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Abstract The continuing development of Semantic Web technologies and the
increasing user adoption in the recent years have accelerated the progress in-
corporating explicit semantics with data on the Web. With the rapidly growing
RDF (Resource Description Framework) data on the Semantic Web, process-
ing large semantic graph data have become more challenging. Constructing a
summary graph structure from the raw RDF can help obtain semantic type
relations and reduce the computational complexity for graph processing pur-
poses. In this paper, we addressed the problem of graph summarization in RDF
graphs, and we proposed an approach for building summary graph structures
automatically from RDF graph data. Moreover, we introduced a measure to
help discover optimum class dissimilarity thresholds and an effective method to
discover the type classes automatically. In future work, we plan to investigate
further improvement options on the scalability of the proposed method.

Keywords Semantic Web · RDF · Graph Summarization · Automatic
Weight Generation

1 Introduction

The Web as the global information source is growing exponentially. In re-
cent years, there has been significant developments in publishing data with
expressed semantics in the Web. The Linking Open Data[6] and similar com-
munity projects have recommended the publication of large amount of glob-
ally useful datasets in machine-readable forms. Moreover, the utilization of

Serkan Ayvaz
Department of Software Engineering, Bahcesehir University, Besiktas 34353, Istanbul,
Turkey.
E-mail: serkan.ayvaz@eng.bau.edu.tr

Mehmet Aydar
Department of Computer Science, Kent State University, Kent, Ohio 44240, USA.
E-mail: maydar@kent.edu

ar
X

iv
:1

70
6.

02
59

1v
1 

 [
cs

.D
B

] 
 3

1 
M

ay
 2

01
7



2 Serkan Ayvaz, Mehmet Aydar

Resource Description Framework (RDF), along with other forms of semantic
data in forms of RDFa [1] and microformats [22] in web pages has expanded.

As a standard data model for the Semantic Web, RDF is a graph-structured
general purpose language for representing information in a way that the re-
sources are described unambiguously using RDF statements. The RDF state-
ments are in the form of subject-predicate-object triples. Every triple is a
relationship between two entities.

RDF uses rdf:type property for stating class membership of entities. The
entity type information is particularly useful for semantic searches in finding
related entities and in traversal of the hierarchical structure of the RDF graph.
However, the semantic data available on the Web today often don’t have pre-
cise entity type information. It is partially due to (1) not containing the entity
types owing to the flexibility of RDF model not forcing constraints on the
schema, (2) representing data with non-standard vocabularies for typing as
some data publishers do not use standard vocabularies such as rdf:type and
rdfs:subClassOf, which is making it challenging to locate the type triples, fur-
thermore, (3) defining the type information too generally that loosely coupled
entities are represented in the same types.

Constructing a graph structure containing the entity type classes, class
attributes and relations between the type classes can be instrumental for Se-
mantic Search algorithms in terms of query time since the entire input data
does not need to be completely processed at the query time. We call this
structure as the Summary Graph [5,4]. Semantic search is a common graph
processing task and it often requires a summary graph structure for effective
and faster graph processing. For instance, the semantic search approach pro-
posed by [41] uses a summary graph structure in the search mechanism. They
generate the summary graph using a set of aggregation rules, which calculate
the equivalence classes of all nodes belonging to one type class and project all
edges to corresponding edges accordingly. In this approach, one needs to know
what constitutes a type class in advance. However, this assumption may not
be realistic for real-world RDF datasets, i.e., the RDF data may not be tied
to a standard ontology or vocabulary. Our work attempts to address this issue
by automatically building the summary graph structure from the data itself
by utilizing graph node similarity scores.

There exists related methods to obtain a summary graph: (1) A summary
graph can be obtained from the dataset ontology, if the dataset is already tied
to an ontology. (2) Another way to obtain the summary graph is to locate
the type triples (rdf:type) in the dataset and to organize the type classes and
relations accordingly, if the data set is published using a standard vocabulary
[14]. (3) Or the summary graph can be built automatically without relying
on an ontology or a standard vocabulary. Our graph summarization approach
is based on the latter method. Rdf:type is an optional property and it is
often missing in commonly used datasets. Furthermore, it can potentially be
inconsistent or erroneous in some cases [32]. Thus, the methods, which rely
on rdf:type or existence of an ontology may have implications for general use.
Therefore, there is a need for automatic generation of summary graphs from
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RDF Data. In this regard, we describe an entity similarity metric and the
methods used for automatically generating a summary graph from RDF Data.
To the best of our knowledge, this is the first approach to attempt to generate
summary graph of RDF graph automatically based on the entity similarities.

Contributions and Outline

In this study, we focus on the problem of efficiently building a summary graph
structure automatically from underlying RDF data. We utilize the notion of
entity similarity in an RDF dataset so that fundamentally similar entities could
be associated with the same class, which we call it type class in this paper.

In our approach, the type classes, importance weight of each property and
each string word for each of the referenced IRIs (Internationalized Resource
Identifiers) are auto-generated. Furthermore, the weights in the pairwise simi-
larity calculation are generated dynamically and applied during the summary
graph generation. Our methodology is to utilize graph locality and neighbor-
hood similarity. Our algorithm does not rely on the existence of a common
vocabulary. We use the Jaccard measure context for entity similarity such
that the properties of the entities are treated as the dimensions of the entities.

A stability measure, which represents the degree of confidence of a relation
between classes in the summary graph, is proposed. From the input RDF data
itself, we generate the summary graph along with the classes and class relations
with the stability measure for each class relation. The main contributions of
present study are

– We investigated the graph summary problem in RDF graphs and provided
an effective approach for generating summary graphs automatically from
RDF data.

– For automatic discovery of the summary graphs, we introduced a measure,
which we call Favorability that helps discover optimal class dissimilarity
thresholds and provided an effective method that discovers the type classes
using the class threshold measure.

– To assess the effectiveness of our approach, we applied our methods to
real-world datasets.

The rest of the paper is organized as follows. In section 2, we define the
graph summarization problem in RDF graph data. Then, in section 3, we
discuss our methods and the algorithms in detail. In section 4, the results
of the evaluations assessing the efficiency of the proposed methods are pre-
sented. Finally, we review the related work in section 6 and follow this with
our conclusion and future work in section 7.

2 Defining Graph Summarization Problem

RDF data consist of a collection of statements that intrinsically represent a
labeled, directed multi-graph with which the resources are expressed unam-
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biguously. RDF statements describe resources in the form of triples, consisting
of subject-predicate-object expressions that describe a resource, the type of a
resource (type triple), or a relationship between two resources [12].

To describe resources, each RDF node that corresponds to an RDF entity
is represented with an IRI. The values such as strings, numbers and dates in
RDF data are represented by literal nodes. A predicate in an RDF triple is
also called a property of the RDF subject node. A predicate can be one of two
types: a DatatypeProperty where the subject of the triple is an IRI and the
object of the triple is a literal or an ObjectProperty where both the subject
and object of the triple are IRIs. Each object of a subject node is called a
neighbor of that subject node. The subject in an RDF triple is either an IRI
or a blank node, the predicate is an IRI, and the object is either an IRI, a
literal or a blank node. The subjects and objects of triples in the RDF graph
form RDF nodes. As an example, figure 1 represents two sample university
entities Kent State and Case Western and their properties.

Fig. 1 Sample graph demonstrating two nodes

Formally, RDF graph is a directed labeled graph, which can be represented
as G = (V,L,E), where the set of vertices V represents entities (resources),
the set of directed edges E of the form l(u, v), with u ∈ V , v ∈ V and l ∈ L,
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denote predicates (properties) between entities, and the labels L are predicate
names or labels. Note that an edge l(u, v) represents the RDF triple (u, l, v).

A summary graph of a data graph is the directed graph such that each
node in the summary graph is a subset of the original graph nodes of the
same type. Thus, we define the Graph Summarization Problem as finding the
corresponding summary graph G′ = (V ′, L′, E′) of G, such that each element
of V ′ is a subset of V containing all elements of the same type. For v ∈ V , we
let [v] denote the subset of V containing all elements in V with the same type
class as v. The vertices V ′ in the summary graph G′ are equivalence classes
over the original graph G, and the vertices in V ′ are disjoint subsets of V . E′

and L′ are, respectively, the sets of edges and labels in the graph G′. Hence,
L′ ⊂ L, and the elements of E′ are defined by the elements in the equivalence
classes in V ′ and the edges in E. Let u, v ∈ V ; then [u], [v] ∈ V ′. There is an
edge l([u], [v]) ∈ E′ if and only if there exist s ∈ [u] ⊆ V and t ∈ [v] ⊆ V such
that l(s, t) ∈ E.

3 Methods

The Graph Summarization Problem can be considered as a problem of iden-
tifying entity type classes. The set of entity type classes can be inferred from
RDF data such that each type class in the set of entity types contains the
same or very similar entities only. In our method, the entity type classes are
derived from the entity similarities. The discovery of the type classes, i.e., the
elements v in V ′ can be also seen as clustering problem. Using the calculated
similarity measurements of the entity pairs, the entities that are the same or
very similar, satisfying a similarity threshold, are combined in the same type
class. Our entity similarity measurement approach is based on the intuition
that the graph nodes that have similar relations to similar neighbors tend
themselves to be similar nodes.

Previously, we investigated methods for computing entity similarities effec-
tively. We then developed a framework for building a summary graph structure
in RDF data [5,4]. This current study extends our summary graph generation
approach [5] and enhances it by incorporating a measure to help discover op-
timum class dissimilarity thresholds and an effective method to discover the
type classes automatically.

Similarity of IRI Nodes

Intuitively, the characteristics of an RDF graph node are defined by its prop-
erties and the neighboring entities which are connected and related by similar
properties. Based on the intuition that similar IRI nodes tend to have similar
properties and interact with similar neighbor nodes, the similarities of entities
in our method are calculated using the predicates of the IRI nodes, in addition
to the neighbor nodes that they interact with common predicates. By neighbor
we mean that a neighbor of a graph node is another node which is “connected”
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by a predicate. More formally, a node u is connected to node v, i.e., u is a
neighbor of v, if there is a label l ∈ L such that l(u, v) ∈ E. Therefore, a node
and its neighbors are connected by a property. Thus, the similarity calculation
may yield more accurate results with the addition of neighborhood similarity.

Similarity of Literal Neighbor Nodes

The similarity of literal nodes indirectly impact the similarity of IRI nodes
in the calculation of neighborhood similarity. The neighbors of IRI nodes can
be either other IRI nodes or literals. Incorporating neighboring literals in the
computation of the similarity of pairs can be beneficial, especially, in datasets
where the entities are commonly described using literals. Therefore, the simi-
larity of literal neighbor nodes are taken into account in our approach.

A literal node can consist of two or three elements: a lexical form, a
datatype IRI and a language tag. The language tag in a literal node is included
if and only if the datatype IRI of the literal node corresponds to rdf:langString
[7]. It is important to note that the literals should be in the same language
while incorporating literals in the computation of the similarity of IRI node
pairs. As the same literals may have totally different meanings in different
languages, we are assuming that all the literals are in the same language. If
present, the rdf:langString component of the literal nodes is expected to have
only one value. When calculating the similarity, the lexical form and the data
type URI components a pair of literal nodes are considered. As comparing
different data types is meaningless, the similarity of literal nodes is considered
only when the two data types are equal.

Inferring the semantics of literal nodes is challenging. To calculate the
similarity of pairs of IRI nodes, an effective literal node similarity metric is
needed. We make use of string similarities for the lexical form components of
the literal nodes that measures common words within the two lexical forms
along with their auto-generated importance weights. While calculating the
weight of word importance in literal nodes consisting of a set of words, we
consider the following factors: the source subject node, the frequency of the
word within the triple collection for each subject node, and the frequency of
the word within the entire dataset.

LiteralSim(x, y) =

∑
i∈(x∩y)

|ti| × wi∑
j∈(x∪y)

|tj | × wj
(1)

where t is the term that appears in the neighbor literal nodes, such that, u, v
are IRI nodes in V , x, y are literal nodes in V , and l(u, x), l(v, y) ∈ E, and∑
j∈(x∪y)

wj = 1. |ti| is the number of times the term appears and wi is the

importancy weight of the term for the literal nodes (u, v).
The importancy weight of the term for the literal nodes is calculated based

on the concept of the term frequency-inverse document frequency (tf − idf)
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[27,37], which is a widely known technique in information retrieval. tf − idf
indicates that some terms may be important in some documents but not as
important in other documents. Said differently, the importance of a word in
a document increases by its frequency in the document but its importance
decreases by its frequency in the corpus [34].

3.1 Computation of Pairwise Entity Similarities

To identify the type classes in the summary graph, a metric is required to
calculate the similarities of entities. For entity similarity metric, we employ an
efficient graph node pair similarity metric, which utilizes the graph localities
and neighborhood similarity within RoleSim similarity [21] in conjunction with
the Jaccard measure context [19].

Jaccard Similarity Measure

The Jaccard similarity coefficient also known as the Jaccard index is a well-
known statistical measure. It is commonly used for comparing similarity and
diversity of sample sets. Jaccard similarity is simply defined as the size of the
intersection divided by the size of the union of the sample sets [19].

For given two sets S1 and S2 in a dataset, the Jaccard similarity, J(S1, S2),
between S1 and S2 is formulated as:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(2)

When calculating the Jaccard similarity in RDF data, the subject nodes
are considered to be the names or labels for the sets. Thus, the subject of the
triples determine the sets. Similarly, the properties of the triples whose subject
is the name or label of the set are the elements of each set. The objects of the
triples whose subject is the name or label of the set become the neighbors of
each subject set. The object nodes, or in other words the neighboring nodes,
may themselves be names or labels of sets. For given two subject nodes u and
v in an RDF graph, we calculate the Jaccard similarity by noting that |u ∩ v|
is the number of predicates that the subject nodes u and v have in common
while |u ∪ v| is the number of predicates in the union of the subject nodes u
and v.

RoleSim Similarity Measure

The Jaccard similarity has a limitation when the Jaccard index applied to an
RDF graph. Because the Jaccard index determines the set similarity based on
the number of common set elements only, by treating the subject nodes as sets
and the predicates of the subject nodes as the set elements. However, it does
not consider the relations between set elements. Thus, it does not take into
account the neighboring node similarities.
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For this reason, we utilize the RoleSim similarity metric which is based on
the maximal matching of neighborhood pairs and a simple iterative computa-
tional method. The intuition in RoleSim similarity measure is that two nodes
or entities tend to have the same role when they interact with equivalent sets
of neighbors.

Given a regular unlabeled graph G = (V,E), RoleSim measures the simi-
larity of each node pair in V based on their neighborhood similarities [21]:

RoleSim(u, v)= (1− β) (3)

×maxM∈Mm(u,v)

∑
(x,y)∈M

RoleSim(x, y)

Nu +Nv − |M |
+β

RoleSim(u, v) denotes the similarity of the nodes u, v ∈ V . The defini-
tion of RoleSim is recursive; i.e., RoleSim(x, y) is calculated the same way as
RoleSim(u, v). N(u) and N(v) denote their respective sets of neighborhoods
and Nu and Nv denote their respective degrees, i.e., Nu = |N(u)| and Nv =
|N(v)|.

M is defined as a set of ordered pairs (x, y) where x ∈ N(u) and y ∈ N(v)
such that there does not exist (x′, y′) ∈M , s.t. x = x′ or y = y′, and moreover,
M is maximal in that no more ordered pairs may be added to M and keep
the constraint above. Mm(u, v) is the set of all such M ’s. Mm(u, v) is a set
of sets.

M is a maximal subset of N(u) × N(v) such that no element of N(u)
appears more than once as a first coordinate and no element of N(v) appears
more than once as a second coordinate of an ordered pair in M . Thus, |M | =
min(Nu, Nv). The maximal matching ensures that the total value of selected
cells has the maximum possible value. The maximal matching value, M(u, v),
is calculated as

M(u, v) = maxM∈Mm(u,v)

∑
(x,y)∈M

RoleSim(x, y)

Max(Nu, Nv)
(4)

The parameter β is a decay factor, 0 < β < 1. The parameter β is for
decreasing the influence of neighbors with further distance which dampens
the recursive effect.

Combined Pairwise Entity Similarity Measure

To utilize neighborhood similarity in RDF graphs, we improve the initial Jac-
card similarity by augmenting it with the RoleSim similarity measure of the
neighboring nodes. When computing neighborhood similarity, comparing all
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neighbors to all neighbors is not an efficient method. Thus, we compare only
the neighboring nodes which are related by the same predicate. For instance,
given two nodes u and v, let’s assume that s1 and s2 are neighbors of u, and
t is a neighbor of v. We calculate similarity of the neighborhood pairs (s1, t)
and (s2, t) only if there is a predicate which connects u to s1, u to s2 and
also connects v to t, and we use the maximum similarity between the neigh-
borhood pairs (s1, t) and (s2, t) as implied in the maximal matching concept
of RoleSim similarity measure. The impact of the similarity of the neighbor
nodes are weighted by each common predicate.

We note, however, that the generic version of the RoleSim measure is intro-
duced for the unlabeled graph. In this work the input data is in RDF model,
which is a directed and labeled graph. Therefore, we utilize the RoleSim(u, v)
measure when there may be multiple neighbors reached from the node pairs
u and v by a common predicate, where u and v are the nodes in the input
graph.

In the lists below, for 1 ≤ i ≤ j, li is a label for an edge, i.e., li ∈ L. When
1 ≤ h ≤ j and if i and h are not equal, then li and lh are different labels, i.e.,
li and lh are different properties. [xi] and [yi] are the sets of nodes which are
related to u and v, respectively, by predicate li.

l1(u, [x1]), l2(u, [x2]), ...lj(u, [xj ]) ∈ E
l1(v, [y1]), l2(v, [y2]), ...lj(v, [yj ]) ∈ E.
Thus, we are assuming that there are j different predicates which are pred-

icates in triples with subject u and are also predicates in triples with subject
v.

Then, by using the Jaccard index in conjunction with the RoleSim measure,
their similarity can be calculated as:

PairSim(u, v)k= (1− β) (5)

× 1

|u ∪ v|

×(
∑

j∈(u∩v)

maxM∈Mmj(u,v)(

∑
(x,y)∈M

Sim(x, y)k−1

N j
u +N j

v − |M |
)× wj)

+β

where k is the iteration number 1 ≤ k < MaxIter, MaxIter is the
maximum number of iterations, such that, if k = 3 then PairSim(u, v)k

denotes to the similarity of the node pair (u, v) at the third iteration and
PairSim(u, v)k−1 denotes to the similarity of the node pair (u, v) by the end
of the second iteration. Also, N j

(u) and N j
(v) denote their respective neighbor-

hoods that are reached by jth common edge. x ∈ N j
(u) and y ∈ N j

(v), and N j
u

and N j
v denote their respective degree connected by jth common edge. Said

differently, N j
(u) is the cardinality of [xj ], and N j

(v) is the cardinality of [yj ].
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wj is the weight of the property connecting the graph nodes (u, v) and their
respective neighbors (x, y).

Sim(x, y)k−1 =


PairSim(x, y)k−1, if x,y are IRI nodes

LiteralSim(x, y), if x,y are Literal nodes

0, otherwise

(6)

We define M to be a set of ordered pairs (x, y) where x ∈ N j
(u) and y ∈

N j
( v) such that there does not exist (x′, y′) ∈ M , s.t. x = x′ or y = y′, and

furthermore, M is maximal in that no more ordered pairs may be added to M
and keep the constraint above. Mmj(u, v) is the set of all such M ’s. Mmj(u, v)
is a set of sets.

By a “maximal nonrepeating matching”, we mean that we form as many
pairs as we can from the elements in N j

(u) and N j
(v) with the restriction that

no element in either N j
(u) and N j

(v) may be used in more than one ordered
pair.

The parameter β is a decay factor 0 < β < 1, which helps reduce the
influence of neighbors with further distance due to the recursive effect. l1(u, x)
and l2(v, y) represent directed edge labels s.t. l1, l2 ∈ L, and l1 = l2, x ∈ N(u)

and y ∈ N(v).

3.2 The Summary Graph Generator Algorithm

While calculating the neighborhood similarity, our proposed node similarity
metric makes calls to the immediate neighbors’ similarities. Since neighbors’
similarities depend on their own neighbors’ similarities, the immediate neigh-
bors’ similarities are not known ahead of time. A solution involving recursive
calls is not an efficient option in this case as it may lead to inefficient resource
utilization and excessive recursion. For instance, an object node n1 of a subject
node n2 in an RDF triple may be a subject node n1 of the object node n2 in
another RDF triple. Therefore, our algorithm runs in multiple iterations until
the rate of change in calculated similarities drops under a given threshold. It
is a similar approach to the PageRank algorithm [30]. The initial similarity
of a node pair is set to 1 if they share a common predicate and 0, otherwise.
Such that:
∀(u, v ∈ V ) :
(S(u, v) = 1)→ (|u ∩ v| > 0) and,
(S(u, v) = 0)→ (|u ∩ v| = 0)

Our approach is two folds. Firstly, the pairwise similarity algorithm calcu-
lates the similarity values for each pair which constructs a similarity matrix.
Once the pairwise similarities converge, the type class generation algorithm
begins and generates the type classes i,e, it assigns the node u and v to the
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same type class if their dissimilarity value is less than an auto calculated ε
threshold which is the class dissimilarity threshold.

As the algorithm generates common pairs if two candidate nodes that share
at least one common predicate, the overall complexity for the algorithm is n2

in the worst case. It occurs when all subject nodes in the RDF graph have a
common predicate with every other subject node. When the noise predicates
excluded, i.e. the predicates that is referenced by most if not all the subject
nodes, the algorithm performs better than n2. Thus, the complexity of the
algorithm depends on the characteristics of the dataset. On a dense graph,
the complexity approaches to n2 while it gets near to n(logn)k time in sparse
graphs, where k is a constant number of iteration.

The basic steps of the algorithm include sorting the triples according to
their predicate label, extraction of the subject node pairs for each of the pred-
icates, running the similarity computation algorithm in iterations until con-
vergence and generating the type classes based on the calculated similarity
measures.

The type class generation algorithm creates distinct classes, such that sub-
ject node pairs that have similarity greater than a given threshold get put
to the same type class. The input parameter β is a decay factor 0 < β < 1.
l1(u, x) and l2(v, y) represent directed edge labels s.t. l1, l2 ∈ L, and l1 = l2,
x ∈ N(u) and y ∈ N(v).

3.3 Dynamic Assignment of Weights of IRI Node Descriptors

An IRI node is described through its predicates and the collection of literal
neighboring nodes in the lexical form. For simplicity, we call the predicates
and literal neighboring nodes as descriptors of the IRI nodes. As stated above,
the similarity of a pair of IRI nodes depend upon their descriptor similarities
and the similarities of their neighbors.

The weight of each descriptor may vary significantly as each descriptor may
have different impact on an IRI node. Hence, identifying appropriate metrics
for generating IRI descriptor weights is a vital task in computation of accurate
similarity values.

Upon investigations on the factors that can impact the weight of a de-
scriptor, we propose an approach in this study for generating the importance
weights of the IRI node descriptors automatically. Based on the investigations,
we think that the weight of a descriptor may differ for each IRI for which it is
a descriptor and the weight increases proportionally by the number of times a
descriptor appears in the reference IRI, but it is offset by the frequency of the
descriptor in the entire RDF dataset. This tendency is similar to the concept
of the term frequency-inverse document frequency (tf−idf). While computing
the weight of properties dynamically, we apply the tfidf to the properties and
nodes in RDF graphs. tfidf is calculated as follows:

tfidf(p, u,G) = tf(p, u)× idf(p,G). (7)
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Algorithm 1: SimMeasure

input : Graph G(V, L,E)
output : Similarity-Matrix S, Pairs H
parameter: MaximumIteration MaxIter, Iteration-Convergence-Threshold Ict

∀pair(u, v) ∈ V (S(u, v)← 0);

H ← ∅;
T ← Sort(E) by l, u, v s.t. l(u, v) ∈ E;

for each distinct pair(u, v) from T do
if ∃(l1(u, x) and l2(v, y)) s.t. l1 = l2 then

S(u, v)← 1

P (u, v)← (u, v, Lj , Nj(u), Nj(v)) where u, v ∈ V , Lj is the list of common
labels between u and v, and Lj ∈ L
H ← H ∪ {P (u, v)}

end

end
Sprevious ← ∅
converged← false

count← 0

while converged = false and count < MaxIter do
for each((u, v, Lj , Nj(u), Nj(v)) ∈ H) do

PairSim(u, v)k = (1− β)× 1
|u∪v| × (

∑
j∈(u∩v)

maxM∈Mmj(u,v)(

∑
(x,y)∈M

Sim(x,y)k−1

N
j
u+N

j
v−|M|

)× wj) + β

S(u, v)← PairSim(u, v)k

end
converged = |S − Sprevious| ≤ Ict
Sprevious ← S

count← count+ 1

end
return S,H

where the term frequency (tf) [27] represents the frequency of a proposition p
with respect to a graph subject node u. More exactly, when u ∈ V and p ∈ L,
then

f(p, u) = |{v ∈ V : p(u, v) ∈ E}|. (8)

Equivalently, f(p, u) is the number of RDF triples with subject u and
property p.

To define tf(p, u), it is helpful to have a notation for the set of all properties
with subject u. Thus, for u ∈ V , L(u) = {q ∈ L : ∃v ∈ V with q(u, v) ∈ E}.
Then

tf(p, u) =
f(p, u)∑

q∈L(u) f(q, u)
. (9)
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Algorithm 2: CreateClasses
input : Similarity-Matrix S, Pairs H
output : Auto-Generated-Type-Classes-Map C
parameter: Class-Dissimilarity-Threshold ε

for each((u, v, Lj , Nj(u), Nj(v)) ∈ H) do
if C(u) exists then

ci ← C(u)

else
ci ← {u}

end

end
if 1− S(u, v) < ε then

if C(v) exists then
ci ← ci ∪ C(v) else

ci ← ci ∪ {v}
end

end
ci ← C(v)

C(u)← ci

C(v)← ci

end

end
return C

The inverse document frequency (idf) [37] represents the frequency of a
property usage across all graph nodes, and it is defined as

idf(p,G) = ln
|V |

|{u ∈ V : p ∈ L(u)}|
. (10)

The property importance weights are based on the degree of distinctiveness
of a property describing an entity. With property distinctiveness, we mean the
uniqueness of a property in describing the key characteristics of an entity type.
For instance, if a property is specific to an entity type, it is a distinguishing
character of the type from other types. When a property exists in all entity
types, its quality of being distinctive is low. The noise labels tend to be common
for a majority of entities if not for all entities. By increasing importance weights
of properties with a higher degree of distinctiveness, we reduce the importance
of noise labels automatically. As a result, the noise labels have significantly
less impact on the overall similarity measures.

3.4 Class Predicate Stability

In this work, the summary graph is built automatically from an RDF dataset.
However, automatically generated summary graphs can be error prone. It is
essential to have an effective metric to measure the degree of confidence of a
relation between classes in the summary graph. We define this metric as Class
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Predicate Stability (CPS), which is a similar notion to the concept of stability
that introduced by Paige and Tarjan [31].

For u and v being IRIs in the dataset, G = (V,E, L), and u ∈ c1 and v ∈ c2
with both c1 and c2 being type classes in the summary graph, G′ = (V ′, E′, L′),
a class relation between the class c1 and the class c2 is generated as a predicate
and represented as l(c1, c2) if there is at least one relation l(u, v). Consequently,
l ∈ L′ and l(c1, c2) ∈ E′.

The CPS metric is calculated as the number of the IRI nodes u in class
c1 having a triple of the form (u, p, v) with u ∈ c1 and v ∈ c2 divided by the
total number of the IRI nodes in c1 in the summary graph such that the triple
(c1, p, c2) is in the summary graph G′ and c1 and c2 are type class IRI nodes
with p being a predicate between them. CPS(c1, p, c2) is formulated as

CPS(c1, p, c2) =
|(u, p, v) : u ∈ c1, v ∈ c2}|

|c1|
(11)

where |c1| is the number of IRI nodes in the class c1. Note that |c1| > 0.
The CPS value for a triple (c1, p, c2) indicates the degree of partitioning

coarseness of the type classes c1 and c2 with the predicate p in the summary
graph. Hence, the mean of all the CPS values in the summary graph is an in-
dicator of accuracy for the generated summary graph. CPS(G′) is formulated
as

CPS(G′) =

|E′|∑
i=1

CPS(ci1, p
i, ci2)

|E′|
(12)

where G′ = (V ′, E′, L′) is the summary graph and pi(ci1, c
i
2) ∈ E′, and thus

|E′| > 0.
For two classes c1 and c2 in the summary graph, when either all the IRI nodes
from c1 are connected with a predicate p to at least one IRI node in c2 or none
of the IRI nodes in c1 are connected with the predicate p to an IRI node in
c2, we call that the classes c1 and c2 have full CPS.

3.5 Automatic Calculation of the Class Dissimilarity Thresholds

Our approach automatically builds the summary graph from RDF data. A
drawback in the automatic summary graph generation approach is the need
for estimating the optimum parameters that help determine the type classes.
As expected, higher class dissimilarity threshold generates more coarse classes,
whereas the classes become more granular when the threshold is chosen smaller.
The optimum values for the class dissimilarity threshold depend on the char-
acteristics of the datasets. In real-world datasets, users may not have a good
grasp on the underlying data to determine optimal class dissimilarity threshold
values.
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To determine how closely the entities fit the type class, an effective metric
is needed to measure the degree of fit within each type class in the summary
graph. For this purpose, we utilize the root-mean-square deviation (RMSD),
which is a commonly used measure of the differences between the values in
comparison [24].

The root-mean-square deviation (RMSD) in RDF summary graphs

The RMSD represents the amount of the deviations of IRI node property
values from the class center and provides a single measure of predictive power.
In RDF summary graph, we calculate the overall RMSD by aggregating the
sum of RMSD values for each type class in the summary graph.

To calculate the RMSD of summary graph, we first determine the centroids
for each type class and then compute the RMSD between the class centroids
and all IRI nodes within the type class using Manhattan distance. In RMSD
calculation, the IRI node properties represent the dimensions of the IRI nodes
within the type class. RMSD(G′) of summary graph G′ is formulated as fol-
lows

RMSD(G′) =
∑
ci∈G′

√√√√√ n∑
(i=1)∈L′

(xi − x̄)

n
(13)

where ci, L
′ are, respectively, the list of classes and the property labels in the

summary graph G′. xi represents the IRI nodes in type class and x̄ denotes
the centroid for members of a particular type class in the summary graph G′.

Higher RMSD values in a summary graph indicate that entities within type
classes sparsely located. When the entities in type classes are very similar to
each other, the center of the cluster will be dense. Thus, the sum of distances
to the centroids and the cumulative RMSD value will be lower accordingly.

Discovery of Class Dissimilarity Threshold

To discover the type classes in summary graph automatically, we propose
a measure, called Favorability, to calculate the class dissimilarity threshold
automatically as follows.

Favorability(G′) = max

{
Stability(G′) ∗ TypificationRate(G′)

(RMSD(G′) + 0.1)

}
(14)

The idea behind the formula is that we think that the quality of summary
graph type classes is associated and directly proportional to the summary
graph stability, a measure of relationships between type classes, and the ratio
of entities belonging to a type class, and inversely proportional to the RMSD,
the degree of inner class deviation.
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Algorithm 3: FindOptimumEpsilon
input : Similarity-Matrix S, Pairs H, Minimum-Threshold minε,

Maximum-Threshold maxε, Number-of-try n, Previous-Favorability
prev favor, Previous-Optimum-Threshold prev optimumε

output : Optimum-Threshold optimumε
parameter: Epsilon-Convergence-Threshold Ect

currentε ← minε

inc← (maxε −minε)/n
optimumfavor ← prev favor

optimumε ← prev optimumε

while currentε ≤ maxε do
(G′, C)← CreateClasses(S,H, currentε)

Favorability(G′) =
Stability(G′)∗TypificationRate(G′)

(RMSD(G′)+0.1)

if Favorability(G′) > optimumfavor then
optimumfavor ← Favorability(G′)

optimumε ← currentε
end
currentε ← currentε + inc

end
if |(optimumfavor − prev favor)| > Ect then

optimumε ← FindOptimumEpsilon(S,H, optimumε − inc, optimumε +
inc, n/2, optimumfavor, optimumε)

end
return optimumε

In the formula, Favorability(G′) is the class dissimilarity threshold for
the summary graph G′ and TypificationRate(G′) represents the rate of en-
tities that belong to a type class based on the class dissimilarity threshold.
The TypificationRate(G′) is low when the class dissimilarity threshold is too
high since the number of entities satisfying high similarity threshold for class
membership will be small.

To obtain the high quality results while reducing the computation cost,
we gradually change the threshold values in constant number of times and set
the class threshold value that provides the maximum value of the proposed
measure. The algorithm 3 demonstrates how the optimum class dissimilarity
threshold is discovered utilizing the favorability measure. In the algorithm,
optimumε refers to the optimum class dissimilarity threshold for the summary
graph.

The proposed automatic threshold discovery measure is not assumed to be
perfect. Finding optimum summary graph type classes is a formidable problem
as the quality of summary graph is dependent on the type of datasets. Despite
this, the proposed measure integrates different aspects of the graph summaries
and provides intuitively accurate graph summaries based on our evaluations.
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4 Evaluations

In the evaluations, we conducted preliminary experiments on three datasets:
a subset of DBpedia [3]; a subset of SemanticDB [13], and a subset of Lehigh
University Benchmark (LUBM) [17]. Our experimental datasets are in different
domains and they represent different aspects of real world semantic data.

SemanticDB is a Semantic Web content repository for Clinical Research
and Quality Reporting in cardiovascular surgery domain. The structured entity
type information exist in SemanticDB which we utilized as the ground truth
for the verification of the algorithm. Lehigh University Benchmark (LUBM)
is a well-known benchmark for OWL knowledge base systems, which also has
entity type information available. But unlike SemanticDB, LUBM data has
hierarchical types. Lastly, DBPedia a central source in the Linked Open Data
Cloud [6] and is a commonly used general purpose dataset. However, using the
entity type information for the verification of the algorithm is more problem-
atic in DBPedia, as the type information may not present, or an entity may
have several types including the hierarchical types. Therefore, we manually
verified the results of the algorithm. Table 1 demonstrates a sample of RDF
triples from each dataset in the evaluations.

4.1 Assessing Algorithm Parameters

We tested several parameters of the algorithm, including the maximum itera-
tion, beta factor, class dissimilarity threshold, iteration convergence threshold
(Ict), and the size of dataset in type generation. The results of our evaluations
are demonstrated in Table 2. For verification, we extracted the ground truth,
entity types present in the datasets, against the entity type classes generated
by the algorithm. For the assessment of our evaluations, we used the measure
of precision. Precision is defined as the ratio of correct results over all results.

The similarity computation algorithm stops the iterations, once the rate of
change in the similarity measures drops below the threshold or once it reaches
the maximum number of iterations. In our evaluations, we observed that the
similarity measures typically converge after a few iterations with the values
of the maximum number of iterations and the iteration convergence threshold
being as 10 and 0.001, respectively.

4.2 Performance of dynamic assignment of descriptor weights

We also evaluated the performance of dynamic assignment of descriptor weights.
Table 3 shows a sample of dynamically assigned descriptor weights from each
dataset. As expected, the algorithm assigned higher weights to the proper-
ties with a higher degree of distinctiveness describing the resource type. For
instance in LUBM dataset, takesCourse property is more descriptive of the
Student type than the name property, which is a common property for all
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Table 1 A Sample of RDF Triples from Each Dataset

Dataset Subject Predicate Object

SemanticDB SurgeryProcedure:236 SurgeryProcedureClass ”cardiac valve”

SemanticDB SurgeryProcedure:236 CardiacValveEtiology ”other”

SemanticDB SurgeryProcedure:236 belongsToEvent Event:184

SemanticDB SurgeryProcedure:236 SurgeryProcedureDescription ”pulmonary valve repair”

SemanticDB SurgeryProcedure:236 CardiacValveStatusologyData ”native”

SemanticDB SurgeryProcedure:104 SurgeryProcedureClass ”cardiac valve”

SemanticDB SurgeryProcedure:104 CardiacValveEtiology ”rheumatic”

SemanticDB SurgeryProcedure:104 belongsToEvent Event:81

SemanticDB SurgeryProcedure:104 SurgeryProcedureDescription ”mitral valve repair”

SemanticDB SurgeryProcedure:104 CardiacValveStatus ”native”

LUBM Student49 telephone ”xxx-xxx-xxxx”

LUBM Student49 memberOf http://www.Department3.University0.edu

LUBM Student49 takesCourse Course32

LUBM Student49 name ”UndergraduateStudent49”

LUBM Student49 emailAddress ”Student49@Department3.University0.edu”

LUBM Student49 type UndergraduateStudent

LUBM Student10 telephone ”xxx-xxx-xxxx”

LUBM Student10 memberOf http://www.Department3.University0.edu

LUBM Student10 takesCourse Course20

LUBM Student10 name ”UndergraduateStudent10”

LUBM Student10 emailAddress ”Student10@Department3.University0.edu”

LUBM Student10 type UndergraduateStudent

DBPedia Allen Ginsberg wikiPageUsesTemplate Template:Infobox writer

DBPedia Allen Ginsberg influenced John Lennon

DBPedia Allen Ginsberg influences Fyodor Dostoyevsky

DBPedia Allen Ginsberg deathPlace ”New York City, United States”@en

DBPedia Allen Ginsberg deathDate ”1997-04-05”

DBPedia Allen Ginsberg birthPlace ”Newark, New Jersey, United States”@en

DBPedia Allen Ginsberg birthDate ”1926-06-03”

DBPedia Allen Ginsberg deathPlace ”New York City, United States”@en

DBPedia Albert Camus wikiPageUsesTemplate Template:Infobox philosopher

DBPedia Albert Camus influenced Orhan Pamuk

DBPedia Albert Camus influences Friedrich Nietzsche

DBPedia Albert Camus deathPlace ”Villeblevin, Yonne, Burgundy, France”@en

DBPedia Albert Camus deathDate ”1960-01-04”

DBPedia Albert Camus birthPlace ”Drean, El Taref, Algeria”@en

DBPedia Albert Camus birthDate ”1913-11-07”

type classes in the dataset. Thus, takesCourse was assigned a weight of 44.1%
as compared to the weight of 7.5% for name.

4.3 Effectiveness of the Automatic Computation of Class Thresholds

In a set of evaluations, we further assessed the effectiveness of automatic cal-
culation of the class threshold approach using a subset of the same set of
datasets. As demonstrated in Table 4, the stability, RMSD and optimum class
threshold may vary depending on the characteristics of the datasets. In LUBM

http://www.Department3.University0.edu
http://www.Department3.University0.edu
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Table 2 Evaluations of Algorithm Parameters

Dataset #Triples Class Threshold #Iterations Stability Precision

SemanticDB 6,450 0.5 4 61.0% 87.3%

LUBM 6,484 0.3 3 67.8% 90.7%

DBPedia 10,000 0.6 3 82.4% 92.8%

Table 3 An Excerpt from Dynamically Assigned Weights of Descriptors

Dataset Node Pair Descriptor Type Descriptor Weight

LUBM (Student49,Student10) Property memberOf 14.7%

LUBM (Student49,Student10) Property takesCourse 44.1%

LUBM (Student49,Student10) Property emailAddress 14.0%

LUBM (Student49,Student10) Property type 5.7%

LUBM (Student49,Student10) Property name 7.5%

LUBM (Student49,Student10) Property telephone 14.0%

SemanticDB (Procedure:236,Procedure:104) Literal ”cardiac” 13.6%

SemanticDB (Procedure:236,Procedure:104) Literal ”native” 15.2%

SemanticDB (Procedure:236,Procedure:104) Literal ”other” 14.3%

SemanticDB (Procedure:236,Procedure:104) Literal ”pulmonary” 22.8%

SemanticDB (Procedure:236,Procedure:104) Literal ”repair” 17.2%

SemanticDB (Procedure:236,Procedure:104) Literal ”valve” 16.9%

DBPedia (Allen Ginsberg,Albert Camus) Property wikiPageUsesTemplate 2.2%

DBPedia (Allen Ginsberg,Albert Camus) Property influences 58.3%

DBPedia (Allen Ginsberg,Albert Camus) Property deathDate 2.2%

DBPedia (Allen Ginsberg,Albert Camus) Property birthDate 2.4%

DBPedia (Allen Ginsberg,Albert Camus) Property birthPlace 2.1%

DBPedia (Allen Ginsberg,Albert Camus) Property deathPlace 2.1%

DBPedia (Allen Ginsberg,Albert Camus) Property influenced 30.7%

dataset, the RMSD result was higher compared to the other datasets. Among
them, the highest optimum class dissimilarity threshold, 0.56, was achieved
in DBPedia dataset. This means that the entities within the type classes of
the summary graph generated by the dataset contained similar properties and
were very similar to the entities that belonged to the same type class. In our
evaluations, we observed that the epsilon convergence threshold around 0.9
performed well.

Table 4 Automatic Calculation of the Class Thresholds Results

Dataset #Triples Optimum Class Threshold RMSD Stability

SemanticDB 1000 0.32 0.8 74.0%

LUBM 1000 0.26 4.8 83.0%

DBPedia 1000 0.56 0.9 82.8%
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4.4 Generated Summary Graph

Figure 2 illustrates a small sample set of entities in the RDF graph from
SemanticDB and their corresponding type classes in the summary graph. As
demonstrated in Figure 2, the classes C-E1 and C-E2 represent the entities
that are patient event types. They are classified in two different classes because
when compared with the original dataset we observed that the entities in C-E1
are more specifically patient surgery-related event types while the entities in
C-E2 are patient-encounter related event types. Also, the classes E-SP1 and
E-SP2 are surgical procedure types. More specifically, the entities in E-SP1 are
coronary artery and vascular procedure-related procedures while the entities
in E-SP2 are cardiac valve related-procedures. The classes C-VP and C-CAG
represent the entities that are related to vascular procedures and coronary
artery grafts, respectively. We implemented a basic algorithm to name the
classes based on the class member IRIs. The classes C-E1, C-E2, C-SP1, C-SP2,
C-VP and C-CAG are named as C-Event-1, C-Event-2, C-SurgicalProcedure-
1, C-SurgicalProcedure-2, C-VascularProcedure and C-CoronaryArteryGraft,
respectively.

Fig. 2 A figure consisting of different types of entities and elements belonging to the type
classes.

The summary graph is generated along with the classes and the class re-
lations with a stability measure for each relation. Figure 3 shows an excerpt
from the summary graph representing the class relations from SemanticDB
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Fig. 3 An excerpt from the generated summary graph.

dataset. The percentage values beside the predicates are the stability (CPS)
measure.

Overall, we observed that the class dissimilarity threshold ranging between
0.25 to 0.6 with the beta factor of 0.15 appeared to work well in our evaluations.
The automatically calculated class dissimilarity threshold values during the
evaluations were in close proximity of the threshold values for the datasets
that were kept as the ground truth in the assessment.

5 Limitations of the method

The algorithm used for the similarity calculation runs in the n2 in the worst
case and in the n(logn)k time in average, where k is a constant number of iter-
ations. For Web-scale usage, the scalability of the algorithm needs to be further
improved as the size of the input RDF data can be very large. For instance,
as of today, the Linking Open Data[6] project already contains more than 30
billions triples. In future work, we plan to address the performance issues for
big datasets in the worst-case scenario and perform Web-scale evaluations.

Furthermore, the literal node similarity calculation currently does not per-
form well in cases where the literal nodes belong to different languages with
disparate linguistic properties as we do not perform any linguistic analysis.

Also, in the current study, the classes in the summary graph are automati-
cally named exploiting the frequent entity names and literal values that belong
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to the related class. The naming method may not always generate the best
names for human readers.

6 Related Work

The problem of Graph Summarization has been studied by various communi-
ties from different perspectives including Graph compression, graph partition-
ing, social network analysis, data visualization.

From the Graph Compression perspective, numerous approaches have ex-
plored the graph summarization problem with the aim of reducing the stor-
age space of the large graph datasets [33,15,18,11]. Different from these ap-
proaches, we deal with labeled directed graphs as in the case of RDF. Also,
a summary graph structure based on the original graph is generated in our
method.

Several studies such as [28,10] have broadly investigated statistical methods
to help understand the properties of large networks. These approaches provide
useful information but they do not generate a summary graph from the graph
data as it is the focus of our approach.

In the area of graph partitioning area, many methods have been introduced
[29,42,39,43] to partition graph data into specific components. While these
methods are helpful in discovering neighborhoods in large graph networks,
they don’t consider the similarities of the node properties. Tian et al. [39,
43] proposed an aggregation-based graph summarization utilizing graph node
attributes. However, the approach only deals with categorical node attributes
and users need to group numerical attributes into categories manually, which
is not feasible for large real-world datasets.

In the Semantic Web community, there has also been some related studies
[8,23,40,5,16]. The studies in [8] and [16] are query driven graph summa-
rization methods. They primarily focus on the problem of SPARQL query
formulation over RDF data. The approaches using bisimulation [23,40] have
a limitation to be applied in real-world datasets due to the exponential com-
plexity of bisimulation.

Neighborhood-based similarity measures have been investigated by several
studies including SimRank [20], SimRank++ [2], PageSim [25], MatchSim [26],
PathSim [38], and Co-Citation [36]. Especially, SimRank is a widely-known
measure, which utilizes the mean of the edge similarities between nodes. How-
ever, this may reduce the similarity score of similar graph nodes in a counter-
intuitive manner when the nodes have multiple edges that differ in weights.
On contrary, our method considers the maximal matching for calculating the
similarity in a structural context.

Entity properties might have different impact on entity similarity scores.
The weights of the entity properties can be determined using a similarity mea-
sure. There are some studies that try to calculate the property weights and
apply them in similarity calculations such as [35,9]. But, they primarily fo-
cus on instance matching. In instance matching, the property weights yield
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precedence to properties making the instances more unique. Contrary to in-
stance matching, the properties that would help describe the entity types more
distinctively are weighted higher in our approach. In [9], they determine the
property weights using the distinct value based weight generation and assign
higher weight to a property that references more distinct values. However, a
training set of instances may not always be available.

7 Conclusion

In this paper, we have investigated the main aspects for graph summary prob-
lem in RDF graphs. We described our pairwise graph node similarity calcu-
lation with the addition of the property and string word importance weights,
along with the Class Predicate Stability metric, which allows evaluation of
the degree of confidence of each class predicate in the summary graph. Fur-
thermore, we studied obtaining the optimum value of the class dissimilarity
threshold automatically in RDF summary graphs. Based on our investigations,
a measure to determine optimum class dissimilarity thresholds and an effective
method to discover the type classes automatically were introduced. Using a
set of real-world datasets, we assessed the effectiveness of our automatic sum-
mary graph generation approach. For future work, we plan to focus on the
scalability of the proposed method in very large datasets.
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