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Abstract Deep learning techniques are rapidly advan-

ced recently, and becoming a necessity component for

widespread systems. However, the inference process of

deep learning is black-box, and not very suitable to

safety-critical systems which must exhibit high trans-

parency. In this paper, to address this black-box lim-

itation, we develop a simple analysis method which

consists of 1) structural feature analysis: lists of the

features contributing to inference process, 2) linguistic

feature analysis: lists of the natural language labels de-

scribing the visual attributes for each feature contribut-

ing to inference process, and 3) consistency analysis:

measuring consistency among input data, inference (la-

bel), and the result of our structural and linguistic fea-

ture analysis. Our analysis is simplified to reflect the ac-

tual inference process for high transparency, whereas it
does not include any additional black-box mechanisms

such as LSTM for highly human readable results. We

conduct experiments and discuss the results of our anal-

ysis qualitatively and quantitatively, and come to be-

lieve that our work improves the transparency of neural

networks. Evaluated through 12,800 human tasks, 75%

workers answer that input data and result of our fea-

ture analysis are consistent, and 70% workers answer

that inference (label) and result of our feature analysis

are consistent. In addition to the evaluation of the pro-
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posed analysis, we find that our analysis also provide

suggestions, or possible next actions such as expanding

neural network complexity or collecting training data

to improve a neural network.

Keywords transparency · deep neural network · black

box · Explainable AI · visualization · visual attribute

(a) Input image

sorrel

(b) Inference (label)

Feature# Visual attributes

170 animal legs 

132 human legs, animal legs or beige 

218 animals, furs or brown 

(c) Structural & linguistic feature analysis

170 132 218

(d) Side information (optional)

Fig. 1 Feature analysis example
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1 Introduction

Machine learning techniques such as deep neural net-

works has led to the widespread application of sys-

tems that assign advanced environmental perception

and decision-making to computer logics learned from

big data, instead of manually built rule-based logics [1–

6]. Deep learning especially achieves unprecedented per-

formance on several tasks. For example, in the visual

object recognition task outperformed humans [7].

Machine-learning models are becoming indispens-

able components even in systems that require safety-

critical environmental perception and decision making,

such as automated driving systems [8]. To build high

credibility for machine-learning models, both high per-

formance and transparency are important. In particu-

lar, safety-critical systems must exhibit transparency [9].

However, inference processes of machine-learning mod-

els such as neural networks are considered as black

boxes. In this paper, a black box refers to a situation,

where, although feature activation can be observed, the

actual phenomenon cannot be understood. In other words,

machine-learning models show high performance but

low transparency. Thus, it is difficult for black-box deep

learning to be applied to safety-critical systems such as

automated driving in which the results of deep learning

models can directly cause hazard [10].

Explainable AI (XAI) is a related research area which

is focused and rapidly advanced recently [11]. There are

studies in XAI that inference networks give human un-

derstandable explanations, as well as inference (label).

For example, image caption generation and visual ex-

planation are problems to provide highly human under-
standable natural language descriptions. Caption gen-

eration is a verbalization method, which describes the

objects and the circumstances happening in the input

image by natural language sentences [12, 13]. Visual ex-

planations are generated by black-box explaining mod-

els such as LSTM, to explain rationales for classification

decisions [14]. They generate highly human readable ex-

planation, however by using mechanisms which do not

reflect the actual inference process, because explanation

generation and classification are done by different neu-

ral networks possibly sharing features, inference results

(labels), etc. Even sharing features, explanation genera-

tion is done by black-box models (neural networks), and

we cannot know they reflect the actual inference pro-

cess. Inference networks which generate explanations

have high performance but low transparency.

In this paper, to address the black-box property

of deep learning, we develop a simple analysis method

which improves the transparency of inference processes

of convolutional neural networks, hereinafter referred to

Physical

consistency ratio

Logical

consistency ratio

tabby

Inference (label)

Result of feature analysis

Inference consistency ratio

(maximum softmax probability)

Input image

Feature# Visual attributes

155
leopard patterns, faces of small animals, 

furs or two-tone brown/white 

56
animals, furs or two-tone black/brown 

86
furs or two-tone black/gray

Fig. 2 Consistency analysis concept

as CNN [15, 16], as an example of deep learning models.

We assume three types of analysis for inference process;

1) structural feature analysis, 2) linguistic feature anal-

ysis, and 3) consistency analysis. Results of structural

feature analysis are lists of the features contributing to

inference process. The feature numbers are not human

readable, but are useful when systems programmati-

cally manage the inference process at test time. Results

of linguistic feature analysis are lists of the natural lan-

guage labels describing the visual attributes for each

feature obtained through the structural feature anal-

ysis. It is useful for humans to understand inference

processes. Figure 1 is an example result of our feature

analysis. The left and right columns in Fig. 1(c) are

structural feature analysis and linguistic feature analy-

sis, respectively. Consistency analysis is to measure the

consistency among input data, inference (label), and re-

sult of feature analysis. It is useful for discussion, such

as identifying the cause of incorrect inference (label)

and possible next actions to fix problems, etc. Figure

2 shows the concept of consistency analysis. To show

the usefulness of our proposed method, we conduct ex-

periments including human evaluation, and have corre-

sponding discussion on the experimental results.

This paper is an extended version of our previous

workshop paper presented in Transparent and inter-

pretable Machine Learning in Safety Critical Environ-

ments, NIPS2017 Workshop [17].
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2 Related Works

DARPA started Explainable Artificial Intelligence pro-

gram in 2017 [18]. It defines three approaches: Deep

Explanation, Interpretable Models, and Model Induc-

tion. The first and second are ex-ante approaches which

design explainable features and explainable causal mod-

els in advance to training. The third is an ex-post

approach which automatically derives new explainable

models after training. Our transparent analysis is an

ex-post (after training) approach, but it does not derive

new models and directly analyze the actual activation

observed.

Visualization of deep neural networks is an active

study area recently [19, 20]. Earlier studies are basically

identify attention (focus) areas of input data in recep-

tive fields or heat maps [21–23]. It indicates the areas in

the input data which the model is looking at [24] dur-

ing test time. Attention area of an input image is the

very beginning part of CNN inference process, and is

revealed by visualization methods. On the other hand,

in this paper, we would like to provide analysis not only

for input data, but also for inference process of neural

networks. We exploit receptive fields as side informa-

tion indicating the locations of the visual attributes in

input data.

There is another type of works focusing on the visual

attributes and intermediate features, i.e., activation of

neural network nodes. One of past works analyzed the

visual attributes for each node, and it was revealed that

low level attributes, such as black, brown, and furry are

associated to neural network nodes [25]. Another work

interprets receptive fields as with visual attributes of
neural networks, and quantified the interpretability by

using the number of human interpretable visual seman-

tic concepts learned at each hidden layer [26]. Among

visualization techniques, in this paper, we use visual

attributes for our transparent analysis.

Pointing and Justification-based Explanation (PJ-

X) is one of the latest explanation methods in XAI [27].

It can provide highly human understandable explana-

tion, by attention areas of input data space as intro-

spective explanations (true explanation) and justifica-

tion explanations at the same time. The former provides

explanations of the input space, but does not provide

analysis for the inference processes. The latter does not

address the black-box property of target models, be-

cause it uses another black-box method LSTM to gen-

erate the explanation. PJ-X does not analyze the rela-

tionship between the inference results and features of

neural networks, and introducing an additional black-

box model for explanation cannot address transparency.

Therefore, the purpose of PJ-X is not an analysis for

improving transparency of deep neural inference pro-

cess.

3 Observation of Feature Contribution

We observed conv5 feature of CaffeNet [16, 28] on se-

lected ImageNet training data, to understand the be-

havior of features. Although ImageNet has approximately

1300 training images per class, for simplicity, we se-

lected 100 examples for each class, with top-100 soft-

max probability on the ground truth classes.

We first make a natural assumption that inference

(label) is based not on inactive features, but on highly

activated features, and derived the following assump-

tion.

– Assumption 1. Features highly activated in the in-

ference process have contributions to inference (la-

bel).

This assumption applies especially for ReLU, which

CaffeNet uses as activation functions, because ReLU

is a half-linear positive monotonic function.

3.1 Magnitude of Feature Activation

Then we look into activation on each feature map in

conv5, and found that the magnitude of activation changes

for different features. Therefore, definition of high ac-

tivation varies depending on features. Figure 3 shows

the histograms of activation on example feature maps

94 and 22, which have the smallest and largest mean

values, respectively. The modes of activation magni-

tude are different each other. These distributions are

not gaussian, because negative values are cancelled by

ReLU activation function. It is clear that the distri-

butions of activation on feature maps 94 and 22 are

different. By this analysis, we derived the following as-

sumption.

– Assumption 2. Activation in different features have

different dynamic ranges.

3.2 Features and Visual Attributes

Figure 4 includes three visual attributes: furly, rubber

tires, and fine cell patterns, but only two feature maps

226 and 230. These features share the visual attribute

furly, while at the same time, have the other visual at-

tributes different each other. This observation implies

the following assumption.

– Assumption 3. Visual attributes and features are

in a many-to-many relationship.
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Fig. 3 Dynamic ranges of different feature maps’ activation.
The mode activation on feature map 94 is 0, whereas that
on feature map 22 is 38. The shapes of distribution are also
different.

4 Proposed Analysis

In this section, we propose a transparent analysis method

to improve the transparency of deep neural inference

processes based on assumptions. We carry out both

training time and testing time feature analysis to ob-

tain three types of features, as described in 4.1. We per-

formed manual feature annotation to associate features

with visual attributes, as described in 4.2. Then, three

types of consistency ratios among input image, result

of our proposed feature analysis, and inference (label)

are measured through human tasks, as described in 4.3.

4.1 Structural Feature Analysis

We propose three concepts of features; 1) activated fea-

ture, 2) class frequent feature, and 3) inference feature

as depicted in Fig. 5, 6, and 7. Activated feature and

inference feature are defined for each inference, whereas

class frequent feature is defined for each class.

To analyze inference process, we focus on the acti-

vation of an intermediate feature called conv5 which is

the final convolved feature in CaffeNet. It is reported

that conv5 of AlexNet, which is also the final convo-

lution layer, learns high level visual concepts such as

objects and parts, and they are interpretable for hu-

mans [26]. Let x and y are the input and the output of

CaffeNet. Specifically xtrain
i , ytraini and xtest are those

of the training data and the testing data.

Activated feature a in Fig. 5 is the binarized fea-

ture vector generated from conv5. Activated feature

a is a binary feature vector, however, CNN feature

maps have spacial dimension. We decided to ignore

furly rubber tires

(a) Feature map 226

furly fine cell patterns

(b) Feature map 230

Fig. 4 Visual attributes associated with features. Left col-
umn: furly; right column: rubber tires and fine cell patterns
visual attributes appear on feature maps 226 and 230.

the location of activation for simplicity, and applied

global max pooling to contract conv5, which is origi-

nally 13×13×256 tensor, into 256-dimensional feature

vector z, as it is the simplest way to obtain a vector

from a tensor. Therefore, we consider a feature map,

with spacial feature elements, as a single feature. The

element of the vector a is one if the associated feature,

i.e., the feature map in conv5, is activated. Based on

Assumption 2, in order to judge weather the feature

is activated or not, it is necessary to use statistical in-

formation such as mean, variance, or higher moment to

capture the differences among features. In this paper,

we decided to use mean normalization and thresholding.

We compute a mean-normalized feature vector ẑ from

a feature vector z, as each element of z has varying

dynamic range, and normalization makes them compa-

rable each other. Thresholding ẑ at γ gives a binarized

feature vector a corresponding to x.

Class frequent feature q in Fig. 6 is binary vec-

tors indicating the frequently activated features for each

class. We hypothesize that each class has a different

frequent activation pattern which is obtained by the

following procedure. Fig. 6 shows how to compute the

class frequent feature for an example class: dog. The

training data x
(train)
i of the dog class is binarized into

a
(train)
i , and their summation over i counts how many

times each feature is activated for the dog class in the

training data. After summation, we select the top-k fre-

quent features which consist the class frequent features

for the dog class, where k = 3 in the case of Fig. 6.
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CaffeNet
lookup 
table

test
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ŷ
qtest

x

extract test
a

test
e⊗

Fig. 7 Inference feature

Class frequent features are computed for each class at

the training time, and stored in a lookup table to be

used in the testing time, like q(dog) = [1, 0, 1, 0, 1],

q(cat) = [1, 1, 0, 0, 1] and q(bird) = [1, 0, 0, 1, 1].

To check the validity of class frequent features, we

made two CaffeNets whose randomly selected feature

maps in conv5, and frequently activated feature maps

in conv5, are replaced by zero, respectively. Figure 8

shows how CNN accuracy for a sample class decays

when we delete random feature maps or the class fre-

quent feature maps for the class. We see fast accuracy

decay when the deleted feature maps are frequently ac-

tivated for the class. On the other hand, the convo-

lutional neural network is robust against deleting ran-

domly selected feature maps. Original CaffeNet proba-

bly has redundant feature maps in conv5. This observa-
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Random features are deleted.
Class frequent features are deleted.

Fig. 8 Accuracy decay with feature map deletion

tion shows that class frequent features play important

rolls in inference.

To understand the relationship between class fre-

quent features and inference (label), we display the ar-

eas on which the active elements on the feature maps in-

cluded in a class frequent feature focus. The ambulance

class has the class frequent feature including feature

maps 084, 177, 234, 239, and 242, and the correspond-

ing receptive fields are visualized in Fig. 9. Receptive

fields are generated for each feature map, which we call

the target feature map below. For simplicity, we gen-

erated receptive fields by 1) replacing the elements on

the target feature map with the activated features, i.e.,

binarizing the target feature map, 2) replacing the off

target feature maps (any feature maps except feature

map 084 if we generate receptive fields for the feature

map 084) with zero, 3) back propagating the modi-

fied feature including both target and off target fea-

ture maps to the input space with unpooling using the

stored pooled location on max pooling layers, and 4)

post processing including image binarization and dila-

tion by a disk shape. Feature maps 084 and 177 respond

the white-red (or orange) two tone color; feature map
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Fig. 9 Receptive fields of feature maps included in the class frequent feature for ambulance class. Left to right: receptive fields
of feature maps 084, 177, 234, 239, and 242.

234 responds windows; and feature maps 239 and 242

respond tires in Fig. 9. We observe key parts of am-

bulance vehicles in the receptive fields. It is suggested

that deep neural inference process is based on these key

parts, and we derived the following assumption.

– Assumption 4. Features frequently activated for

the class of inference (label) have high contributions

to inference (label).

Inference feature etest in Fig. 7 is the overlap be-

tween the activated feature atest and the class frequent

feature qtest for a single test data point xtest, where ⊗
denotes element-wise product. Based on Assumption

1 and Assumption 4, features contributing to infer-

ence process should be a part of both activated feature

and class frequent feature. The dotted box in Fig. 7

is the conventional inference without feature analysis.

atest is computed based on xtest, whereas the class fre-

quent feature qtest is just lookup by the inference (la-

bel) ytest given by CaffeNet, because the ground truth is

unknown in the testing time. etest is the result of struc-

tural feature analysis. The number of feature vector el-

ements in an inference feature etest is generally variable

for each inference. Due to the human readability, in an

inference feature etest, we show at most top-` feature

vector elements with the maximum mean-normalized

activation.

4.2 Linguistic Feature Analysis

To generate human readable analysis, we annotate vi-

sual attributes for each feature by looking at the input

samples on which it is activated in the focused network.

Although there are many ways to achieve human read-

able visual attributes, we decided to conduct human

annotation, because it is the most simple method.

Annotation Data is prepared by using the train-

ing data set. At first, we select a subset of training

data suitable to feature annotation. And then, for each

feature, we sample images so that their inference fea-

tures (identified by the ground truth labels) include it.

We generated receptive fields for the human annota-

tor to understand the part of the image where visual

attributes appear, as shown in Fig. 10.

Fig. 10 Sample images and receptive fields for feature an-
notation. Each feature has a folder, and a folder has images
with high activation on it. Workers see receptive fields in a
folder, and annotate them.
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Fig. 11 Feature annotation process

Annotation Process is to iterative way to anno-

tate the combination of multiple features representing

a single visual attribute, and vice versa. In order to

annotate this many-to-many relationship based on As-

sumption 3, starting from free description, feature an-

notation is repetitively refined. We defined a process

which consists of three steps; 1) open annotation, 2)

label organization, 3) closed annotation. The open an-

notation is the first step where a human annotator an-

notates all features by free description. Human anno-

tation may have some fluctuation at this step. Second

in the label organization step, similar visual attributes

are integrated, different visual attributes with the same

label are divided, new visual attributes are introduced,

etc., so that the fluctuated labels of feature annotation

are well organized. Then, the human annotator works

on the closed annotation to classify features into a set

of visual attributes, i.e., multiple answers allowed, from

the all visual attributes defined in the last step. Label

organization and closed annotation steps are repeated

to refine the feature annotation, as depicted in Fig. 11.
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4.3 Consistency Analysis

To gain further insight, we measure the consistency

among input data, inference (label), and result of our

proposed feature analysis, i.e., inference feature. This

measurement is for discussion, checking whether our

analysis method or the target neural network are incor-

rect when we get incorrect analysis, identifying possible

next actions to fix problems, etc.

We propose physical consistency ratio (PCR)

and logical consistency ratio (LCR), which are the

consistency between inference feature and input data,

and consistency between inference feature and inference

(label), respectively (Fig. 2). These two ratios are mea-

sured through human tasks. In addition to two mea-

sures for consistency, we use the softmax probability

corresponding to the class of inference (label), i.e. the

maximum softmax probability, as inference consis-

tency ratio (ICR), the consistency between input data

and inference (label). All the ratios are in the range of

0.0 to 1.0.

5 Experiments

In this section, we conducted experiments to test our

proposed analysis method. We try to analyze the infer-

ence processes of the publicly available CaffeNet with

the weighs pre-trained on ImageNet. These feature vec-

tors were binarized by the method introduced above,

with the binarization threshold γ = 2. We chosen k = 5

the number of feature vector elements in a class frequent

feature, and ` = 3 the maximum number of feature vec-

tor elements in an inference feature. Receptive fields for

each feature vector elements in inference features are

accompanied with the result of feature analysis as in-

formative clue for human feature annotation, and side

information to support the analysis.

As with the feature analysis, selected 100 training

images per class are used for computing mean values for

each feature map in conv5, class frequent features, and

annotating visual attributes by human. On the other

hand, we reduced the 1, 000 object categories of Ima-

geNet to 32 for testing, because it is difficult for human

to distinguish 1, 000 categories and understand the cor-

responding analysis precisely. The 32 classes are a sub-

set of ImageNet 1, 000 classes, which are programmati-

cally selected according to the WordNet [29] hierarchy,

such that each new class has approximately the same

number of WordNet synsets.

Human evaluation was done on Amazon Mechanical

Turk. For each input image, we made two questions for

the physical consistency and logical consistency on our

feature analysis.

1. Is the inference feature relevant to the whole or parts

of the input image?

2. If an object satisfies the inference feature, is it an

object in the class of inference (label)?

The first question was asked without showing inference

(label), and the second one was asked without show-

ing the input image. The list of response alternatives

shown to workers were strongly agree, agree, disagree,

and strongly disagree. After obtaining the results from

workers, we merged the former two and the latter two

into agree and disagree, respectively. The results of the

questions are used to evaluate physical consistency ratio

and logical consistency ratio, respectively. Each ques-

tion is redundantly assigned to discrete workers to elim-

inate individual biases, and the averaged ratios are in

the range of 0.0 (all workers disagree) to 1.0 (all workers

agree). To evaluate these ratios, we conducted 12, 800

human tasks for total (Table 1). We also recorded the

softmax probability of the class of inference (label), as

inference consistency ratio.

Table 1 Number of human tasks to evaluate consistency
measures. Redundancy added by discrete samples and work-
ers is to eliminate individual biases. Inference consistency
ratio (maximum softmax probability) is automatically com-
puted.

Measure Class Sample Worker Total tasks

PCR 32 10 20 6,400
LCR 32 10 20 6,400

Figure 12(a) and 12(b) show the joint discrete prob-

ability distribution between physical consistency ratio

and logical consistency ratio on correct inference and in-

correct inference, respectively. When inference is incor-

rect, the peak is low although it is located in (0.8, 1.0),

and the both physical consistency ratio and logical con-

sistency ratio spread throughout from low consistency

to high consistency. On the other hand, both ratios tend

to be high when inference is correct. The distribution

on correct inference is clearly high contrast compared to

that on incorrect inference. Therefore, our method pro-

vides better analysis for correct inference than that for

incorrect inference. The mean values of physical consis-

tency ratio, logical consistency ratio, and inference con-

sistency ratio, i.e., softmax probability, over entire ex-

perimental data even including incorrect inference were

0.75, 0.70, and 0.48, respectively. According to these re-

sults, our method gained consensus on humans, overall

distribution of consistency ratios are reasonable.
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Fig. 12 Joint discrete probability distribution for physical consistency ratio and logical consistency ratio.

6 Discussion

In this section, we show whether our proposed simple

analysis improves the transparency of inference pro-

cesses of convolutional neural networks, and we study

what practical discussion in a machine learning train-

ing and testing process can be done on a neural network

thanks to that improved accuracy.

Let’s assume that we have a CNN which we are cur-

rently train and test. We have inference (label) by the

currently trained model, and the results of our proposed
analysis. Figure 13 and Fig. 14 show results of analy-

sis for correct inference and incorrect inference, respec-

tively. Images in Fig. 13 and Fig. 14 are converted into

227× 227 which is the actual size of the input image to

CaffeNet, and receptive fields are omitted due to space

limitation. We walk through these results of analysis

to see what we can read from them.

For the images on the left column in Fig. 13(a)

which have the results of analysis in low physical consis-

tency ratio and inference consistency ratio, the number

of feature vector elements in inference features can be

less than `, the maximum number of feature vector el-

ements in the inference features. Human workers may

have evaluated these images’ physical consistency ra-

tios low, because they saw few feature vector elements

in inference features. It is interesting that inference con-

sistency, which is the maximum softmax probability, is

also low, if the number of feature vector elements in

inference features is small. It is suggested that the in-

ference process we hypothesized in this work is not far

from actual process in neural networks.

The images on the right column in Fig. 13(a) have

high physical consistency ratio and low inference con-

sistency ratio. The bottom one has low logical consis-

tency ratio, because the labels of visual attributes are

not appropriate. Cassette players should have two large

speakers on the left and right, and the feature maps 196

and 171 may represent them. However, the labels (vi-

sual attributes) for these feature maps are rubber tires

or rounded (shape), and human workers may not able

to associate them. There is room to improve the labels
of visual attributes so that humans can easily compre-

hend the linguistic feature analysis.

The top right image in Fig. 13(b) has high physical,

logical, and inference consistency. We see three types

of visual attributes; 1) shape (fine lattice patterns, ac-

cumulated fine boxes/circles, leopard patterns), 2) color

(two-tone red/white), and 3) concrete object (black square

windows, faces of small animals) in the linguistic fea-

ture analysis, and these visual attributes are relevant

to ambulance vehicles for humans, too. This is one of

the the best examples.

The images on the right bottom in Fig. 13(b) has

high physical and inference consistency ratios, and low

logical consistency ratio. The logical consistency ratio

is low, because it is difficult for humans to associate vi-

sual attributes in the linguistic feature analysis with the

inference class: baseball. However, the inference consis-

tency ratio, i.e. the maximum softmax probability, is

1.0, therefore the neural network is very confident on
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(a) Analysis results with low ICR (b) Analysis results with high ICR

Fig. 13 Feature and consistency analysis on images with correct inference (label). left to right: PCR increases; bottom to
top: LCR increases.

Fig. 14 Analysis results of analysis on images with incorrect inference (label)
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this inference. This example shows that the trained neu-

ral network may work with inference processes which

humans cannot understand in some cases.

The images on the left top in Fig. 13(b) has high log-

ical and inference consistency ratios, and low physical

consistency ratio. We can see fur like visual attributes

in the result of linguistic feature analysis, however they

are not found in the input image. This example shows

that there are features in the trained model which hu-

mans cannot understand.

The images on the left bottom in Fig. 13(b) has

low physical and logical consistency ratio and high in-

ference consistency ratio. The linguistic feature anal-

ysis indicates sharp roofs/caps and accumulated fine

boxes/circles or rubber tires, but humans may not find

these visual attributes in the image. On top of them,

even if these visual attributes are in the scene, humans

cannot understand why they are associated with infer-

ence (label): barber chair. This example shows the com-

bination of the above two situations. These three ex-

amples show the limitations of deep neural networks in

terms of transparency. There must be the essential com-

plexity of deep neural network which we cannot make

transparent.

In the second example from the left on the first row

in Fig. 14, inference (label) of CNN is snake, but the

correct label is brambling, a type of bird. Our analysis

indicates that the inference feature includes feature vec-

tor elements for ”squiggle” visual attributes. This is an

example of understandable mistake of CNN. Although

the inference (label) is incorrect, we see squiggle in the

input image; and squiggle is likely to be a snake. We as-

sume that the size of the bird was too small compared

to the size of squiggle patterns, and CNN may put high

priority on snake class. If squiggle patterns, which are

made by roof tiles, are larger than the bird, there is

room for discussion if the ground truth class should be

roof tile, rather than bird.

In the second example from the right on the first

row in Fig. 14, the inference (label) of CNN is flat-

coated retriever, but the correct label is groenendael.

Both of them are black dogs. The inference features for

this incorrect inference (label) produced by the CNN:

flat-coated retriever are very similar to the inference

features for the correct inference (label): groenendael.

This is another pattern of understandable mistake of

CNN that the currently learnt visual attributes are not

enough to distinguish between two classes. We need to

collect training data more to acquire relevant visual at-

tributes. If inference (label) is incorrect with correct

inference features, then it suggests insufficient train-

ing data to train relevant visual attributes for these

classes. Possible action for this case is to collect addi-

tional training data for these classes. If 1) inference fea-

tures are correct for the input image, and 2) inference

(label) is correct for the inference features, however 3)

inference (label) is incorrect for the input image, then

an inaccurate ground truth label is suggested. Possible

action for this case is to review and fix the ground truth

label.

It is important in practice to know the actions we

should take next. Low physical consistency ratio sug-

gests that the feature extraction part of the neural net-

work is not well trained to capture enough visual at-

tributes. On the other hand, low logical consistency ra-

tio suggests that the decision-making part of the neural

network, such as classification or regression, is not well

trained. Possible action for the former case is to in-

crease the layers in the feature extraction part, which

is considered as the layers before conv5 for CaffeNet.

Possible action for the latter case is to increase the lay-

ers in decision-making part which is considered as the

layers after conv5.

7 Conclusion

In this paper, we developed three types of simple anal-

ysis; 1) structural feature analysis, 2) linguistic feature

analysis, and 3) consistency analysis which improve the

transparency of deep neural inference process, to ad-

dress the black-box property of deep neural networks for

safety critical applications. We then evaluated and dis-

cussed our analysis methods and the results both qual-

itatively and quantitatively, and introduced the useful-

ness of our proposed analysis by showing how to use
the analysis results in the development process of deep

learning models.

It is known that quantitative evaluation of the trans-

parency of algorithms is challenging [30], and we cannot

say our work solved the problem completely. However,

deep neural inference process was black-box until now,

and the experiments and discussion in this paper shows

that our work moved it forward to transparency. For ex-

ample, there was no clue to improve a neural network

when it produced incorrect inference (label). Now our

method give suggestions, or the possible next actions,

such as expanding networks or collecting training data.
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