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Abstract
Machine and statistical learning is about constructing models from data. Data is usually understood as a set of records, a
database. Nevertheless, databases are not static but change over time. We can understand this as follows: there is a space
of possible databases and a database during its lifetime transits this space. Therefore, we may consider transitions between
databases, and the database space. NoSQL databases also fit with this representation. In addition, when we learn models from
databases, we can also consider the space of models. Naturally, there are relationships between the space of data and the
space of models. Any transition in the space of data may correspond to a transition in the space of models. We argue that a
better understanding of the space of data and the space of models, as well as the relationships between these two spaces is
basic for machine and statistical learning. The relationship between these two spaces can be exploited in several contexts as,
e.g., in model selection and data privacy. We consider that this relationship between spaces is also fundamental to understand
generalization and overfitting. In this paper, we develop these ideas. Then, we consider a distance on the space of models based
on a distance on the space of data. More particularly, we consider distance distribution functions and probabilistic metric
spaces on the space of data and the space of models. Our modelization of changes in databases is based on Markov chains
and transition matrices. This modelization is used in the definition of distances. We provide examples of our definitions.

Keywords Machine and statistical learning models · Space of data · Space of models · Hypothesis space · Probabilistic
metric spaces

1 Introduction

Machine and statistical learning can be seen as a search prob-
lem. That is, we have a state space corresponding to possible
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models and we want to find the one that better represents
our data. Here, better can correspond to the one with best
accuracy. Different definitions of better as well as different
search strategies to find a good solution can be considered.
From this perspective, we consider operators that permit to
transform one model into another one. In this case, a trans-
formation is usually to improve accuracy (i.e., better = better
accuracy). Examples of these transformations include oper-
ators that expand a node in a decision tree, update weights in
a deep learning model, or operators that mutate a solution in
genetic algorithms.

In this paper, we consider a different perspective. We con-
sider the space of models taking into account the space of
data that have generated these models.

When we learn a model from an actual database, the
database is just a database from the space of data. When
databases change, we are traversing the space of data through
a particular path. Different databases in this particular path
can lead to different machine learning models.
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Weclaim that it is necessary to study how the space of data
interacts with the space of models. More particularly, that
any decision on the space of models has to take into account
relationships between the space of data that generate these
models.

We consider that this perspective is of great interest in the
following areas.

– In model selection for statistical andmachine learning In
this area the goal is to select models that better general-
ize data and avoid overfitting. The study of the interaction
between the space of models and the space of data can
increase our understanding on the models themselves,
and on the methods that generate the models (compar-
ing their respective mappings between the two spaces).
In particular, we think it is fundamental to understand
the concepts of generalization and overfitting. This also
relates to the effect of outliers and influential points in
learning. It is important to understand generalization and
overfitting in terms of the relationship between the space
of models and the space of data.

– In privacy preserving data mining and machine learning
The need to study the relationship between the two spaces
wasfirst proposed in [14] in the context of integral privacy
[10,11]. In short, a model is integrally private if it can
be generated by a large number of databases, and these
databases are sufficiently different (e.g., they do not share
records). This is to avoid some type of privacy attacks on
machine learning models as, e.g., membership attacks
[12].

We are interested in knowingwhen twomodels are similar,
where similar does not correspond to a syntactic similarity
of the models (e.g., if two decision trees have the same struc-
ture), nor on a semantic similarity of the models (e.g., if
two models have the same accuracy). We are interested in
knowing when models are similar because they have been
generated from similar databases.

There are naturally different ways of understanding the
similarity between databases. For example, one database
may be similar because it is a noisy version of the other
(e.g., an anonymized version of the original database). Here,
we focus on changes in databases due to the natural pro-
cesses a database suffers in a company. That is, we consider
a database that is updated, as time passes, by means of e.g.,
adding and removing records. These types of changes are
usual when databases are in production. In addition, these
types of changes are also relevant in the framework of data
privacy [13] with the right to be forgotten and the right to
amend (under the GDPR).

In [14], the authors proposed the use of probabilistic met-
ric spaces [9] for modeling the similarity between models.
Informally, these spaces are defined in terms of distance dis-

tribution functions. That is, distance between pairs of objects
are not a real number but a distribution on these numbers.
This approach permits us to define a distance between pairs
of models taking into account the distance between the set
of databases that have generated these models.

In this paper, we propose the use of Markov chains and
transition matrices to represent, respectively, sequences of
changes in databases and the probability of changes taking
place. This representation permits the definition of proba-
bilistic metric spaces on the space of data. We use them later
to define distance distribution functions for the space ofmod-
els in terms of the databases that have generated them. This
is a much simpler approach than the one introduced in [14].

The structure of this paper is as follows. In Sect. 2, we
introduce the definitions that are needed later in the paper.
In particular, we introduce Markov chains and probabilistic
metric spaces. In Sect. 3, we introduce two definitions ofmet-
ric spaces for databases based on Markov chains and prove
some results. In Sect. 4, we introduce definitions for distance
distribution functions for models based on the probabilistic
metric spaces introduced in Sect. 3. We provide some exam-
ples of how these distances can be actually computed. The
paper finishes with a discussion and lines for future work.

2 Preliminaries

In this section, we review some concepts that are needed
later. We begin with Markov chains and transition matrices.
We also discuss probabilistic metric spaces and distances for
sets of elements.

2.1 Markov chains

In this paper, we will use Markov transition matrices and
Markov chains to model the space of databases. Because of
that, we will review in this section a few concepts that we
need later. See e.g., [7] for details.

We consider a state space S finite or enumerable. We will
use

S = {DB1, DB2, DB3, . . . }

to denote the space of possible databases. Thus, in our case,
a finite although extremely huge set.

We will consider chains defined on the state space S. That
is, (Zn)n∈N taking values in S, i.e., Zn ∈ S.More particularly,
we consider Markov chains. This corresponds to chains in
which the probability distribution on Zn+1 depends only on
the process Zn at time n and not on previous values of Z . In
other words, there is no memory on previous transitions.
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Formally,

P(Zn+1 = DBj |Zn = DBi , Zn−1 = DBn−1, . . . , Z0 = DB0)

= P(Zn+1 = DBj |Zn = DBi ).

We consider time-homogeneous Markov chains. That is,
the probability of transition does not depend on time. This is
expressed mathematically as

P(Zn+1 = DBj |Zn = DBi ) = P(Zm+1 = DBj |Zm = DBi )

for any n,m.
As the probability does not depend on n, we will not use

this index unless required. Then, we will use Pi j to denote
P(Zn+1 = DBj |Zn = DBi ) (for any n). For the sake of
simplicity, we will also use P(Zn+1 = j |Zn = i) when no
confusion arises.

From the explanation above, it is clear that transition
depends only on the probabilities Pi j . These probabilities
for all states i and j define a matrix. It is known as transition
matrix. Formally, a transition matrix P is a S× S matrix with
values in [0, 1] such that (for any n)

∑

DBj∈S
Pi j =

∑

DBj∈S
P(Zn+1 = DBj |Zn = DBi ) = 1.

We can prove that given a probability distribution π on
S for time 0, say probabilities P(Z0 = i) for i ∈ S, the
probability distribution for time 1, say probabilities P(Z1 =
j) for j ∈ S, can be expressed in matrix notation as π P .
Let us denote by Pn the transition matrix defined by Pn

i j =
P(Zm+n = DBj |Zm = DBi ). Naturally, the computation
of Pn

i j does not depend on m. We can prove that

Pr+t
i j =

∑

k∈S
Pr
ik P

t
k j ,

or inmatrix form Pr+t = Pr Pt . This is called theChapman–
Kolmogorov equation.

2.2 Probabilistic metric spaces

Probabilistic metric spaces [9] are a generalization of metric
spaces in which a distance distribution function replaces the
role of distance functions. That is, instead of considering
d(a, b) as a real number, it is a distribution function on the
real numbers.

Recall that metric spaces are defined in terms of sets (a
non-empty set) and a distance or metric for pairs of elements
in this set. Formally, we denote a metric space by (S, d),
where S is the set and d for a, b ∈ S the distance. The

function d is required to satisfy the following properties:
(i) positiveness, (ii) symmetry, and (iii) triangle inequality
(formally, d(a, b) ≤ d(a, c) + d(c, b) for any a, b, c in S).
Also, it is usual to require that if a and b are different then the
distance should be strictly positive. Special names are given
when some of these conditions fail. For example, when the
distance does not satisfy the symmetry condition, we say
that (S, d) is a quasimetric space; and when the distance
does not satisfy the triangle inequality, we say that (S, d) is
a semimetric space.

Probabilistic metric spaces are a generalization of met-
ric spaces. As stated above, we can informally consider that
we replace the function d(a, b) by a distribution function
F(a, b) defined onR. These functions are known as distance
distribution functions. Their definition follows.

Definition 1 [9] A nondecreasing function F defined on R+
that satisfies (i) F(0) = 0; (ii) F(∞) = 1, and (iii) that is
left continuous on (0,∞) is a distance distribution function.
�+ denotes the set of all distance distribution functions.

The following interpretation is usual for these functions:
F(x) corresponds to the probability that the distance is less
than or equal to x . Note that this definition is a generalization
of a distance.

In particular, we use εa to denote the distance distribu-
tion function that represents the classical distance a. This εa
function is just a step function at a. Its definition follows.

Definition 2 [9] For any a in R, we define εa as the function
given by

εa(x) =
{
0, −∞ ≤ x ≤ a
1, a < x ≤ ∞.

In order to define probabilistic metric spaces we need to
consider the set of distance distribution functions, and we
need to define a condition on triples of functions in this set
analogous to the triangle equality in metric spaces. This con-
dition given below is based on triangle functions. Let us start
defining the triangle functions.

Definition 3 [9] Let �+ be defined as above, then a binary
operation on �+ is a triangle function if it is commutative,
associative, and nondecreasing in each place, and has ε0 as
the identity.

Using triangle functions we can establish the definition of
probabilistic metric spaces.

Definition 4 [9] Let (S,F , τ ) be a triple where S is a
nonempty set, F is a function from S × S into �+, τ is
a triangle function; then (S,F , τ ) is a probabilistic metric
space if the following conditions are satisfied for all p, q,
and r in S:
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– (i) F(p, p) = ε0
– (ii) F(p, q) �= ε0 if p �= q
– (iii) F(p, q) = F(q, p)
– (iv) F(p, r) ≥ τ(F(p, q),F(q, r)).

As usual in this field, we will use Fpq instead of F(p, q).
This permits to express the value of the distance distribution
function at x by means of the expression: Fpq(x).

2.3 Metrics for sets of objects

In order to define the distance between pairs of models, we
will consider the set of databases that have generated these
models. This permits to define the distance in terms of the
distance between these sets. Let us first consider the classical
setting with a standard distance.

Let G be an algorithm that given a database generates a
model, then, the set of generators of a model m is defined by
Genm = {DB|G(DB) = m}. In this case, given two models
m1 and m2 we define the distance between m1 and m2 in
terms of Genm1 and Genm2 . In order to do so, we need to
extend the distance for databases to sets of databases.

Nevertheless, given a metric space (S, d), its extension
to a set of elements of S is not trivial. This is so because
although several distances have been defined on sets, not all
of them satisfy the triangle inequality. This implies that they
are not valid to define a metric.

In [14], different types of functions are considered. The
discussion includes the Hausdorff distance and the sum of
minimum distance (which do not satisfy the triangle inequal-
ity) and the definition by Eiter and Mannila [3] that is indeed
a valid definition of a distance and leads to a metric space.
Nevertheless, this is a very complex function to compute.

3 Probabilistic metric spaces fromMarkov
chains

We consider that transition matrices are a suitable approach
to model changes on databases. In other words, we consider
that for a given database there is some probability that this
database is transformedbymeans of amodification to another
database. For the sake of simplicity, we consider in this work
time-homogeneous Markov chains. That is, as explained in
Sect. 2 that changes on a database only depend on what is
currently available in the database and that it does not depend
on its previous values (history of the database). This assump-
tion can be considered simplistic, as e.g., the probability of
adding a record may depend on how many times has been
already present in the database and has been removed. Nev-
ertheless, we consider that this assumption is acceptable for
this initial study.

For illustration, we consider only addition and deletion of
records from a database, and that only one addition and one
deletion is allowed at a time. We also assume that we have
access to the whole population or that we know the size of
the whole population. Then, we can define a transitionmatrix
based on assigning a probability of having a deletion (pd )
and a probability of having an addition (pa). Naturally, these
probabilities add less than or equal to one (pd + pa ≤ 1).

Definition 5 Let pd and pa be the probability of deleting
or adding a record. Then, given an arbitrary database DBi ,
where DBi is a subset of the whole population P (with |P|
denoting the size of this population),wedefine theprobability
of transition from DBi to any DBj as follows (here, pi j
stands for P(Zn+1 = DBj |Zn = DBi ) as above):

pi j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pd
1

|DBi | if c1&c3
pa

1
|P|−|DBi | if c2&c3

1
|P| if (c1 or c2)&c4

1 − (pd + pa) if c5&c3
0 otherwise

(1)

where c1 − c5 are the following conditions:

– c1: DBj ⊂ DBi and |DBi \ DBj | = 1
– c2: DBi ⊂ DBj and |DBj \ DBi | = 1
– c3 : |DBi | /∈ {0, |P|}
– c4: |DBi | ∈ {0, |P|}
– c5: DBi = DBj

Here, c4 means that the database DBi is either empty or no
further records can be added to it, and c3 means that DBi is
not one of such extreme databases.

Lemma 1 The above definition leads to a valid transition
matrix. That is,

∑
j pi j = 1 for all j .

Proof Observe that given DBi , pi j is not zero for databases
DBj �= DBi that have either one additional recordmore (i.e.,
DBi ⊂ DBj and |DBj \ DBi | = 1) or less (i.e., DBj ⊂
DBi and |DBi \ DBj | = 1) than DBi . Then, in the general
case, DBi can lead to any of the |DBi | databases that has
just one record less, or DBi can lead to any of the |P| −
|DBi | databases that have exactly one additional record. So,
according to Equation 1, the probability of deleting a record
is pd and the probability of adding a record is pa . As the
probability of DBi not being modified is 1− (pd + pa), it is
proved that the definition leads to a row adding to one. Then,
we have conditions for the extreme cases in which DBi is
empty or DBi includes all records. In this case, there are |P|
neighboring databases with a probability of transition equal
to 1

|P| . Therefore, this row also adds to one. Therefore, the
matrix is a transition matrix. �	

123



Progress in Artificial Intelligence (2021) 10:321–332 325

In this section, we introduce two definitions of probabilis-
tic metric spaces for databases based on transition matrices
and Markov chains.

The first definition considers the distance between two
databases in terms of the probability of being transformed
into the second one. This approach defines the probabilis-
tic metric space solely based on the transition matrices. We
give below both symmetric and asymmetric definitions for
the distance distribution functions. See Definition 6. We call
this type of space, visited database-based probabilisticmetric
space (VD-PMS).

The second definition considers the distance between two
databases in terms of their evolution. That is, given two
databases, will they be similar as time passes? In order to
give a formal definition, we need to consider how databases
are being modified, and what similarity means for databases.
With respect to the later, the model presumes the existence
of a standard distance function (a metric space, in fact) on
the space of databases. We call this type of space, database
distance-based probabilistic metric space (DD-PMS). See
Definition 7.

We consider that both types of definitions are relevant for
statistical andmachine learning and, in particular, for privacy
preserving data mining. We are interested in models that are
valid today but that will be also valid in the future. So, the
first definition states that two models are similar if we can
transit from one to the other and the second definition states
that two models are similar if they have a similar future (a
similar machine learning model in the future).

3.1 Visited database-based probabilistic metric
spaces

We consider a definition of probabilistic metric spaces for
databases based on [5]. The distance between two databases
depends on the probability that one database becomes the
second one after a sequence of changes (there is a chain
between the first to the second) within a given time frame.

The definition is based on transition matrices P on the
space of databases. The definition follows.

Definition 6 Let S be a state space representing the space of
databases, let P be the transition matrix for S that defines a
time-homogeneous Markov chain (Zn)n∈N. Then, given two
states i and j in S we define

Fi j (t) = P[exists a time s < t such that Zs = j |Z0 = i].

Formally, let f si j denote the probability that with Z0 = i
(i.e., starting the chain from state i), the first time we visit
state j is exactly at time s. Then, Fi j (t) = ∑t

s=1 f si j .

From the point of view of the space of databases, the
definition above establishes that the distance between two

databases DB1 and DB2 for the value t isα (i.e., P12(t) = α)

if the probability of reaching DB2 from DB1 in less than t
transitions is α.

We can prove from this definition that Fi j (t1 + t2) ≥
Fik(t1)Fkj (t2). From this property, we can prove the follow-
ing theorem. See [5] for a proof. Observe that the formulation
of the following theorem in [5] uses stationary to refer to
time-homogeneous, using the notation in [2].

Theorem 1 Let S, P, (Zn)n∈N and Fi j (t) be defined as in
Definition 6. LetF be themapping from S×S into the space of
cumulative distribution functions defined by F(i, j) = Fi j .
Then, F satisfies properties (i) and (iii) in Definition 1, and
properties (i), (ii), and (iv) in Definition 4.

It is a non-symmetric distance distribution function satis-
fying (iv) under the t-norm T = Prod (i.e., T (a, b) = ab).

The hitting time of a state DBj starting from state DBi is
the random variable defined by

Ti j = min{n ≥ 0 : Xn = DBj }

with the minimum of the empty set defined as ∞. The prob-
ability of hitting state DBj is defined by

h j
i = P(Ti j < ∞).

Not all transition matrices lead to Markov chains with
probabilities of hitting a state equal to 1. If this is the case,
then, the Definition above will lead to a probabilistic metric
space with a non-symmetric function. We establish this in
the next theorem.

Theorem 2 Let S, P, (Zn)n∈N and Fi j (t) be defined as in
Definition 6. Then, the pair (S,F) is a probabilistic metric
space with a non-symmetric distance function under the t-
norm T = Prod when h j

i = 1 for all i, j .

Definition 6 gives a distance that is not necessarily sym-
metric. Note that accessing j from i at time t does not mean
that it is possible to access i from j in the same time t .

It is possible to define a probabilistic metric space with a
symmetric distance function using F ′

i j = √
Fi j Fji or F ′′

i j =
0.5(Fi j + Fji ). The first definition is a probabilistic metric
space satisfying the Menger inequality with T = Prod and
the second one satisfies the Menger inequality with T = Tm
(i.e., Tm(a, b) = max(a + b − 1, 0)).

3.2 Computation and example

Definitions above use f si j , that as explained above, denotes
the probability that with Z0 = i the first time we visit state
j is exactly at time s when we start at Z0 = i . For a given
transition matrix P , we can compute f si j as follows. If s = 1,
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Fig. 1 F13 for Example 1 according to Definition 6

f si j = Pi j . If s > 1 then we perform the following steps: (i)

define P̄ as P and assigning P̄rs = 0 for all pairs ( j, t)
and (t, j) with j ∈ S, (ii) compute P̄s−1, (iii) compute
f si j = ∑

k∈S P̄
s−1
ik Pk j . Finally, (iv) using the expression in

Definition 6 we compute Fi j (t) as Fi j (t) = ∑
s≤t f

s
i j .

The rationale of this definition is that in order to reach j
from i in exactly s steps (with s > 1) we need to reach any
other state k �= j in exactly s − 1 steps without reaching j at
any moment s′ < s, and then move from k to j . Probabilities
of reaching k �= j from i in s − 1 steps without hitting j
will be computed using P̄ . This computation corresponds to
compute P̄s−1 as noted above.

We give an example of this computation with a very small
database. The space is built from a set of 5 records. In this
way, we can consider the whole database space that has a
size of 25 databases.

Example 1 Let DB be the set of all databases that can be
generated from 5 records. That is, DB corresponds to the
power set of these 5 records. Let P be the transition matrix of
DB defined according to Definition 5 using pa = pd = 0.5.
Then, we can compute F13 according to Definition 6. F13 is
the distance between databases DB1 = {a} and DB3 = {c}.
Figure 1 represents this computation.

3.3 Results on the approximation of distance
distribution functions

Computation of the distance introduced in Definition 6 is
costly. Because of that we are interested in the approximation
of this distance.We can prove the following results in relation
to Definition 6.

Lemma 2 Let DB1 and DB2 be two databases. Let us con-
sider the sets DB1 ∩ DB2, DB1 \ DB2, and DB2 \ DB1. Let
ta = |DB2 \DB1| be the number of elements we need to add
to transit from DB1 to DB2, and let td = |DB1 \ DB2| be

the elements we need to delete to transit from DB1 to DB2.
Then, the shortest chain from DB1 to DB2 when we only
consider addition and deletion of records has length

t0 = |DB1 \ DB2| + |DB2 \ DB1| = ta + td

and, therefore,

F12(t) = 0

for all t < t0.

Let us consider an arbitrary order for the ta elements we
add, and an arbitrary order for the td elements we remove.
Let i in {1, . . . , ta} represent the addition of the i th element
according to this order and i in {ta + 1, . . . , ta + td} the
removal of the (i − ta)th element according to this order.
Using this interpretation, it is clear that any permutation of
{1, . . . , ta + td} represents a valid chain with only additions
and deletions andwith no cycles from DB1 to DB2. So, there
are (ta + td)! valid chains with no cycles.

We can also prove a lemma similar to Lemma 2 when in
addition to addition and deletion we allow transitions that do
not change the database. Shortest chains will of course still
have length ta + td , and from this it also follows: F12(t) = 0
for all t < t0.

Let Ct12 denote all valid chains from DB1 to DB2 with
length t . Then, Cta+td

12 will represent all shortest chains.
Therefore, |Cta+td

12 | = (ta + td)!. It is also clear that Ct12 = ∅
for t < ta + td .

Let use denote a chain c ∈ Ct by c0, c1, . . . , ct . Here ci
will correspond to a database DBi . Then, the probability of
transiting from DB0 to DBt through the chain c is naturally

Pc =
∏

cr∈c
Pcr−1,cr . (2)

Lemma 3 Using the notation in Lemma 2 and Pc as in Equa-
tion 2, we have that when only addition and deletion are
allowed, or when addition, deletion and transition without
change are allowed, it holds (for ta and tb as above)

F12(ta + td) = f ta+td
12 =

∑

c∈Cta+td
12

Pc

=
∑

c∈Cta+td
12

∏

cr∈c
Pcr−1,cr . (3)

We can also prove that when only addition and deletions
are allowed, Ct12 = ∅ for any t = ta + td + 1 + 2k for any
k, i.e., given a shortest chain, we can only enlarge this chain
both adding and removing k records. So, in this case, for all
k it holds f ta+td+2k+1

12 = 0.
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When addition, deletion and also non modification are
allowed as transitions between databases, we have that for
t = ta+td+1+2k (for any k), the chains inCt12 are the ones in
Ct−1
12 adding a transition corresponding to non-modification

(say tnm). Let p∅ denote the probability of a non-modification
(this corresponds to the value 1− (pd + pa) in Equation 1).
Let c ∈ Ct be one of such chainswith elements c0, c1, . . . , ct .
Then, we can insert this tnm transition between any pair of
elements of the chain (but not at the end of the chain as we
are considering that is exactly at time s that we reach the
goal state). This means that there are t options. Given P(c),
the probability of the chain c ∈ Ct , the probability of any of
these chains is p∅ · p(c). So, as we have t new chains for a
given chain c, the probability for this set of chains (say c̃) is
p(c̃) = tp∅ p(c). Then, considering all c̃ generated from all
c ∈ Ct , we have that for t = ta + td + 1 + 2k

P(Ct12) =
∑

c∈Ct−1
12

p(c̃) =
∑

c∈Ct−1
12

tp∅ p(c)

= tp∅
∑

c∈Ct−1
12

p(c) = tp∅P(Ct−1
12 ).

Using Expression 3, it is easy to prove the following lemma.

Lemma 4 Let DBi and DBj be two arbitrary databases, and
let R = {c}c be a set of random valid chains c ∈ R from
DBi to DBj with different lengths. Then,

f si j ≥
∑

c:|c|=s+1

Pc

and

Fi j (t) ≥
∑

c:|c|≤t+1

Pc.

This result implies that the consideration of random valid
chains give lower bounds for Fi j (t). Therefore, any deci-
sion based on a threshold th on a given t (i.e., Fi j (t) ≥ th)
valid for a set R will be also valid if all the set of chains is
considered.

The links between triangle functions and t-norms (see e.g.,
[1], and Def. 7.1.3 and Section 7.1 in [9]) permit us to estab-
lish the following lemma. This lemma establishes another
lower bound for distance distribution functions for any pair
of databases if we can compute exact values for pairs involv-
ing a particular database (e.g., a reference one denoted by
DBa below).

Lemma 5 Let (S,F , τT ) be a probabilisticmetric space gen-
erated by a t-norm T (i.e., τT (F,G)(x) = T (F(x),G(x)) is
the triangle function generated by T ). Let DBa be a particu-
lar database for which we can calculate exactly the distance

distribution function for all DBi ∈ S. Then,

F(DBi , DBj ) ≥ T (FDBi ,DBa (x), FDBa ,DBj (x))

is a lower bound of FDBi ,DBj .

Proof If T is a t-norm, then the triangle function τT generated
by T is

τT (F,G)(x) = T (F(x),G(x))

for distance distribution functions F and G. Then, as
(S,F , τT ) is a probabilistic metric space on the space of
databases, we know that for all p, q, and r it holds that

F(p, r) ≥ τT (F(p, q),F(q, r))

and, therefore, in particular for p = DBi , q = DBa and
r = DBj we have that

F(DBi , DBj ) ≥ τT (F(DBi , DBa),F(DBa, DBj ))

= T (F(DBi , DBa),F(DBa, DBj )).

�	

3.4 Database distance-based probabilistic metric
space

We consider an alternative way to define probabilistic metric
spaces in which in addition to a transition matrix we use a
distance on the state space. The definition is based on [5].

Definition 7 Let S be the database space, let P be the tran-
sition matrix for S that defines a time-homogeneous Markov
chain (Zn)n∈N. Let d : S × S → R

+ be a distance function
on S. Then, for any given time t ≥ 0, we define the function
Ft
i j (x) as follows:

Ft
i j (x) = Pr [d(i, j) < x at time t]

=
∑

k∈S
Pt
ik

⎛

⎝
∑

�:d(�,k)<x

Pt
j�

⎞

⎠ .

Informally, for a given time t , this definition implies that the
probability level between states i and j at time x is computed
in terms of the probability of reaching states k at time t from
i and the probability of finding states � from j at most at
distance x .

We can prove the following result that is similar to
Lemma 4.
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Lemma 6 LetDB be a collection of databases sampled from
the space of databases. Let

F̃ t
i j (x;DB) =

∑

DBk∈DB
Pt
ik

∑

�

: d(�, k) < xDB� ∈ DBPt
j�.

Let F̃ t
i j (x;DB,R) correspond to F̃ t

i j (x;DB) when Pt
ik only

considers a given set R of random valid chains as in
Lemma 4. Then,

F̃ t
i j (x;DB,R)

≤ F̃ t
i j (x;DB)

≤
∑

DBk∈DB
Pt
ik

∑

�:d(�,k)<x,DB�∈DB
Pt
j�.

The implications of this lemma are similar to the ones of
Lemma 4. That is, the consideration of random chains and
sets of databases give lower bounds for Fi j (t). Therefore,
any decision based on considering two databases DB1 and
DB2 as different based on a threshold th on a given t (i.e.,
F12(t) ≥ th) valid for a setR and for a set of databases DB
will be also valid if all the sets of chains and all databases are
also considered. We illustrate this distance with one example
that uses the same space of databases we have considered
before.

Example 2 Let P be the transition matrix and let DB be
the space of databases considered in Example 1. Let DB1

and DB3 be the databases considered in Example 1. We can
compute F13 according to Definition 7. To do so, we use
the Jaccard Index to measure the similarities between the
databases. Figures 2, 3 and 4 represent these computations
with different values of t . We display F1,3 as in the previ-
ous example, but we also considered the computations for
very different databases (i.e., F0,31) in Figures 5, 6 and 7.
Here, F0,31 is the distance between databases DB0 = {} and
DB31 = {a, b, c, d, e}.

From the threefigures, Figs. 2, 3 and4,wenotice thatwhen
t becomes larger, and x is greater than 0.5, the probability
become higher.

Figures 5, 6 and 7) show that when we have very different
databases, and the Jaccard distance is less than 0.5, we need
more transitions in order to increase the probability.

4 Construction of the distance on the space
of models

The definitions above permit to extend the probabilistic met-
ric space for databases to models. As discussed in Sect. 2.3,
given two models m1 and m2 the goal is to define a distance
based on the generators Gm1 and Gm2 of m1 and m2. In this

Fig. 2 F13 when t = 5 for Example 2 according to Definition 7

Fig. 3 F13 when t = 15 for Example 2 according to Definition 7

Fig. 4 F13 when t = 25 for Example 2 according to Definition 7
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Fig. 5 F0,31 when t = 1 for Example 2 according to Definition 7

Fig. 6 F0,31 when t = 5 for Example 2 according to Definition 7

Fig. 7 F0,31 when t = 50 for Example 2 according to Definition 7

Table 1 Set of models and their corresponding sets of Databases from
Example 3

Model m Gen(m)

1000 (a), (b), (a, b), (a, b, c).

1500 (a, c), (b, c)

2000 (c)

case, instead of a standard distance, we consider a distance
distribution function.

Proposition 1 Let S be the space of databases, let G be an
algorithm to generate models from the space of databases
S, let G be the space of models that can be generated by G.
Let m1 and m2 be two models generated by the application
of algorithm G to databases in S. Let Genm1 and Genm2

be the set of databases that generate m1 and m2. That is,
Genm1 = {DB ∈ S|G(DB) = m1} and Genm2 = {DB ∈
S|G(DB) = m2}.

Let (S,F) be a probabilistic metric space. Then, letF for
pairs of models m1 and m2 be defined as follows:

F(m1,m2)(x)

= 1

|Genm1 ||Genm2 |
∑

DB1∈Genm1

∑

DB2∈Genm2

FDB1,DB2(x).

(4)

Then, F is a distance distribution function.

Lemma 7 Using Equation 4 with Definition 6, we obtain a
function F(m1,m2) that is a non-symmetric distance distri-
bution function. Using instead definitions F ′ and F ′′ above
will lead to symmetric distance functions. Using Definition 7
results into a distance distribution function.

Lemma 8 When we approximate F(m1,m2)(x) using lower
bounds of FDB1,DB2 (as considering only some chains and
some databases), we will obtain lower bounds of the real
F(m1,m2)(x).

It is relevant to point out that this definition does not nec-
essarily lead to a probabilistic metric space, as condition (iv)
in Definition 4 does not always hold.We illustrate this defini-
tion above considering databases as in the previous examples
based on three records/people and their salaries.

Example 3 Suppose we have three records a, b, and c, with
salaries 1000, 1000 and 2000, respectively. The space of
databases is the power set of theses records. If we choose
G to be the median function to generate the models, then the
space of models is G = {1000, 1500, 2000}. The models and
their generators are listed in Table 1. Figure 8 displays the
distance between model m1=1000 and model m2=2000 by
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Fig. 8 F1000,2000 for Example 3
according to Proposition 1 and
Definition 6

using Proposition 1, as well as the distance between pairs of
databases according to Definition 6. Similarly, we have also
computed the distance between the same pair by using the
same proposition, but where the distance between databases
follows Definition 7 as illustrated in Fig. 9.

From both Fig. 8, and Fig. 9, we can see that the distance
distribution functions for the models and the databases are
quite similar.

5 Summary and conclusions

In this paper, we have proposed the use ofMarkov chains and
transition matrices to model transitions between databases,
and used them to define a probabilistic metric space for mod-
els.

Our goal is to better understand the relationship between
data and models. From our perspective, this requires a metric
space on the space of models that reflects the relationships
between the databases that can generate these models. From
a machine learning perspective, a good model is one that
has a good accuracy, but also that is not overfitted to data

and has some level of generalization. From a data privacy
perspective, a good model is one that does not lead to
disclosure. This includes not leading to disclosure on the
data that has been used to generate the model. In other
words, we understand machine and statistical learning as
a selection process. We want to select a model with good
accuracy that does not have overfitting (and not vulnera-
ble to membership attacks) and that is near to models with
similar generators. This work is to formalize what near
means.

As future work, we plan to develop strategies for com-
puting these distances and for defining in practice metric
spaces for real-size databases. In this paper, examples have
been described for small databases because they are easier
to understand but also because when considering a regular
size database its power set becomes extremely large. Some
initial results on boundary conditions on the distances were
given in the paper. We plan to consider how to extend this
approach by means of approximating the distances.

We also plan to work on the problem of model selection.
Research on graphical visualization of the models and the
metric spaces will be appropriate here. Sammon’s map as
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Fig. 9 F1000,2000 for Example 3
according to Proposition 1 and
Definition 7

well as other multidimensional scaling procedures can help
on this purpose.

Acknowledgements This study was partially funded by Vetenskap-
srådet project “Disclosure risk and transparency in big data privacy”
(VR 2016-03346, 2017-2020), Spanish project TIN2017-87211-R is
gratefully acknowledged, and by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Funding Open access funding provided by Umea University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Tri-
angular Norms and Copulas. World Scientific, Singapore (2006)

2. Doob, J.L.: Stochastic Processes. Wiley, Hoboken (1953)
3. Eiter, T., Mannila, H.: Distance measures for point sets and their

computation. Acta Informatica 34, 109–133 (1997)
4. Kent, D.C., Richardson, G.D.: Ordered probabilistic metric spaces.

J. Austral. Math. Soc. 46, 88–99 (1989)
5. Marcus, P.S.: Probabilistic metric spaces constructed from station-

ary Markov chains. Aequationes Mathematica 15, 169–171 (1977)
6. Moynihan, R.: Probabilistic metric spaces induced by Markov

chains. Z.Wahrscheinlichkeitstheorie. Gebiete 35, 177–187 (1976)
7. Privault, N.: Understanding Markov Chains. Springer, Newyork

(2018)
8. Samarati, P.: Protecting respondents identities inmicrodata release.

IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)
9. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier,

Amsterdam (1983)
10. Senavirathne, N., Torra, V.: Approximating robust linear regression

with an integral privacy guarantee. Proc. PST 2018, 1–10 (2018)
11. Senavirathne, N., Torra, V.: Integral privacy compliant statistics

computation. Proc DPM/CBT- ESORICS 2019, 22–38 (2019)
12. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership

inference attacks against machine learning models. Proc. IEEE
Symposium on Security and Privacy. (2017). arXiv:1610.05820

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1610.05820


332 Progress in Artificial Intelligence (2021) 10:321–332

13. Torra, V.: Data Privacy: Foundations, New Developments and the
Big Data Challenge. Springer, Newyork (2017)

14. Torra, V., Navarro-Arribas, G.: Probabilistic metric spaces for pri-
vacy by design machine learning algorithms: modeling database
changes, Proc. DPM 2018/CBT 2018. LNCS 11025, 422–430
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	The space of models in machine learning: using Markov chains to model transitions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Markov chains
	2.2 Probabilistic metric spaces
	2.3 Metrics for sets of objects

	3 Probabilistic metric spaces from Markov chains
	3.1 Visited database-based probabilistic metric spaces
	3.2 Computation and example
	3.3 Results on the approximation of distance distribution functions
	3.4 Database distance-based probabilistic metric space

	4 Construction of the distance on the space of models
	5 Summary and conclusions
	Acknowledgements
	References




