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Abstract One of the main research topics in machine 
learning nowadays is the improvement of the inference and 
learning processes in probabilistic graphical models. Tradi­
tionally, inference and learning have been treated separately, 
but given that the structure of the model conditions the 
inference complexity, most learning methods will some­
times produce inefficient inference models. In this paper we 
propose a framework for learning low inference complex­
ity Bayesian networks. For that, we use a representation of 
the network factorization that allows efficiently evaluating 
an upper bound in the inference complexity of each model 
during the learning process. Experimental results show that 
the proposed methods obtain tractable models that improve 
the accuracy of the predictions provided by approximate 
inference in models obtained with a well-known Bayesian 
network learner. 
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1 Introduction 

Bayesian networks (BNs) are very powerful tools for con­
cisely modeling probability distributions of a set of random 
variables X = {X1, X2, • • •, Xn], and have also been used 
for supervised classification [28] and clustering [7]. A BN B 
encodes the conditional dependences between the variables 
in X, and it is composed of: 

1. Directed acyclic graph Each node of the graph repre­
sents a random variable in X, and the arcs represent the 
probabilistic dependences among variables. 

2. Parameters There is a conditional probability distribution 
(CPD) P(Xi Ipag(Xi)) associated to each variable Xi e 
X, where paB (Xi) are the parents of Xi in B. These CPDs 
are called the parameters of the network. 

In the past years there has been a huge interest in the 
creation of new methods for learning the structure of BNs 
from data. Usually, two types of scores are used. Bayesian 
metrics maximize the posterior probability of the network 
given a prior distribution over all the possible networks con­
ditioned to the data, while information theory metrics try to 
maximize the data compression achieved by each network. 
Well known scoring functions such as Bayesian Dirichlet 
equivalent (BDe) [20], K2 [13,14,25,26], Akaike informa­
tion criterion (AIC) [1], Bayesian information criterion (BIC) 
[31] or minimum description length (MDL) [10,24] implic­
itly or explicitly penalize the representation complexity of the 
network using the number of parameters of the model. Nev-
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ertheless, the representation complexity and the inference 
complexity are sometimes very different for the same model 
[5], so an indicator of the inference complexity is required to 
learn models where inference is tractable. 

In this work we propose a new framework for learning 
low inference complexity BNs. For that, we incrementally 
compile a complementary structure that we use to compute 
an upper bound in the inference complexity of each network 
efficiently. 

This paper is organized as follows. The rest of Sect. 1 pro­
vides an introduction to the problem of learning low inference 
complexity models. Section 2 gives a brief review of net­
work polynomials (NPLs), the base of our work. Section 3 
describes the representation and the methods proposed in this 
paper for learning learning tractable BNs. Section 4shows the 
experimental results. Section 5 gives the conclusive remarks 
and future research lines. 

1.1 Learning thin models 

Exact inference in BNs is NP-hard [12]. We can perform 
evidence propagation in linear time in the number ofvariables 
in a BN when the topology of the network is a polytree [22]. 
Nevertheless, this constrain is too hard in many situations 
where polytrees do not have enough representative power. 

Approximate inference is commonly used when exact 
inference is intractable. Approximate inference in BNs is 
also NP-hard [15], and although it has been useful for solv­
ing some otherwise intractable problems it has some relevant 
flaws. It produces a worsening in the answers provided by 
the model, and it is challenging to check the convergence of 
the algorithms. 

The complexity of a BN depends mostly on its structure. 
Exact inference is exponential in the treewidth of the network, 
which is the size of the biggest node in the minimal tree 
decomposition of the network minus one [9]. Intuitively, it 
represents how similar is the network structure to a tree. 

Computing the treewidth of a graph exactly is an NP-
complete problem [3],and approximatemethods for treewidth 
estimation are also computationally expensive. On the other 
hand, it is possible to check if the treewidth of a graph is 
less or equal than a fixed k in linear time in the number of 
variables [9]. 

There are some approaches that use a bound on the 
treewidth to learn thin models [4,11,17,30]. Nevertheless, 
checking if the treewidth is less or equal than k is super-
exponential in k [8], so in practice it is intractable when k is 
not very small. 

Lowd and Domingos [27] used the incremental compila­
tion of arithmetic circuits (see Sect. 2.1) to learn tractable 
models that exploit the local structures of the networks, 
penalizing the size of the circuits instead of bounding the 
treewidth. 

2 Network polynomials 

The probability distribution implicit in any BN B can be also 
represented as a network polynomial [16], that is, a multi­
linear function over two types of variables, indicators IXi 

and parameters 9Xi\m = P(Xi = Xi\pa&(Xi) = ni). The 
indicators are Boolean functions that return 1 if Xi = xi or if 
the value of X* is unknown, and 0 otherwise. The probability 
distribution of discrete variables X1,..., Xn in an NPL is 
described as: 

n 

P(X1 = X1,..., Xn = Xn) = 2, Ixfixi\iti 
i = 1 Xi€£2X-

where we use xi e £2x, to represent each configuration xi of 
variable Xi, and Jti e £2paB(X;) to represent each configura­
tion iti of the parents of Xi. 

This function represents the joint probability of the set of 
variables X1,... ,Xn. NPLs allow answering any arbitrary 
marginal or conditional probabilistic query in linear time in 
the size (number of sums and products) of the polynomial. 

2.1 Arithmetic circuits 

The size of an NPL grows exponentially with the number of 
variables, making inference nearly intractable for common-
size networks. Trying to overcome this difficulty, Darwiche 
[16] proposed the use of ACs to represent NPLs, using the 
distributive properties of the polynomials to reduce the com­
plexity of the NPL function. 

ACs are directed acyclic graphs (DAGs) in which the inner 
nodes (nodes with children) are addition (+) and multiplica­
tion (x) nodes and the leaves (nodes without children) are 
numeric variables or constants. Performing inference in the 
circuits is straightforward and linear in the number of arcs of 
the graph. The circuit can be evaluated bottom-up by com­
puting the operations represented by each inner node (+, x) 
from the values of its children, starting from the leaves. 

For example, the AC shown in Fig. 1 represents the NPL 
shown in Eq. (1). In the examples shown in this paper we 
only use Boolean variables, and for each variable Xi we will 
refer to Xi = True as xi and Xi = False as ¬a*. 

P(A, B) = iaibeaeb]a + la¬h6a6¬a + ¬alh6¬a6h¬a 
+ ¬a¬be¬ae¬ ¬a . (1) 

Darwiche [16] uses ACs as a complementary representa­
tion obtained by the compilation of BNs to perform tractable 
exact inference. Lowd and Domingos proposed the method 
LearnAC [27], that is the first approach to learn ACs directly 
from data. It uses a greedy search process that penalizes each 
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Fig. 1 AC representation for the NPL of Eq. (1) 
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Fig. 2 a Structure of a BN, and b a PT associated to the BN 

circuit with its size, given by the number of arcs of the cir­
cuit. The changes produced by LearnAC during the learning 
process consist of splitting the leafs of the circuit, which 
allows exploiting the local structures of the network. 

The size of the circuits and the number of possible local 
changes that LearnAC must consider in each iteration can be 
huge when the number of variables of the models is not very 
small, making the search expensive. 

3 Polynomial trees 

Some local changes that are usually considered in most 
score+search BN learning methods, such as arc removals or 
reversions, are not considered by LearnAC or any method 
for learning bounded treewidth junction trees (JTs), and 
they are essential for avoiding local optima in early stages 
of the learning process. We use a simpler representation, 
called polynomial trees (PTs), to consider these operations, 
allowing a more flexible learning process of low inference 
complexity models. 

A PT is a compact graphical representation of an NPL. 
For simplicity, we also maintain the BN representation to 
show the conditional dependences between the variables of 
the model. Each PT is associated to a BN, and it represents a 
factorization of the NPL encoded by the BN. A PT P asso­
ciated to a BN B over a set of variables X = {X1,..., Xn] 
consists of: 

1. A set of nodes XP = {*} U X, where * is the root node. 
2. An indicator set I = {I(Xi),..., I(Xn)}, where each 

indicator I{Xi) e I can take any value of Xi or the 
value 0 . 

3. A set of directed arcs that represent a topological ordering 
of the nodes in XP, forming a tree structure. 

Basically, the complete graphical representation of a PT 
consists of a DAG representing the dependences in the net-

work and a tree representing a factorization of this network. 
Figure 2 is an example of a BN (a) and a PT associated to 
the BN (b). 

The soundness of a PT is the property that guarantees that 
it can perform exact inference correctly for any probabilistic 
query that could be asked to the model, and it is defined as: 

Definition 1 Let P be a PT over XP = {*} U X with an asso­
ciated BN B over X, and let predp(Xi) be the predecessors 
of Xi in P. P is sound for B if and only if VXi e X it holds 
that VXj e pag(Xi), Xj e predp(Xi). 

If in a PT P associated to a BN B there is at least one 
node Xi that has a parent Xj in B that does not belong to 
pred-p(Xi), then exact inference will fail, because I(Xj) 
will be set to 0 when we evaluate Xi. 

There are usually multiple sound PTs for each BN, 
because there are multiple possible orders to perform exact 
inference on each network. We are interested in obtaining 
those PTs that are sound for a BN and that are as close as 
possible to the PT with the smallest treewidth for this net­
work. 

3.1 Inference in polynomial trees 

In this subsection we provide a method for performing exact 
inference in PTs. There are more efficient evidence prop­
agation methods in the state-of-art, but our purpose is to 
measure the inference complexity of each PT. It proceeds 
by first, executing a top-down process for the propagation of 
the indicators in the tree, and then it performs a bottom-up 
process where it computes the probability of the polynomial 
represented in the tree given the configuration of the indica­
tors. 

Given a BN B, a PT P and an evidence e, the probability 
of e in the model can be computed as follows. First, we need 
to initialize the indicator set I = { I (Xi) , . . . , I(Xn)} with 
the values in e, setting the indicators of the variables that do 
not appear in e to 0 . Let chp(Xi) be the children of Xi in 
P. We can evaluate the root node * given I computing: 
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Fig. 3 Inference example. The probabilistic query P(a, ¬b) is 
answered by the BN and its associated PT shown in a and b respec­
tively. First, the indicators are set to I = {a, b, 0, 0}. The polynomial 
P(a,¬b) = (0d+0¬d)-(0a-0¬ b|a-(0c|a+ ¬ ¬c |a)) ,thatis shown graph­
ically in c , represents the operations performed by Eq. (2) to answer 
this query 

query(B, V, *, 1) = query(B, V, Xk, 1) . 
Xkechv(*) 

The rest of the nodes can be recursively evaluated by com­
puting: 

query(£ , V,Xi:T)= exi\n 

xi€QCi 

Xi • FT query(B,V,XjlXi) 
Xjech-p(Xi) 

(2) 

where £2Ci = £2Xi if I(Xi) = 0 and £2Ci = {I(Xi)} oth­
erwise, TTXi is a set with the value of each parent of Xi in 
I, and %Xi is the set of indicators obtained after setting the 
value of I (Xi) to xi in I. 

Figure 3 shows an example of how to perform exact 
inference in a simple PT to answer the probabilistic query 
P(a, -b ) . 

3.2 Evaluating the complexity of polynomial trees 

In most state-of-the-art methods for learning thin probabilis­
tic models the treewidth is used as an estimation of the 
inference complexity. Obtaining the treewidth of a graph is 
an NP-complete problem, so in most methods estimations 

are used [5]. It is simple to obtain an upper bound in the 
inference complexity of a PT efficiently. The method used 
in this paper for the complexity evaluation of PTs obtains 
the maximum number of operations required to evaluate Eq. 
(2). It works recursively, obtaining the number of sums and 
products required to perform inference in each node, which 
is given by: 

evalCP, Xi) 

=|£2Xi I • I 1 + (1 + eval(P, Xj)) I — 1. 
\ Xj&chv(Xi) J 

(3) 

Basically, each node Xi requires |£2X i Xj£ch-p(Xi) (1 
eval(P, Xj)) operations to compute Eq. (2) for each chil­
dren of Xi, multiplying the resulting values, and | £2Xi \ — 1 
operations to sum the results for each instance of Xi. 

3.3 Incremental compilation of PTs 

To evaluate the inference complexity of each network using 
Eq. (3) it is necessary to have a compiled PT in each step of 
the learning process. As compiling a PT from scratch every 
time is intractable, we have created a group of procedures to 
compile incrementally any local change that could be done 
in a BN during the learning process, including arc additions, 
removals and reversals. 

Let V be a sound PT for a BN B, and let B' be the result 
of applying a local change to B. It may happen that V is not 
sound for B'. The purpose of the incremental compilation 
methods is to obtain a sound PT V' for B'. Next, we show 
the procedures that we use to compile PTs incrementally. 

3.3.1 Arc addition 

The addition of an arc in a BN is straightforward, but in a 
PT the compilation process is not so simple, and it depends 
on the current configuration of the PT. Let us consider any 
addition (Xout —>- Xin) that should be compiled in a PT V 
and included in its corresponding BN B. We will refer to 
Xout as the output node and Xin as the input node. The three 
possible scenarios that we could face in an arc addition are 
the following: 

1. Xout e predP(Xin): V is sound for B after the addition, 
so no changes are required. 

2. Xin e predP(Xout): in this scenario, it is necessary to 
set Xout as a predecessor of Xin in V and reconfigure the 
positions of the nodes between Xout and Xin to obtain a 
PT sound for B. 

3. Xout ^ predP(Xin) and Xin £ predP(Xout): in this case 
node Xout and its predecessors in V are set as predeces­
sors of Xin in V. 



The procedure proposed for the incremental compilation 
of arc additions is described by Algorithm 1. 

Algorithm1: Incremental compilation of an arc addition 
(addArc) 

Imagine that we are learning the BN and the PT shown in 
Fig. 4. Let us focus on some arc additions that cover the three 
different scenarios. In each example we show the resulting 
BN after applying the addition of the arc, and the resulting PT 
after compiling the change in the tree. The obtained PTs are 

Fig. 4 Examples of BN (left) and PT (right) respectively 

sound but they may be far from optimal, given that we do not 
include the optimization process in these examples. Figure 
5a corresponds to the addition of arc A -> E. In this case A 
is currently a predecessor of E in the PT (scenario 1), so no 
changes in the tree are required. Figure 5b corresponds to the 
addition of E -> A. This change implies a reconfiguration 
of the network given that A is currently a predecessor of E in 
the PT (scenario 2), and now E must be set as a predecessor 
of A without spoiling the soundness of the rest of the nodes. 
The last example (Fig. 5b) corresponds to the addition of 
arc C -> F. Given that the only predecessor that C and F 
have in common is the root node * (scenario 3), C and all its 
predecessors must be placed as predecessors of F to maintain 
the soundness of the tree. 

3.3.2 Arc removal 

The second type of local changes that we need to consider is 
arc removals. On the one hand, it is straightforward to obtain 
a sound PT after applying an arc removal in a BN, because 
it is enough to maintain the current configuration of the tree. 
On the other hand, a huge reduction in the complexity of 
the PT may be achieved optimizing the PT after the removal. 
Algorithm 2 describes the procedure used here for compiling 
arc removals. 

Data: PT P, BN B, output node Xout, input node Xin 

Result: PT V, BN B' 
1 remove Xout from pag/(Xin) ; 
2P ^P; 

Algorithm 2: Incremental compilation of an arc removal 
(removeArc) 

Figure 6 is an example that shows how Algorithm 2 
removes arc A -> F in the BN and PT shown in Fig. 4. 
There are no changes applied to the PT and it is still sound 
with respect to the new BN, but a model with a lower infer­
ence complexity could be obtained optimizing the tree. 

3.3.3 Arc reversal 

To compile the reversal of arc Xout -> Xin (Algorithm 3) 
we compile first the deletion of arc Xout -> Xin and then the 
addition of the reversed arc Xin -> Xout. 

Data: PT P, BN B, output node Xout, input node Xin 

Result: PT V, BN B' 
1 let B' and P' be copies of B and P respectively ; 
2 add Xout to pag; (Xin) ; 
3 if Xin epred-p(Xout) then 
4 let desc-p(Xin) be the descendants of Xin in P ; 
5 let Xc <r- be the nodes in (descp(Xin)n 

predp(Xout)) U {Xout}, and Xc the list obtained by 
ordering Xc from the shallowest to the deepest node 
; 

6 

7 
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9 

10 

11 
12 

14 

15 

16 

17 

18 

19 

20 

22 
23 

24 

25 

26 

27 

28 

Xp <— pa-p(Xin) ; 

Xd •<— Xin ; 
for Xi e Xc do 

Xm •<— ch-p {Xi) n Xc ; 
if Xi e descgiXin) then 

pa-pi(Xi) <r- Xd ; 

Xd <- Xi ; 

else 
pa-p/(Xi) •<— Xp ; 
Xp -< Xi ; 

end 
for Xj e ch-p(Xi)\{Xm] do 

if (desc-p(Xj) U {Xj})n desc&{Xin) ^ 
then 

pa-p/(Xj) «— Xd ; 

else 
pa-p/(Xj) «— Xp ; 

end 
end 

end 
pa-p/(Xin) <— Xout ; 

0 

29 else if Xin ^ pred-p (Xout) and Xout ^ pred-p (Xin) then 
30 

31 

32 

let Xk be the shallowest node in 
predp(X out)\predp(Xin) ; 
pap/(Xk) ^ p a p ( X i n ) ; 
pa-p/(Xin) «— Xout; 

33 end 



(a) 

(b) 

(c) 

Fig. 5 Example of arc addition for scenarios 1 (a), 2 (b) and 3 (c). BNs 
on the left and PTs on the right 

Data: PT V, BN B, output node Xout, input node Xin 

Result: PT V, BN B' 
1 / 1^ *̂  1 removeArc i / j I~Jj Xout? Xin/ ; 

2 

Algorithm 3: Incremental compilation of an arc reversal 
(reverseArc) 

Figure 7 shows an example where we compile the reversal 
of arc A F. The result corresponds to first compiling the 
removal of arc A F and then compiling the addition of 
arc F A. 

3.4 Polynomial tree optimization 

Although the methods proposed above assure the soundness 
of the compiled PTs, the obtained models may have a higher 

Fig. 6 Example of arc removal. BN (left) and PT (right) 

Fig. 7 Example of arc reversal. BN and PT respectively 

inference complexity than other PTs that are also sound for 
the same BN. Let us introduce the concept of optimality in 
PTs: 

Definition 2 A PT V is optimal for a BN B if V is sound 
for B and there is no other PT V' such that V' has a lower 
inference complexity (measured by Eq. (3)) than V and is 
sound for B. 

Those PTs that are close to being optimal will represent 
a tighter bound in the inference complexity of the models. 
Therefore, our objective is finding PTs that are not only 
sound, but also close to being optimal. 

To avoid the rejection of good solutions because of a poor 
incremental compilation we perform an optimization process 
for each PT candidate during the search. The optimization 
procedure visits iteratively the nodes to be optimized and 
consists of two phases. The first phase does a smooth opti­
mization, so it visits the deepest node available in the PT in 
each step. The second phase is only performed if it is possi­
ble to reduce the complexity of the PT obtained after the first 
phase, in which case it visits the shallowest nodes available 
in the PT to seek bigger changes in the inference complexity. 

The key of the optimization process is to find the right 
local movements that minimize Eq. (3) in each iteration. This 
task is performed by Algorithm 4, that basically swaps the 



position in P of the node to be optimized Xopt with its parent 
paP(Xo p t) and checks if the change reduces Eq. (3). 

Data: PT P, BN B, node Xopt 

Result: PT V 
1 let P' be a copy of P ; 
2 X p paP(Xo p t) ; 
3 if Xp e p a g ( X o p t ) then 

4 r e t u r n ; 

5 end 

6 pa-p/(Xopt) «— pa-p(Xp) ; 

7 Xc ±- (chp(Xopt) U ch-p(Xp)) \{Xo p t} ; 

8 for Xi E Xc d o 

if ({Xi} Udesc-p(Xi)) C\descs{Xp) ^ 0 then 

p a P , ( X i ) 

else 

9 

10 

11 

12 

13 

14 

15 end 

16 if ({Xp} U descpf(Xp)) n desc s(Xopt) ^ 0 then 

17 pa-pz(Xp) -<— X 

18 end 

end 
p a p , ( X i ) 

X 

"̂  Xopt ; 

opt 

Algorithm 4: Optimization step (pushUpNode) 

Let B and P be the BN and PT received as an input by 
Algorithm 4 and P' the PT that it returns. We will sometimes 
refer to pa-p(Xi) as Pi and to pa-p(Pi) as Pp. Let us use the 
section of the PT shown in Fig. 8a as an example to show 
the operations performed by Algorithm 4. In the first step of 
the procedure, all the arcs that join Xi and its parent with the 
branches hanging from them are deleted. The arc that joins 
Pi with its parent is also deleted. This step is represented in 
Fig. 8b. 

In the second step of the algorithm (Fig. 8c) the method 
sets Pp as the new parent of Xi in P'. In the third step (Fig. 
8d), the arcs from Xi and Pi to the unassigned branches are 
added. The branches that contain any node that is a descen­
dant of Pi in B must now hang from Pi, while the rest of 
the branches should hang from Xi to reduce the inference 
complexity of the tree. 

The last step consists of assigning the new parent of Pi. 
If Pi or any of its descendants in P' is also a descendant of 
Xi in B Algorithm 4 sets Xi as the new parent of Pi in P', as 
shown in Fig. 8e. Otherwise, Pp continues to be the parent 
of Pi in P' (Fig. 8f). 

3.5 Learning polynomial trees from data 

It is straightforward to learn PTs in combination with any 
score+search BN learning method that applies local changes 
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Fig. 8 Example of Algorithm 4 

(f) 

during the search. In each step of the learning process we 
should use the compilation and optimization procedures 
shown above and then penalize each candidate for its infer­
ence complexity, given by Eq. (3). 

In this work we penalize the log-likelihood (LL) to mea­
sure the accuracy of each model, favoring candidates with 



low inference complexity. For a dataset D of size N, the 
scoring function is defined as: 

Table 1 Basic properties of WIN95PTS 

scorePT{B, V, D) = LL{B, D) —kn -eval(P, *) — kp \B\ 

(4) 

wherekn andkp represent the weight of inference complexity 
and of the number of parameters of the BN \B\ respectively 
for the model penalization. 

We need to be sure that the learned PTs are sound, because 
otherwise they will not be useful. Theorem 1 (proof in 
“Appendix”) assures that any method that uses only the pro­
cedures proposed above to make incremental changes in PTs 
will always obtain sound PTs. 

Theorem 1 Let V be a sound PT with respect to a BN B, 
and A an algorithm that receives V and B and obtains a new 
PT V' and BN B'. If every change in V and B made by A 
corresponds to applying Algorithms 1-4, then V' is sound 
with respect to B'. 

To learn the structure of PTs, we use the methods proposed 
above in combination with the two iterations constrained hill-
climbing (2iCHC) algorithm [19]. 2iCHC is a version of the 
hill-climbing (HC) algorithm that uses a forbidden parents 
list to constrain the search space during the learning process, 
reducing the learning time of HC while assuring the return of 
a minimal I-map. We call the resulting method hill-climbing 
for polynomial trees (HCPT). 

Number of nodes 

Number of arcs 

Number of parameters 

Average Markov blanket size 

Table 2 Basic properties of PATHFINDER 

Number of nodes 

Number of arcs 

Number of parameters 

Average Markov blanket size 

Table 3 Basic properties of MUNIN1 

Number of nodes 

Number of arcs 

Number of parameters 

Average Markov blanket size 

76 

112 

574 

5.92 

135 

200 

77,155 

3.04 

186 

273 

15,622 

3.81 

dataset (P). From each sample we generate a conditional 
probability query P(V\E) with randomly selected query (V) 
and evidence (E) variables. In each test we vary the number 
of evidence variables from 10 to 25 % of the total, letting the 
number of query variables fixed at 15%. TheMSE is defined 
by: 

4 Experimental results 

In this section we show and discuss the results obtained for 
inference and learning using PTs. The idea is to check the 
impact of including the PT framework to the original method, 
in this case 2iCHC, and compare the accuracy of inference 
and the computational cost in both models. 

The datasets used in this work were generated from three 
real-world BNs. WIN95PTS is a medium network for han­
dling printer troubleshooting in Windows 95, PATHFINDER 
is a large network for the diagnosis of lymph-node diseases 
[21], and MUNIN1 is a large size network for the diagno­
sis of neuromuscular disorders [2]. The basic properties of 
each BN are shown in Tables 1, 2 and 3. We have generated 
25,000 learning samples and 40,000 testing samples from 
each network. 

To evaluate the inference accuracy we have used the mean 
square error (MSE) between the results obtained performing 
inference in the learned model (Q) and the probability in 
the test dataset (P). The error is computed using a set of 
500 samples from the test data, while the rest of the samples 
are used to compute the probability of each query in the test 

MSE(P, Q) 
m 

(P(v(i)\e(i))-Q(v(i)\e(m2 

i=1 

where v(i) is the instantiation of V in sample i, e(i) is the 
instantiation of E in sample i, and m is the number of sam­
ples. 

4.1 Learning results 

One of the objectives of this work is to provide a framework 
that allows computing an upper bound in the inference com­
plexity and that can be easily adapted to most score+search 
methods. Therefore, we were interested in comparing an 
existing BN learning method with a modified version of this 
method using PTs. 

We compare the BNs obtained with 2iCHC with the PTs 
obtained with HCPT, that is a modified version of 2iCHC 
adapted to learning PTs. We use the minimum description 
length (MDL) [10] scoring function to evaluate each BN 
obtained with 2iCHC and Eq. (4) to evaluate each PT. 

The results (Tables 4, 5, 6) show that the differences 
in the likelihood are small. 2iCHC performs better in 
WIN95PTS and MUNIN1 and HCPT obtains a better result 

m 1 



Table 4 Learning results for WIN95PTS W I N 9 5 P T S 

2iCHC HCPT 

Log_likelihood 

Number of arcs 

Number of parameters 

Learning time 

-9 .11 

120 

620 

0 h 12 min 

-9 .62 

131 

435 

0 h 14 min 

Table 5 Learning results for PATHFINDER 

2iCHC HCPT 

Log_likelihood 

Number of arcs 

Number of parameters 

Learning time 

-27 .19 

138 

1266 

1 h 51 min 

-26 .75 

140 

1273 

2 h 34 min 

Table 6 Learning results for MUNIN1 

2iCHC HCPT 

Log_likelihood 

Number of arcs 

Number of parameters 

Learning time 

-41 .78 

220 

2085 

5 h 37 min 

-45 .73 

210 

2190 

6 h 53 min 

in PATHFINDER. However, the accuracy of the models is 
compared in more detail by the inference experiments. 

The computational cost of learning PTs with HCPT is a 
bit higher than the cost of learning BNs with 2iCHC, but the 
time needed for the incremental compilation of PTs is small 
compared with the time spent by the scores. Nevertheless, 
we focus on reducing the inference complexity rather than 
the learning time, given that the learning process is usually 
performed only once, while inference is usually performed 
multiple times. 

4.2 Inference results 

Next, we compare the performance of exact inference in 
PTs obtained with HCPT with approximate inference in BNs 
learned with 2iCHC. We use the likelihood weighting (LW) 
algorithm for approximate inference [18,29]. The reason for 
using approximate inference is that the MDL score, that is 
used in combination with 2iCHC, does not penalize the infer­
ence complexity of the models, so the computational cost of 
performing exact inference in these models is too high. 

We use three different sampling sizes for likelihood 
weighting: quick (200 samples), medium (1000 samples) and 
slow (2000 samples). This way, we can compare the effi­
ciency and accuracy of the PTs obtained with HCPT with 
a very fast inference procedure and also with a slower one 
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M U N I N 1 

0.04 

0.02 

10 15 20 25 
Evidence variables (%) 

20 

10 

WIN95PTS PATHFINDER MUNIN1 

Fig. 9 Inference results comparing quick LW (100 s a m p l e s ) x , 
medium LW (1000 samples) D , slowLW (2000 samples )—• , and 
exact inference with PTs ^ * , . The computational cost displayed is the 
mean time (in s) of all the queries answered by each BN 

that achieves a better convergence to the target probability 
distribution. The focus is not on comparing the inference 
procedures, but on analyzing how penalizing the inference 
complexity of the models affects the efficiency and accuracy 
of inference. The results are presented in Fig. 9. 

The inference results show that using PTs improves the 
accuracy of the answers provided by the models obtained 
with 2iCHC in combination with LW in every scenario. The 
computational cost of performing exact inference in PTs is 
always lower than the cost of using 2iCHC and medium (1000 
samples) or slow (2000 samples) LW, and similar to the cost 

0 

0 



of performing quick LW (200 samples), that produces always 
the less accurate answers in the tests. 

5 Conclusions and future research 

We developed a new framework for learning low infer­
ence complexity BNs. For that, we have used a simple and 
intuitive representation (PTs) that allows evaluating the infer­
ence complexity of the candidate models during the learning 
process efficiently. PTs do not exploit the local structures of 
the network as ACs and they are not as tight as JTs for bound­
ing the complexity of the networks, but they allow a more 
flexible learning process of low inference complexity mod­
els. We have created methods for incrementally compiling 
and optimizing this representation while learning BNs. 

Experimental results show that using the incremental com­
pilation of PTs combined with existing BN learning methods 
obtains models with low inference complexity requiring a 
computational cost that is similar to the cost required by 
the original BN learner. In the tests, the accuracy of the 
answers provided by exact inference in PTs outperformed 
those provided by the models learned with a state-of-the-art 
BN learning method using approximate inference. 

Future research will focus on adapting the incremental 
compilation and optimization methods presented here to rep­
resentations that are not restricted to topological orders. We 
are interested in learning tractable models in the space of 
elimination orders, using an equivalence class of elimination 
orders and DAGs. This way, we aim to use a representation 
that provides a tighter upper bound in the inference com­
plexity, such as JTs, but maintaining the flexibility of the 
representation used in this work. 

Most probable explanations can be computed in poly­
nomial time in the number of variables by a class-bridge 
decomposable multidimensional Bayesian classifier [6] if 
the number of variables in each of its components and the 
treewidth of its structure are bounded [23]. We are interested 
in adapting the methods presented here to learn tractable mul­
tidimensional Bayesian classifiers. 

Appendix: Proof of Theorem 1 

This work relies heavily on Theorem 1, which assures that the 
proposed incremental compilation and optimization methods 
produce always sound PTs. To demonstrate the soundness of 
a PT V with respect to a BN B, we show that for each node 
Xi of V every parent of Xi in B is a predecessor of Xi in V. 
In this “Appendix” we provide a proof of Theorem 1. 

Lemma 1 Let V be a PT over XP = {*} U X and 
B be a Bayesian network over X. If V is sound with 

respect to B, then the PT V' obtained after applying 
addArc{B, V, Xout, Xout) is also sound with respect to B'', 
where B' is the result of adding arc Xout -> Xin to B, and 
the addition ofXout -> Xin to B does not produce a cycle in 
B'. 

Proof The structure of V' depends on the precedence rela­
tionship between Xout and Xin in V. 

• Xout <= predp(Xin): there are no changes in the struc­
ture of V. VXi e X\{Xin], pagr(Xi) = paB(Xi) 
and pred-p,(Xi) = pred-p(Xi), so Xi is sound. Xin is 
also sound because pa^riXin) = pag(Xin) U {Xout}, 
predp/CXin) = pred-p(Xin) and Xout e pred-pCXin). 

• Xin e predp(Xout): The nodes that are not descendants 
of Xin in V do not change. VXi e X\(desc-p(Xin) U 
(Xin}), paB/(Xi) = paB(Xi) and pred-p/(Xi) = 
pred-p[Xi). Thus, Xi is sound. Xout and its descen­
dants in V' that are not descendants of Xin have less 
predecessors in V' than in V. VXi e desc-p/(Xout) U 
{XoutACdescpKXin) U {Xin}), as predr,(Xi) = 
predp(Xi)\(descp/(Xin)U{Xin}),paB,(Xi) = paB(Xi) 
and paB/(Xi) n (descp/(Xin) U {Xin}) = 0 , Xi is sound. 
Finally, Xin has Xout as a predecessor in V. VXi e 
descv,(Xin)U{Xin}, predr,(Xi) D predr(Xi)U{Xout} 
and paB,(Xi) c paB(Xi) U {Xout}, so Xi is sound. 

• Xout £ pred-pCXin) and Xin <£ predp(Xout): Xout and 
its predecessors in V are set as predecessors of Xin in V'. 
VXi i descP/(Xin) U {Xin},paB,(Xi) = paB(Xi) and 
pred-p/(Xi) 2 pred-p(Xi). Hence Xi is sound. VXi e 
descP/(Xin) U {Xin}, paB,(Xi) c paB(Xi) U {Xout} and 
pred-p/(Xi) 2 pred-p(Xi) U {Xout}. Therefore Xi is 
sound. 

Lemma 2 Let V be a PT over XP = {*} U X and 
B be a Bayesian network over X. If V is sound with 
respect to B, then the PT V' obtained after applying 
removeArc(B, V, Xout, Xin) is also sound with respect to B'', 
where B' is the result of removing arc Xout —>• Xinfrom B. 

Proof VXi e X, paBi{Xi) c paB{Xi) and pred-p/(Xi) = 
pred-p(Xi), so Xi is sound. 

Lemma 3 Let V be a PT over XP = {*} U X and 
B be a Bayesian network over X. If V is sound with 
respect to B, then the PT V' obtained after applying 
reverseArc{B, V, Xout, Xin) is also sound with respect to B'', 
where B' is the result of reversing arc Xout —>• Xin in B, and 
Xin —>• Xout does not produce a cycle in B'. 

Proof We can describe the reversion of arc Xout —>- Xin in 
two steps: 

1 V1, B1 <r- removeArc(P, B, Xout, Xin). 



2. V', B' <r- addArc(P1, B1, Xin, Xout). 

From Lemma 1 we know that V1 is sound with respect 
to B1, and from Lemma 2 we know that V' is sound with 
respect to B'. 

Lemma 4 Let V be a PT over XP = {*} U X and 
B be a Bayesian network over X. If V is sound with 
respect to B, then the PT V' obtained after applying 
pushUpNode{B, V, Xopt) is also sound with respect to B. 

Proof Let Z?opt = (desc-p/(Xopt) U {Xopt})\{desc-pi{Xp) U 
{Xp}), and T>p = desc-p'(Xp) U {Xp}. 

WXi e X\{Dopt U Dp), pred-pf(Xi) = predp(Xi). 
Therefore, Xi is sound. 

VXi e Dopt, predP,(Xi) = predv(Xi)\{Xp}. Given that 
Xi e Z?opt only if Xi g descg(Xp), then Xi is sound. 

The nodes in Dp may contain Xopt as a predecessor in V1 

depending on their predecessors in B. 
If Dp n descg(Xopt) ^ 0 , WXi e Dp, predv,(Xi) = 

pred-p(Xi) U {Xopt}, so Xi is sound. Otherwise, VXi e 
Dp,pred-pr(Xi) = pred-p(Xi)\{Xopt}, and given that 
Xopt ^ predg(Xi), Xi is sound. 

Theorem 1 Let V be a sound PT with respect to a BN B, 
and A an algorithm that receives V and B and obtains a new 
PT V' and BN B'. If every change in V and B made by A 
corresponds to applying Algorithms 1–4, then V' is sound 
with respect to B'. 

Proof Algorithm A obtains V' and B' from V and B using 
any sequence of changes, where each change is produced by 
Algorithms 1–4. Since V is sound for B and Lemmas 1–4 
assure that Algorithms 1-4 return a PT V1 and a BN B1 such 
that V1 is sound for B1, the result of applying the sequence 
of changes in A is a PT V' and a BN B' where V' is sound 
for B'. 
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