie(m2) 1 6 1 6

movie(m4) 1 5 1 5

movie(m6) 2 1 1 2

movie(m3) 3 2 2 3

movie(m1) 3 4 3 4

movie(m5) 4 3 3 4

relative to each input relation. It takes as input an integer
binary function that combines the two ranks and assigns it
to the atom in the output relation—this function can be as
simple as min, max, or avg, or a more complex function that
takes into account how much the user would like to base the
new rank on one relation or the other. A detailed treatment
of such functions is outside the scope of this paper.

The following example shows the behavior of Algorithm
ComPrefsRank over the running example.

Example 6 Consider again the running example. The results
produced by ComPrefsRank for two different input func-
tions (min andmax) are shown in Table 1. The SPOs induced
by the scores in the last two columns are shown in Fig. 6. �

The following theorem states thatComPrefsRank imple-
ments a family of preference combination operators for cer-
tain functions; given function f ,wedenote the corresponding
operator with ⊗rank

f .

Theorem 5 Let �P be an SPO, �M be a score-based SPO,
f be an integer binary function such that f (x, y)∈ [x, y],
and �rank

f = ComPrefsRank(�P ,�M , f). Then:

(i) �rank
f is an SPO; and

(ii) If a1 �P a2, a1 �M a2 and f ∈ {min,max, avg}, then
a1 �rank

f a2.

Proof (i) Immediate, since �rank
f is a score-based SPO.

(ii) Let r P1 = rank(a1,�P), r P2 = rank(a1,�P), rM1 =
rank(a1,�M), and rM2 = rank(a1,�M). The assump-
tions imply that r P1 < r P2 and rM1 < rM2 . Clearly,
f (r P1 , rM1) < f (r P2 , rM2) for f ∈ {min,max, avg}, and
thus a1 �rank

f a2. ��
Analyzing the proof of Theorem 5, we can see that the

result also holds for variations of the functions considered—
as long as the condition f (r P1 , rM1) < f (r P2 , rM2) holds.

Another property ofComPrefsRank that can be shown is
the analogous of Theorem 2; as the precondition implies that
ranks relative to �M and �M ′ are equal, the result clearly
holds. Finally, the following theorem discusses properties
related to the postulates from [33] for this algorithm.

Theorem 6 Let KB = (O, P, M, ⊗rank
f) be a PP-

Datalog+/– ontology, Q be a DAQ, k � 0, and �∗
f =

⊗rank
f (�P , �M). Then:

(i) Let f ∈ {min,max, avg}, M ′ be a probabilistic model
such that for some ground atom a, we have PrKB′(a) �
PrKB(a) and PrKB′(a′) = PrKB(a′) for every ground
atom a′ �= a, where KB′ = (O, P, M ′,⊗rank

f). If a does
not belong to any k-rank answer to Q over KB relative
to �∗

f , then a does not belong to any k-rank answer to

Q over KB′ relative to �′
f = ⊗rank

f (�P ,�M ′).
(ii) Given the setup in (i), if a belongs to some k-rank answer

to Q over KB relative to �∗
f and PrKB′(a) � PrKB(a),

then a also belongs to some k-rank answer to Q over
KB′ relative to �′

f = ⊗rank
f (�P ,�M ′).

(iii) For every atom a that is an answer to Q but does not
belong to any k-rank answer to Q over KB relative to
�∗

f , there exists a probabilistic model M ′ and f ′ such

Fig. 6 Results of applying Algorithm ComPrefsRank using the functions min (left side) and max (right side)

123

90 T. Lukasiewicz et al.

Fig. 7 Algorithm for performing a user-biased combination of an SPO
with a score-based SPO, based on a given probability threshold

that a belongs to some k-rank answer to Q over KB′ =
(O, P, M ′, ⊗rank

f ′) relative to �′
f ′= ⊗rank

f ′ (�P ,�M ′).

Proof sketch (i) PrKB′(a) � PrKB(a) implies that we have
rank(a,�M ′) � rank(a,�M), and the result from The-
orem 5 can be used to show the result.

(ii) Analogous to (i): PrKB′(a) � PrKB(a) implies that
rank(a,�M ′) � rank(a,�M).

(iii) Using f ′ = min, the rest of the proof is analogous to
that of Theorem 4. ��

4.2 A User-Biased Class of Combination Operators

The second class of operators that we study is user-biased.
Their main characteristic is that they base the produced pref-
erence relation on the user’s preferences and use the proba-
bilistic model as a secondary source of “advice”.

4.2.1 An Operator Based on Probability Thresholds

One way of obtaining a preference relation that is biased by
the user’s input is to remove from consideration any atom
that has probability below a given threshold—all previously

existing relationships between atoms remain the same. The
following is an example of how this operator works.

Example 7 Returning to the running example, Fig. 8 shows
the original SPO�P and the result of applying the preference
combination operator implemented byAlgorithmComPref-
sPT with threshold 0.75, called �pt

0.75. Note that relations
between remaining atoms that held in the original still hold;
for instance, movie(m6) �pt

0.7 movie(m5), which was true
relative to �P due to transitivity.

The following theorem shows that ComPrefsPT (Fig. 7)
satisfies the conditions stated in Definition 2 and thus imple-
ments a family of preference combination operators; given
p ∈ [0, 1], we denote the corresponding operator with ⊗pt

p .

Theorem 7 Let �P be an SPO, �M be a score-based SPO,
p ∈ [0, 1], and �pt

p = ComPrefsPT(�P , �M , p). Then,

(i) �pt
p is an SPO; and

(ii) If a1 �P a2, a1 �M a2, rank(a1,�M) � p, and
rank(a2,�M) � p, then a1 �pt

p a2.

Proof (i) Direct consequence, since �pt
p ⊆ �P .

(ii) The two conditions rank(a1,�M) � p and rank(a2,
�M) � p imply that a1 and a2 appear in �pt

p ; therefore,
since a1 �P a2 and �pt

p ⊆ �P , the statement follows.

We can also show that the properties described in Theo-
rem 6 hold for ComPrefsPT.

Theorem 8 Let KB = (O, P, M,⊗pt
p) be a PP-Datalog+/–

ontology, Q be a DAQ, p ∈ [0, 1], and �∗
p = ⊗pt

p (�P ,�M).
Then:

(i) Let M ′ be a probabilistic model such that for some
ground atom a, we have PrKB′(a) � PrKB(a) and

Fig. 8 The original SPO �P
(left side), where atoms whose
probabilities are less than 0.75
according to �M have been
shaded, and the result of
applying Algorithm
ComPrefsPT (right side)

123

Preference-Based Query Answering 91

PrKB′(a′) = PrKB(a′) for every ground atom a′ �= a,
where KB′ = (O, P, M ′,⊗pt

p). If a does not belong to
any k-rank answer to Q over KB relative to �∗

p, then
a does not belong to any k-rank answer to Q over KB′
relative to �′

p = ⊗pt
p (�P ,�M ′).

(ii) Given the setup in (i), if a belongs to some k-rank answer
to Q over KB relative to �∗

p and PrKB′(a) � PrKB(a),
then a also belongs to some k-rank answer to Q over
KB′ relative to �′

p= ⊗pt
p (�P ,�M ′).

(iii) For every atom a that is an answer to Q but does not
belong to any k-rank answer to Q over KB relative to
�∗

p, there exists a probabilisticmodel M
′ and p′ ∈ [0, 1]

such that a belongs to some k-rank answer to Q over
KB′ = (O, P, M ′,⊗pt

p′) relative to�′
p′= ⊗pt

p′(�P ,�M ′
).

Proof sketch (i) Clearly, if PrKB′(a) < p then the result
holds. Otherwise, since a does not belong to any k-rank
with respect to �∗

p, no other atom’s status relative to the
threshold changes, and ComPrefsPT does not use the
probability value to produce its output, the statement fol-
lows.

(ii) The fact that a belongs to some k-rank answer implies
that PrKB(a) � p and thus PrKB′(a) � p. The rest of
the proof is analogous to the second part of (i).

(iii) Using p′ = PrKB(a), and changing the probabilities of
all b such that b�P a to PrKB(a)−ε, for some ε ∈ [0, 1],
it holds rank(a,�′

p′)= 1, and the statement follows. ��

4.2.2 A Skyline Sorting Operator

Another possibility for a user-biased operator is to keep the
same base structure given by the user and make use of the
probability-based preference relation to remove to the fur-
thest extent possible the indifference present among elements
of the same rank, i.e., in each iterated skyline. Algorithm
ComPrefsSort (see Fig. 9) implements such an operator.
The following is an example of how the algorithm works.

Example 8 Consider again the running example. Figure 10
shows �P (left side) and the SPO resulting from Com-
PrefsSort (right side). Note that the two relations are very
similar, except that the indifference between movie(m2) and
movie(m4) and the one between movie(m1) and movie(m3)

have been replaced by the ordering suggested by �M . �

The following theorem shows thatComPrefsSort indeed
implements a preference combination operator, which we
denote with ⊗sort.

Theorem 9 Let �P be an SPO, �M be a score-based SPO,
and �sort= ComPrefsSort(�P ,�M). Then:

(i) �sort is an SPO; and

Fig. 9 Algorithm for performing a user-biased combination of an SPO
with a score-based SPO, based on sorting skylines

(ii) If a1 �P a2 and a1 �M a2, then a1 �sort a2.

Proof (i) Since �sort is a copy of �P with the addition
of preference pairs between elements that were previ-
ously unrelated, and there is no possibility of introducing
cycles, the statement follows.

(ii) By construction, if a1 �P a2, then also a1 �sort a2.
��

The following theorem states some properties of Com-
PrefsSort. Note that the property from Theorem 4 (also
property (iii) in Theorems 6 and 8) does not hold for Com-
PrefsSort; this is because the algorithm does not allow the
user’s preferences to change so drastically depending on the
probabilistic model.

Theorem 10 Let KB = (O, P, M,⊗sort) be a PP-Datalog
+/– ontology, Q be aDAQ, and�∗ = ⊗sort(�P ,�M). Then:

(i) Let M ′ be a probabilisticmodel such that for someground
atom a, we have PrKB′(a) � PrKB(a) and PrKB′(a′) =
PrKB(a′) for every ground atom a′ �= a, where KB′ =
(O, P, M ′,⊗sort). If a does not belong to any k-rank
answer to Q over KB relative to �∗, then a does not
belong to any k-rank answer to Q over KB′ relative to
�′ = ⊗sort(�P ,�M ′).

(ii) Given the setup in (i), if a belongs to some k-rank answer
to Q over KB relative to �∗ and PrKB′(a) � PrKB(a),
then a also belongs to some k-rank answer to Q over
KB′ relative to �′= ⊗sort(�P ,�M ′).

Proof sketch (i) Since the result ofComPrefsSort only dif-
fers from�P in that elements of the same rank relative to
�P are ordered with respect to �M , all elements domi-
nating a in�∗ still do so in�′, and the statement follows.

(ii) Analogous to (i). ��

123

92 T. Lukasiewicz et al.

Fig. 10 The original SPO �P
(left side) and the result of
applying
Algorithm ComPrefsSort
(right side)

5 Complexity of Combination Algorithms

In this section, we analyze the complexity of all combination
algorithms introduced above. We begin by identifying and
discussing the main tasks that the algorithms perform. In the
rest of this section, we assume that SPOs are represented as
directed graphs; the size of such a graph G is determined
by n (the number of nodes in the graph, i.e., the number of
atoms in the SPO) and e (the number of edges in the graph,
i.e., the number of pairs in the SPO).

Transitive closure All four algorithms compute as the last
step the transitive closure of the relation that results from
combination; this is required to return an SPO. The best
known algorithms for computing the transitive closure are
the ones from Warshall [32] and Warren [31], which have
O(n3) as worst-case running time. Clearly, in all algorithms,
the dominant term is O(n3), contributed by the transitive clo-
sure. However, as we will show in Sect. 8, if this last step is
not required, then the running time of the algorithms in the
worst case are quite different.

Cycle detection Algorithm ComPrefsGen checks for
potential cycles every time an edge from the original SPO
needs to be inverted. The procedure to find a cycle in a
directed graph can be done with a depth-first search of the
graph and checking for a back edge (edges that point from a
node to one of its ancestors). The actual running time of this
procedure depends on the representation of the graph, e.g.,
with adjacency lists, the worst-case running time is O(n+e).

Computing probabilities The cost of computing proba-
bilities relative to a probabilistic model M can range from
polynomial time (such as in approximation algorithms, or
tractablemodels like polytrees [18] or tractableMarkov logic
[9]) to #P-complete (such as in general Markov logic [28] or
Bayesian networks). Furthermore, in some cases, it may be
assumed that the probability of all ground atoms can be done
offline and stored in a look-up table, which can be consulted

in constant time. This is the case for our experimental eval-
uation, as scores from IMDB yield probabilities that can be
easily computed and added to the database.

5.1 Egalitarian Combination Algorithms

In this section, we give an analysis of the running time of the
egalitarian combination algorithms.

Theorem 11 Let �P be an SPO and �M be a score-based
SPO. Let S be the time required to compute rank(a,�M) for
any ground atom a. Then, ComPrefsGen and ComPrefs-
Rank run in time O(n · S + n3 + e2) and O(n · S + n3),
respectively, where n (resp., e) is the number of nodes (resp.,
edges) of �P represented as a directed graph.

Proof Observe first that computing the probability of each
node in M is possible in O(n · S).

As forComPrefsGen, we then inspect every edge in �P

by computing the values of the probabilities of the endpoints
and checking for potential cycles, which takes time O(e·(n+
e)). Finally, we compute the transitive closure of the updated
graph that represents the new combined relation, which can
be done in O(n3). Overall, ComPrefsGen can be done in
time O(n · S + n3 + e2).

As for ComPrefsRank, the ranks of each atom relative
to both SPOs are computed. For�P , this can be done in time
O(n + e); for �M , this can be done in time O(n · log(n)) by
sorting the nodes by probability values and then traversing
that sorted list. Then,we compute for each atom a score based
on a function that combines the previously computed ranks
of that atom; we assume that this function can be computed
in constant time—thus, this adds an O(n) term. Finally, the
transitive closure adds a cost of O(n3). Overall, ComPref-
sRank is possible in time O(n · S + n3). ��

123

Preference-Based Query Answering 93

As �P describes a preference relation over the conse-
quences of an ontology, we have the following corollary,
stating the data tractability of the above algorithms.

Corollary 1 Let�P be an SPO and�M a score-based SPO,
both given by a guarded PP-Datalog+/– ontology KB =
(O, P, M,⊗), with O = (D, �). Let �′

P be the restriction
of�P to all (a, b) with O |� a, b. Let PrM (a) be computable
(exactly or approximately) in polynomial time in the data
complexity for any ground atom a with O |� a. Then, Com-
PrefsGen and ComPrefsRank on �′

P and �M, using as
input KB, run in polynomial time in the data complexity.

Proof In the guarded case, deciding whether O entails a
ground atom is possible in polynomial time in the data com-
plexity [6]. The statement then follows fromTheorem 11 and
the assumption that probabilities are computable in polyno-
mial time in the data complexity.

5.2 User-Biased Combination Algorithms

In this section, we provide an analysis of the running time of
the user-biased combination algorithms.

Theorem 12 Let �P be an SPO and �M be a score-based
SPO. Let S be the time required to compute rank(a,�M) for
any groundatoma. Then,ComPrefsPTandComPrefsSort
run in time O(n · S + n3), where n is the number of nodes of
�P represented as a directed graph.

Proof Let e= |�P |. Observe first that computing the prob-
ability of each node in M is possible in O(n · S).

Then, as for ComPrefsPT, this algorithm inspects every
node, checking if its associated probability given by M is
below the input threshold, and if so, it deletes the node and
all of its incoming and outgoing edges. Since we assume
that the cost of deleting edges is constant, this operation is
possible in time O(n + e). Finally, the transitive closure is
computed, which is possible in O(n3). It thus follows that
ComPrefsPT overall runs in time O(n · S + n3).

As for ComPrefsSort, we compute the rank of each
ground atom relative to �P by iteratively computing a sky-
line of�P . Additionally, we sort the elements in each skyline
relative to scoreM . As argued in the proof of Theorem 11, the
former can be done in time O(n+ e), assuming suitable data
structures, while the latter can be done in time O(n · log(n)),
as sorting the whole set of nodes also produces a sorting for
each skyline. Finally, the transitive closure is possible in time
O(n3), and thus ComPrefsSort can overall be done in time
O(n · S + n3). ��

Analogous to our analysis for egalitarian operators in
Corollary 1, we have the following corollary stating data
tractability, which can be proved analogously to Corollary 1.

Corollary 2 Let �P be an SPO and �M a score-based
SPO, both given by a guarded PP-Datalog+/– ontology
KB = (O, P, M,⊗), with O = (D, �). Let �′

P be the
restriction of �P to all (a, b) with O |� a, b. Let PrM (a)

be computable (exactly or approximately) in polynomial
time in the data complexity for any ground atom a with
O |� a. Then,ComPrefsPT andComPrefsSort on�′

P and
�M, using as input KB, run in polynomial time in the data
complexity.

6 Answering k-Rank Queries

As discussed above, in this paper, we are interested in com-
puting the rank of the answers to queries by means of the
iterated computation of its skyline answers [4]. We now
present a general algorithm to do so, and then analyze its
correctness as well as its running time when used in con-
junction with either the ComPrefsGen or ComPrefsRank
algorithms.

The Algorithm k-Rank (see Fig. 11) begins by comput-
ing the combination of the two SPOs in the PP-Datalog+/–
ontology and the necessary finite part C of the chase rela-
tive to Q. The main while loop iterates through the process
of computing the skyline answers to Q relative to this new
relation using a computeSkyline subroutine (which can be
implemented by means of a linear-time scan of C), updating
the result by appending these answers in arbitrary order and
removing the atoms in the result from C . Once the loop is
finished, the algorithm returns the first k results, as the last
iteration may add superfluous elements.

Example 9 Consider again the running example and the
query Q = movie(X), and k = 4. Using the results shown
in the various examples above, we can obtain the follow-

Fig. 11 An algorithm for computing a k-rank answer to DAQ Q rela-
tive to the composition of �P and �M

123

94 T. Lukasiewicz et al.

ing k-rank answers to Q (in atom form) depending on the
preference combination algorithms used:

– ComPrefsGen with t = 0.3:
〈movie(m4), movie(m6), movie(m2), movie(m1)〉;

– ComPrefsRank with f = max:
〈movie(m6), movie(m3), movie(m1), movie(m5)〉;

– ComPrefsPT with p = 0.75:
〈movie(m6), movie(m3), movie(m5)〉; and

– ComPrefsSort:
〈movie(m4), movie(m2), movie(m6), movie(m3)〉.

Analyzing the differences among the different answers,
we can see some characteristics of each operator. For
instance, both ComPrefsGen with t = 0.3 and
ComPrefsSort include one of the user’s favorite movies in
the first position, thoughComPrefsSort includes both of the
top elementswith respect to�P first andComPrefsGenputs
movie(m6) before movie(m2), given the latter’s lower prob-
ability score. Consider next the results obtained by Com-
PrefsRankwithmax andComPrefsPTwith p= 0.75. The
former takes a pessimistic stance, and therefore the very low
rank of the user’s top choices pushes them outside the final
rank. Similarly, the low scores of these elements make them
unavailable to be chosen (no matter what value k has) by
ComPrefsPT, since they do not surpass the threshold value.

�
The following theorem proves the correctness of the k-

Rank algorithm and shows that under certain conditions, it
runs in polynomial time for the above four operators ⊗.

Theorem 13 Let KB= (O, P, M,⊗), with O = (D, �), be
a PP-Datalog+/– ontology, where⊗ is any of the above four
combination operators, let Q be a DAQ, and k � 0. Then,

(i) Algorithm k-Rank correctly computes a k-rank answer
to Q over KB; and

(ii) if O is guarded, then Algorithm k-Rank can be done in
polynomial time in the size of D and S, where S is the
cost of computing PrM (a) for any ground atom a with
O |� a.

Proof (i) Correctness follows immediately from the defini-
tion of k-rank answers: the while loop in line 5 iteratively
computes the skyline answers to Q by means of a sub-
routine, adds these results to the output in arbitrary order,
and removes them from consideration. Line 11 ensures
that at most k results are returned.

(ii) As O is guarded, the necessary finite partC of the chase
of O relative to Q is of polynomial size and computable
in polynomial time in the size of D [6]. By Theorems 11
and 12, all above four combination operators ⊗ are pos-
sible in polynomial time in the size of �′

P and S. In line

6, computeSkyline is possible in polynomial time by a
linear-time scan of C , assuming suitable data structures,
and the results can be removed by another linear-time
scan. ��

As a corollary of Theorem 13 (ii), if probabilities in M
can be computed (exactly or approximately) in polynomial
time in the data complexity, then so can k-rank answers.

Corollary 3 Let KB= (O, P, M,⊗), with O = (D, �), be
a guarded PP-Datalog+/– ontology, where ⊗ is any of the
above four combination operators, let Q be a DAQ, and
k � 0. Let PrM (a) be computable (exactly or approximately)
in polynomial time in the data complexity for any ground
atom a with O |� a. Then, Algorithm k-Rank can be done in
polynomial time in the data complexity

7 A Use Case

We now describe a real-world application of our formal-
ism.

Data and probabilistic model The raw data were obtained
from the Internet Movie Database (IMDB)1; the resulting
database consists of 13,893 movies—the structure of the
used ontology is described in Fig. 12. Furthermore, IMDB
associates a rating with each movie (computed as the aver-
age opinion of the users who give their input). Table 2
shows a small subset of the movie database, which was
selected for this use case. The ratings range from 0 to 1;
probability values, which adequately model the opinions of
the users about how good the movie is, were computed as
the cumulative density function of a Gaussian distribution
with mean 0.635 and standard deviation 0.126 (the popula-
tion values corresponding to the entire database of 13,893
movies).

User preferences In the following, suppose a user has
declared the following set of preferences, which we express
as an ordered set of preference formulas (very similar to the
approach introduced in [7] for preferences in relational data-
bases). If a1 and a2 are atoms, a preference formula pf is of
the form “a1 � a2 if C(a1, a2)”, where C(a1, a2) is a first-
order formula. We callC(a1, a2) the condition of pf, denoted
cond(pf). Suppose the following preference formulas have
been acquired for a given user:

pf1 : movie(M1)�movie(M2)

if drama(M1)∧drama(M2)

∧hasActor(M2, A2)∧actor(A2, brendan, fraser)
∧¬hasActor(M1, A2).

Drama movies without Brendan Fraser are preferred over those
with him.

1 http://www.imdb.com.

123

http://www.imdb.com

Preference-Based Query Answering 95

Fig. 12 Description of the movie ontology used in the use case and experimental evaluation

Table 2 Small subset of movies taken from the database to illustrate the use case

ID Title Actors Director Year Genre Rating Probability

m1 X-Men: First Class M. Fassbender, J. McAvoy B. Singer 2011 Action/Sci-fi 0.80 0.90

m2 Haywire E. McGregor, M. Fassbender S. Soderbergh 2011 Action/Thriller 0.60 0.39

m3 Gravity G. Clooney, S. Bullock A. Cuarón 2013 Action/Drama 0.85 0.96

m4 Batman & Robin G. Clooney, A. Schwarzenegger J. Schumacher 1997 Action/Fantasy 0.40 0.03

m5 The Prestige S. Johansson, H. Jackman C. Nolan 2006 Mystery 0.80 0.90

m6 Crash S. Bullock, B. Fraser P. Haggis 2004 Drama 0.60 0.39

m7 Elysium M. Damon, J. Foster N. Blomkamp 2013 Sci-fi/Action 0.68 0.64

m8 Savages B. Lively, T. Kitsch O. Stone 2012 Adventure/Crime 0.70 0.69

m9 2001: A Space Odyssey K. Dullea, G. Lockwood S. Kubrick 1968 Sci-fi 0.80 0.90

m10 Eyes Wide Shut T. Cruise, N. Kidman S. Kubrick 1999 Drama 0.70 0.69

m11 A Clockwork Orange M. MacDowell, P. Magee S. Kubrick 1971 Sci-fi 0.90 0.98

m12 Ghost Busters II B. Murray, D. Aykroyd I. Reitman 1989 Action/Sci-fi 0.60 0.39

m13 Forrest Gump T. Hanks, R. Wright R. Zemeckis 1994 Drama/Romance 0.90 0.98

m14 Dragnet T. Hanks, D. Aykroyd T. Mankiewicz 1987 Comedy 0.60 0.39

m15 Inception L. DiCaprio, J. Gordon-Levitt C. Nolan 2010 Action/Sci-fi 0.90 0.98

pf2 : movie(M1) � movie(M2)

if actor(A1,matt, damon) ∧ actor(A2, george, clooney)
∧ (hasActor(M1, A1) ∨ hasActor(M1, A2))

∧ ¬(hasActor(M2, A1) ∨ hasActor(M2, A2)).

Movies starring George Clooney or Matt Damon are preferred
over movies without them.

pf3 : movie(M1) � movie(M2)

if hasActor(M1, A) ∧ hasActor(A,michael, fassbender)
∧ ¬hasActor(M2, A).

Movies starring Michael Fassbender are preferred over all others.

pf4 : movie(M1) � movie(M2)

if hasActor(M1, A1) ∧ hasActor(A1, scarlett, johansson)
∧ hasActor(M2, A2) ∧ hasActor(A2, leonardo, dicaprio).

Movies starring Scarlett Johansson are preferred over those
starring Leonardo DiCaprio.

pf5 : movie(M1) � movie(M2)

if (action(M1) ∨ sci_fi(M1)) ∧ drama(M2).

Action and science fiction movies are preferred over dramas.

pf6 : movie(M1) � movie(M2)

if sci_fi(M1) ∧ sci_fi(M2)

∧ hasDirector(M1, D1) ∧ director(D1, stanley, kubrick)
∧ hasDirector(M2, D2) ∧ director(D2, ivan, reitman).

Science fiction movies directed by Stanley Kubrick are preferred
over those directed by Ivan Reitman.

pf7 : movie(M1) � movie(M2)

if hasDirector(M1, D1) ∧ director(D1, stanley, kubrick)
∧ hasDirector(M2, D2) ∧ director(D2, oliver, stone).

Movies directed by Stanley Kubrick are preferred over those
directed by Oliver Stone.

123

96 T. Lukasiewicz et al.

To avoid cyclic preferences, we assume that these pref-
erence formulas are applied in the given order, and only
apply if no cycles are introduced. Figure 13 shows the
induced preference relation over the set of movies in
Table 2.

Results To illustrate the different behaviors of the pref-
erence combination operators of Sect. 4, we study the
answers to the query Q(X)=movie(X) obtained via Algo-
rithmComPrefsRankwith each one—the results are shown
in Table 3. For each rank i from 1 to 13, the table shows
the set of IDs corresponding to movies (cf. Table 2) that
have rank i in the graph resulting from merging the original
user SPO with the one induced by the probabilistic model
using several combination operators and parameter values.

Fig. 13 The user’s SPO modeled by preference formulas pf1 to pf7

For example, using the combination operator from Algo-
rithm 2 with f =min, the table shows that movies m1 and
m2 have rank 2 in the combined SPO. One possible 5-rank
answer to Q(X) using Algorithm 2 with function f =min is
〈m3,m4,m7,m13,m15〉.

This table shows interesting differences in the results
obtained using each combination operator with different
parameters. For instance, movie m3 receives rank 1 in all
cases, since it is one of the user’s favorites, and also has a
very high probability of 0.96. However, note that for m4,
which is another of the user’s favorites, the behavior of each
algorithm is quite different. Algorithm 1 (with both t = 0.15
and t = 0.30) assigns rank 3 to this movie, which is a com-
promise between the fact that the user ranked it very high,
but its probability is almost zero. On the other hand, Algo-
rithm 2 has two variants depending on the input function
f : with min, the algorithm makes optimistic choices and
ranks high movies that are either ranked high by the user
or have high probability—in this case,m4 is assigned the top
rank. With f =max, the algorithm behaves pessimistically
by assigning the worst rank possible between the user and the
probability—since m4 is the lowest ranking movie relative
to probability, it receives the worst rank in the result.

Algorithm 3 uses the probability values to purge the user’s
SPO, using as a result the structure arising from the deletion
of the movies that do not surpass the threshold. Note that
moviem4 thus disappears from all possible answers. Another
interesting observation is that with p= 0.95, only the high-
est probability choices are kept—however, the user’s prefer-
ences are still visible in the resulting structure. For instance,
movie m15 climbed a position to join m11, because the ones
dominating it (m9 and m5) were removed; however, m13 is
still less preferable than m15 and m11.

Table 3 Answers to the query Q(X) = movie(X) for several different combinations of operators and parameter values, using the set of movies
shown in Table 2 and the SPO in Fig. 13

Rank Alg. 1 (t = 0.15) Alg. 1 (t = 0.3) Alg. 2 (f =min) Alg. 2 (f =max) Alg. 3 (p= 0.4) Alg. 3 (p= 0.95) Alg. 4

1 {m3} {m3, m7} {m3, m4, m7, m11, m13, m15} {m3} {m7, m3} {m3} {m3}

2 {m1} {m1} {m1, m2} {m1, m5, m9, m11} {m1} {m11, m15} {m7}

3 {m7, m4} {m4} {m5, m14, m9} {m15} {m5, m9, m11} {m13} {m4}

4 {m9, m11} {m9, m11, m5} {m8, m10, m12} {m7 m10, m13} {m15} {m1}

5 {m5} {m2} {m6} {m2, m6, m8, m12, m14} {m13, m10} {m2}

6 {m2} {m14, m15} {m4} {m8} {m11}

7 {m14, m15} {m13} {m9, m5}

8 {m10, m13} {m12} {m14, m15}

9 {m12} {m10, m6} {m12}

10 {m8, m6} {m8} {m13}

11 {m10}

12 {m8}

13 {m6}

The answers are shown according to their rank in the graph resulting from merging the original SPO with the probability-based SPO

123

Preference-Based Query Answering 97

Finally, the behavior of Algorithm 4 is quite clear: it uses
the probability values to sort the iterated skylines of the user’s
preferences—the only non-singleton sets in the rank assign-
ments thus only arise when ties occur in probability values.
This kind of answer is perhaps most useful when the user
desires to have a fully ordered list of choices; on the other
hand, the other algorithmsmay bemost applicable to the pre-
sentation of answers in a layered fashion, such as an online
system that shows movie suggestions by page.

8 Experimental Evaluation

In this section, we evaluate and analyze the running time of
our algorithms over a combination of real-world and syn-
thetic data. We first describe the experimental setup and then
continue to discuss the obtained results.

8.1 Implementation and Hardware

We implemented our framework and algorithmsby extending
the Datalog+/– query answering engine in [13], which sup-
ports FO-rewritable fragments of the Datalog+/– family of
ontology languages. All graph operations were implemented
using the JGraphT2 library, which provides efficient data
structures for the representation of graph structures, as well
as efficient implementations of operations such as reachabil-
ity, transitive closure, and cycle detection. The whole code
was written in Java

All runswere doneon a laptopwith an IntelCore i5 proces-
sor at 2.6 GHz and 16GB RAM, under the Windows 7 Pro-
fessional (64-bit) SP1 operating system (Build 7601) and a
Sun JVM Standard Edition with maximum heap size set to
14 GB RAM. To minimize experimental variation, all results
are averages of (between 5 and 10) independent runs.

8.2 Experimental Setup

Inputs to our system consist of tuples 〈Q,KB, k〉, where Q
is a query, KB= (O, P, M,⊗) is a PP-Datalog+/– ontology,
and k is the number of query results to be sorted accord-
ing to the user’s preferences. The preference graph is a
labeled directed graph (N , E), where N is the node set
(the atoms), and E is the edge set (the SPO). A preference-
augmented chase is then used for obtaining the answer to the
query.

– DataAll runswere carried out using the ontology built on
the basis of the IMDB dataset, as described in Sect. 7. To
test our algorithms on instances of different sizes,we con-
sidered different subsets of the dataset, varying this para-

2 http://jgrapht.org/.

meter from 1,000 to 13,000 nodes (movies). Finally, the
database for this ontologywas stored in a PostgreSQL9.3
database.

– User preferences User preference graphs (SPOs) were
randomly generated by first creating a set of nodes of
the required size and then adding a certain number of
edges. For the latter, we used different values of a density
parameter to set the size of E—this simply refers to the
number of edges as a percentage of |N | · (|N |−1)/2 (the
maximum possible number of edges in a DAG). For tran-
sitively closed graphs (see discussion below), we used a
seed density manually tuned to obtain the target num-
ber of edges after the transitive closure. The averages
and standard deviations for each set of independent runs
yielding a data point are reported in Tables 4 and 5.

– Probabilistic model As described in Sect. 7, the IMDB
dataset provides a numerical rating ranging from 0 to 10;
to obtain a probability, these values were normalized
using a Gaussian distribution with population values of
0.635 (mean) and 0.126 (standard deviation).

– QueryWe used the query Q(X)=movie(X) for all runs.
This query represents a user requesting a set of k movies
sorted according to a combination of own preferences
and the probability that each movie is good (according to
the reviews available on IMDB).

Finally, in contrast to the general analysis of the worst-
case running times in Sect. 5, these experiments focus on the
special case of computing k-rank query answers. As such,

Table 4 Information on the input graphs for Experiment 1

of nodes Avg. # of
edges

St. dev. Avg. density
(%)

Seed density
(%)

1,000 940.8 604.01 0.19 0.1

2,000 10,520.8 943.89 0.53 0.1

3,000 73,728.0 6,091.80 1.64 0.1

4,000 275,681.2 10,503.84 3.45 0.1

5,000 781,634.8 38,602.54 6.25 0.1

6,000 1,672,068.0 35,328.19 9.29 0.1

7,000 3,167,134.0 84,153.84 12.93 0.1

Table 5 Information on the input graphs for Experiment 2

of nodes Avg. # of
edges

St. dev. Avg. density
(%)

Seed density
(%)

2,000 92,918.9 7,728.17 4.64 0.20

2,000 178,938.9 9,917.13 8.95 0.25

2,000 271,800.7 13,082.45 13.60 0.30

2,000 356,077.3 15,205.12 17.81 0.35

2,000 463,820.2 15,216.49 23.20 0.40

123

http://jgrapht.org/

98 T. Lukasiewicz et al.

Fig. 14 Experimental results over the IMDB dataset and randomly generated SPOs. Each data series is augmented with the corresponding
polynomial trend line with respect to the values in the x axis (cf. Sect. 4)

we may resort to a simple (but in practice very effective)
optimization of the operators that involves not computing the
transitive closure as the final step. Though this is necessary
in theory to obtain an SPO as the result of the combination
operation, the information added by the transitive closure is
superfluous for Algorithm k-Rank.

8.3 Results

To test the performance of our algorithms, we carried out
experiments varying several parameters, namely, (i) SPO
size and (ii) the number of answers (k). As for (i), since
the size of an SPO represented as a directed graph is given
both by the number of nodes and the number of edges, our

experiments show the effects of varying these two parame-
ters.

Experiment 1: Varying the number of nodes in the SPO
Fig. 14 (top, left side) shows the running times of all four
combination operators when varying the number of nodes
from 1,000 to 13,000 with seed density of 0.1% and k fixed
at 200—the graph is plotted with number of edges on the
x axis, since this parameter is the one that most directly
affects the performance of the algorithms. Table 4 shows,
for each data point, the number of nodes, average num-
ber of edges, standard deviation, average density, and seed
density. Clearly, ComPrefsGen is greatly outperformed by
the rest of the algorithms, while ComPrefsSort is the next
worse. This is due to the fact that ComPrefsGen involves
a pairwise comparison of all nodes (ground atoms) in the

123

Preference-Based Query Answering 99

graph and, in each case, a check for potential cycles. On
the other hand, ComPrefsSort suffers when the number
of nodes increases, as it involves sorting each iterated sky-
line, which were quite large for these relatively low-density
graphs.

Experiment 2: Varying the edge density in the SPO. Next,
we fixed the number of nodes in the SPO at 2,000, varied
the density parameter from 0.2 to 0.4%, and fixed k to 200;
Table 5 shows the rest of the information for this experi-
ment. The results can be seen in Fig. 14 (top, right side). As
in the previous experiment, we can see that ComPrefsGen
is outperformed by the rest; however, in this case,ComPref-
sSort performs comparably to ComPrefsRank and Com-
PrefsPT, since the number of nodes to sort is fixed in this
case. Figure 14 (middle, left side) shows the comparison
without ComPrefsGen to illustrate the differences among
the other three operators more clearly.

Experiment 3: Varying the number of nodes in the SPO
(high edge density) (a) Fig. 14 (middle, right side) corre-
sponds to the same setup of Experiment 1 with one impor-
tant difference: the SPOs generated as inputs to the opera-
tors are not transitively closed. Though, by definition, this is
required, algorithms ComPrefsRank and ComPrefsSort
do not actually use this information—it is highly redundant
and greatly hinders the performance of the algorithms. In this
plot, we can see that these two operators remain quite scal-
able even for graphs with over 8M edges, which represents
a much larger graph if it were transitively closed.
(b) As before, we also ran another experiment in which the
number of nodeswas set to 5,000, and the density varied from
10% to 50% (also without transitive closure)—the results are
shown in Fig. 14 (bottom, left side).

Tables 6 and 7 show, for each data point, the number of
nodes, number of edges, density, and seed density.

Table 6 Information on the input graphs for Experiment 3 (a)

of nodes # of edges Density (%) Seed density (%)

1,000 49,950 10 10

2,000 199,900 10 10

3,000 449,850 10 10

4,000 799,800 10 10

5,000 1,249,750 10 10

6,000 1,799,700 10 10

7,000 2,449,650 10 10

8,000 3,199,600 10 10

9,000 4,049,550 10 10

10,000 4,999,500 10 10

11,000 6,049,450 10 10

12,000 7,199,400 10 10

13,000 8,449,350 10 10

Table 7 Information on the input graphs for Experiment 3 (b)

of nodes # of edges Density (%) Seed density (%)

5,000 1,249,750 10 10

5,000 2,499,500 20 20

5,000 3,749,250 30 30

5,000 4,999,000 40 40

5,000 6,248,750 50 50

Experiment 4: Varying k Fig. 14 (bottom, right side)
shows the running time for the computation of the k-rank
answers without taking into account the combination oper-
ation; the number of nodes was fixed at 2,000 and density
at 20%. For this experiment, we only show ComPrefs-
Rank and ComPrefsSort, as they are mostly affected by
the density of edges in the SPO. If the graph is too sparse,
the first skyline usually contains all k-rank answers—in the
runs corresponding to the previous lower-density experi-
ments, the running time for the k-rank computation was
negligible.

9 Related Work

Preferences have received much attention in many areas of
study such as philosophy, choice theory, and certain areas
of the social sciences (such as social choice). In computer
science, the most relevant to our work is their incorporation
into query answering mechanisms. To our knowledge, the
current state of the art in this respect is centered around rela-
tional databases, and no other work to date combines general
preferences with those induced by probability assignments.

The seminal work in preference-based query answering is
that of [19], in which the SQL language is extended to incor-
porate user preferences, showing that the resulting formalism
can be translated into the domain relational calculus. In [7],
preference formulas are introduced as a logical formalism
that allows an embedding of preference specifications into
SQL through a winnow operator parameterized by a pref-
erence formula; the winnow operator is a generalization of
the skyline operator, first introduced in [4]. Perhaps closest
to our approach (except for the probabilistic model) is that
of preference Datalog programs [15], which are a restriction
of preference logic programs [14] that contain no uninter-
preted function symbols and extend classical Datalog with
constructs for determining which predicates must be opti-
mized along with the optimization criteria (i.e., the set of
preferences). For a recent survey on preference-based query
answering, see [30].

With respect to probabilistic preferences, there are sev-
eral works that have been developed in the last few years.

123

100 T. Lukasiewicz et al.

Probabilistic skylines were introduced in [26] (and later also
studied in [1]; the related stochastic skyline is introduced
in [20]), where the authors tackle the problem of computing
the probability of an element belonging to the skyline, rather
than using the probability values for the purpose of ranking,
as proposed in our work. In [29,34], the authors focus on
a more specific version of our problem, since they assume
that tuples receive both a score and a probability value, and
thus the two preference relations in question are score-based.
Furthermore, the approach adopted in their work is based on
possible worlds, whereas here we focus on the use of proba-
bilities solely as vehicles for ranking.

Preference revision is also a closely related area. Thework
of [16] tackles the problem of modeling preference change,
studying axioms and postulates for the revision and contrac-
tion of a set of sentences specifying preferences by an input
preference, in the style of belief revision theory; addition and
subtraction of elements are also studied. The main difference
to our work is that the author does not study algorithms or
complexity of deriving a revised relation, but rather focuses
on a set of postulates based on those from belief revision
and centered on obtaining a relation that incorporates the
new preference with minimal change. The work of [8] is also
related in that it addresses the problem of query modifica-
tion in preference-based query answering in relational DBs.
The focus is, however, on three specific combination mech-
anisms: union, prioritized, and Pareto composition, and on
the study of the preservation of properties of different kinds
of relations under these combinations.

Social choice theory [11] is also relevant, since it seeks
to combine preferences to produce a new preference rela-
tion; methods range from those using score-based relations
(e.g., approval voting) to ones using more general ones (e.g.,
ranked pairs). In particular, the work of [27] studies results
with respect to possibility and impossibility, which general-
ize properties such as Arrow’s theorem to contemplate cases
in which incomparable elements exist.

10 Conclusion

In this work, we have presented an extension of the
Datalog+/– family of ontology languages for preference-
based query answering under uncertainty. This task has
recently attained central importance due to its relation with
the Social (Semantic) Web. The main focus of this work has
been on defining preference combination operators, which
produce a preference relation, given a general SPO and a
score-based SPO.We have proposed four specific algorithms
for such an operator and analyzed their semantic and com-
putational properties. Finally, we have studied a basic algo-
rithm for answering k-rank queries and showed that under
certain conditions, k-rank queries can be answered in poly-

nomial time in the data complexity, which is the same com-
plexity as answering traditional preference-based queries in
relational DBs. We have also reported on an implementa-
tion and experimental results. Future work involves devel-
oping other combination operators and studying specific
preference specification mechanisms and probabilistic mod-
els.

Acknowledgments This work was supported by the EPSRC grant
EP/J008346/1 “PrOQAW: Probabilistic Ontological Query Answering
on theWeb”, by theEuropeanResearchCouncil (FP7/2007–2013/ERC)
grant 246858 “DIADEM”, by a Google European Doctoral Fellowship,
and by a Yahoo! Research Fellowship. We are grateful to the review-
ers of this paper and of its ODBASE-2013 preliminary version [24]
for their useful feedback, as well as to Giorgio Orsi for his help with
the Datalog+/– query answering engine.

References

1. Atallah MJ, Qi Y (2009) Computing all skyline probabilities for
uncertain data. In: Proceedings of PODS. ACM Press, New York,
pp 279–287

2. Beeri C, VardiMY (1987) The implication problem for data depen-
dencies. In: Proceedings of ICALP. Springer, Berlin, pp 73–85

3. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci
Am 284(5):34–43

4. Börzsönyi S, Kossmann D, Stocker K (2001) The skyline operator.
In: Proceedings of ICDE. IEEE Computer Society, Los Alamitos,
pp 421–430

5. Calì A, Gottlob G, Kifer M (2008) Taming the infinite chase: query
answering under expressive relational constraints. In: Proceedings
of KR. AAAI Press, Menlo Park, pp 70–80

6. Calì A, Gottlob G, Lukasiewicz T (2012) A general Datalog-based
framework for tractable query answering over ontologies. J Web
Sem 14:57–83

7. Chomicki J (2003) Preference formulas in relational queries. ACM
Trans Database Syst 28(4):427–466

8. Chomicki J (2007) Database querying under changing preferences.
Ann Math Artif Intell 50(1/2):79–109

9. Domingos P, WebbWA (2012) A tractable first-order probabilistic
logic. In: Proceedings ofAAAI.AAAIPress,MenloPark, pp1902–
1909

10. Finger M, Wassermann R, Cozman FG (2011) Satisfiability in EL
with sets of probabilistic ABoxes. In: Proceedings of DL

11. Gaertner W (2009) A primer in social choice theory: revised edi-
tion. Oxford University Press, Oxford

12. Gottlob G, Lukasiewicz T, Martinez MV, Simari GI (2013) Query
answering under probabilistic uncertainty inDatalog+/- ontologies.
Ann Math Artif Intell 69(1):37–72

13. Gottlob G, Orsi G, Pieris A (2011) Ontological queries: Rewrit-
ing and optimization. In: Proceedings of ICDE. IEEE Computer
Society, Washington, DC, pp 2–13

14. Govindarajan K, Jayaraman B, Mantha S (1995) Preference logic
programming. In: Proceedings of ICLP. MIT Press, Cambridge, pp
731–745

15. GovindarajanK, JayaramanB,Mantha S (2001) Preference queries
in deductive databases. New Generat Comput 19(1):57–86

16. Hansson SO (1995) Changes in preference. Theory Decis 38:1–28
17. Jung JC, Lutz C (2012) Ontology-based access to probabilistic

data with OWLQL. In: Proceedings of ISWC. Springer, Berlin, pp
182–197

123

Preference-Based Query Answering 101

18. Kim JH, Pearl J (1983) A computational model for causal and diag-
nostic reasoning in inference systems. In: Proceedings of IJCAI.
William Kaufmann, Karlsruhe, pp 190–193

19. Lacroix M, Lavency P (1987) Preferences: putting more knowl-
edge into queries. In: Proceedings of VLDB. Morgan Kaufmann,
Burlington, pp 1–4

20. Lin X, Zhang Y, Zhang W, Cheema MA (2011) Stochastic skyline
operator. In: Proceedings of ICDE. IEEE Computer Society, pp
721–732

21. Lukasiewicz T, Martinez MV, Orsi G, Simari GI (2012) Heuris-
tic ranking in tightly coupled probabilistic description logics. In:
Proceedings of UAI. AUAI, Edinburgh, pp 554–563

22. Lukasiewicz T,MartinezMV, Simari GI (2012) Consistent answers
in probabilistic Datalog+/- ontologies. In: Proceedings of RR.
Springer, Berlin, pp 156–171

23. Lukasiewicz T, Martinez MV, Simari GI (2013) Preference-based
query answering in Datalog+/- ontologies. In: Proceedings of
IJCAI. AAAI Press / IJCAI, Menlo Park, pp 1017–1023

24. Lukasiewicz T, Martinez MV, Simari GI (2013) Preference-based
query answering in probabilistic Datalog+/- ontologies. In: Pro-
ceedings of ODBASE. Springer, Berlin, pp 501–518

25. Noessner J, Niepert M (2011) ELOG: A probabilistic reasoner for
OWL EL. In: Proceedings of RR. Springer, Berlin, pp 281–286

26. Pei J, Jiang B, Lin X, Yuan Y (2007) Probabilistic skylines on
uncertain data. In: Proceedings of VLDB. ACM Press, New York,
pp 15–26

27. Pini MS, Rossi F, Venable KB, Walsh T (2009) Aggregating par-
tially ordered preferences. J Log Comput 19(3):475–502

28. Richardson M, Domingos P (2006) Markov logic networks. Mach
Learn 62(1/2):107–136

29. Soliman MA, Ilyas IF, Chen-Chuan Chang K (2007) Top-k query
processing in uncertain databases. In: Proceedings of ICDE. IEEE
Computer Society, pp 896–905

30. Stefanidis K, Koutrika G, Pitoura E (2011) A survey on repre-
sentation, composition and application of preferences in database
systems. ACM Trans Database Syst 36(3):19:1–19:45

31. WarrenHS Jr (1975)Amodification ofWarshall’s algorithm for the
transitive closure of binary relations. Commun ACM 18(4):218–
220

32. Warshall S (1962)A theoremonBooleanmatrices. JACM9(1):11–
12

33. ZhangX(2010)Probabilities and sets in preferencequerying. Ph.D.
thesis, University at Buffalo, State University of New York

34. Zhang X, Chomicki J (2009) Semantics and evaluation of top-k
queries in probabilistic databases. Distrib Parallel Dat 26:67–126

123

	Preference-Based Query Answering in Probabilistic Datalog+/-- Ontologies
	Abstract
	1 Introduction
	2 Preliminaries on Datalog+/--
	2.1 Databases and Queries
	2.2 The Chase
	2.3 Datalog+/-- Ontologies

	3 PP-Datalog+/--: Syntax and Semantics
	3.1 Preference Models
	3.2 Probabilistic Models
	3.3 Syntax of PP-Datalog+/--
	3.4 Semantics of PP-Datalog+/--
	3.5 Skyline and k-Rank Queries

	4 Preference Combination Operators
	4.1 An Egalitarian Class of Combination Operators
	4.1.1 A General Preference Combination Operator
	4.1.2 An Egalitarian Operator Based on Rank

	4.2 A User-Biased Class of Combination Operators
	4.2.1 An Operator Based on Probability Thresholds
	4.2.2 A Skyline Sorting Operator

	5 Complexity of Combination Algorithms
	5.1 Egalitarian Combination Algorithms
	5.2 User-Biased Combination Algorithms

	6 Answering k-Rank Queries
	7 A Use Case
	8 Experimental Evaluation
	8.1 Implementation and Hardware
	8.2 Experimental Setup
	8.3 Results

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

