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Abstract

Natural language understanding is a key task in a wide range of applications targeting data interoperability or analytics.
For the analysis of domain-specific data, specialised knowledge resources (terminologies, grammars, word vector models,
lexical databases) are necessary. The heterogeneity of such resources is, however, a major obstacle to their efficient use,
especially in combination. This paper presents the open-source Diversicon Framework that helps application developers
in finding, integrating, and accessing lexical domain knowledge, both symbolic and statistical, in a unified manner. The
major components of the framework are: (1) an API and domain knowledge model that allow applications to retrieve
domain knowledge through a common interface from a diversity of resource types, (2) implementations of the API
for some of the most commonly used symbolic and statistical knowledge sources, (3) a domain-aware knowledge base
that helps integrate static lexico-semantic resources, and (4) an online catalogue that either hosts or links to existing
resources from multiple domains. Support for Diversicon is already integrated into two of the most popular ontology
matcher applications, a fact that we exploit to validate the framework and demonstrate its use on a example study that
evaluates the effect of several common-sense and domain knowledge resources on a medical ontology matching task.

1 Introduction

Both unstructured and structured data tend to contain
large amounts of natural language text, shorter or longer
depending on the nature of the data or metadata (e.g.,
schemas, queries, classification labels, structured data val-
ues, semi-structured or unstructured text streams). A cer-
tain level of formal understanding of such pieces of text
is a necessary prerequisite to a wide range of applications
targeting data interoperability (ontology or schema align-
ment, data integration, query rewriting, entity linking,
etc.) or analytics (information retrieval, semantic anno-
tation). Tools for natural language understanding (NLU)
typically exploit some form of background knowledge for
the semantic analysis of text, where we mean knowledge in
the largest possible sense: vocabularies, lexical databases,
but also corpus-based resources such as word embeddings,
grammars, or machine learning models in general.

Often data and metadata pertain to specific application
domains, with text obeying the conventions of specialised

domain terminology and grammar. In order to maintain
the efficiency of natural language understanding methods
for these use cases, the use of common-sense lexical re-
sources, such as WordNet, Wiktionary, or word embed-
dings trained on general corpora, is generally not suffi-
cient and need to be replaced or extended by domain-
specific terms and grammar. This is usually achieved by
using domain terminologies or statistical models trained
on domain-specific corpora.

In the last decade, deep learning approaches relying
solely on unstructured textual input have met considerable
success in several areas of NLU and have also been suc-
cessfully applied in domain contexts using domain adap-
tation or transfer learning techniques [25]. More re-
cent research, however, highlighted inherent limitations
of fully unsupervised approaches in terms of their abil-
ity actually to understand meaning in text [20]. Conse-
quently, the computational linguistics and NLP commu-
nities are starting to turn towards hybrid approaches that
use structured and unstructured lexical knowledge in com-
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bination [32]. Inversely, the Semantic Web and knowledge
graph communities are increasingly incorporating corpus-
based approaches into solving traditionally knowledge-
driven problems such as entity linking and data integra-
tion [34].

The effective use of domain-specific background
knowledge resources, however, is subject to numerous
challenges.

Finding knowledge. Knowledge resources need to be
found online or offline and their relevance to the applica-
tion evaluated, a time-consuming task for those not famil-
iar with the whereabouts of existing resources.

Plugging in knowledge. The resources need to be plugged
into the application, which typically involves interfacing
with each resource individually through bespoke imple-
mentation. Beyond the problem of interfacing, in the
case of large-scale resources—which is typical for domain
knowledge—the application may also need to handle per-
formance and memory management issues (e.g., caching).
For these reasons, exploiting several resources, whether as
part of an experimentation process or for fusion-based ap-
proaches, may prove to be prohibitive.

Integrating knowledge. The simultaneous use of comple-
mentary yet interrelated domain resources may be neces-
sary, as a single resource may not provide sufficient cov-
erage of a domain or because the application pertains to
multiple domains. Mature disciplines have produced do-
main terminologies that spread through subdomains, go
deep into specialised areas, and are diverse due to the vary-
ing contexts and points of view of domain experts.1 Not
only may such resources overlap or be related through spe-
cialisation, they may also represent knowledge differently
(e.g., wordnets, domain terminologies, and word embed-
dings adopt distinct knowledge models that are hard to rec-
oncile), making integration a prerequisite before their ef-
fective use.

Filtering knowledge. Large-scale knowledge bases often
cover multiple domains, either because they incorporate
domain-specific resources or because their common-sense
knowledge is annotated by domain information (as in the
case of Princeton WordNet). For high-precision reason-

1For example, the SNOMED ontology of medical terms contains over
500,000 concepts and 1,500,000 labels in English only.

ing with domain knowledge, in other words to avoid noise
originating from out-of-domain content, it is important to
be able to filter query results by domain. However, as re-
sources model domains in different ways (if at all), the fil-
tering mechanism also needs to be resource-specific.

Processing labels. Tasks such as semantic text annotation
and indexing, entity linking, or the alignment of schema
labels or ontologies all need to apply some form of NLP
in order to extract terms in their canonical forms for sub-
sequent lookup, a non-trivial task whose complexity de-
pends both on the language and the domain used.

In this article we present Diversicon, a domain-aware,
open-source lexical knowledge framework that facilitates
access to domain knowledge resources for semantic anal-
ysis tasks involving natural language understanding on
the lexical level. The framework consists of a common
domain-aware knowledge model as well as a set of com-
ponents that respond to the challenges cited above. On
top of the framework itself, we release a set of knowledge
resources, adaptor implementations to some well-known
online and offline lexical databases and resource types
such as WordNet, BabelNet, and the widely used word em-
bedding models word2vec and GloVe. We also provide
extended versions to two of the most popular and pow-
erful ontology matcher applications, SMATCH and Log-
Map, that are equipped to use Diversicon as their under-
lying knowledge provider. As also demonstrated in our
example study, due to the easy integration of domain re-
sources through Diversicon, these matchers can be more
effectively used for the alignment of domain ontologies,
schemas, and classifications.

The rest of the paper is organised as follows. Section 2
provides an overview of the architecture of the framework
and its underlying knowledge model. Sections 3 and 4
present the needs of the most important semantic interop-
erability applications targeted by the framework and, ac-
cordingly, the Diversicon API designed to meet these re-
quirements. Section 5 presents the Diversicon Knowledge
Base and Catalogue as background resource components
of the framework. Section 6 demonstrates the use of the
framework on a example study on matching medical on-
tologies. Section 7 presents the related work and the paper
concludes in section 8.
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2 Framework Overview
Our goal is to provide support for the efficient finding, in-
tegration, and querying of domain knowledge resources
through a pluggable knowledge framework. The main
components of the framework as shown in fig. 1, from left
to right, are:

• Static Resources: downloadable resources on the
web, containing dumps of lexical-semantic knowl-
edge in the form of wordnets, domain terminologies,
lexicons, and vector space models such as word em-
beddings;

• the Diversicon Catalogue: a metadata catalogue that
indexes static lexical domain resources and provides
some of them for download in a format directly plug-
gable into the framework;

• Knowledge Services: database systems that pro-
vide query services over lexical-semantic knowledge,
such as the Diversicon KB introduced in this pa-
per, the Unified Medical Language System, common-
sense multi-domain services such as DBpedia, Ba-
belNet, and libraries that extract lexical knowledge
from word vector models;

• the Diversicon KB: a knowledge base that facilitates
the integration of static domain knowledge resources
under the common Diversicon Knowledge Model;

• the Diversicon API (DivAPI): a unified knowledge
retrieval interface for NLU applications, with imple-
mentations towards a variety of knowledge bases;

• Applications: solutions for data analysis and interop-
erability, such as data integration tools, NLP tools,
ontology matchers, or search engines, that consume
domain knowledge from various sources through
calling the DivAPI.

Once set up, the framework provides applications with
a unified access to multiple resources describing multiple
domains of knowledge. The DivAPI provides language-
and domain-aware knowledge lookup methods tailored to
the needs of NLU applications. It hides implementation
details and modelling heterogeneities of knowledge bases

and resources, allowing a seamless switch from one re-
source to another for application developers. The Divers-
icon KB provides integrated access to resources other-
wise available as static files, separating the responsibility
of loading and integrating heterogeneous knowledge re-
sources from their use, taking care of the former and let-
ting applications concentrate on the latter.

3 Target Applications
In order to motivate the design of the framework, we
briefly evoke the requirements of an example set of target
applications. These applications all involve a natural lan-
guage understanding task that benefit from the use of lexi-
cal domain knowledge. Given the diversity of approaches
to NLU, it would be impossible to foresee an exhaustive
set of services that cater to all possible needs; however,
the interfaces and implementation of Diversicon remain
open to assure their extensibility.

Domain Ontology Alignment. This task also covers
schema mapping and query rewriting in data integration
tasks, as well as the matching of domain classifications.
Most alignment methods involve the comparison of node
labels, based on various forms of evidence such as string
similarity or ontological relatedness. The most relevant
case to us, however, is the use of lexico-semantic similarity
that relies on the equivalence, similarity, or relatedness of
the meanings of words in the label. Evidence for such re-
lations is typically obtained either through lexical expan-
sion, i.e., the retrieval of synonymous, similar, or related
words, or through reasoning with lexico-semantic axioms
(e.g., hypernymy, semantic similarity, derivational relat-
edness). Clearly, such evidence can be retrieved from both
symbolic and statistical domain resources, such as domain
terminologies or word embeddings trained on domain cor-
pora. As indicated in fig. 1, support for the DivAPI and
the Diversicon Framework has already been implemented
for LogMap [16], one of the best-faring matchers in mul-
tiple tasks of the yearly Ontology Alignment Evaluation
Initiative2, and SMATCH [12], a popular matcher with
thousands of downloads, and derived applications such
as schema matching [11] and dynamic query alignment

2http://oaei.ontologymatching.org/
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Figure 1: High-level architecture of interoperability applications using background knowledge resources through the
DivAPI and the Diversicon Knowledge Base. Components contributed (created or extended) by the paper have been
highlighted in blue with thick framing.

[22]. Integration with Diversicon provides these matchers
with access to domain knowledge, improving their preci-
sion and recall (cf. section 6.3).

Semantic Annotation. Semantic annotation is used in a
vast range of applications fulfilling diverse goals and ap-
proaches. We cannot attempt an exhaustive coverage of
them; in particular, we do not consider tasks that are com-
monly solved by end-to-end machine learning approaches,
such as sentiment analysis. Rather, we concentrate on a
subset of usages where symbolic domain knowledge is
used for annotation, such as semantic indexing for infor-
mation retrieval, entity linking, or information extraction
for data integration [28]. In all of these cases, the task
consists of identifying labels within the text that refer to a
specific category of domain concepts or entities. Seman-
tic annotation is typically divided into a prior recognition
step that identifies the subset of words and expressions to
be annotated (e.g., named entity recognition), followed by
a disambiguation step that selects the most likely meaning
for each item recognised. In domain applications, the base
set of meanings usually consists of domain terminologies.
Diversicon can be used to query such terminologies in a
uniform manner, either separately or simultaneously. Dis-

ambiguation algorithms, in turn, often rely on a related-
ness measure, either computed within the textual context
(semantic relatedness across words or across meanings)
or with respect to a global domain context (relevance of a
meaning with respect to a given domain), as in [2]. The
Diversicon Knowledge Model explicitly represents word–
word, meaning–meaning, and meaning–domain relations
and is able to retrieve them from a combination of re-
sources (respectively: word vector models such as GloVe
or word2vec, terminological DBs such as [3], and domain
DBs such as [18, 14]) in order to support disambiguation
algorithms.

Classification. In the context of NLU, automated clas-
sification is used to categorise large amounts of text—
documents or data records—under a varying number of
classes. However, as shown in [8], classification is an
umbrella term that denotes very different cognitive mech-
anisms that may resemble both a similarity-based form
of recognition and a form of reasoning based on con-
cept subsumption (e.g., pizzeria is classified under the
broader term restaurant). Classic machine-learning-based
classification typically solves the former recognitional
task, while formal-knowledge-based approaches are better
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suited to reasoning. Depending on the underlying knowl-
edge resource, the API of Diversicon can provide either
approach with the right kind of lexical-level knowledge—
similarity or subsumption—or, due to the unified access,
allow for the combined use of both, e.g., by mapping sub-
sumption relations to similarity.

Resource Evaluation. A ‘meta-task’ that greatly bene-
fits from Diversicon is the comparison of knowledge re-
sources given their performance on a downstream NLU
task. Such an evaluation can help in choosing the best re-
source(s) for a task but also to accelerate the cycles of re-
source development. Our case study in section 6 presents
a large-scale example evaluation using five different re-
sources and two downstream applications, in no less than
fourteen (!) setups. The role played by Diversicon is to
unify the access to heterogeneous (and sometimes funda-
mentally diverse) resources and allow switching among
them in a trivially simple way (i.e., changing a single line
of source code).

4 The Diversicon API and Knowl-
edge Model

The DivAPI is a minimal yet powerful, Java-based collec-
tion of services, data structures, and constants, in a way
that corresponds to the typical use of domain background
knowledge by applications requiring semantic interoper-
ability over natural language text. The API acts as an ab-
straction layer towards a variety of knowledge resources,
leading to a pluggable architecture as shown in fig. 1. It
consists of the DivAPI Interface that defines and exposes
the services to applications in a unified manner, and of a
set of adaptors that implement the interface towards vari-
ous knowledge resources, including the Diversicon KB.

A prerequisite of providing a unified query interface for
a heterogeneous set of domain resources is to expose a
common knowledge model to matchers, to which each of
the resources needs to be mapped.

4.1 Knowledge Model
The Diversicon Knowledge Model serves as an interme-
diary between heterogeneous knowledge resources on the

one hand, and applications with differing needs and ap-
proaches on the other hand. Thus, the design challenge
was to find a suitable compromise between generality and
representational power in view of the targeted knowledge
sources and applications. Our example study (section 6)
found the current model to be an adequate interface be-
tween the applications and resources evaluated; neverthe-
less, a more widespread use of the framework may lead to
the fine-tuning or evolution of the model.

The heterogeneity of knowledge bases and resources
manifests itself in multiple ways:

• they may be mono- or multilingual;

• they may relate to single or multiple domains, with
the notion of domain modelled in various ways (or
not at all);

• they may represent meaning in different manners: al-
gebraically (as numerical vectors) or symbolically;

• they may represent different kinds of meaning:
lexico-semantic (e.g., wordnets or domain terminolo-
gies) or ontological.

Furthermore, for the majority of knowledge resources,
domain categories and the notion of domain itself are out-
side the scope of modelling, either because the resources
are domain-agnostic or because they relate to a single
domain and thus the categorisation is implicit. Explicit
domain categories become necessary, however, when a
knowledge base, resource, or application covers multi-
ple domains and intends to model this phenomenon in
a formal way. Several computational approaches to do-
main modelling have been explored in scientific literature.
Corpus-based approaches derive domains from words and
their context [13], an early and influential example being
the theory of lexical fields [30]. Lexicographically cre-
ated resources, such as domain dictionaries, are also word-
based. Other approaches apprehend domains as categories
of lexical meanings rather than of words [18, 14, 9].

In our model we adopt the semantic interpretation of
domain and define domains as sets over lexical mean-
ings, while remaining interoperable to a large extent with
corpus-based and lexically-oriented resources. We in-
troduce the fundamental entities and relationships of the
model below, also depicted in fig. 2.
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Figure 2: The three-layered, domain-aware Diversicon Knowledge Model adopted by the DivAPI

Word: a string of characters that is a lexeme (a lexical
item) of a language. In this paper we will also call ‘words’
multiword expressions (e.g., hot dog).

Concept: the unit of lexical meaning. A concept repre-
sents the meaning of zero, one, or more words in a given
language: our model is thus oriented towards the repre-
sentation of lexical (as opposed to ontological) meanings.

Domain: following the practice of meaning-based ap-
proaches [9, 13, 18], we define domains as sets over lex-
ical concepts. One concept can, in principle, belong to
several domains, or its domain may be undefined. The in-
terface defines its own domain hierarchy, represented as
string constants, based on the standard Universal Decimal
Classification.3

Word relation: a binary relation of two words, such as
weighted string similarity (depressed is similar to depres-
sion with a weight of 0.7) or morphological relatedness
(depression is the nominal form of depressed).

Concept relation: a binary relation of two lexical con-
cepts, such as equivalence, hypernymy, meronymy, or sim-
ilarity.

Domain relation: a binary relation of two domains: the
framework currently supports the parent domain hierar-
chical relation which can be used to define a hierarchy of
domains: if a concept belongs to the domain of Psychiatry
then it also belongs to its ancestor domains, e.g., Health-
care and Applied Sciences.

Word-to-concept relation: indicates that the concept is

3http://www.udcc.org

lexicalised by the word, e.g., the meteorological concept
of region of low atmospheric pressure is expressed by the
word depression. The model allows each relation to be
weighted by a real number, such as sense frequencies or
sense ranks as also used in Princeton WordNet. Depend-
ing on whether and how weighting is applied, concepts can
be conceived as either classical or fuzzy sets of synony-
mous words, analogously to WordNet synsets (synonym
sets).

Concept-to-domain relation: indicates that a concept be-
longs to a domain, e.g., the concept of chronic mild de-
pression belongs to the domain of psychiatry. The model
also allows these relations to be weighted by real numbers,
which means that domains can again be interpreted as clas-
sical or fuzzy sets over concepts. These correspond to
the domain models provided by well-known domain mod-
elling approaches such as WordNet Domains [18] and Ex-
tended WordNet Domains [14], respectively.

4.2 Interface
The DivAPI Interface is called by applications to which it
provides background knowledge in a suitable form. Appli-
cations, however, process natural language and use back-
ground knowledge in diverse manners internally. They
may reason quantitatively based on the similarity of strings
or concepts. Such applications expect background knowl-
edge to provide similarity measures between units of
knowledge (words or concepts):

CVD≈95% cerebrovascular disease
progressing stroke≈62% cerebrovascular disease
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Method Return value Weighted return value Input arguments Explanation
Word-level methods

getRelatedWords List(Word) List(Word, Weight) Lang, Domain, Word,
WordRelation

words that are synonymous, similar, or related to
the input word

getRelations Set(Word-
Relation)

List(WordRelation, Weight) Lang, Domain, Word, Word relatedness of the two input words

getLanguages Set(Lang) ∅ Domain, Word languages that cover the input word
getDomains Set(Domain) ∅ Lang, Word domains that cover the input word
getDomainsWeighted ∅ List(Domain, Weight) Lang, Word, Set(Domain) degree by which the input word belongs to each

domain
Concept-level methods

getConcepts Set(Concept) List(Concept, Weight) Lang, Domain, Word concepts expressed by the input word
getConstrained-
Concepts

Set(Concept) List(Concept, Weight) Lang, Domain, Word,
Concept

concepts expressed by the input word that are hy-
ponyms of the input concept

getWords Set(Word) List(Word, Weight) Lang, Concept words that express the input concept
getGloss String ∅ Lang, Concept gloss of the input concept in the input language
getRelatedConcepts Set(Concept) List(Concept, Weight) Concept,

Set(ConceptRelation)
concepts that are related to the input concept
through the given relations

getRelations Set(Concept-
Relation)

List(ConceptRelation,
Weight)

Concept, Concept lexico-semantic relations that hold between the
two input concepts

getLanguages Set(Lang) ∅ Concept languages that cover the input concept
getDomains Set(Domain) List(Domain, Weight) Concept domains that cover the input concept

Global methods
getLanguages Set(Lang) ∅ ∅ languages supported by the resource
getDomains Set(Domain) ∅ ∅ domains supported by the resource

Table 1: Methods for querying background knowledge provided by the current DivAPI to ontology matchers; most
methods have a qualitative and a weighted version as indicated by the return type

A more qualitative form of reasoning (e.g., logic-based)
may not need knowledge to be quantified but, in contrast,
may require relations to bear explicit semantics (e.g., as
equivalence, subsumption, antonymy):

CVD≡ cerebrovascular disease
progressing stroke@ cerebrovascular disease

Furthermore, applications may or may not have explicit,
symbolic internal representations of lexical concepts. In
the former case the application may need services such
as return me all meanings (concepts) of the word cat and,
subsequently, return me the similarity of the concepts of
‘cat’ and ‘kitty’. In the second case, the application may
work only with string representations internally and rely
entirely on the background knowledge service to provide
semantic reasoning capabilities, e.g., for lexical expan-
sion: return me all synonyms of the word cat.

Accordingly, the Interface is articulated around the fol-
lowing requirements:

• domain- and language-awareness: it has the ability
to filter results by language and by domain (if such
information is provided by the underlying resource);

• compliance to the Diversicon Knowledge Model: it
is based on an explicit representation of all five for-
mal model elements (as in fig. 2): words, concepts,
relations, languages, and domains;

• support for common semantic interoperability appli-
cations: covering the basic knowledge query needs
of the applications presented in section 3;

• support for both word-level and concept-level rea-
soning;

• support for both similarity-based and logic-based
reasoning: it has the ability to return both qualitative
and quantitative results.
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The list of background knowledge query methods of the
Interface, responding to the requirements above, are listed
in table 1. It can be seen from the figure that each method
has two versions: a qualitative one and a quantitative
weighted one. Thus, the qualitative version of getRelated-
Words will return a set of words that bear a relation (syn-
onymy or other) with the input word, while its quantitative
version will return a map where the degree of relatedness
of each word is given by a weight.

Most methods have a language or a domain input argu-
ment, or both. They allow the filtering of the output by
language or by domain, e.g., a query

getRelatedWords("eng", HEALTH, "cat", SYNONYMY)

with "eng" indicating English and HEALTH the domain,
will in principle only return ‘computer-aided tomography’
as opposed to terms pertaining to felines. The use of these
arguments is optional: either or both can be set as null,
in which case no filtering is applied.

4.3 Adaptors
The role of DivAPI Adaptors is to implement the Interface
methods with respect to specific knowledge bases and re-
sources, converting between the internal knowledge repre-
sentation of each of them and the Diversicon Knowledge
Model. However, just like end-user applications, knowl-
edge bases may be very different conceptually and may
not be able to provide all types of knowledge supported
by the Interface. For example, they may be monolingual,
mono-domain or domain-agnostic, and they may or may
not have an explicit representation of concepts or concept
relations.

The Diversicon Framework currently implements adap-
tors, freely available as part of the project distribution,
both for symbolic lexico-semantic domain knowledge
(currently the Diversicon KB and BabelNet) and for statis-
tical word-vector-based knowledge (two major word vec-
tor embedding approaches, word2vec and GloVe, are cur-
rently supported). By design, adaptors are independent of
each other and the Framework does not attempt to com-
bine knowledge provided by different sources. Such a be-
haviour would imply an awareness of the relative authority
of resources, as well as algorithmic strategies for knowl-
edge integration and inconsistency resolution. We believe
that such logic is safer and more robust to implement in

an ad-hoc manner on the application level. However, the
Diversicon KB, described in section 5, does provide infras-
tructure for the integration of static knowledge resources
within a single knowledge base.

Below we present the challenges and our solutions for
implementing adaptors for the most important kinds of
background knowledge.

Wordnets. Wordnets cover (a subset of) the gen-
eral lexicon of a language. Their use in domain-
related natural language understanding tasks is justified
by the frequent presence of common-sense vocabulary
even in highly domain-specific texts. The knowledge
model of wordnets is composed of words (i.e., lem-
mas), synonym sets or synsets as word meanings, as
well as senses as the reification of word–synset relations.
The WordNet model is straightforward to map to the
(somewhat simpler) structure of the Diversicon Knowl-
edge Model: synset 7→ concept, word 7→word, Word-
Net topic 7→ domain, sense relation 7→word relation, and
synset relation 7→ concept relation. As wordnets are dis-
tributed in a static, file-based form, some kind of access-
ing logic is necessary to retrieve its contents. A WordNet
DivAPI adaptor can either use existing Java libraries such
as extJWNL or, as a convenient alternative that we imple-
mented, wordnets can be ingested by the Diversicon KB
(cf. section 5) which already provides its own adaptor. The
English Princeton WordNet, specifically, is included by
default in the Diversicon distribution in LMF format and
is also downloadable from the Catalogue.

Wordnets enriched with domain information. The do-
main coverage of Princeton WordNet has been investi-
gated by Magnini et al. [18] and later by Agirre et al. [14].
The rationale behind these efforts is that the division be-
tween common-sense and domain-specific knowledge is
not clear-cut: rather, there is a large grey area between
the two where commonly used words (or more precisely:
word senses) can be considered as belonging more to cer-
tain domains than to others (e.g., illness is an everyday
word that belongs more to medicine than, say, transporta-
tion). Both of these efforts define domains as sets over
word meanings (in their case, WordNet synsets) as op-
posed to the words, considering domains as semantic as
opposed to lexical objects. There is, however, one major
difference in the two models: [18] uses regular sets while
[14] uses fuzzy sets where every meaning belongs to every
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domain but with a different real-valued weight. The lat-
ter is thus able to model the fact that the concept of river
belongs both to transportation and hydrology but to dif-
ferent extents. As both approaches are widely used (see,
for example, [19, 2]), the Diversicon Knowledge Model,
the DivAPI, and the Diversicon KB were all designed to
support either approach by providing concept–domain re-
lations as part of the model, allowing them to be qualified
by weights.

Static domain terminologies. Domain terminologies are
meaning-based and often multilingual resources that per-
tain to a single domain. They are mostly used to rep-
resent synonymy and, in the case of a multilingual re-
source, also translations. More rarely, they provide rela-
tional information such as polysemy or hypernymy. Us-
ing static file-based resources (such as domain terminolo-
gies represented as spreadsheets or XML trees) as back-
ground knowledge necessarily involves a conversion pro-
cess involving the interpretation of the source format,
its transformation to the Diversicon Knowledge Model,
and providing fast access to the transformed resource
through the DivAPI. While extraction and transforma-
tion are resource-specific operations, load and access are
shared across resources, which explains the role of Di-
versicon KB within the framework as a database provid-
ing a simultaneous and unified storage and view on static
resources. Domain terminologies are straightforward to
map to the Diversicon Knowledge Model as their notions
of terminological unit and term map to our model’s con-
cept and word, respectively (cf. [33] for more details on
the standard modelling of domain terminologies). The do-
main itself is most often implicit and is not formally rep-
resented within terminologies, as their entire content typ-
ically pertains to a single domain.

Lexico-semantic knowledge bases. Knowledge bases such
as the offline Diversicon KB or the online BabelNet
and UMLS Metathesaurus may integrate lexical-semantic
knowledge from a variety of sources such as wordnets, on-
line encyclopaedias, or domain term bases. They may be
mono- or multilingual and they may be domain-agnostic,
domain-specific, or cover multiple domains. They usu-
ally adopt a knowledge model very similar to the one of
Princeton WordNet presented above, that maps easily to
the DivAPI. Non-trivial mappings that adaptors may need
to implement on a resource-specific basis are the conver-

sions between the word and concept relation types defined
by the knowledge base and by the DivAPI (e.g., seman-
tic relatedness of BabelNet is converted into relatedness
Diversicon word and concept relations) and between ele-
ments of the domain set defined by either model (e.g., the
DivAPI domain Healthcare maps to the BabelNet domain
Health and medicine). These mappings, including the res-
olution of potential ambiguities, need to be provided man-
ually as part of the adaptor implementation.

Word vector models. Distributional models and word em-
beddings associate to each word a numerical vector that,
based on a training corpus, represents the context in which
the word frequently appears. The vector provides a dis-
tributional representation of the ‘meaning space’ of the
word, this interpretation of meaning being, of course, very
different from that of symbolic lexical concepts used by,
e.g., WordNet. Contrary to the latter, word vector mod-
els provide coarser-grained semantics: in their classic im-
plementation, vector distances provide information on se-
mantic relatedness as opposed to equivalence or similarity
in a strict sense, usually computed as the cosine similarity
of word vector pairs.4 For the purposes of domain-aware
applications involving disambiguation or matching tasks,
domain-specific embeddings (trained on domain corpora)
and embeddings specifically optimised towards semantic
similarity are better candidates.

For loading the embedding files and computing simi-
larities we relied on existing Java tools: Deeplearning4J5

for word2vec and Thomas Jungblut’s Java wrapper6 for
GloVe. We implemented the adaptors in such a way that
the similarity measures output by word embeddings can
both be directly used through the weighted DivAPI inter-
face and converted into a pseudo-equivalence relation us-
ing a threshold set as an input parameter.

5 The Diversicon KB and Catalogue

The purpose of the Diversicon KB7 is to integrate static
lexico-semantic knowledge resources (wordnets, domain

4The vectors of antonyms, such as hot and cold, are typically consid-
ered as very closely related by these models.

5https://deeplearning4j.org/
6https://github.com/thomasjungblut/glove
7http://github.com/diversicon-kb/
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terminologies, lexicons distributed as files) of multiple do-
mains and languages into a single database, providing an
efficient and unified interface to manage and retrieve its
contents. It implements a pipeline of functionalities, in
the following order:

1. validation of a static lexico-semantic resource pro-
vided as input;

2. integration of a new resource with existing ones;

3. reasoning over the extended knowledge base;

4. providing the KB contents to external services;

5. upon request, exporting of the KB contents.

The KB is typically installed on the machine running the
NLU application and is populated locally by file-based re-
sources.

The Diversicon KB was built upon the Uby Framework,
a Java framework for creating and accessing sense-linked
lexical resources [15]. The main novelty with respect to
the latter is an explicit and domain-aware support for the
simultaneous use of multiple resources, both separately
and in combination. The implementation of this feature
made it necessary to improve and extend Uby on several
accounts, as follows.

Domains: the system was extended by an explicit support
for domains and domain-categorisation of concepts, as ex-
plained below.

Namespaces: in order to avoid unique identifier clashes
when composing multiple resources (e.g., WordNet ex-
tended by domain terminologies), the system supports and
enforces the use of namespaces for unique identifiers. This
practice helps ensure an internal coherence to the knowl-
edge base and track the provenance of integrated knowl-
edge.

Reasoning: transitive closure is computed over transitive
concept and domain relations, each time a resource is up-
dated or combined with another one.

Ingestion mechanism: a user-friendly command-line in-
terface is provided for the ingestion and combination of
domain resources.

Input normalisation and strict validation: for the input
format, Diversicon provides a DTD as well as an XML

schema that are coherent with the importer implementa-
tion (which was not the case with Uby). In contrast to
Uby, validity with respect to the schema is enforced during
importing. Furthermore, input knowledge is normalised:
loops are not accepted for transitive relations, inverse re-
lations are replaced with canonical ones (e.g., hypernymy
is used throughout instead of hyponymy), representations
are simplified, etc.

5.1 Input Format
For the ingestion of static knowledge, the Diversicon KB
supports the LMF (Lexical Markup Framework) for-
mat, an ISO standard for representing lexico-semantic re-
sources [7, 29, 23]. It also supports the direct importing of
resources from Wikipedia, Wiktionary, OmegaWiki, and
FrameNet, the importer logic for these resources being
provided by Uby upon which Diversicon is built.

The LMF format is multilingual and extensible, allow-
ing rich knowledge to be expressed on the lexical, gram-
matical, semantic, and domain levels. The precise XML
schema as well as the DTD, backward compatible with the
Uby-LMF implementation, are included in the Diversicon
distribution. The elements of the common model were
mapped to LMF as follows.

• Words are represented as Lemma elements.

• Concepts correspond to Synsets.

• Word-to-concept relations are reified as Senses, fol-
lowing the structure of Princeton WordNet.

• Domains are also represented as Synsets that model
the meaning of the domain category. The name of the
domain, in turn, is represented as a Lemma attached
to the Synset through a Sense.

• Concept relations are represented as SynsetRela-
tions.

• Domain relations are also SynsetRelations that
hold between domain synsets. The only domain re-
lation we have defined so far is the parent domain
relation that allows us to model domain hierarchies.

• Concept-to-domain relations that state that con-
cepts belong to domains are, again, represented as
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SynsetRelations. The name of the relation is sim-
ply domain.

Furthermore, as also foreseen in our knowledge model,
LMF allows both word-to-concept and concept-to-domain
relations (and any entity or relation, in fact) to be weighted
by frequency, through the Frequency element.

5.2 Importing and Integration
A command-line interface, DiverCLI,8 was developed to
support the importing mechanism, including a strict val-
idation of the conformity of the input to LMF specifica-
tions. DiverCLI supports the importing of a new lexical
resource that will be stored as a separate resource in the
database, or the extension of an existing resource. The
latter functionality can be used, among others, to integrate
common-sense and domain knowledge.

Domain-specific applications can benefit from the si-
multaneous use of multiple background knowledge re-
sources. For example, in a scenario of medical ontology
alignment, a simultaneous use of general common-sense
knowledge and domain knowledge may help in computing
the semantic relation of subsumption between the labels

Temporary blindness@Transient visual impairment

where a general common-sense lexical resource can pro-
vide the synonymy transient≡ temporary, while a medi-
cal domain resource may provide that blindness is a nar-
rower term than visual impairment.

In order to provide a kernel of general common-sense
background knowledge to NLU applications, DiverCLI
is bundled with the latest Princeton WordNet (currently
WordNet 3.1) that we converted into LMF format. The
conversion was implemented by means of the DivMaker
tool9 that was designed to convert wordnets into LMF and
can be used for this purpose for different languages or dif-
ferent wordnet versions in the same language.

The combination of general or domain knowledge re-
sources is supported through an importing mechanism that
loads multiple resources into the same database. These
resources may be logically independent from each other
(i.e., partitions) or, on the contrary, interconnected through

8http://github.com/diversicon-kb/divercli
9http://github.com/diversicon-kb/divmaker

relations such as hypernymy–hyponymy. Cross-resource
links are taken into account when the KB computes the
closures of transitive relations. The problem of potentially
clashing unique identifiers is handled through a classic
namespace mechanism where each resource is identified
by its own namespace. Namespaces also provide a solu-
tion for indicating the provenance of each knowledge unit
integrated.

Finally, as a way of supporting domain-specific NLU
tasks even without the use of domain background knowl-
edge, Diversicon can import WordNet concepts (synsets)
annotated by domain information through two distinct
mechanisms. The first one consists of exploiting the topic
annotations already provided by WordNet. When import-
ing the LMF, DiverCLI detects such topic relations and
interprets them as domain information. However, in the
latest WordNet 3.1, only about 5% of the total 120,000
synsets are annotated by such topic relations. Diver-
CLI therefore offers a second source of domain informa-
tion through the importing of the Extended WordNet Do-
mains (XWND) resource [14]. XWND annotates each of
the 120,000 WordNet synsets with weighted relations to
about 180 domain categories, modelling the phenomenon
of lexical meanings belonging to several domain cate-
gories simultaneously. DiverCLI can import XWND si-
multaneously with the WordNet LMF and provide these
weighted concept-to-domain relations to ontology match-
ers through the DivAPI.

5.3 Reasoning
As part of the integration process, the Diversicon KB pre-
computes the transitive closure of the transitive domain
and concept relations (such as hypernymy, part–whole,
and subdomain) within the resource being imported. If
the resource is attached to an existing one (e.g., a domain
resource extends WordNet) then the transitive closure is
computed over the combined resource. The set of asserted
relations is then extended by the inferred relations.

5.4 Querying and Exporting
Besides the low-level query API inherited from Uby and
structured around its LMF-based internal data model, the
Diversicon KB also provides higher-level, easier-to-use
accessor methods to knowledge. In addition, the dedicated

11



DivAPI adaptor implements a further level of abstraction
from the output of the KB to the high-level knowledge
model and methods offered by the DivAPI Interface.

Exporting functionalities for the knowledge imported
are provided in the native Diversicon LMF format, in low-
level SQL, as well as in the RDF-based Lemon model [21]
thanks to an LMF-to-Lemon XSL transformation created
for lemonUby [5].

5.5 The Diversicon Catalogue
The Diversicon Catalogue10 is a web data catalogue that
collects and organises domain-specific and domain-aware
lexico-semantic resources. The purpose of the Catalogue
is to make it easier for users to share as well as to find
such domain resources, especially (but not exclusively) for
using them with the Diversicon KB.

The Catalogue uses a DKAN11 engine and therefore has
a look and feel similar to most open data catalogues. It
organises resources hierarchically by domain, adopting the
upper part of the Universal Decimal Classification as its
hierarchy.

Among other resources, the LMF-based WordNet pre-
sented in section 5.2 is downloadable from the Catalogue.

6 Example Study: Medical Re-
source Evaluation

The preparation and optimisation of tools for large-scale
real-world semantic applications, or the evaluation of so-
lutions in the framework of research often involve the ex-
ploration of a large solution space with several possible
combinations of tools and resources to compare. As one
possible application area among many, this example study
addresses the problem of domain ontology alignment, fo-
cussing specifically on medical ontologies. Today, a large
number of ontology matcher tools are available, many of
which are capable of exploiting one or another form of
background knowledge for increased precision and recall.
In order to find the best-performing solution we wish to
compare multiple combinations of matchers and knowl-
edge resources over a common domain-specific evalua-

10http://www.diversicon-kb.eu
11http://getdkan.org

tion. In our example scenario we evaluate two state-of-
the-art open-source ontology matchers, namely SMATCH
[12] and LogMap [16], on a biomedical matching task. To
do so, we take advantage of the Diversicon framework to
reduce the implementational overhead related to support-
ing a diversity of resources exploited by a diversity of on-
tology matcher tools. The main message of this example
study is the efficient use of Diversicon in order to reduce
such efforts, rather than the actual outcome of the evalua-
tions presented below.

6.1 Preparing the Background Knowledge
In terms of background knowledge, we wish to try out
a wide range of resources: lexico-semantic and word-
vector-based, common-sense and domain-specific. In this
example study we consider the five resources shown in ta-
ble 2 which, with the exception of BabelNet, are either
indexed or downloadable from the Diversicon Catalogue.
The BabelNet resource is used in two different ways: on
the one hand, as a general-purpose knowledge base and, on
the other hand, using its subset that pertains to the medi-
cal domain, taking advantage of domain-specific filtering
exploited by the DivAPI.

The advantage of passing through the DivAPI is easily
understood given that, instead of 2 × 5 = 10 ad-hoc im-
plementations between the two applications and the five
resources, only one API adaptor needs to be implemented
per resource type and SMATCH and LogMap only need to
connect to the Diversicon API. The major benefit comes
from the near-zero-cost reusability of these components
when subsequent applications or resources are introduced:
the four adaptors used in this example study and presented
below are all available online, freely reusable by other ap-
plications.

Princeton WordNet. For this resource, no extra work was
needed as it is included by default in the Diversicon distri-
bution in LMF format and is also downloadable from the
Catalogue.

The SPECIALIST Lexicon. To support the medical match-
ing task with domain knowledge, we integrated the SPE-
CIALIST Lexicon12 into the Diversicon KB which, in turn,
provides its content to both matchers. SPECIALIST, a

12https://specialist.nlm.nih.gov/lexicon/
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Name Coverage Kind Format Adaptor package
Princeton WordNet common-sense lexico-semantic static files divapi-diversiconkb
GloVe Common Crawl 840B-300D common-sense distributional word embeddings divapi-glove
BabelNet common-sense lexico-semantic online KB divapi-babelnet
BabelNet filtered to health domain medical lexico-semantic online KB divapi-babelnet
SPECIALIST Lexicon medical lexico-semantic static files divapi-diversiconkb
word2vec PubMed medical distributional word embeddings divapi-word2vec

Table 2: List of knowledge resources used for medical ontology matching in the example study

subset of Unified Medical Language System,13 contains
morphological, lexical, and lexico-semantic data that sup-
port the analysis of English medical text. For our example
study we extracted from SPECIALIST the following infor-
mation:

• lexical variants;

• expansions of acronyms;

• synonymy relations.

For example, ontology matchers may exploit the syn-
onymy relation between alcoholism and alcohol depen-
dence to produce the mapping

dementia due to alcoholism 7→≡ dementia due to alcohol
dependence

We converted SPECIALIST into LMF as defined by the
Diversicon LMF schema, the conversion being a straight-
forward process executed by a Python script that grouped
the three relation types above into LMF synsets. We share
the resulting LMF in the Diversicon Catalogue from where
it is freely downloadable.

BabelNet. For integrating BabelNet we used the divapi-
babelnet adaptor provided by the Diversicon framework.
BabelNet is rich in synonyms and semantic relations
which, however, vary greatly both in domain coverage and
in quality due to the diversity of the source material and
BabelNet’s fully automated approach to knowledge inte-
gration. In order to mitigate the potentially noisy results
leading to a disproportionate amount of false positives, the
adaptor was finetuned in the following way: firstly, it was
restricted to use only high-quality synset relations from

13https://www.nlm.nih.gov/research/umls/

BabelNet, by setting the corresponding flag in queries.
Secondly, we experimented with domain-based filtering of
background knowledge queries made possible by the Ba-
belNet API, using the domain = healthcare filtering fea-
ture in DivAPI methods. And thirdly, we experimented
with exploiting semantic relations of synonymy, similar-
ity, or relatedness by setting the relation type parameter in
the DivAPI calls.

Word embeddings. We integrated two kinds of word
embedding resources, GloVe and word2vec, each kind
through its dedicated adaptor (already presented in sec-
tion 4.3). With GloVe we used the 840-billion-token Com-
mon Crawl non-specialised corpus14 while with word2vec
we accessed a domain-specific corpus trained on the
PubMed resource15 that consists of more than 28 million
citations from biomedical literature. To access these mod-
els through the DivAPI it is sufficient to call the construc-
tor of the relevant DivAPI adaptor with the path to the
model file as input parameter. For the comparability of re-
sults, however, it was necessary to understand the qualita-
tive interpretation of the real-valued vector similarity val-
ues provided by the GloVe and the word2vec resource, as
their similarity distributions are dependent on their train-
ing parameters. The DivAPI adaptors allow a similarity
threshold to be set on a per-resource basis, which we used
to optimise the results in a simple way.

14https://nlp.stanford.edu/projects/glove/
15https://www.ncbi.nlm.nih.gov/pubmed/

13



SMATCH LogMap
Resource Type Prec. Recall F1 Prec. Recall F1
Baseline (without Diversicon) 70.6% 33.0% 45.0% 93.5% 26.6% 41.4%
Princeton WordNet common-sense 70.6% 33.0% 45.0% 93.8% 27.5% 42.6%
GloVe Common Crawl common-sense 75.0% 30.3% 43.1% 90.9% 27.5% 42.3%
BabelNet common-sense 53.6% 33.9% 41.6% 89.2% 30.3% 45.2%
BabelNet filtered medical 84.4% 34.9% 49.4% 94.1% 29.6% 45.1%
word2vec PubMed medical 82.0% 37.6% 51.6% 93.9% 28.4% 43.7%
WordNet + SPECIALIST medical 79.5% 32.1% 45.8% 94.1% 29.4% 44.8%

Table 3: Example study evaluation results with SMATCH and LogMap, on six different kinds of background knowledge

6.2 Preparing the Matcher Applications

The last step is to implement the DivAPI calls from within
the applications, in our case the two matchers SMATCH16

and LogMap17. As most state-of-the-art matchers, they
are both implemented in Java, making the calls to the Java-
based DivAPI straightforward.

No two applications exploit knowledge in an identical
way. In the case of SMATCH and LogMap, a fundamen-
tal difference lies in how each one defines a mapping:
for LogMap a mapping expresses syntactic or semantic
similarity and is quantified by a user-defined threshold
over a range of real-valued similarities between 0 and 1.
For SMATCH, in contrast, a mapping stands for a logical
entailment between ontology nodes previously converted
into prepositional logic formulas. The two matchers thus
reason in fundamentally different manners: one quantita-
tively and the other qualitatively.

Another major difference relates to the internal match-
ing strategies: for SMATCH the semantic analysis of la-
bels is a major step of the matching process. It relies heav-
ily on the use of lexical background knowledge: it calls
the DivAPI getConcepts method to convert words into
description logic concepts, and getRelations to enrich
the set of logical formulas with axioms, reasoning mostly
on the concept level. LogMap, on the other hand, has no
explicit representation of lexical concepts. It reasons on
the word level and uses lexical knowledge as one among

16The Diversicon-based SMATCH extensions are downloadable from
https://github.com/s-match/ .

17The Diversicon-equipped version of LogMap is downloadable from
https://github.com/diversicon-kb/logmap-matcher .

many matching strategies. Its use of background knowl-
edge is limited to lexical expansion, i.e., the retrieval of
synonymous words. The DivAPI supports this operation
through its getRelatedWords method.

6.3 Running the Evaluations
We finally present evaluation results obtained with the re-
sources and matchers discussed above integrated into Di-
versicon. The evaluation was not intended as an attempt
to advance the state of the art on domain-based ontology
alignment, nor to draw definitive conclusions on the per-
formance of various resources and underlying approaches.
Rather, our point is the straightfoward feasibility of such a
large-scale evaluation.

We used an evaluation corpus from the medical do-
main: on the one hand, the medical reference ontol-
ogy SNOMED CT [4] and, on the other hand, ICD-10-
CM, i.e., the International Classification of Diseases, ver-
sion 10, with US-specific extensions. Expert-sourced
gold-standard mappings were provided by the U.S. Na-
tional Library of Medicine. As the assessment of results
involves some level of manual evaluation (not all true pos-
itives appear in the gold stanard mappings), in order to
reduce the evaluation efforts over the 14 setups, we ran-
domly extracted a 100-node evaluation corpus that we fed
into both SMATCH and LogMap.

As most of the gold-standard mappings are not equiva-
lence but similarity mappings, we considered both equiv-
alence and subsumption mappings output by SMATCH
as positives. For LogMap, which outputs similarity map-
pings, we finetuned input parameters (such as similarity
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threshold) to maximise the F-score.

The results can be seen in table 3, about which four
things need to be noted. Firstly: we consider the exper-
iment a success as it constitutes a first validation of the
usability of the entire Diversicon framework (model, API,
and adaptors) within real-world applications.

Secondly: while results between SMATCH and Log-
Map appear to be within the same range, they are not fully
cross-comparable given the markedly different ways they
define mappings (logical entailment for SMATCH vs simi-
larity for LogMap). They also give different importance to
lexical background knowledge: from the very uniform re-
sults of LogMap we conclude that background knowledge
only plays a relatively minor role in its overall matching
method.

Thirdly: comparison to the original, Diversicon-less
baseline versions of the matchers shows a small yet con-
sistent (1.2–3.8%) improvement for LogMap when rely-
ing on lexical resources. For SMATCH, baseline results
are identical to the Princeton WordNet scenario: this is a
trivial result given that the original SMATCH is already
using WordNet in an identical way, just linking to it stati-
cally instead of passing through Diversicon.

Lastly: despite the fact that our aim was not to evalu-
ate ontology matchers but rather to demonstrate the ease
with which resources can be compared using Diversicon,
we nevertheless observe, in accordance with intuitive ex-
pectations, a moderate but consistent advantage in us-
ing domain-specific background knowledge as opposed to
common-sense resources, primarily in precision but also
in recall. This fact is especially visible in the case of Ba-
belNet, which is by far the largest resource in our study:
when used in an unfiltered way it obtains the lowest pre-
cision among all resources because of the overwhelming
amount of out-of-domain knowledge it provides. How-
ever, with domain-based knowledge filtering—which is
obtained simply by setting a domain constant in the Div-
API call—it achieves the highest precision and the second-
highest recall for both matchers. We thus present these
evaluation results also as an empirical argument for the use
of a domain-aware knowledge framework for NLU appli-
cations.

7 Related Work

7.1 Domain-Aware Applications
There is ample literature on the use of domain knowl-
edge for domain-specific NLU problems. For NLP and
information retrieval, domain-based techniques have been
proposed in particular for sense disambiguation tasks [18,
2, 28, 1]. In ontology matching, the AML matcher has
used various biomedical ontologies as mediators [6] while
SAMBO [17], LogMap, and LogMapBio [16] use online
services such as the BioPortal and UMLS. In both applica-
tion areas, solutions rely on predetermined domain knowl-
edge resources accessed through ad-hoc interfaces. Such
solutions could benefit from the pluggability feature of the
DivAPI for the extension or added flexibility with respect
to knowledge sources.

More recently, there have been attempts to apply sta-
tistical approaches, such as word embeddings, to domain
tasks using domain-specific textual corpora [10, 27, 24].
These efforts all use standard vector models such as
word2vec or GloVe that we are able to exploit by map-
ping word vectors (embeddings) to concepts of the Divers-
icon Knowledge Model and serving relevant semantic in-
formation (relatedness, similarity) through the weighted
methods of the DivAPI. The techniques to train and ex-
ploit efficient domain-specific embeddings, however, can
be markedly different from the ‘vanilla’ case of general-
purpose corpora due (among others) to corpus sparse-
ness, the potentially much larger size of domain termi-
nologies, and the prevalence of long multiword expres-
sions in domain texts. For this reason, domain-specific
NLU applications that adopt a statistical approach often
use embeddings combined with domain knowledge [24].
We consider this as an additional application area for the
Diversicon framework that provides a unified access to
both kinds of resources, keeping in mind nevertheless the
wildly differing notion of meaning (concepts vs word vec-
tors) assumed by them.

7.2 Unified Lexico-Semantic Domain
Knowledge

The idea of providing unified access to multiple existing
knowledge resources has led to a number of large-scale
implementations. With respect to lexico-semantic knowl-
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edge, past efforts have pursued the integration of wordnets
[31, 26]. These resources have remained on the level of
common-sense knowledge and have not integrated explicit
and comprehensive references to domain categories.

Some more recent efforts have integrated wordnets with
encyclopaedic knowledge, e.g., from Wikipedia, such as
Uby [15] and BabelNet [19]. A common point of most of
these solutions is a focus on cross-lingual knowledge inte-
gration, even if the latest versions of both Uby and Babel-
Net are ‘domain-aware’ in the sense that they have explicit
representations of the domain-relatedness of lexical con-
cepts. Thanks to the breadth and depth of Wikipedia they
cover a much larger quantity of domain-specific content.

The UMLS Metathesaurus [3] is a continuous large-
scale knowledge integration effort specifically for the
healthcare domain, and the largest domain knowledge
resource we are aware of. The Metathesaurus, as its
name suggests, integrates medical thesauri, terminologies,
as well as classifications and ontologies with a lexico-
semantic focus, and has been maintained for over 20 years.
It has been used as an online service providing back-
ground knowledge for domain-specific applications such
as biomedical ontology matching [17]. It is possible to
use the Metathesaurus through the Diversicon framework
by implementing its own DivAPI adaptor. However, as
is generally the case for large-scale automatically inte-
grated knowledge resources such as the Metathesaurus,
but also Uby and BabelNet, automation in building the re-
source results in limited precision and unavoidably intro-
duces some amount of noise. For applications requiring
very-high-quality knowledge, custom integration of hand-
picked knowledge sources using the Diversicon KB may
be a safer—but admittedly more onerous—approach.

Uby merits a closer look as we also reuse it within the
Diversicon KB. In terms of providing a unified, API-based
access to large-scale lexico-semantic knowledge for NLP
applications, the goals of Uby are similar to ours. There
are, however, two main differences. One is in the design
and goals of the unified API: the goal of the Uby API is
to allow a single access point to the heterogeneous knowl-
edge imported into its database. While we maintain this
feature for resources ingested by the Diversicon KB, the
DivAPI is intended to harmonise access to a broader spec-
trum of resources with more diverse underlying knowl-
edge models. The novelty and uniqueness of the DivAPI
lies in its domain-awareness and in the ability to provide

both a symbolic (knowledge-representation-inspired) and
a quantitative (similarity-based) version of the interface,
bridging the worlds of symbolic and distributional seman-
tics, and translating knowledge for applications expecting
either approach. The second main difference with respect
to Uby, as well as to similar efforts such as BabelNet and
UMLS, is the focus on the integration framework rather
than on the integrated content. While Uby provides cus-
tom importer logic for resources such as Wikipedia, Word-
Net, VerbNet, etc., as well as a LMF-based input format,
the importing process is not user-friendly and does not
seem to consider extensibility as a priority feature. In the
Diversicon KB we fixed this shortcoming by providing a
robust and validating importing logic.

An alternative approach to representing, storing, and in-
terconnecting lexico-semantic knowledge is the use of the
RDF-based lemon model [21], which is a simplified and
semantic-web-oriented representation of LMF. Lemon-
based resources can be linked via standard relations such
as rdfs:equivalentClass or rdfs:subClassOf, aug-
mented using conventional reasoners, and stored in triple
stores. We see the support of such an RDF-based knowl-
edge integration as important future work for Diversicon.

8 Conclusions and Future Work
We have presented the open-source Diversicon framework
that catalogues, integrates, and provides a unified and
pluggable access to heterogeneous lexico-semantic knowl-
edge resources for domain-specific applications that re-
quire natural language understanding ability. Our motiva-
tion was to let these applications access a potentially wide
variety of resources through simple service calls to a sin-
gle API, allowing them to combine forms of knowledge
that complement each other but also easily to substitute
resources through the life cycle of the application (e.g., in
the prototyping stage or to support its evolution).

Domain-awareness, i.e., an explicit and formal support
for the notion of domain, was one of the prerequisites for
the framework. This feature is useful in multi-domain con-
texts where knowledge from multiple domains or subdo-
mains (including common-sense knowledge) needs to be
used simultaneously, but also as a domain-based filtering
device for multi-domain knowledge resources. Domain-
awareness in Diversicon consists of (a) articulating the

16



common knowledge model as well as the Diversicon API
around domains and the corresponding semantic relations;
(b) allowing word senses to be qualified by domains in
multiple manners (weighted or unweighted); (c) provid-
ing a domain hierarchy as part of the Diversicon API; and
(d) providing a knowledge base that is able to ingest and
serve large-scale domain resources.

In our example study we successfully used the frame-
work for a comparative evaluation of semantic applica-
tions and knowledge resources, demonstrating the simplic-
ity of its use in practice. The API implementations we
used in the example study are all freely available from Di-
versicon’s GitHub page.18

One important direction in which Diversicon should be
extended is the support of a small but important set of lin-
guistic preprocessing features through the API, such as to-
kenisation, lemmatisation, or stop word detection. These
functions enable the subsequent lookup of lexico-semantic
information. For domain texts, however, some of these
operations may require customised domain-specific ap-
proaches due to the potential use of specialised grammar
and orthographic conventions. Our plan is to use the Di-
versicon Catalogue to index relevant domain-specific NLP
resources and to support their pluggability through the Di-
versicon API. Through such NLP functions the API will
gain end-to-end NLU support.

Another direction of improvement is the better support
of Semantic Web knowledge formats for input, storage,
and output. On the import side, support for the lemon
model, as an RDF-based lexico-semantic representation, is
envisaged. Lemon is also a good candidate schema for an
RDF-based storage backend for the Diversicon KB with a
SPARQL interface. Such a solution would extend the pos-
sibilities of reasoning over lexico-semantic data and could
be exploited more flexibly by standard semantic web appli-
cations. Furthermore, while from a theoretical standpoint
domain ontologies are not lexico-semantic resources, they
are often used as such by NLU applications, and thus the
importing of, e.g., OWL Class labels as terms and of cer-
tain ontological relations such as subClassOf or equiva-
lentClass would also be a useful addition to the Divers-
icon KB.

18https://github.com/diversicon-kb
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