
Learning Bayesian networks with low inference complexity

Marco Benjumeda1 · Pedro Larrañaga1 · Concha Bielza1

Abstract One of the main research topics in machine
learning nowadays is the improvement of the inference and
learning processes in probabilistic graphical models. Tradi­
tionally, inference and learning have been treated separately,
but given that the structure of the model conditions the
inference complexity, most learning methods will some­
times produce inefficient inference models. In this paper we
propose a framework for learning low inference complex­
ity Bayesian networks. For that, we use a representation of
the network factorization that allows efficiently evaluating
an upper bound in the inference complexity of each model
during the learning process. Experimental results show that
the proposed methods obtain tractable models that improve
the accuracy of the predictions provided by approximate
inference in models obtained with a well-known Bayesian
network learner.

This work has been partially supported by the Spanish Ministry of
Economy and Competitiveness through the Cajal Blue Brain
(C080020-09; the Spanish partner of the Blue Brain initiative from
EPFL) and TIN2013-41592-P projects, by the Regional Government
of Madrid through the S2013/ICE-2845-CASI-CAM-CM project, and
by the European Union’s Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement No. 604102 (Human Brain
Project). M. Benjumeda is supported by a predoctoral contract for the
formation of doctors from the Spanish Ministry of Economy and
Competitiveness (BES-2014-068637).

B Marco Benjumeda Pedro Larrañaga
marcobb8@gmail.com pedro.larranaga@fi.upm.es

Concha Bielza

mcbielza@fi.upm.es
1 Computational Intelligence Group, Departamento de

Inteligencia Artificial, Universidad Politécnica de Madrid, Madrid, Spain

1 Introduction

Bayesian networks (BNs) are very powerful tools for con­
cisely modeling probability distributions of a set of random
variables X = {X1, X2, • • •, Xn], and have also been used
for supervised classification [28] and clustering [7]. A BN B
encodes the conditional dependences between the variables
in X, and it is composed of:

1. Directed acyclic graph Each node of the graph repre­
sents a random variable in X, and the arcs represent the
probabilistic dependences among variables.

2. Parameters There is a conditional probability distribution
(CPD) P(Xi Ipag(Xi)) associated to each variable Xi e
X, where paB (Xi) are the parents of Xi in B. These CPDs
are called the parameters of the network.

In the past years there has been a huge interest in the
creation of new methods for learning the structure of BNs
from data. Usually, two types of scores are used. Bayesian
metrics maximize the posterior probability of the network
given a prior distribution over all the possible networks con­
ditioned to the data, while information theory metrics try to
maximize the data compression achieved by each network.
Well known scoring functions such as Bayesian Dirichlet
equivalent (BDe) [20], K2 [13,14,25,26], Akaike informa­
tion criterion (AIC) [1], Bayesian information criterion (BIC)
[31] or minimum description length (MDL) [10,24] implic­
itly or explicitly penalize the representation complexity of the
network using the number of parameters of the model. Nev-

mailto:marcobb8@gmail.com
mailto:pedro.larranaga@fi.upm.es
mailto:mcbielza@fi.upm.es

ertheless, the representation complexity and the inference
complexity are sometimes very different for the same model
[5], so an indicator of the inference complexity is required to
learn models where inference is tractable.

In this work we propose a new framework for learning
low inference complexity BNs. For that, we incrementally
compile a complementary structure that we use to compute
an upper bound in the inference complexity of each network
efficiently.

This paper is organized as follows. The rest of Sect. 1 pro­
vides an introduction to the problem of learning low inference
complexity models. Section 2 gives a brief review of net­
work polynomials (NPLs), the base of our work. Section 3
describes the representation and the methods proposed in this
paper for learning learning tractable BNs. Section 4shows the
experimental results. Section 5 gives the conclusive remarks
and future research lines.

1.1 Learning thin models

Exact inference in BNs is NP-hard [12]. We can perform
evidence propagation in linear time in the number ofvariables
in a BN when the topology of the network is a polytree [22].
Nevertheless, this constrain is too hard in many situations
where polytrees do not have enough representative power.

Approximate inference is commonly used when exact
inference is intractable. Approximate inference in BNs is
also NP-hard [15], and although it has been useful for solv­
ing some otherwise intractable problems it has some relevant
flaws. It produces a worsening in the answers provided by
the model, and it is challenging to check the convergence of
the algorithms.

The complexity of a BN depends mostly on its structure.
Exact inference is exponential in the treewidth of the network,
which is the size of the biggest node in the minimal tree
decomposition of the network minus one [9]. Intuitively, it
represents how similar is the network structure to a tree.

Computing the treewidth of a graph exactly is an NP-
complete problem [3],and approximatemethods for treewidth
estimation are also computationally expensive. On the other
hand, it is possible to check if the treewidth of a graph is
less or equal than a fixed k in linear time in the number of
variables [9].

There are some approaches that use a bound on the
treewidth to learn thin models [4,11,17,30]. Nevertheless,
checking if the treewidth is less or equal than k is super-
exponential in k [8], so in practice it is intractable when k is
not very small.

Lowd and Domingos [27] used the incremental compila­
tion of arithmetic circuits (see Sect. 2.1) to learn tractable
models that exploit the local structures of the networks,
penalizing the size of the circuits instead of bounding the
treewidth.

2 Network polynomials

The probability distribution implicit in any BN B can be also
represented as a network polynomial [16], that is, a multi­
linear function over two types of variables, indicators IXi

and parameters 9Xi\m = P(Xi = Xi\pa&(Xi) = ni). The
indicators are Boolean functions that return 1 if Xi = xi or if
the value of X* is unknown, and 0 otherwise. The probability
distribution of discrete variables X1,..., Xn in an NPL is
described as:

n

P(X1 = X1,..., Xn = Xn) = 2, Ixfixi\iti
i = 1 Xi€£2X-

where we use xi e £2x, to represent each configuration xi of
variable Xi, and Jti e £2paB(X;) to represent each configura­
tion iti of the parents of Xi.

This function represents the joint probability of the set of
variables X1,... ,Xn. NPLs allow answering any arbitrary
marginal or conditional probabilistic query in linear time in
the size (number of sums and products) of the polynomial.

2.1 Arithmetic circuits

The size of an NPL grows exponentially with the number of
variables, making inference nearly intractable for common-
size networks. Trying to overcome this difficulty, Darwiche
[16] proposed the use of ACs to represent NPLs, using the
distributive properties of the polynomials to reduce the com­
plexity of the NPL function.

ACs are directed acyclic graphs (DAGs) in which the inner
nodes (nodes with children) are addition (+) and multiplica­
tion (x) nodes and the leaves (nodes without children) are
numeric variables or constants. Performing inference in the
circuits is straightforward and linear in the number of arcs of
the graph. The circuit can be evaluated bottom-up by com­
puting the operations represented by each inner node (+, x)
from the values of its children, starting from the leaves.

For example, the AC shown in Fig. 1 represents the NPL
shown in Eq. (1). In the examples shown in this paper we
only use Boolean variables, and for each variable Xi we will
refer to Xi = True as xi and Xi = False as ¬a*.

P(A, B) = iaibeaeb]a + la¬h6a6¬a + ¬alh6¬a6h¬a
+ ¬a¬be¬ae¬ ¬a . (1)

Darwiche [16] uses ACs as a complementary representa­
tion obtained by the compilation of BNs to perform tractable
exact inference. Lowd and Domingos proposed the method
LearnAC [27], that is the first approach to learn ACs directly
from data. It uses a greedy search process that penalizes each

db\a lb 6b\^a Q^b\a Jl^b Q^b\^a

Fig. 1 AC representation for the NPL of Eq. (1)

(a) H) (I

(b)

Fig. 2 a Structure of a BN, and b a PT associated to the BN

circuit with its size, given by the number of arcs of the cir­
cuit. The changes produced by LearnAC during the learning
process consist of splitting the leafs of the circuit, which
allows exploiting the local structures of the network.

The size of the circuits and the number of possible local
changes that LearnAC must consider in each iteration can be
huge when the number of variables of the models is not very
small, making the search expensive.

3 Polynomial trees

Some local changes that are usually considered in most
score+search BN learning methods, such as arc removals or
reversions, are not considered by LearnAC or any method
for learning bounded treewidth junction trees (JTs), and
they are essential for avoiding local optima in early stages
of the learning process. We use a simpler representation,
called polynomial trees (PTs), to consider these operations,
allowing a more flexible learning process of low inference
complexity models.

A PT is a compact graphical representation of an NPL.
For simplicity, we also maintain the BN representation to
show the conditional dependences between the variables of
the model. Each PT is associated to a BN, and it represents a
factorization of the NPL encoded by the BN. A PT P asso­
ciated to a BN B over a set of variables X = {X1,..., Xn]
consists of:

1. A set of nodes XP = {*} U X, where * is the root node.
2. An indicator set I = {I(Xi),..., I(Xn)}, where each

indicator I{Xi) e I can take any value of Xi or the
value 0 .

3. A set of directed arcs that represent a topological ordering
of the nodes in XP, forming a tree structure.

Basically, the complete graphical representation of a PT
consists of a DAG representing the dependences in the net-

work and a tree representing a factorization of this network.
Figure 2 is an example of a BN (a) and a PT associated to
the BN (b).

The soundness of a PT is the property that guarantees that
it can perform exact inference correctly for any probabilistic
query that could be asked to the model, and it is defined as:

Definition 1 Let P be a PT over XP = {*} U X with an asso­
ciated BN B over X, and let predp(Xi) be the predecessors
of Xi in P. P is sound for B if and only if VXi e X it holds
that VXj e pag(Xi), Xj e predp(Xi).

If in a PT P associated to a BN B there is at least one
node Xi that has a parent Xj in B that does not belong to
pred-p(Xi), then exact inference will fail, because I(Xj)
will be set to 0 when we evaluate Xi.

There are usually multiple sound PTs for each BN,
because there are multiple possible orders to perform exact
inference on each network. We are interested in obtaining
those PTs that are sound for a BN and that are as close as
possible to the PT with the smallest treewidth for this net­
work.

3.1 Inference in polynomial trees

In this subsection we provide a method for performing exact
inference in PTs. There are more efficient evidence prop­
agation methods in the state-of-art, but our purpose is to
measure the inference complexity of each PT. It proceeds
by first, executing a top-down process for the propagation of
the indicators in the tree, and then it performs a bottom-up
process where it computes the probability of the polynomial
represented in the tree given the configuration of the indica­
tors.

Given a BN B, a PT P and an evidence e, the probability
of e in the model can be computed as follows. First, we need
to initialize the indicator set I = { I (Xi) , . . . , I(Xn)} with
the values in e, setting the indicators of the variables that do
not appear in e to 0 . Let chp(Xi) be the children of Xi in
P. We can evaluate the root node * given I computing:

B) (C)

(a) BN

(b) P T

1(D) = 0G O 1(A) = a

+)I(C) = 0

(c) Polynomial generated using Equat ion (2)

Fig. 3 Inference example. The probabilistic query P(a, ¬b) is
answered by the BN and its associated PT shown in a and b respec­
tively. First, the indicators are set to I = {a, b, 0, 0}. The polynomial
P(a,¬b) = (0d+0¬d)-(0a-0¬ b|a-(0c|a+ ¬ ¬c |a)) ,thatis shown graph­
ically in c , represents the operations performed by Eq. (2) to answer
this query

query(B, V, *, 1) = query(B, V, Xk, 1) .
Xkechv(*)

The rest of the nodes can be recursively evaluated by com­
puting:

query(£ , V,Xi:T)= exi\n

xi€QCi

Xi • FT query(B,V,XjlXi)
Xjech-p(Xi)

(2)

where £2Ci = £2Xi if I(Xi) = 0 and £2Ci = {I(Xi)} oth­
erwise, TTXi is a set with the value of each parent of Xi in
I, and %Xi is the set of indicators obtained after setting the
value of I (Xi) to xi in I.

Figure 3 shows an example of how to perform exact
inference in a simple PT to answer the probabilistic query
P(a, -b) .

3.2 Evaluating the complexity of polynomial trees

In most state-of-the-art methods for learning thin probabilis­
tic models the treewidth is used as an estimation of the
inference complexity. Obtaining the treewidth of a graph is
an NP-complete problem, so in most methods estimations

are used [5]. It is simple to obtain an upper bound in the
inference complexity of a PT efficiently. The method used
in this paper for the complexity evaluation of PTs obtains
the maximum number of operations required to evaluate Eq.
(2). It works recursively, obtaining the number of sums and
products required to perform inference in each node, which
is given by:

evalCP, Xi)

=|£2Xi I • I 1 + (1 + eval(P, Xj)) I — 1.
\ Xj&chv(Xi) J

(3)

Basically, each node Xi requires |£2X i Xj£ch-p(Xi) (1
eval(P, Xj)) operations to compute Eq. (2) for each chil­
dren of Xi, multiplying the resulting values, and | £2Xi \ — 1
operations to sum the results for each instance of Xi.

3.3 Incremental compilation of PTs

To evaluate the inference complexity of each network using
Eq. (3) it is necessary to have a compiled PT in each step of
the learning process. As compiling a PT from scratch every
time is intractable, we have created a group of procedures to
compile incrementally any local change that could be done
in a BN during the learning process, including arc additions,
removals and reversals.

Let V be a sound PT for a BN B, and let B' be the result
of applying a local change to B. It may happen that V is not
sound for B'. The purpose of the incremental compilation
methods is to obtain a sound PT V' for B'. Next, we show
the procedures that we use to compile PTs incrementally.

3.3.1 Arc addition

The addition of an arc in a BN is straightforward, but in a
PT the compilation process is not so simple, and it depends
on the current configuration of the PT. Let us consider any
addition (Xout —>- Xin) that should be compiled in a PT V
and included in its corresponding BN B. We will refer to
Xout as the output node and Xin as the input node. The three
possible scenarios that we could face in an arc addition are
the following:

1. Xout e predP(Xin): V is sound for B after the addition,
so no changes are required.

2. Xin e predP(Xout): in this scenario, it is necessary to
set Xout as a predecessor of Xin in V and reconfigure the
positions of the nodes between Xout and Xin to obtain a
PT sound for B.

3. Xout ^ predP(Xin) and Xin £ predP(Xout): in this case
node Xout and its predecessors in V are set as predeces­
sors of Xin in V.

The procedure proposed for the incremental compilation
of arc additions is described by Algorithm 1.

Algorithm1: Incremental compilation of an arc addition
(addArc)

Imagine that we are learning the BN and the PT shown in
Fig. 4. Let us focus on some arc additions that cover the three
different scenarios. In each example we show the resulting
BN after applying the addition of the arc, and the resulting PT
after compiling the change in the tree. The obtained PTs are

Fig. 4 Examples of BN (left) and PT (right) respectively

sound but they may be far from optimal, given that we do not
include the optimization process in these examples. Figure
5a corresponds to the addition of arc A -> E. In this case A
is currently a predecessor of E in the PT (scenario 1), so no
changes in the tree are required. Figure 5b corresponds to the
addition of E -> A. This change implies a reconfiguration
of the network given that A is currently a predecessor of E in
the PT (scenario 2), and now E must be set as a predecessor
of A without spoiling the soundness of the rest of the nodes.
The last example (Fig. 5b) corresponds to the addition of
arc C -> F. Given that the only predecessor that C and F
have in common is the root node * (scenario 3), C and all its
predecessors must be placed as predecessors of F to maintain
the soundness of the tree.

3.3.2 Arc removal

The second type of local changes that we need to consider is
arc removals. On the one hand, it is straightforward to obtain
a sound PT after applying an arc removal in a BN, because
it is enough to maintain the current configuration of the tree.
On the other hand, a huge reduction in the complexity of
the PT may be achieved optimizing the PT after the removal.
Algorithm 2 describes the procedure used here for compiling
arc removals.

Data: PT P, BN B, output node Xout, input node Xin

Result: PT V, BN B'
1 remove Xout from pag/(Xin) ;
2P ^P;

Algorithm 2: Incremental compilation of an arc removal
(removeArc)

Figure 6 is an example that shows how Algorithm 2
removes arc A -> F in the BN and PT shown in Fig. 4.
There are no changes applied to the PT and it is still sound
with respect to the new BN, but a model with a lower infer­
ence complexity could be obtained optimizing the tree.

3.3.3 Arc reversal

To compile the reversal of arc Xout -> Xin (Algorithm 3)
we compile first the deletion of arc Xout -> Xin and then the
addition of the reversed arc Xin -> Xout.

Data: PT P, BN B, output node Xout, input node Xin

Result: PT V, BN B'
1 let B' and P' be copies of B and P respectively ;
2 add Xout to pag; (Xin) ;
3 if Xin epred-p(Xout) then
4 let desc-p(Xin) be the descendants of Xin in P ;
5 let Xc <r- be the nodes in (descp(Xin)n

predp(Xout)) U {Xout}, and Xc the list obtained by
ordering Xc from the shallowest to the deepest node
;

6

7

8

9

10

11
12

14

15

16

17

18

19

20

22
23

24

25

26

27

28

Xp <— pa-p(Xin) ;

Xd •<— Xin ;
for Xi e Xc do

Xm •<— ch-p {Xi) n Xc ;
if Xi e descgiXin) then

pa-pi(Xi) <r- Xd ;

Xd <- Xi ;

else
pa-p/(Xi) •<— Xp ;
Xp -< Xi ;

end
for Xj e ch-p(Xi)\{Xm] do

if (desc-p(Xj) U {Xj})n desc&{Xin) ^
then

pa-p/(Xj) «— Xd ;

else
pa-p/(Xj) «— Xp ;

end
end

end
pa-p/(Xin) <— Xout ;

0

29 else if Xin ^ pred-p (Xout) and Xout ^ pred-p (Xin) then
30

31

32

let Xk be the shallowest node in
predp(X out)\predp(Xin) ;
pap/(Xk) ^ p a p (X i n) ;
pa-p/(Xin) «— Xout;

33 end

(a)

(b)

(c)

Fig. 5 Example of arc addition for scenarios 1 (a), 2 (b) and 3 (c). BNs
on the left and PTs on the right

Data: PT V, BN B, output node Xout, input node Xin

Result: PT V, BN B'
1 / 1^ *̂ 1 removeArc i / j I~Jj Xout? Xin/ ;

2

Algorithm 3: Incremental compilation of an arc reversal
(reverseArc)

Figure 7 shows an example where we compile the reversal
of arc A F. The result corresponds to first compiling the
removal of arc A F and then compiling the addition of
arc F A.

3.4 Polynomial tree optimization

Although the methods proposed above assure the soundness
of the compiled PTs, the obtained models may have a higher

Fig. 6 Example of arc removal. BN (left) and PT (right)

Fig. 7 Example of arc reversal. BN and PT respectively

inference complexity than other PTs that are also sound for
the same BN. Let us introduce the concept of optimality in
PTs:

Definition 2 A PT V is optimal for a BN B if V is sound
for B and there is no other PT V' such that V' has a lower
inference complexity (measured by Eq. (3)) than V and is
sound for B.

Those PTs that are close to being optimal will represent
a tighter bound in the inference complexity of the models.
Therefore, our objective is finding PTs that are not only
sound, but also close to being optimal.

To avoid the rejection of good solutions because of a poor
incremental compilation we perform an optimization process
for each PT candidate during the search. The optimization
procedure visits iteratively the nodes to be optimized and
consists of two phases. The first phase does a smooth opti­
mization, so it visits the deepest node available in the PT in
each step. The second phase is only performed if it is possi­
ble to reduce the complexity of the PT obtained after the first
phase, in which case it visits the shallowest nodes available
in the PT to seek bigger changes in the inference complexity.

The key of the optimization process is to find the right
local movements that minimize Eq. (3) in each iteration. This
task is performed by Algorithm 4, that basically swaps the

position in P of the node to be optimized Xopt with its parent
paP(Xo p t) and checks if the change reduces Eq. (3).

Data: PT P, BN B, node Xopt

Result: PT V
1 let P' be a copy of P ;
2 X p paP(Xo p t) ;
3 if Xp e p a g (X o p t) then

4 r e t u r n ;

5 end

6 pa-p/(Xopt) «— pa-p(Xp) ;

7 Xc ±- (chp(Xopt) U ch-p(Xp)) \{Xo p t} ;

8 for Xi E Xc d o

if ({Xi} Udesc-p(Xi)) C\descs{Xp) ^ 0 then

p a P , (X i)

else

9

10

11

12

13

14

15 end

16 if ({Xp} U descpf(Xp)) n desc s(Xopt) ^ 0 then

17 pa-pz(Xp) -<— X

18 end

end
p a p , (X i)

X

"̂ Xopt ;

opt

Algorithm 4: Optimization step (pushUpNode)

Let B and P be the BN and PT received as an input by
Algorithm 4 and P' the PT that it returns. We will sometimes
refer to pa-p(Xi) as Pi and to pa-p(Pi) as Pp. Let us use the
section of the PT shown in Fig. 8a as an example to show
the operations performed by Algorithm 4. In the first step of
the procedure, all the arcs that join Xi and its parent with the
branches hanging from them are deleted. The arc that joins
Pi with its parent is also deleted. This step is represented in
Fig. 8b.

In the second step of the algorithm (Fig. 8c) the method
sets Pp as the new parent of Xi in P'. In the third step (Fig.
8d), the arcs from Xi and Pi to the unassigned branches are
added. The branches that contain any node that is a descen­
dant of Pi in B must now hang from Pi, while the rest of
the branches should hang from Xi to reduce the inference
complexity of the tree.

The last step consists of assigning the new parent of Pi.
If Pi or any of its descendants in P' is also a descendant of
Xi in B Algorithm 4 sets Xi as the new parent of Pi in P', as
shown in Fig. 8e. Otherwise, Pp continues to be the parent
of Pi in P' (Fig. 8f).

3.5 Learning polynomial trees from data

It is straightforward to learn PTs in combination with any
score+search BN learning method that applies local changes

5

(a)

Xi Pi j

(c)

0

\>\

Xi)

w:

5
v
Pi

Xi\

(b)

(d)

(e)

Fig. 8 Example of Algorithm 4

(f)

during the search. In each step of the learning process we
should use the compilation and optimization procedures
shown above and then penalize each candidate for its infer­
ence complexity, given by Eq. (3).

In this work we penalize the log-likelihood (LL) to mea­
sure the accuracy of each model, favoring candidates with

low inference complexity. For a dataset D of size N, the
scoring function is defined as:

Table 1 Basic properties of WIN95PTS

scorePT{B, V, D) = LL{B, D) —kn -eval(P, *) — kp \B\

(4)

wherekn andkp represent the weight of inference complexity
and of the number of parameters of the BN \B\ respectively
for the model penalization.

We need to be sure that the learned PTs are sound, because
otherwise they will not be useful. Theorem 1 (proof in
“Appendix”) assures that any method that uses only the pro­
cedures proposed above to make incremental changes in PTs
will always obtain sound PTs.

Theorem 1 Let V be a sound PT with respect to a BN B,
and A an algorithm that receives V and B and obtains a new
PT V' and BN B'. If every change in V and B made by A
corresponds to applying Algorithms 1-4, then V' is sound
with respect to B'.

To learn the structure of PTs, we use the methods proposed
above in combination with the two iterations constrained hill-
climbing (2iCHC) algorithm [19]. 2iCHC is a version of the
hill-climbing (HC) algorithm that uses a forbidden parents
list to constrain the search space during the learning process,
reducing the learning time of HC while assuring the return of
a minimal I-map. We call the resulting method hill-climbing
for polynomial trees (HCPT).

Number of nodes

Number of arcs

Number of parameters

Average Markov blanket size

Table 2 Basic properties of PATHFINDER

Number of nodes

Number of arcs

Number of parameters

Average Markov blanket size

Table 3 Basic properties of MUNIN1

Number of nodes

Number of arcs

Number of parameters

Average Markov blanket size

76

112

574

5.92

135

200

77,155

3.04

186

273

15,622

3.81

dataset (P). From each sample we generate a conditional
probability query P(V\E) with randomly selected query (V)
and evidence (E) variables. In each test we vary the number
of evidence variables from 10 to 25 % of the total, letting the
number of query variables fixed at 15%. TheMSE is defined
by:

4 Experimental results

In this section we show and discuss the results obtained for
inference and learning using PTs. The idea is to check the
impact of including the PT framework to the original method,
in this case 2iCHC, and compare the accuracy of inference
and the computational cost in both models.

The datasets used in this work were generated from three
real-world BNs. WIN95PTS is a medium network for han­
dling printer troubleshooting in Windows 95, PATHFINDER
is a large network for the diagnosis of lymph-node diseases
[21], and MUNIN1 is a large size network for the diagno­
sis of neuromuscular disorders [2]. The basic properties of
each BN are shown in Tables 1, 2 and 3. We have generated
25,000 learning samples and 40,000 testing samples from
each network.

To evaluate the inference accuracy we have used the mean
square error (MSE) between the results obtained performing
inference in the learned model (Q) and the probability in
the test dataset (P). The error is computed using a set of
500 samples from the test data, while the rest of the samples
are used to compute the probability of each query in the test

MSE(P, Q)
m

(P(v(i)\e(i))-Q(v(i)\e(m2

i=1

where v(i) is the instantiation of V in sample i, e(i) is the
instantiation of E in sample i, and m is the number of sam­
ples.

4.1 Learning results

One of the objectives of this work is to provide a framework
that allows computing an upper bound in the inference com­
plexity and that can be easily adapted to most score+search
methods. Therefore, we were interested in comparing an
existing BN learning method with a modified version of this
method using PTs.

We compare the BNs obtained with 2iCHC with the PTs
obtained with HCPT, that is a modified version of 2iCHC
adapted to learning PTs. We use the minimum description
length (MDL) [10] scoring function to evaluate each BN
obtained with 2iCHC and Eq. (4) to evaluate each PT.

The results (Tables 4, 5, 6) show that the differences
in the likelihood are small. 2iCHC performs better in
WIN95PTS and MUNIN1 and HCPT obtains a better result

m 1

Table 4 Learning results for WIN95PTS W I N 9 5 P T S

2iCHC HCPT

Log_likelihood

Number of arcs

Number of parameters

Learning time

-9 .11

120

620

0 h 12 min

-9 .62

131

435

0 h 14 min

Table 5 Learning results for PATHFINDER

2iCHC HCPT

Log_likelihood

Number of arcs

Number of parameters

Learning time

-27 .19

138

1266

1 h 51 min

-26 .75

140

1273

2 h 34 min

Table 6 Learning results for MUNIN1

2iCHC HCPT

Log_likelihood

Number of arcs

Number of parameters

Learning time

-41 .78

220

2085

5 h 37 min

-45 .73

210

2190

6 h 53 min

in PATHFINDER. However, the accuracy of the models is
compared in more detail by the inference experiments.

The computational cost of learning PTs with HCPT is a
bit higher than the cost of learning BNs with 2iCHC, but the
time needed for the incremental compilation of PTs is small
compared with the time spent by the scores. Nevertheless,
we focus on reducing the inference complexity rather than
the learning time, given that the learning process is usually
performed only once, while inference is usually performed
multiple times.

4.2 Inference results

Next, we compare the performance of exact inference in
PTs obtained with HCPT with approximate inference in BNs
learned with 2iCHC. We use the likelihood weighting (LW)
algorithm for approximate inference [18,29]. The reason for
using approximate inference is that the MDL score, that is
used in combination with 2iCHC, does not penalize the infer­
ence complexity of the models, so the computational cost of
performing exact inference in these models is too high.

We use three different sampling sizes for likelihood
weighting: quick (200 samples), medium (1000 samples) and
slow (2000 samples). This way, we can compare the effi­
ciency and accuracy of the PTs obtained with HCPT with
a very fast inference procedure and also with a slower one

0.03

0.02

0.01

10 15 20 25
Evidence variables (%)

PATHFINDER

0.08

0.06

0.04

0.02

10 15 20 25
Evidence variables (%)

M U N I N 1

0.04

0.02

10 15 20 25
Evidence variables (%)

20

10

WIN95PTS PATHFINDER MUNIN1

Fig. 9 Inference results comparing quick LW (100 s a m p l e s) x ,
medium LW (1000 samples) D , slowLW (2000 samples)—• , and
exact inference with PTs ^ * , . The computational cost displayed is the
mean time (in s) of all the queries answered by each BN

that achieves a better convergence to the target probability
distribution. The focus is not on comparing the inference
procedures, but on analyzing how penalizing the inference
complexity of the models affects the efficiency and accuracy
of inference. The results are presented in Fig. 9.

The inference results show that using PTs improves the
accuracy of the answers provided by the models obtained
with 2iCHC in combination with LW in every scenario. The
computational cost of performing exact inference in PTs is
always lower than the cost of using 2iCHC and medium (1000
samples) or slow (2000 samples) LW, and similar to the cost

0

0

of performing quick LW (200 samples), that produces always
the less accurate answers in the tests.

5 Conclusions and future research

We developed a new framework for learning low infer­
ence complexity BNs. For that, we have used a simple and
intuitive representation (PTs) that allows evaluating the infer­
ence complexity of the candidate models during the learning
process efficiently. PTs do not exploit the local structures of
the network as ACs and they are not as tight as JTs for bound­
ing the complexity of the networks, but they allow a more
flexible learning process of low inference complexity mod­
els. We have created methods for incrementally compiling
and optimizing this representation while learning BNs.

Experimental results show that using the incremental com­
pilation of PTs combined with existing BN learning methods
obtains models with low inference complexity requiring a
computational cost that is similar to the cost required by
the original BN learner. In the tests, the accuracy of the
answers provided by exact inference in PTs outperformed
those provided by the models learned with a state-of-the-art
BN learning method using approximate inference.

Future research will focus on adapting the incremental
compilation and optimization methods presented here to rep­
resentations that are not restricted to topological orders. We
are interested in learning tractable models in the space of
elimination orders, using an equivalence class of elimination
orders and DAGs. This way, we aim to use a representation
that provides a tighter upper bound in the inference com­
plexity, such as JTs, but maintaining the flexibility of the
representation used in this work.

Most probable explanations can be computed in poly­
nomial time in the number of variables by a class-bridge
decomposable multidimensional Bayesian classifier [6] if
the number of variables in each of its components and the
treewidth of its structure are bounded [23]. We are interested
in adapting the methods presented here to learn tractable mul­
tidimensional Bayesian classifiers.

Appendix: Proof of Theorem 1

This work relies heavily on Theorem 1, which assures that the
proposed incremental compilation and optimization methods
produce always sound PTs. To demonstrate the soundness of
a PT V with respect to a BN B, we show that for each node
Xi of V every parent of Xi in B is a predecessor of Xi in V.
In this “Appendix” we provide a proof of Theorem 1.

Lemma 1 Let V be a PT over XP = {*} U X and
B be a Bayesian network over X. If V is sound with

respect to B, then the PT V' obtained after applying
addArc{B, V, Xout, Xout) is also sound with respect to B'',
where B' is the result of adding arc Xout -> Xin to B, and
the addition ofXout -> Xin to B does not produce a cycle in
B'.

Proof The structure of V' depends on the precedence rela­
tionship between Xout and Xin in V.

• Xout <= predp(Xin): there are no changes in the struc­
ture of V. VXi e X\{Xin], pagr(Xi) = paB(Xi)
and pred-p,(Xi) = pred-p(Xi), so Xi is sound. Xin is
also sound because pa^riXin) = pag(Xin) U {Xout},
predp/CXin) = pred-p(Xin) and Xout e pred-pCXin).

• Xin e predp(Xout): The nodes that are not descendants
of Xin in V do not change. VXi e X\(desc-p(Xin) U
(Xin}), paB/(Xi) = paB(Xi) and pred-p/(Xi) =
pred-p[Xi). Thus, Xi is sound. Xout and its descen­
dants in V' that are not descendants of Xin have less
predecessors in V' than in V. VXi e desc-p/(Xout) U
{XoutACdescpKXin) U {Xin}), as predr,(Xi) =
predp(Xi)\(descp/(Xin)U{Xin}),paB,(Xi) = paB(Xi)
and paB/(Xi) n (descp/(Xin) U {Xin}) = 0 , Xi is sound.
Finally, Xin has Xout as a predecessor in V. VXi e
descv,(Xin)U{Xin}, predr,(Xi) D predr(Xi)U{Xout}
and paB,(Xi) c paB(Xi) U {Xout}, so Xi is sound.

• Xout £ pred-pCXin) and Xin <£ predp(Xout): Xout and
its predecessors in V are set as predecessors of Xin in V'.
VXi i descP/(Xin) U {Xin},paB,(Xi) = paB(Xi) and
pred-p/(Xi) 2 pred-p(Xi). Hence Xi is sound. VXi e
descP/(Xin) U {Xin}, paB,(Xi) c paB(Xi) U {Xout} and
pred-p/(Xi) 2 pred-p(Xi) U {Xout}. Therefore Xi is
sound.

Lemma 2 Let V be a PT over XP = {*} U X and
B be a Bayesian network over X. If V is sound with
respect to B, then the PT V' obtained after applying
removeArc(B, V, Xout, Xin) is also sound with respect to B'',
where B' is the result of removing arc Xout —>• Xinfrom B.

Proof VXi e X, paBi{Xi) c paB{Xi) and pred-p/(Xi) =
pred-p(Xi), so Xi is sound.

Lemma 3 Let V be a PT over XP = {*} U X and
B be a Bayesian network over X. If V is sound with
respect to B, then the PT V' obtained after applying
reverseArc{B, V, Xout, Xin) is also sound with respect to B'',
where B' is the result of reversing arc Xout —>• Xin in B, and
Xin —>• Xout does not produce a cycle in B'.

Proof We can describe the reversion of arc Xout —>- Xin in
two steps:

1 V1, B1 <r- removeArc(P, B, Xout, Xin).

2. V', B' <r- addArc(P1, B1, Xin, Xout).

From Lemma 1 we know that V1 is sound with respect
to B1, and from Lemma 2 we know that V' is sound with
respect to B'.

Lemma 4 Let V be a PT over XP = {*} U X and
B be a Bayesian network over X. If V is sound with
respect to B, then the PT V' obtained after applying
pushUpNode{B, V, Xopt) is also sound with respect to B.

Proof Let Z?opt = (desc-p/(Xopt) U {Xopt})\{desc-pi{Xp) U
{Xp}), and T>p = desc-p'(Xp) U {Xp}.

WXi e X\{Dopt U Dp), pred-pf(Xi) = predp(Xi).
Therefore, Xi is sound.

VXi e Dopt, predP,(Xi) = predv(Xi)\{Xp}. Given that
Xi e Z?opt only if Xi g descg(Xp), then Xi is sound.

The nodes in Dp may contain Xopt as a predecessor in V1

depending on their predecessors in B.
If Dp n descg(Xopt) ^ 0 , WXi e Dp, predv,(Xi) =

pred-p(Xi) U {Xopt}, so Xi is sound. Otherwise, VXi e
Dp,pred-pr(Xi) = pred-p(Xi)\{Xopt}, and given that
Xopt ^ predg(Xi), Xi is sound.

Theorem 1 Let V be a sound PT with respect to a BN B,
and A an algorithm that receives V and B and obtains a new
PT V' and BN B'. If every change in V and B made by A
corresponds to applying Algorithms 1–4, then V' is sound
with respect to B'.

Proof Algorithm A obtains V' and B' from V and B using
any sequence of changes, where each change is produced by
Algorithms 1–4. Since V is sound for B and Lemmas 1–4
assure that Algorithms 1-4 return a PT V1 and a BN B1 such
that V1 is sound for B1, the result of applying the sequence
of changes in A is a PT V' and a BN B' where V' is sound
for B'.

References

1. Akaike,H.: A new look at the statistical model identification. IEEE
Trans. Autom. Control 19(6), 716-723 (1974)

2. Andreassen, S., Rosenfalck, A., Falck, B., Olesen, K.G., Andersen,
S.K.: Evaluation of the diagnostic performance of the expert EMG
assistant MUNIN. Electromyogr. Mot. Control 101(2), 129-144
(1996)

3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of find­
ing embeddings in a k-tree. SIAM J. Algebraic Discret. 8(2),
277-284 (1987)

4. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Adv. Neural Inf.,
pp. 569-576 (2001)

5. Beygelzimer, A., Rish, I.: Approximability of probability distribu­
tions. In: Adv. Neural Inf. pp. 377-384 (2004)

6. Bielza, C , Li, G., Larranaga, P.: Multi-dimensional classification
with Bayesian networks. Int. J. Approx. Reason. 52(6), 705-727
(2011)

7. Bielza, C., Larranaga, P.: Discrete Bayesian network classifiers: a
survey. ACM Comput. Surv. 47(1), 5 (2014)

8. Bodlaender, H.L.: A linear time algorithm for finding tree-
decompositions of small treewidth. In: Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, pp.
226–234 (1993)

9. Bodlaender, H.L., Koster, A.M.: Treewidth computations I. Upper
bounds. Inf. Comput. 208(3), 259–275 (2010)

10. Bouckaert, R.R.: Probabilistic network construction using the min­
imum description length principle. In: Lect. Notes Artif. Int., pp.
41–48 (1993)

11. Chechetka, A., Guestrin, C.: Efficient principled learning of thin
junction trees. In: Adv. Neural Inf., pp. 273–280 (2008)

12. Cooper, G.F.: The computational complexity of probabilistic infer­
ence using Bayesian belief networks. Artif. Intell. 42(2), 393–405
(1990)

13. Cooper, G.F., Herskovits, E.: A Bayesian method for constructing
Bayesian belief networks from databases. In: Proceedings of the
Seventh Conference on Uncertainty in Artificial Intelligence, pp.
86–94 (1991)

14. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction
of probabilistic networks from data. Mach. Learn. 9(4), 309–347
(1992)

15. Dagum, P., Luby, M.: Approximating probabilistic inference in
Bayesian belief networks is NP-hard. Artif. Intell. 60(1), 141–153
(1993)

16. Darwiche, A.: A differential approach to inference in Bayesian
networks. J. Assoc. Comput. Mach. 50(3), 280–305 (2003)

17. Elidan, G., Gould, S.: Learning bounded treewidth Bayesian net­
works. In: Adv. Neural Inf., pp. 417–424 (2009)

18. Fung, R.M., Chang, K.C.: Weighing and integrating evidence for
stochastic simulation in Bayesian networks. In: Uncertainty in Arti­
ficial Intelligence, pp. 209–220 (1989)

19. Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning Bayesian net­
works by hill climbing: effficient methods based on progressive
restriction of the neighborhood. Data Min. Knowl. Discov. 22(1–
2), 106–148 (2011)

20. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian
networks: the combinationofknowledge and statistical data. Mach.
Learn. 20(3), 197–243 (1995)

21. Heckerman, D., Horwitz, E., Nathwani, B.: Towards normative
expert systems: part I. The pathfinder project. Methods Inf. Med.
31, 90–105 (1992)

22. Kim, J., Pearl, J.: A computational model for causal and diagnostic
reasoning in inference systems. In: Proceedings of the Eighth Inter­
national Joint Conference on Artificial Intelligence, pp. 190–193
(1983)

23. Kwisthout, J.: Most probable explanations in Bayesian networks:
complexity and tractability. Int. J. Approx. Reason. 52(9), 1452–
1469 (2011)

24. Lam, W., Bacchus, F.: Learning Bayesian belief networks: an
approach based on the MDL principle. Comput. Intell. 10(3), 269–
293 (1994)

25. Larranaga, P., Kuijpers, C.M., Murga, R.H., Yurramendi, Y.: Learn­
ing Bayesian network structures by searching for the best ordering
with genetic algorithms. IEEE Trans. Syst. Man Cybern. 26(4),
487–493 (1996)

26. Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R.H., Kuijpers,
C.M.: Structure learning of Bayesian networks by genetic algo­
rithms: a performance analysis of control parameters. IEEE Trans.
Pattern Anal. 18(9), 912–926 (1996)

27. Lowd, D., Domingos, P.: Learning arithmetic circuits. In: Proceed­
ings of the Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, pp. 383–392 (2008)

28. Pham, D.T., Ruz, G.A.: Unsupervised training of Bayesian net­
works for data clustering. Proc. Roy. Soc. Lond. A Mat., pp.
2927–2948 (2009)

29. Shachter, R.D., Peot, M.A.: Simulation approaches to general prob­
abilistic inference on belief networks. In: Uncertainty in Artificial
Intelligence, pp. 221–234 (1989)

30. Shahaf, D., Guestrin, C.: Learning thin junction trees via graph
cuts. In: International Conference on Artificial Intelligence and
Statistics, pp. 113–120 (2009)

31. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2),
461–464 (1978)

