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Abstract There is no need to explain the relevance of Fall Detection (FD) in
the elderly population: the faster they receive help, the higher the probabilities
of recovery. FD has been widely studied and a number of solutions have been
proposed in the literature, including commercial products with well-known
trademarks. Basically, the majority of the solutions include an event detection
method followed by a feature extraction block as the inputs to a classifier that
labels the sample as Fall or as Not Fall. Nevertheless, the proposals always rely
on user feedback because of the relatively high percentage of false positives.
This study proposes two supervised user-centered solutions for FD which are
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evaluated using two publicly available data sets that include simulated falls
with the sensory system placed on a wrist. Instead of focusing on learning
a generalized model, in this study we focus on learning specific models for
each user. To overcome the lack of data from the Fall class, an online-learning
method to group the events arising from the activities of daily life and the
consequent analysis of how fall events can then be detected is included. In
addition, a transfer learning stage produces a priori knowledge from previous
experiences that can be introduced into the on-line learning classifier in or-
der to enhance its performance. Complete experimentation is carried out on
two publicly available data sets, analyzing the performance of the supervised
classifiers and the performance of the whole detection system composed of the
fall detection plus the classifier. In the case of on-line learning, only the re-
sults for the classifier, either with or without transfer learning, are included.
Results suggest that FD user-centered solutions have the capacity to adapt to
the information of a specific user, mostly when using both on-line learning and
transfer learning. Nevertheless, the transfer learning stage needs refinements
in order to avoid the complexity that this might introduce.

Keywords Fall Detection · Smart Wearables · Applied Machine Learning

1 Introduction

Fall Detection is a very challenging research topic that has attracted attention
for several years. Different solutions have been proposed in the literature, each
of them focused on a specific population. Perhaps one of the most difficult
populations is that of the elderly: in this case, the amount of movement is
smaller and the activities are weaker in general (for instance, elderly people
walk slowly, arm movement range is shorter) [13,41,40]. And most importantly,
the impact and consequences of delayed assistance on the health of an elderly
person after a fall are much more severe. Besides, there is no clear solution and
even commercial devices for the elderly perform with a relatively high false
positive rate [33].

A wide range of FD solutions have been published in the literature; the
technologies involved vary from video analysis to wearable sensors, including
smart sensory systems in smart homes [10,11,19,25]. One of these technologies
is the use of wearable devices in FD, which represents the starting point of
this research. The focus of this research is to develop an on-wrist wearable FD
solution that helps senior citizens to continue living autonomously.

The majority of published studies on wearable FD focus on either the intel-
ligent technique (a combination of pre-processing and modelling techniques)
or on the design of a sensor or sensor network, or on both of these. Basically,
these solutions include an event detection stage (responsible for extracting the
corresponding set of features) followed by a Machine Learning (ML) stage; this
ML stage is responsible for obtaining the classification model. Alternatively,
some methods apply a ML method directly to each sliding window without
any event detection.
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The most common sensor used in FD is the tri-axial accelerometer (3DACC),
used independently or combined with other sensors (like gyroscopes or inertial
sensors), or the combination of several sensors. The sensory system is located
mainly on the waist or on a wrist, and in some cases on a thigh.

Besides, there are two confronted approaches: the first one focuses on the
very specific user, while the second focuses on learning generalized models.
We refer as generalized models those obtained with all the available data,
independently from which participant the data comes from. In this case, data
from the different sources are introduced in an unique dataset containing the
TS for both the ADLs and the fall events. The participant for which the TS was
gathered is irrelevant. The data set is organized in instances that includes a TS
for an ADL or Fall and the corresponding label; cross-validation is performed
on this data set by shuffling the instances among the folds.

On the other hand, we refer as user-centered those approaches that learn
a specific model for each participant. For this purposes, only data gathered
for the current user is used to learn the model; the data gathered from other
different users are either ignored or, as in this study, used to enhance the
obtained user specific models.

From now on, when we refer a solution as generalized, we are saying that the
approach obtains a single generlized model for all the users. Alternitevely, user-
centered models are those that has been learned with data from the current
user and are not used for FD with any other user.

We have summarized the related work on Table ??, specifying the sensory
system and its location, the event detection method proposed in the study and
the ML method. The following acronyms apply: Finite State Machine (FSM),
threshold (TH), Neural Network (NN), Rule set (RS), K-Nearest Neighbour
(kNN), Decision Trees (DT), Discriminant Analysis (DA), Support Vector
Machine (SVM), One-class SVM (OSVM), Classification and Regression Trees
(CART), Logistic Regression (LR). I-P refers to the proposal shown in [24].

This study explores both supervised and on-line learning user-centered so-
lutions for FD. On the one hand, in the supervised solution, two different ML
methods are used: i) K-Nearest Neighbour classifier and ii) Symbolic Aggrega-
tion approXimation (SAX) for Time Series (TS) representation together with
a TF-IDF bag of words classifier. On the other hand, the on-line learning so-
lution makes use of the SAX TS representation and the TF-IDF bag of words
that is learned from the data whenever a peak is detected and using feed-
back from the user. The different approaches have been evaluated using two
well-known publicly available data sets that include 3DACC data from either
simulated falls or Activities of Daily Living (ADL).

This study is organized as follows. This introductory section is devoted
to describing the problem and related work. The next Section focuses on the
proposal, detailing the different stages included. Section 3 gives details of the
experimentation performed in this research, while Section 4 shows the obtained
results and the discussion. The study ends with conclusions drawn.
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Table 1 Summary of fall detection approaches in the literature. Ref: the reference, Sensor:
type of the sensor, SP: sensor placement, ED: event detection method, MM: modelling
method, G/U: generalized versus user-centered modelling (I).

Ref Sensor SP ED MM G/U

[1] 3DACC Waist FSM NN Generalized

[3] 3DACC + Wrist TH + If-Then rules Generalized
Air pressure time

[4] 3DACC Wrist + TH If-Then rules Generalized
Thigh

[6] 3DACC + Waist TH C4.5 Generalized
Gyroscope

[7] 3DACC + Wrist + TH RS User-Centered
Gyroscope Pocket

[12] 3DACC Wrist TH NN Generalized

[16] 3DACC Wrist TH RS Generalized

[17] 3DACC Wrist TH kNN, DT Generalized
SVM, DA

[18] 3DACC + Wrist TH If-Then rules Generalized
Gyroscope

[20] 3DACC Waist or NN or Generalized
Pocket SVM

[22] 3DACC + Waist TH SVM Generalized
Gyroscope +
Barometer

[23] 3DACC Waist TH RS Generalized

[24] 3DACC Waist TH RS Generalized

[26] 3DACC Wrist TH NN, SVM Generalized
DT, RBS

[27] 3DACC Wrist TH RS Generalized

[29] 3DACC Pocket - NN, SVM Generalized +
kNN model fitting

[30] 3DACC Wrist - SVM Generalized
kNN

[32] 3DACC Chest + FSM SVM, LR, Generalized
Thigh kNN, CART,

I+P

[34] 3DACC + Wrist - RS Generalized
Gyroscope +
Barometer

[36] 3DACC + Waist + - RS Generalized
Gyroscope Ankle

[38] 3DACC Wrist FSM kNN Generalized
Waist + TH

[42] 3DACC Wrist - RS Generalized

[43] 3DACC Waist TH OSVM Generalized
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Fig. 1 Fall event detection. The upper part shows the dynamics of a fall event measured
with the magnitude of the acceleration (see the text for a description). The lower left section
depicts the finite state machine, where the bouncing and post-fall timers are set to 1000 and
1500 ms, respectively. The lower right section includes the block diagram; the features are
computed and the extracted sample is classified whenever a peak is detected.

2 Supervised and On-line learning Fall Detection

As mentioned before, the most common approach to FD includes an Event
Detection stage. In this study, we continue with our previous research [26], so
the Event Detection proposed in [1], with some minor modifications, applies.
This section firstly outlines this Event Detection stage; then, it gives details
of the two supervised solutions. Finally, the section ends by introducing the
on-line learning solution and the transfer learning stage.

2.1 Fall event detection

As proposed in [1,26], peaks in acceleration magnitude are the basis for fall
detection. Figure 1 depicts the very simple way the finite state machine detects
the possible peaks. The data gathered from a 3DACC located on the wrist
is processed using a sliding window. Once a peak is found, several features
are extracted from the data within the sliding window for which a peak was
detected. The second stage includes a classifier that labels each sample as
FALL or NOT FALL. In [26] it was claimed that the lower the computational
cost of the classifier the better, as it must be run on the wearable device.
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The feature extraction is executed whenever a peak is detected and follows
the dynamics within a fall -refer to the upper part in Fig. 1-. Let at be the
acceleration magnitude at time t calculated following Equation 1, where atx,
aty and atz are the components of the acceleration in each of the three axes.
Let us assume that gravity be g = 9.8m/s2. Given the current time stamp t,
we find a peak at peak time pt = t − 2500 ms (point 1) if at time pt the
magnitude of the acceleration at is higher than th1 = 3 × g and there is no
other peak in the period (t− 2500, t] ms (no other a value higher than th1). If
this condition holds, then it is stated that a peak occurred at pt.

at =
√

a2tx + a2ty + a2tz (1)

Once pt has been determined, we have to define the start and the end of the
fall event, called impact-start and impact-end respectively. The impact-
end (ie, corresponding to point 2 in the upper part in Fig. 1) is the time from
pt for which at ≥ th2 (with th2 = 1.5× g), with a maximum of 1000 ms. If no
impact-end is found, then it is fixed to pt+1000 ms. Finally, the impact-start
(is) (point 3) denotes the starting time of the fall event, just before pt; is is
computed as the time of the first sequence of an at <= th3 (th3 = 0.8 × g)
followed by a value of at >= th2. The impact-start must belong to the interval
[ie−1200, pt] in ms. If no impact-start is found, it is fixed to pt. From now on,
without losing generalization, as long as we know the sampling frequency, we
can refer to time stamp or to positions within a sliding window that include
the samples in [is, ie]. We call impact window the sequence of values from is
to ie. All these time stamps can be absolute, but in practice they are relative
to the current time stamp.

When using subindex i we refer to the sample position within the sliding
window, and when using subindex t we refer to a time stamp; however, they are
interchangeable. When a peak is detected the feature extraction is performed,
computing several parameters and features for this peak time.

After these three times -is, pt, ie- have been calculated, the following trans-
formations should be computed:

– Average Absolute Acceleration Magnitude Variation (AAMV), calculated

as AAMV =
∑ie

t=is
|at+1−at|

N , with N the number of samples in the interval.
– Impact Duration Index, IDI = ie− is.
– Maximum Peak Index, MPI = maxt∈[is,ie](at).
– Minimum Valley Index, MV I = mint∈[is−500,ie](at).
– Peak Duration Index, PDI = pe−ps, with ps the peak start defined as the

time of the last magnitude sample below thPDI = 1.8× g occurred before
pt, and pe, the peak end defined as the time of the first magnitude sample
below thPDI = 1.8× g occurred after pt.

– Activity Ratio Index, ARI, calculated as the ratio between the number of
samples not in [thARIlow = 0.85 × g, thARIhigh = 1.3 × g] and the total
number of samples in the 700 ms interval centered in (is + ie)/2.

– Free Fall Index, FFI, the average of the acceleration magnitude in the
interval [tFFI , pt]. The value of tFFI is the time between the first acceler-
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ation magnitude below thFFI = 0.8× g occurring up to 200 ms before pt;
if not found, it is set to pt− 200 ms.

– Step Count Index, SCI, measured as the number of peaks in the interval
[pt− 2200, pt]. SCI is the step count evaluated 2200 ms before peak time.
The number of valleys are counted, defining a valley as a region with ac-
celeration magnitude below thSCIlow = 1 × g for at least 80 ms, followed
by a magnitude higher than thSCIhigh = 1.6 × g during the next 200 ms.
Some ideas on computing the time between peaks [39] were used when
implementing this feature.

Moreover, when working with normalized TS, the SAX representation [28]
of the acceleration magnitude TS for the period from the impart-start to the
impart-end is also determined for each detected peak. The normalization of
the TS window is performed using the mean and standard deviation of the
data within the window.

As stated in the Introduction section of this study, several solutions for
FD detect peaks using thresholds and extra processing [2,4,5,6]. The solution
proposed in [1] is not different. Furthermore, the solution in [1] makes use of
a rather long list of thresholds, some of them defined in the domain of the
acceleration and others in the time domain. All of them have been set up after
a study of the dynamics of a fall event, thus, we continue using them. However,
as will be shown later in this study, the thresholds for the normalized time
series that will be employed in peak detection for the approaches using SAX
should be different.

In this study, two TS representations are used: raw data when developing
the solution based on previous research [1,26], and the SAX TS representa-
tion. In each case, a different set of thresholds should be employed for peak
detection. From now on, the following notation is used to refer to the TS
representation and the threshold set:

– origTSorigTH: using both raw TS and the original thresholds proposed
in [1]. When modelling, the mean and standard deviation are calculated
over all of the ADL TS; these statistics are used to normalize both the TS
and the acceleration-based thresholds.

– normTSnormTH: using both normalized TS and normalized thresholds.
The mean and standard deviation are calculated over all of the ADL TS;
then, they are used to normalize both the TS and the acceleration-based
thresholds.

– normTSscldTH: using normalized TS and scaled thresholds. In this case,
the peak threshold thnorm

p is determined as a percentage of the max-
imum peak value for any fall in the data set (more specifically, 0.9 ×
min(maxi∈FALL(TSi))); the remaining acceleration-based thresholds are
obtained by scaling the thresholds in [1] using the peak threshold as refer-
ence: thnorm

i = thAbbate
i ∗ thnorm

p /thAbbate
p .
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2.2 Fall detection by means of supervised methods

This part of the study assumes a two-class problem, labelling each TS as FALL
or as NOT FALL. Each participant from a data set includes a set of labelled
TS, though the number of TS per participant is assumed to be small.

As stated before, each TS is analyzed to detect peaks; if a peak is detected
then the set of features and the SAX representation of the impact window
are determined. By gathering the information from these peak events a new
extracted data set is obtained, where each sample comes from each detected
peak and is labelled with the corresponding TS label. A model can be learned
using this newly created data set.

In this study, we propose two different alternatives. On the one hand,
we propose the K-Nearest Neighbour (KNN) because of its simplicity and
also because the number of samples is small. Because the dimension of the
participant’s data set is small, only short values of K can be used (that is,
values 1 or 3). In a preliminary study, we found that the best results were
obtained when K is set to 1, despite the well-known noisy behaviour this
configuration might suffer.

On the other hand, we propose the use of SAX [28] TS representation
together with the Term Frequency - Inverse Document Frequency (TF-IDF)
statistic to classify each peak. It is worth noticing that the normalization of
the training and testing (or deploying) TS is performed using the mean and
standard deviation from the ADLs TS.

Once a peak is detected in a TS, then the SAX word is determined from
the impact window. Considering a TS belonging to the training data set, each
detected peak generates a SAX word; this SAX word is used to create a bag
of words for each class FALL and NOT FALL, including the corresponding
counters. This bag of words is used to compute the TF-IDF which is used to
classify an incoming sample. We follow the TF-IDF calculations included in
[35]. The term frequency is measured as the word frequency for the label, while
the inverse document frequency is calculated as log10(word, LABELS) =

|LABELS|
|d∈LABELS:word∈d| , where LABELS = {FALL,NOTFALL}.

To classify an incoming sample we use two stages. If the SAX word wi for
this incoming sample is in the dictionary, then it is labelled with the label
with a higher value of TF-IDF. Otherwise, the similarity of the wi with each
of the words in the dictionary is calculated using the SAX min dist. The
min dist function is defined together with SAX in [28]; it is implemented as
a look-up table, the values of each cell in this table are either 0 for adjacent
symbols or a value that is determined using the number of symbols and the
equi-probability of all the symbols using a Gaussian distribution. The TF-IDF
values for the words with maximum similarity are aggregated using the max
function. Finally, the label with a higher TF-IDF value is proposed as the label
for the incoming sample.
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2.3 On-line learning and transfer learning fall detection

The user-centered supervised methods, including those presented above, suf-
fer from a very important drawback: the data set rarely includes a real fall
TS. Using publicly available data sets can help with this issue, but the main
part of these includes simulated falls (that is, the participants fall down from
a static standing-still position). Moreover, the differences between ADLs and
falls decrease with age: the movements of the elderly are weaker and the falls
are mainly due to fainting or loss of balance [13,41,40]. In many cases, the
subject tries to grab a handrail or even a wall so as to avoid falling; this stag-
gering may mask the drastic changes in acceleration that a normal fall shows.
Obviously, it is clear that several different event detection solutions would be
needed in order to solve the FD problem, at least for the elderly. Furthermore,
there is a problem in simulating falls as these simulations might be biased
or may represent a risk to the integrity of the user even when mattresses are
used -for instance, it is not plausible to simulate falls with senior citizens. This
fact might be one of the main reasons why user-centered supervised learning
approaches have not been addressed in the literature.

In order to cope with this lack of positive class data, we propose using
the SAX TS representation together with the TF-IDF statistic in a learning
scheme that makes use of transfer learning and an on-line learning scheme. On
the one hand, transfer learning allows deployment of the general knowledge
that might have been extracted from real fall data gathered from the focused
population. On the other hand, the on-line learning scheme allows us to ob-
tain immediate feedback about any false positive alarm (and for true positive
alarms as well when an alarm is raised and there is no feedback), so the bag
of words information and the TF-IDF matrix can be updated.

The SAX representation and the TF-IDF solution is similar to that de-
scribed in the previous stage. Let us assume there is a period of initialization,
where data from ADLs is gathered. The mean and the standard deviation of
the data are calculated with the first subset of these data, which would allow
normalizing the TS. From this point, the normalized TS from ADLs are ana-
lyzed; whenever a peak is detected, the SAX word is computed and introduced
into the bag of words as belonging to the negative class (NOT FALL). Once
the initialization stage ends, the bag of words is used to generate the TF-IDF
matrix, storing both matrices for later use.

In the deployment stage, whenever a peak is detected the TF-IDF statistics
are used to determine if the word belongs to one of the labels. In this on-line
learning scheme, a word wcurrent from the currently detected peak should be
contained in the bag of words in order to determine the most plausible class.
To measure the similarity we propose using the min dist distance proposed for
SAX; those words in the bag that have a distance smaller than a threshold
thsim are used to determine the label for the current peak. The sum has
been used to aggregate the TF-IDF statistics among the similar words in the
dictionary; nevertheless, the best operator for this aggregation needs further
study. Besides, if the word is not in the dictionary, it is assumed to be a
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possible FALL event. In any case, there is log information about the words
and the proposed labels. This log allows the user to mark any of the past peaks
with the real label between FALL or NOT FALL. With every detected peak
or whenever feedback is given, the bag of words and the TF-IDF statistics are
recalculated. In this research, the value of thsim was set to 5.0, although more
research is needed to optimize this threshold.

The transfer learning stage is performed as follows. Let’s assume that there
are TS available from participants from the same population. This data can
be used to enhance the user-centered solution. These TS can be labelled with
one of the possible classes {FALL, NOT FALL}. Firstly, the bag of words is
determined for each participant using the SAX representation of his/her TS.
Secondly, the words that are common to a high percentage of the participants
are chosen as the bag of words to be transferred to each new user as the
consequence of the transfer learning stage. The counters of a word for each label
are set as the average of the counters for this word among all the participants
that used that word.

Finally, it is necessary to determine whether a word w is common or not.
Let nw be the number of participants for which w appeared as the SAX repre-
sentation of an impact window, and let maxn = max∀w(nw). Then a word is
common if the ratio nw/maxn ≥ thcommon and, thus, the word w is included
in the bag of words to be transferred. In this study the value of this threshold
has been set to thcommon = 0.7 but, again, further experiments are needed to
optimize this value.

3 Material and methods

3.1 Data sets

In a recent study [9] up to twelve publicly available data sets related to FD
and ADL were compared; these data sets have the common characteristic of
using 3DACC sensors located on different body parts. Recently, a new data set
has also been published in [37]. In this study we have chosen two of these TS
data sets, the UMA Fall and the TST (details are given in Table 2; these data
sets were chosen because they use a 3DACC sensor placed on a wrist and also
because their design was different. In the case of UMA Fall, there is neither
a common number of activities and fall simulations nor the same number of
repetitions, while in TST all the participants performed the same activities,
more or less the same number of repetitions. Furthermore, the performance of
the ADLs for the UMA Fall is stronger than for TST.

Because of the variability in the number of TS associated with the partic-
ipants in each of the data sets, we decided to only include in the experiments
those participants for whom there are enough instances from both classes.
Therefore, we ignore any participant from a data set with less than 20 TS
(labelled with one of the different activities or fall types) or with less than 9
TS labelled as a FALL.
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Table 2 Descriptions of the different data sets used in this research. Columns NP, NTS and
NF stand for the number of participants, the number of available TS, and the number of falls
in the data set, respectively. The sampling frequency in Hz is shown in the corresponding
Fqcy column.

Dataset NP NTS NF Fqcy Description

UMA Fall [8] 17 531 208 20 Includes forward, backward and
lateral falls, running, hopping, walking
and sitting.
Neither do all the participants have every
type of activity nor the same number
of repetitions.
Sensors on the wrist, waist, ankle,
chest and in the trouser pocket.

TST FD [15] 11 264 132 100 Includes forward, backward and
lateral falls, with two sensors, one on the
waist and one on the right wrist.

As mentioned in Section 2.1, three different combinations of scaling of both
the TS and thresholds have been defined for this study: using the original
Abbate TS representation and thresholds (origTSorigTH), using normalized
TS and normalized thresholds (normTSnormTH) and using normalized TS
and proportional thresholds (normTSscldTH).

For this study, one repetition of 5x2 cross-validation on the TS data set
was used as the cross-validation scheme. This means that the TS data set is
shifted and split in two (one for training and one for testing) ten times, trying
to keep both splits balanced.

When analyzing the on-line learning approaches, the TF-IDF statistic for
each participant and fold was generated using the TS from ADLs included
in the training fold. When transfer learning was used, the transferred bag of
words was extracted with the TS from all the individuals but the one that is
being trained. All the code has been developed with the R project [14] using
the RStudio [21].

3.2 Performance measurements

A peak can be detected in a TS; each detected peak generates a sample that
should be classified. Besides, a TS can generate more than one peak; in the case
of a fall TS, only one peak corresponds to the fall event, while the others are
false alarms. With all of these in mind, we propose measuring the performance
at the peak detection level and at the TS level.

To measure the peak detection’s performance, each detected peak is given
its real label. For instance, if a fall TS includes several peaks in the acceleration
magnitude, only the peak that generated the fall is given the FALL label.
Nevertheless, this problem did not appear for the publicly available data sets
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used in this study, and the fall TS only generated the peak that corresponded
to the fall. Therefore, the performance was measured using only the detected
peaks and how well each of the ML methods classified the peak.

On the other hand, to measure the performance at the TS level we did as
follows. For each TS, if any of its detected peaks is classified as a FALL, then
the TS is classified as a FALL; otherwise, the TS is labelled as NOT FALL.
Whenever no peak is detected for a TS, then this TS is classified as NOT
FALL.

We used classical Accuracy, Kappa factor, Sensitivity, Specificity, and F1
measurements. However, only the Accuracy and Sensitivity are shown in the
result tables for the sake of simplicity. Furthermore, the aggregate results will
be shown per data set, that is, the mean performance for each participant and
data set.

4 Results and discussion

4.1 Results for the supervised experimentation

The results for the supervised experiments are shown in several tables and
boxplots. From now on, we use TP, FN, FP and TN as the true positive,
false negative, false positive and true negative counters, respectively. On the
one hand, the performance of the classifiers is presented. For these results,
only those TS belonging to the test folds for which a peak was detected are
considered. The results of the performance of the models includes:

– the aggregated results of the confusion matrix of each participant and data
set (Table 3),

– the mean and standard deviation of Accuracy and Sensitivity among the
fold for each participant from the TST data set (Table 5),

– the mean and standard deviation of Accuracy and Sensitivity among the
fold for each participant from the UMA Fall data set (Table 6),

– and two boxplots for participant 1 from the UMA Fall data set, showing
Accuracy (Fig. 2) and Sensitivity (Fig. 3). This participant was neither the
best nor the worst, but representative of the mean performance; this is the
reason why it was chosen.

On the other hand, the performance of the fall detection system (including
peak detection and the classifier) is shown in several tables. For these results,
all the TS are considered, if no peak is detected then the TS is labelled as
NOT FALL. The results are shown with:

– the aggregated results of the confusion matrix of each participant and data
set (Table 4),

– the mean and standard deviation of the Accuracy and Sensitivity among
the fold for each participant from the TST data set (Table 7),

– and the mean and standard deviation of the Accuracy and Sensitivity
among the fold for each participant from the UMA Fall data set (Table
8).
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From these results it can be seen that none of the classifiers outperform the
others. This is the reason why no remark was introduced in the tables: for some
participants, the KNN is slightly better than the TF-IDF; for others, just the
opposite happened. Besides, there is a clear correlation in the results of both
classifiers: if classifier A performance improves/worsens for a participant, the
same happens with classifier B, independently of which one is A or B between
KNN and TF-IDF.

Nevertheless, the variability in the results from one participant to another
may be due to several reasons. Firstly, the data sets include data from partic-
ipants, each participant simulated the fall event as fair as possible. However,
falling is not easy: some participants might have been afraid or did not know
how to fall. This means that the different fall events are not always similar,
and thus, the erratic behaviour of the classifiers.

Secondly, this study proposes user-centered training; the consequences are
that the amount of data for training is reduced. The obtained results suggest
this or that the number of training TS be incremented or that more techniques
are needed so the performance can be enhanced.

In spite of the variability in the results from one participant to another, the
performance of both methods are remarkably good given the reduced amount
of training data. The results were, for most of the individuals, better than
reported in commercial devices. Although the results can not be compared,
the accuracy and sensitivity obtained for the main part of the population are
better than those obtained with generalized solutions [26].

Normalizing both the TS and the thresholds (scenario normTSnormTH)
showed as a more robust solution (the best results were obtained for this sce-
nario with the KNN and the TF-IDF), especially for the UMA FAll dataset.
The normTSscldTH scenario (with normalized TS and scaled thresholds),
though in some cases performed rather well, was undoubtedly the worse if
we consider the UMA Fall dataset. The original approach (origTSorigTH, the
raw TS and the original thresholds) is close to the normTSnormTH, but in
more cases with slightly worse performance.

Besides, it is to be noted how clearly the nature of the data sets has been
shown. On the one hand, we have the structure of the samples; on the other,
the ADLs included in the data set. Concerning the structure of the samples,
the TST data set includes the same number of repetitions of the same type of
ADLs and falls for all the participants. This fact is interesting as long as all the
participants have enough data to be included in the experimentation. In turn,
the UMA Fall data set does not include the same number of activities and
repetitions -even the fall simulations- for all the individuals. This fact forced
us to dismiss the data from those participants with less than 20 TS and that
included less than 9 simulated falls.

It is worth noticing the differences in the strength of the acceleration signals
recorded for the ADLs in both data sets. In the case of the TST data set, the
activities show small changes in acceleration, meaning the ADLs were weaker
than in UMA Fall. For some participants in the TST data set, using peak
detection was almost enough to classify all the TS! However, the UMA Fall
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included high-intensity ADLs; this data set is much more challenging than the
TST in terms of FD. Consequently, the results for the UMA Fall differ from
those obtained with the TST.

4.2 Results from the on-line learning experiment

For the sake of simplicity, only the performance of the classifiers is included
in this section as long as the whole system (peak detection and classifier) only
leads to better results (all the TS that do not generate a peak are classified
as NOT FALL, which is mainly True for the types of falls considered in this
study). The classifier results consider only those TS belonging to the test folds
for which a peak was detected, as these are the samples evaluated by the
classifier. The results of the performance of the models includes:

– the aggregated results of the confusion matrix of each participant and data
set (Table 9),

– the mean and standard deviation of Accuracy and Sensitivity among the
folds for each participant from the TST data set (Table 10),

– and the mean and standard deviation of Accuracy and Sensitivity among
the fold for each participant from the UMA Fall data set (Table 11).

The results clearly show that i) the setting of the classifier to label as FALL
by default introduces benefits and errors, and ii) the transfer learning partially
enhances the performance of the classifier. Let us develop these points.

As explained above, the on-line learning method classifies an incoming
impact window as FALL whenever no similar SAX word is found in the bag of
words. Labelling in this way allows the setting of a signal to the user so he/she
can give feedback to the system. This setting favors the classifier, as the greater
part of the detected peaks belong to the label FALL. To diminish this effect
the thcommon was introduced, allowing a more relaxed matching between the
current SAX word and the words in the bag of words. The consequences for the
TF-IDF without transfer learning is that there are too many False Negatives
due to the similarity with NOT FALL words. However, the consequences for
the TF-IDF is the higher ratio of False Positives. On the other hand, transfer
learning seems to improve the performance of the classifier as it proposes the
alarm for 100% of cases. Unfortunately, this good performance in fall detection
is penalized with a high number of False Positives.

With these facts, we think the transfer learning TF-IDF is an interesting
solution but needs refinement. One of these possible refinements is to introduce
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Table 3 Supervised Results. Evaluation of the classifiers. Aggregation of the results from
the confusion matrix for all the scenarios and methods. partID stands for participant Iden-
tification number within each data set.

normTSnormTH: normalized TS and normalized thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 0 47 3 6 0 53 3 0
TST 2 0 57 0 3 0 60 0 0
TST 3 9 50 10 10 6 57 13 3
TST 4 0 60 4 0 0 43 4 17
TST 5 7 41 20 9 16 43 11 7
TST 6 0 55 0 0 0 55 0 0
TST 7 0 60 0 0 0 60 0 0
TST 8 0 63 3 4 0 66 3 1
TST 9 0 52 0 0 0 52 0 0
TST 10 0 57 7 3 0 52 7 8
TST 11 0 60 0 0 0 60 0 0

UMA Fall 1 14 85 16 10 16 93 14 2
UMA Fall 2 0 58 0 2 0 60 0 0
UMA Fall 3 20 76 23 14 33 73 10 17
UMA Fall 4 3 71 4 3 0 70 7 4
UMA Fall 9 0 82 3 11 0 93 3 0
UMA Fall 12 5 23 10 8 5 29 10 2
UMA Fall 15 2 41 12 4 2 45 12 0
UMA Fall 16 26 270 13 2 7 263 32 9
UMA Fall 17 0 57 16 6 3 54 13 9

normTSscldTH: normalized TS and scaled thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 4 44 2 16 4 60 2 0
TST 2 0 56 0 4 0 60 0 0
TST 3 0 57 7 3 0 58 7 2
TST 4 0 54 0 6 0 60 0 0
TST 5 6 50 26 10 23 54 9 6
TST 6 4 55 3 5 0 54 7 6
TST 7 0 60 0 0 0 60 0 0
TST 8 0 67 0 0 0 67 0 0
TST 9 0 56 0 4 0 60 0 0
TST 10 0 53 7 7 0 57 7 3
TST 11 0 60 0 0 0 60 0 0

UMA Fall 1 20 93 10 7 8 91 22 9
UMA Fall 2 0 56 0 4 0 60 0 0
UMA Fall 3 1 85 8 5 1 88 8 2
UMA Fall 4 3 74 4 0 0 72 7 2
UMA Fall 9 6 91 16 2 5 90 17 3
UMA Fall 12 5 31 15 9 10 29 14 11
UMA Fall 15 3 45 11 5 0 50 14 0
UMA Fall 16 35 277 13 9 16 258 32 28
UMA Fall 9 12 74 18 7 8 56 22 25

origTSorigTH: raw TS and original thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 2 45 1 8 0 53 3 0
TST 2 0 60 0 0 0 60 0 0
TST 3 6 57 13 3 2 59 17 1
TST 4 0 58 4 2 0 45 4 15
TST 5 8 37 19 13 9 43 18 7
TST 6 0 55 0 0 0 55 0 0
TST 7 0 54 0 6 0 60 0 0
TST 8 0 66 3 1 0 65 3 2
TST 9 0 47 0 5 0 52 0 0
TST 10 0 56 7 4 0 59 7 1
TST 11 0 60 0 0 0 60 0 0

UMA Fall 1 18 88 12 7 8 93 22 2
UMA Fall 2 0 57 0 3 0 60 0 0
UMA Fall 3 19 82 24 8 20 82 23 8
UMA Fall 4 5 71 2 3 0 74 7 0
UMA Fall 9 0 83 3 10 0 88 3 5
UMA Fall 12 5 29 10 2 5 31 10 0
UMA Fall 15 6 39 8 6 1 45 13 0
UMA Fall 16 24 269 15 3 4 269 35 3
UMA Fall 17 0 58 16 5 0 63 16 0
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Table 4 Supervised Results. Evaluation of peak detection and each of the classifiers to-
gether. Figures come from the sum of the results from the confusion matrix for all the
scenarios and methods. Each row shows the results for a participant from one of the data
sets. partID stands for participant Identification number within each data set.

normTSnormTH: normalized TS and normalized thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 57 47 3 13 57 53 3 7
TST 2 60 57 0 3 60 60 0 0
TST 3 50 50 10 10 47 57 13 3
TST 4 56 60 4 0 56 43 4 17
TST 5 40 41 20 19 49 43 11 17
TST 6 60 55 0 5 60 55 0 5
TST 7 60 60 0 0 60 60 0 0
TST 8 57 56 3 4 57 59 3 1
TST 9 60 52 0 8 60 52 0 8
TST 10 53 57 7 3 53 52 7 8
TST 11 60 60 0 0 60 60 0 0

UMA Fall 1 74 85 16 15 76 93 14 7
UMA Fall 2 90 58 0 2 90 60 0 0
UMA Fall 3 67 76 23 14 80 73 10 17
UMA Fall 4 96 71 4 9 93 70 7 10
UMA Fall 9 87 81 3 9 87 90 3 0
UMA Fall 12 100 23 10 17 100 29 10 11
UMA Fall 15 38 41 12 9 38 45 12 5
UMA Fall 16 307 270 13 10 293 263 27 17
UMA Fall 17 74 57 16 33 77 54 13 36

normTSscldTH: normalized TS and scaled thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 58 44 2 16 58 60 2 0
TST 2 60 56 0 4 60 60 0 0
TST 3 53 57 7 3 53 58 7 2
TST 4 60 54 0 6 60 60 0 0
TST 5 38 50 22 10 52 54 8 6
TST 6 57 55 3 5 53 54 7 6
TST 7 60 60 0 0 60 60 0 0
TST 8 60 60 0 0 60 60 0 0
TST 9 60 56 0 4 60 60 0 0
TST 10 53 53 7 7 53 57 7 3
TST 11 60 60 0 0 60 60 0 0

UMA Fall 1 80 93 10 7 68 91 22 9
UMA Fall 2 90 56 0 4 90 60 0 0
UMA Fall 3 82 85 8 5 82 88 8 2
UMA Fall 4 96 74 4 6 93 72 7 8
UMA Fall 9 78 88 12 2 78 88 12 2
UMA Fall 12 99 31 11 9 99 29 11 11
UMA Fall 15 39 45 11 5 36 50 14 0
UMA Fall 16 307 277 13 3 289 255 31 25
UMA Fall 17 72 74 18 16 68 56 22 34

origTSorigTH: raw TS and original thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 59 45 1 15 57 53 3 7
TST 2 60 60 0 0 60 60 0 0
TST 3 47 57 13 3 43 59 17 1
TST 4 56 58 4 2 56 45 4 15
TST 5 41 37 19 23 42 43 18 17
TST 6 60 55 0 5 60 55 0 5
TST 7 60 54 0 6 60 60 0 0
TST 8 57 59 3 1 57 58 3 2
TST 9 60 47 0 13 60 52 0 8
TST 10 53 56 7 4 53 59 7 1
TST 11 60 60 0 0 60 60 0 0

UMA Fall 1 78 88 12 12 68 93 22 7
UMA Fall 2 90 57 0 3 90 60 0 0
UMA Fall 3 66 82 24 8 68 82 22 8
UMA Fall 4 98 71 2 9 93 74 7 6
UMA Fall 9 87 82 3 8 87 85 3 5
UMA Fall 12 100 29 10 11 100 31 10 9
UMA Fall 15 42 39 8 11 37 45 13 5
UMA Fall 16 307 269 13 11 289 269 31 11
UMA Fall 17 74 58 16 32 74 63 16 27
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nnKNN nnTF−IDF nsKNN nsTF−IDF ooKNN ooTF−IDF
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Fig. 2 Boxplot of the Accuracy for participant 1 from UMA Fall. From left to right, Ac-
curacy measured for i) the KNN and TF-IDF with the normTSnormTH; ii) the KNN and
TF-IDF with the normTSscldTH; finally, iii) the KNN and TF-IDF with the origTSorigTH.
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Fig. 3 Boxplot of the Sensitivity for participant 1 from UMA Fall. From left to right,
Accuracy measured for i) the KNN and TF-IDF with the normTSnormTH; ii) the KNN and
TF-IDF with the normTSscldTH; finally, iii) the KNN and TF-IDF with the origTSorigTH.
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different distance and similarity measurements. The Manhattan distance, the
cosine distance or the pattern based distance proposed in [31] could help in
this matter. Balancing the bag of words might also enhance the performance
of the solution; for instance, this can be done by favouring the selection of
ADL’s words to be considerd as part of the transfer learning. Finally, further
study to set the different thresholds (thsim and thcommon) is needed.

Apart from this, some more issues have been found. Obviously, the higher
the number of participants to create the bag of words for transfer learning the
bigger the size of the bag of words, and the higher the computational cost.
This is an important parameter if this should be implemented in a smartwatch
or similar device. Furthermore, as long as the bag of words keeps increasing
with every new peak whose SAX word is not in the database, the conclusion
is that the bag of words might become as big as the whole set of possible
combinations, which is unfeasible. Therefore, pruning is required and also a
forgetting tool, something like the four Rs in Case-Based Reasoning.

Moreover, it has been found that words are not so often repeated, which
also leads to a data base of all the possible words. One of the reasons for this
variability is that the data sets were not gathered with participants from the
focused population; in all cases the participants were relatively young people
or middle-aged adults. With age, the amount of movement becomes reduced,
so it can be expected that the variability in the movements can also become
reduced. This issue requires further study of the elderly population, with ADL
data and, if possible, by gathering information from real fall events suffered
from senior citizens.

Furthermore, two more ideas can enhance the performance of the TF-
IDF with transfer learning. Firstly, a clustering stage of the words extracted
from the training with ADLs, and a simple on-line clustering of the words
that are being learned on the fly would eventually produce an efficient bag
of words, which is, in the light of the results, essential for obtaining better
classifier performances. Secondly, different classification schemes, such as the
SAX-VSM [35], would represent interesting alternatives to reduce the number
of False Positives.

Finally, the idea of transfer learning can also be applied to a supervised
case. Then, the point of training would be learning to discriminate the ADLs
from the already transferred knowledge related to fall detection. Besides, the
fusion of information deserves more study. In other words, the TS is normalized
for the current user, but the a priori knowledge is extracted for a different
participant. Introducing a fusion of the different types of measurements, the
current one and the stored one, may also enhance the capability of the SAX
words to adapt to the current user.
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Table 9 On-line learning Results. Evaluation of the classifiers. Aggregation of the results
from the confusion matrix for all the scenarios and methods. TL stands for transfer learning.
partID stands for participant Identification number within each data set.

normTSnormTH: normalized TS and normalized thresholds
TF-IDF TF-IDF + TL

source parID TN TP FP FN TN TP FP FN

TST 1 0 53 3 0 0 53 3 0
TST 2 0 60 0 0 0 56 0 4
TST 3 9 55 10 5 0 60 19 0
TST 4 0 35 4 25 0 60 4 0
TST 5 17 35 10 15 0 50 27 0
TST 6 0 55 0 0 0 55 0 0
TST 7 0 60 0 0 0 60 0 0
TST 8 0 61 3 6 0 67 3 0
TST 9 0 52 0 0 0 52 0 0
TST 10 0 41 7 19 0 60 7 0
TST 11 0 60 0 0 0 60 0 0

UMA Fall 1 24 52 6 43 0 95 30 0
UMA Fall 2 0 60 0 0 0 60 0 0
UMA Fall 3 41 35 2 55 0 90 43 0
UMA Fall 4 2 64 5 10 0 74 7 0
UMA Fall 9 0 81 3 12 0 93 3 0
UMA Fall 12 7 13 8 18 0 31 15 0
UMA Fall 15 8 28 6 17 2 45 12 0
UMA Fall 16 35 217 4 55 0 272 39 0
UMA Fall 17 12 37 4 26 0 63 16 0

normTSscldTH: normalized TS and scaled thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 6 49 0 11 0 60 6 0
TST 2 0 60 0 0 0 60 0 0
TST 3 0 48 7 12 0 59 7 1
TST 4 0 60 0 0 0 60 0 0
TST 5 25 48 7 12 0 60 32 0
TST 6 0 45 7 15 0 60 7 0
TST 7 0 60 0 0 0 60 0 0
TST 8 0 67 0 0 0 67 0 0
TST 9 0 60 0 0 0 60 0 0
TST 10 0 41 7 19 0 60 7 0
TST 11 0 60 0 0 0 60 0 0

UMA Fall 1 28 44 2 56 1 100 29 0
UMA Fall 2 0 60 0 0 0 60 0 0
UMA Fall 3 7 76 2 14 0 90 9 0
UMA Fall 4 1 54 6 20 1 74 6 0
UMA Fall 9 18 63 4 30 0 93 22 0
UMA Fall 12 24 3 0 37 0 40 24 0
UMA Fall 15 0 33 14 17 2 50 12 0
UMA Fall 16 48 181 0 105 0 286 48 0
UMA Fall 17 30 18 0 63 0 81 30 0

origTSorigTH: raw TS and original thresholds
KNN TF-IDF

source parID TN TP FP FN TN TP FP FN

TST 1 0 43 3 10 0 53 3 0
TST 2 0 60 0 0 0 60 0 0
TST 3 17 30 2 30 0 60 19 0
TST 4 0 50 4 10 0 60 4 0
TST 5 27 20 0 30 0 50 27 0
TST 6 0 55 0 0 0 55 0 0
TST 7 0 60 0 0 0 60 0 0
TST 8 0 57 3 10 0 67 3 0
TST 9 0 52 0 0 0 52 0 0
TST 10 0 50 7 10 0 60 7 0
TST 11 0 60 0 0 0 60 0 0

UMA Fall 1 30 29 0 66 0 95 30 0
UMA Fall 2 0 60 0 0 0 60 0 0
UMA Fall 3 43 0 0 90 0 90 43 0
UMA Fall 4 5 44 2 30 0 74 7 0
UMA Fall 9 0 83 3 10 0 93 3 0
UMA Fall 12 14 2 1 29 0 31 15 0
UMA Fall 15 10 15 4 30 0 45 14 0
UMA Fall 16 39 192 0 80 0 272 39 0
UMA Fall 17 14 33 2 30 0 63 16 0



Supervised, On-line and Transfer Learning in Fall Detection 25
T
a
b
le

1
0

O
n

-l
in

e
le

a
rn

in
g

R
es

u
lt

s.
E

v
a
lu

a
ti

o
n

o
f

th
e

cl
a
ss

ifi
er

s.
P

a
rt

ic
ip

a
n
ts

fr
o
m

th
e

T
S

T
d

a
ta

se
t.

M
ea

n
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

v
a
lu

es
o
f

A
cc

u
ra

cy
a
n

d
S

en
si

ti
v
it

y
fo

r
a
ll

th
e

sc
en

a
ri

o
s

a
n

d
m

et
h

o
d

s.
T

L
st

a
n

d
s

fo
r

tr
a
n

sf
er

le
a
rn

in
g
.

T
h

e
sc

en
a
ri

o
s

a
re

n
o
rm

T
S

n
o
rm

T
H

(n
o
rm

a
li
ze

d
T

S
a
n

d
n

o
rm

a
li
ze

d
th

re
sh

o
ld

s)
,

n
o
rm

T
S

sc
ld

T
H

(n
o
rm

a
li
ze

d
T

S
a
n

d
sc

a
le

d
th

re
sh

o
ld

s)
a
n

d
o
ri

g
T

S
o
ri

g
T

H
(r

a
w

T
S

a
n

d
o
ri

g
in

a
l

th
re

sh
o
ld

s)
.

p
a
rt

ID
st

a
n
d

s
fo

r
p

a
rt

ic
ip

a
n
t

Id
en

ti
fi

ca
ti

o
n

n
u

m
b

er
w

it
h

in
ea

ch
d

a
ta

se
t.

n
o
rm

T
S

n
o
rm

T
H

n
o
rm

T
S

sc
ld

T
H

o
ri

g
T

S
o
ri

g
T

H
T

F
-I

D
F

T
F

-I
D

F
+

T
L

T
F

-I
D

F
T

F
-I

D
F

+
T

L
T

F
-I

D
F

T
F

-I
D

F
+

T
L

so
u

rc
e

p
a
rI

D
S

ta
t

A
cc

S
en

A
cc

S
en

A
cc

S
en

A
cc

S
en

A
cc

S
en

A
cc

S
en

T
S

T
1

m
ea

n
0
.9

5
4
8

1
.0

0
0
0

0
.9

5
4
8

1
.0

0
0
0

0
.8

3
1
0

0
.8

1
6
7

0
.9

1
4
3

1
.0

0
0
0

0
.7

7
2
9

0
.8

1
0
0

0
.9

5
4
8

1
.0

0
0
0

st
d

0
.0

7
3
1

0
.0

0
0
0

0
.0

7
3
1

0
.0

0
0
0

0
.0

8
9
4

0
.0

9
4
6

0
.0

7
3
8

0
.0

0
0
0

0
.0

5
4
0

0
.0

1
6
1

0
.0

7
3
1

0
.0

0
0
0

T
S

T
2

m
ea

n
1
.0

0
0
0

1
.0

0
0
0

0
.9

3
3
3

0
.9

3
3
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

st
d

0
.0

0
0
0

0
.0

0
0
0

0
.0

8
6
1

0
.0

8
6
1

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

T
S

T
3

m
ea

n
0
.8

1
3
5

0
.9

1
6
7

0
.7

6
9
0

1
.0

0
0
0

0
.7

2
1
4

0
.8

0
0
0

0
.8

8
5
7

0
.9

8
3
3

0
.5

9
3
3

0
.5

0
0
0

0
.7

6
9
0

1
.0

0
0
0

st
d

0
.0

7
3
3

0
.0

8
7
8

0
.0

9
6
7

0
.0

0
0
0

0
.0

9
5
9

0
.0

7
0
3

0
.0

9
0
4

0
.0

5
2
7

0
.0

4
4
8

0
.0

0
0
0

0
.0

9
6
7

0
.0

0
0
0

T
S

T
4

m
ea

n
0
.5

5
0
0

0
.5

8
3
3

0
.9

4
2
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.7

8
5
7

0
.8

3
3
3

0
.9

4
2
9

1
.0

0
0
0

st
d

0
.1

3
9
5

0
.1

4
1
6

0
.0

7
3
8

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

6
1
5

0
.0

0
0
0

0
.0

7
3
8

0
.0

0
0
0

T
S

T
5

m
ea

n
0
.6

7
9
4

0
.6

9
1
7

0
.6

5
0
2

1
.0

0
0
0

0
.7

9
9
5

0
.8

0
0
0

0
.6

5
9
5

1
.0

0
0
0

0
.6

0
3
6

0
.3

8
5
0

0
.6

5
0
2

1
.0

0
0
0

st
d

0
.1

9
3
0

0
.2

3
1
5

0
.0

6
7
5

0
.0

0
0
0

0
.1

0
3
5

0
.1

0
5
4

0
.0

7
3
3

0
.0

0
0
0

0
.0

5
5
5

0
.1

0
2
9

0
.0

6
7
5

0
.0

0
0
0

T
S

T
6

m
ea

n
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.6

8
5
7

0
.7

5
0
0

0
.9

0
7
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

st
d

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.1

4
2
8

0
.0

8
7
8

0
.1

0
5
4

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

T
S

T
7

m
ea

n
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

st
d

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

T
S

T
8

m
ea

n
0
.8

7
9
8

0
.9

1
1
9

0
.9

6
2
5

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.8

1
7
9

0
.8

5
0
0

0
.9

6
2
5

1
.0

0
0
0

st
d

0
.1

1
1
3

0
.0

7
6
2

0
.0

6
0
4

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

4
8
0

0
.0

1
1
5

0
.0

6
0
4

0
.0

0
0
0

T
S

T
9

m
ea

n
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

st
d

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

T
S

T
1
0

m
ea

n
0
.6

1
4
3

0
.6

8
3
3

0
.9

0
0
0

1
.0

0
0
0

0
.6

1
4
3

0
.6

8
3
3

0
.9

0
0
0

1
.0

0
0
0

0
.7

5
0
0

0
.8

3
3
3

0
.9

0
0
0

1
.0

0
0
0

st
d

0
.1

7
9
2

0
.1

9
9
5

0
.0

6
9
0

0
.0

0
0
0

0
.1

3
6
0

0
.1

4
5
9

0
.0

6
9
0

0
.0

0
0
0

0
.0

5
7
5

0
.0

0
0
0

0
.0

6
9
0

0
.0

0
0
0

T
S

T
1
1

m
ea

n
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

st
d

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0



26 J. R. Villar, E. de la Cal et al
T
a
b
le

1
1

O
n

-l
in

e
le

a
rn

in
g

R
es

u
lt

s.
E

v
a
lu

a
ti

o
n

o
f

th
e

cl
a
ss

ifi
er

s.
P

a
rt

ic
ip

a
n
ts

fr
o
m

U
M

A
F

a
ll
.

M
ea

n
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

v
a
lu

es
o
f

A
cc

u
ra

cy
a
n

d
S

en
si

ti
v
it

y
fo

r
a
ll

th
e

sc
en

a
ri

o
s

a
n

d
m

et
h

o
d

s.
T

L
st

a
n

d
s

fo
r

tr
a
n

sf
er

le
a
rn

in
g
.

T
h

e
sc

en
a
ri

o
s

a
re

n
o
rm

T
S

n
o
rm

T
H

(n
o
rm

a
li
ze

d
T

S
a
n

d
n

o
rm

a
li
ze

d
th

re
sh

o
ld

s)
,

n
o
rm

T
S

sc
ld

T
H

(n
o
rm

a
li
ze

d
T

S
a
n

d
sc

a
le

d
th

re
sh

o
ld

s)
a
n

d
o
ri

g
T

S
o
ri

g
T

H
(r

a
w

T
S

a
n

d
o
ri

g
in

a
l

th
re

sh
o
ld

s)
.

p
a
rt

ID
st

a
n
d

s
fo

r
p

a
rt

ic
ip

a
n
t

Id
en

ti
fi

ca
ti

o
n

n
u

m
b

er
w

it
h

in
ea

ch
d

a
ta

se
t. n

o
rm

T
S

n
o
rm

T
H

n
o
rm

T
S

sc
ld

T
H

o
ri

g
T

S
o
ri

g
T

H
T

F
-I

D
F

T
F

-I
D

F
+

T
L

T
F

-I
D

F
T

F
-I

D
F

+
T

L
T

F
-I

D
F

T
F

-I
D

F
+

T
L

so
u

rc
e

p
a
rI

D
S

ta
t

A
cc

S
en

A
cc

S
en

A
cc

S
en

A
cc

S
en

A
cc

S
en

A
cc

S
en

U
M

A
F

a
ll

1
m

ea
n

0
.6

0
3
2

0
.5

4
3
3

0
.7

6
2
3

1
.0

0
0
0

0
.5

4
9
7

0
.4

4
0
0

0
.7

7
8
8

1
.0

0
0
0

0
.4

6
4
5

0
.3

0
0
0

0
.7

6
2
3

1
.0

0
0
0

st
d

0
.1

6
7
0

0
.2

1
4
2

0
.0

3
5
7

0
.0

0
0
0

0
.1

6
3
7

0
.1

8
3
8

0
.0

4
6
3

0
.0

0
0
0

0
.1

3
6
6

0
.1

6
1
0

0
.0

3
5
7

0
.0

0
0
0

U
M

A
F

a
ll

2
m

ea
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

st
d

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

U
M

A
F

a
ll

3
m

ea
n

0
.5

7
2
8

0
.3

8
8
9

0
.6

8
0
4

1
.0

0
0
0

0
.8

3
9
0

0
.8

4
4
4

0
.9

1
3
6

1
.0

0
0
0

0
.3

1
9
6

0
.0

0
0
0

0
.6

8
0
4

1
.0

0
0
0

st
d

0
.0

6
9
7

0
.1

0
8
0

0
.0

5
2
4

0
.0

0
0
0

0
.0

9
9
3

0
.0

9
3
7

0
.0

6
7
9

0
.0

0
0
0

0
.0

5
2
4

0
.0

0
0
0

0
.0

5
2
4

0
.0

0
0
0

U
M

A
F

a
ll

4
m

ea
n

0
.8

1
8
0

0
.8

6
2
5

0
.9

2
3
1

1
.0

0
0
0

0
.6

8
6
4

0
.7

3
0
4

0
.9

3
3
1

1
.0

0
0
0

0
.6

0
2
5

0
.5

9
2
9

0
.9

2
3
1

1
.0

0
0
0

st
d

0
.1

1
0
3

0
.1

1
7
0

0
.0

8
8
5

0
.0

0
0
0

0
.0

8
4
8

0
.0

5
7
4

0
.0

7
8
1

0
.0

0
0
0

0
.0

4
1
3

0
.0

2
7
7

0
.0

8
8
5

0
.0

0
0
0

U
M

A
F

a
ll

9
m

ea
n

0
.8

4
2
2

0
.8

7
0
0

0
.9

7
0
0

1
.0

0
0
0

0
.7

0
3
9

0
.6

7
6
7

0
.8

1
3
0

1
.0

0
0
0

0
.8

6
5
6

0
.8

9
2
2

0
.9

7
0
0

1
.0

0
0
0

st
d

0
.0

7
9
1

0
.0

8
8
7

0
.0

4
8
3

0
.0

0
0
0

0
.0

8
8
2

0
.1

1
8
2

0
.0

6
8
8

0
.0

0
0
0

0
.0

4
5
5

0
.0

0
5
4

0
.0

4
8
3

0
.0

0
0
0

U
M

A
F

a
ll

1
2

m
ea

n
0
.4

3
8
3

0
.4

1
6
7

0
.6

9
3
3

1
.0

0
0
0

0
.3

8
8
6

0
.0

7
5
0

0
.6

5
9
2

1
.0

0
0
0

0
.3

2
6
7

0
.0

5
0
0

0
.6

9
3
3

1
.0

0
0
0

st
d

0
.1

5
9
1

0
.1

9
6
4

0
.1

4
0
1

0
.0

0
0
0

0
.1

8
1
6

0
.1

2
0
8

0
.1

6
6
8

0
.0

0
0
0

0
.1

3
7
5

0
.1

0
5
4

0
.1

4
0
1

0
.0

0
0
0

U
M

A
F

a
ll

1
5

m
ea

n
0
.6

1
7
6

0
.6

2
5
0

0
.8

0
2
9

1
.0

0
0
0

0
.5

2
6
2

0
.6

6
0
0

0
.8

1
9
0

1
.0

0
0
0

0
.4

2
2
4

0
.3

2
5
0

0
.7

6
6
2

1
.0

0
0
0

st
d

0
.2

1
8
4

0
.2

6
1
7

0
.1

2
1
3

0
.0

0
0
0

0
.1

7
9
4

0
.1

8
9
7

0
.1

1
0
7

0
.0

0
0
0

0
.0

6
2
8

0
.0

7
9
1

0
.0

6
8
4

0
.0

0
0
0

U
M

A
F

a
ll

1
6

m
ea

n
0
.8

1
0
3

0
.7

9
7
8

0
.8

7
6
3

1
.0

0
0
0

0
.6

8
4
8

0
.6

3
2
5

0
.8

5
7
5

1
.0

0
0
0

0
.7

4
2
2

0
.7

0
5
7

0
.8

7
6
3

1
.0

0
0
0

st
d

0
.0

2
9
3

0
.0

3
8
9

0
.0

4
0
9

0
.0

0
0
0

0
.0

4
9
4

0
.0

5
5
7

0
.0

3
0
0

0
.0

0
0
0

0
.0

1
3
2

0
.0

0
6
9

0
.0

4
0
9

0
.0

0
0
0

U
M

A
F

a
ll

1
7

m
ea

n
0
.6

1
0
9

0
.5

7
8
2

0
.8

1
2
8

1
.0

0
0
0

0
.4

2
4
8

0
.2

2
0
8

0
.7

3
8
3

1
.0

0
0
0

0
.5

8
4
9

0
.5

1
3
9

0
.8

1
2
8

1
.0

0
0
0

st
d

0
.1

1
0
2

0
.1

6
6
5

0
.1

1
2
2

0
.0

0
0
0

0
.1

0
2
6

0
.1

0
9
4

0
.0

7
8
3

0
.0

0
0
0

0
.0

6
3
4

0
.0

7
3
8

0
.1

1
2
2

0
.0

0
0
0



Supervised, On-line and Transfer Learning in Fall Detection 27

5 Conclusion

This study proposes user-centered solutions to FD. On the one hand, super-
vised learning has been applied to obtain a KNN and a TF-IDF classifier using
training data that includes simulated falls and ADLs. On the other hand, on-
line learning has been applied to obtain a TF-IDF classifier that is enhanced
with a transfer learning stage using the same data set collections.

The results show that modelling the FD for each user instead of obtaining
generalized models can produce better performance. On-line learning methods
have shown validity in order to avoid the need for fall events to train the model
for the user. Nevertheless, transfer learning has improved the on-line learning
classifier, suggesting this might be the path to follow in future research.

This future research should also focus on several issues, including i) de-
termining the best thresholds for the on-line learning TF-IDF solution, ii)
enhancing transfer learning to focus on notably important words, iii) integrat-
ing transfer learning with the supervised scheme, so while one learns the main
references for the positive class the training focuses on the negative class, iv)
introducing clustering among the words to reduce the size of the bag of words,
v) studying how to integrate the R’s stages from Case-Based Reasoning to the
online learning and tuning of the models.
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