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Abstract 

Background:  Studying comorbidities of disorders is important for detection and prevention. For discovering 
frequent patterns of diseases we can use retrospective analysis of population data, by filtering events with common 
properties and similar significance. Most frequent pattern mining methods do not consider contextual information 
about extracted patterns. Further data mining developments might enable more efficient applications in specific 
tasks like comorbidities identification.

Methods:  We propose a cascade data mining approach for frequent pattern mining enriched with context informa-
tion, including a new algorithm MIxCO for maximal frequent patterns mining. Text mining tools extract entities from 
free text and deliver additional context attributes beyond the structured information about the patients.

Results:  The proposed approach was tested using pseudonymised reimbursement requests (outpatient records) 
submitted to the Bulgarian National Health Insurance Fund in 2010–2016 for more than 5 million citizens yearly. 
Experiments were run on 3 data collections. Some known comorbidities of Schizophrenia, Hyperprolactinemia and 
Diabetes Mellitus Type 2 are confirmed; novel hypotheses about stable comorbidities are generated. The evaluation 
shows that MIxCO is efficient for big dense datasets.

Conclusion:  Explicating maximal frequent itemsets enables to build hypotheses concerning the relationships 
between the exogeneous and endogeneous factors triggering the formation of these sets. MixCO will help to identify 
risk groups of patients with a predisposition to develop socially-significant disorders like diabetes. This will turn static 
archives like the Diabetes Register in Bulgaria to a powerful alerting and predictive framework.
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Motivation
Studying comorbidities of disorders is important for 
detection and prevention. For discovering frequent pat-
terns of diseases we can use retrospective analysis of 
population data, by filtering events with common prop-
erties and similar significance. Two major approaches 
to pattern search are: (i) frequent pattern mining (FPM) 
viewing the events (objects) as unordered sets and (ii) 
frequent sequence mining (FSM). Most FPM and FSM 
methods do not consider contextual information about 

extracted patterns; usually they build a prefix tree, which 
is huge and difficult to manipulate in memory when big 
data is processed [1]. Further developments of data min-
ing (DM) might enable more efficient applications in spe-
cific tasks e.g. identification of relations between different 
unrelated diseases—so called comorbidity.

Clinical narratives are an underused data source that 
has much greater research potential than is currently 
realized. Biomedical scientists increasingly use text min-
ing to extract important entities from medical texts and 
integrate them in various DM studies. However auto-
mated analysis of clinical texts is most successful for 
English while only fragmented components exist for the 
other languages. So advancing the biomedical Natural 
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Language Processing (NLP) for under-resourced lan-
guages is another challenge to be met in order to improve 
DM achievements in knowledge discovery.

We propose a cascade data mining approach for fre-
quent pattern mining enriched with context information, 
including a new algorithm MIxCO for maximal frequent 
patterns mining. Text mining tools extract entities from 
free text and deliver additional context attributes beyond 
the structured information about the patients. NLP for 
Bulgarian delivers entities from Outpatient Records 
(ORs) free texts. Novel hypotheses are generated to dis-
cover stable comorbidities and to confirm known ones. 
The experiments explicate some population specific 
comorbidities. We also discuss the effects of age, gender 
and demographics on these comorbidities.

The paper is structured as follows. Section  2 presents 
related work, Sect.  3—the data we use, Sect.  4—the 
methods. Section  5 discusses current experiments and 
their medical interpretation. Section  6 sketches further 
work and the conclusion.

Related work
The concept of frequent itemsets is introduced by 
Agrawal et  al. [2]. Methods for solving FPM vary from 
the naive BruteForce and Apriori algorithms, where the 
search space is organized as a prefix tree, to Eclat/dEclat 
algorithm that uses tidsets directly for support com-
putation, by processing prefix equivalence classes [1]. 
Another efficient algorithm is FPGrowth (Frequent Pat-
tern Tree Approach). Using the generated frequent pat-
terns we can later generate association rules. Most FPM 
algorithms generate all possible frequent patterns (FPs). 
The search space grows exponentially with the number 
of items. Summarized information for data relations can 
be extracted as maximal frequent itemsets (MFI). The 
condensed information not only accelerates the process, 
reducing redundancy, but also decreases significantly the 
number of FPs for post-analysis. All classic algorithms 
for FPM can be modified for MFI search, by checking 
for maximality at each step. There are some especially 
designed algorithms for MFI search, e.g. the MFCS algo-
rithm which combines top-down and bottom-up [3]. The 
GenMax algorithm that uses a vertical database, diffsets 
and optimizations by checking whether the union of all 
itemsets is included already in some maximal itemset 
and then pruning the branch [4]. The FPMax algorithm 
is based on FP-trees by extending FP-growth algorithm 
[5]. MAFIA uses depth-first traversal of the itemset lat-
tice with effective pruning mechanisms which is quite 
good especially when the database itemsets are very long 
[6].

NLP for English clinical texts made significant progress 
in algorithm development and resource construction since 

2000. Open-source tools like cTAKES1 extracts informa-
tion from clinical free text. Another open source system is 
HITEx (Health Information Text Extraction) which 
extracts variables of interest from narratives [7]. Despite 
the limitations, the NLP importance as a supporting tech-
nology will grow due to its constant improvements [8].

Studies on multimorbidity are a great challenge given 
the mismatch between the high prevalence of this condi-
tion and relatively smaller number of research papers [9], 
which is partly due to lack of data. Machine learning (ML) 
is the basic technology used in such studies. For instance, 
four ML techniques (logistic regression, k-nearest neigh-
bors, multifactor dimensionality reduction and support 
vector machines) were applied to assess risks for diabetes, 
hypertension and their comorbidity in a cohort of 270,172 
hospital visitors (89,858 diabetic, 58,745 hypertensive and 
30,522 comorbid patients) in Kuwait, with accuracy > 85% 
(for diabetes) and > 90% (for hypertension) [10]. An origi-
nal approach for predicting a comorbid medical condi-
tion incidence and progression of medical conditions, 
using self-posted data available on patient-oriented social 
media sites, is presented in [11]. The similarity between 
patient postings is calculated and the risk of a condition is 
derived thus producing a ranked list of medical conditions 
for each patient. An algorithm to build medical condition 
progression trajectories is suggested. The condition inci-
dence model predicts future conditions with coverage of 
48% (top-20) and 75% (top-100).

Materials
The data repository we use currently contains more than 
262 million pseudonymised ORs submitted to the Bul-
garian National Health Insurance Fund (NHIF) in 2010-
2016 for more than 5 mln citizens yearly. In Bulgaria ORs 
are produced by the General Practitioners and the Spe-
cialists from Ambulatory Care for every contact with the 
patient. Despite their primary accounting purpose the 

1  Clinical Text Analysis and Knowledge Extraction System: http://ctakes.
apache.org/.

Table 1  Fields with free text in ORs that supply input data 
to text mining components

XML field Content

Anamnesis Case history, previous treatments. Family history, risk 
factors

Status Patient state, height, weight, BMI, blood pressure etc.

Clinical tests Lab data and clinical examinations values in arbitrary 
order

Treatment Codes of drugs reimbursed by NHIF, free texts for other 
drugs

http://ctakes.apache.org/
http://ctakes.apache.org/
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ORs summarise sufficiently the case and motivate the 
requested reimbursement. ORs are semi-structured files 
with predefined XML-format. The structured XML fields 
provide useful information: date and time of the visit; 
pseudonymised personal data, age, gender; pseu-
donymised visit-related information; diagnoses in ICD-
102; NHIF drug codes for medications that are 
reimbursed; a code if the patient needs special monitor-
ing; a code concerning the need for hospitalization; sev-
eral codes for planned consultations, lab tests and 
medical imaging. The free text OR fields, listed in Table 1, 
are processed by our NLP tools.

Methods
The system architecture is shown on Fig.  1. Text min-
ing modules convert the raw text to structured data. We 
developed a drug extractor using regular expressions to 
describe linguistic patterns [12], it handles 2239 drug 
names included in the NHIF nomenclatures. For extrac-
tion of clinical test data (body mass index—BMI, weight, 
blood pressure etc.) we designed a Numerical value 
extractor [13].

We search for as many as possible associations between 
chronic diseases.3 A tabular method using a vertical data-
base is proposed, with depth-first traversal as well as set 
intersection and diffsets. Further processing of the MFI is 
applied to remove diagnostic related groups. Some con-
text information is added to each MFI to study comor-
bidities. This information is presented as attribute-value 
tuples for each patient; the post-processing identifies the 
importance of different attributes for each MFI.

Mining maximal frequent itemsets
For the collection S of ORs we extract the set of all dif-
ferent patient identifiers P = {p1, p2, . . . , pN }. This set 
corresponds to transaction identifiers (tids) and we call 
them pids (patient identifiers). We consider each patient 

2  International Classification of Diseases and Related Health Problems 10th 
Revision. http://apps.who.int/classifications/icd10/browse/2015/en.
3  Chronic diseases, WHO, http://www.who.int/topics/chronic_diseases/
en/.

visit to a doctor as a single event. For each patient pi ∈ P 
an event sequence of tuples 〈event, timestamp〉 is gener-
ated: E(pi) =

(

�e1, t1�, �e2, t2�, . . . , �eki , tki �
)

, i = 1,N  . 
Let E be the set of all possible events and T  be the set 
of all possible timestamps. Let C =

{

c1, c2, . . . , cp
}

 
be the set of all chronic diseases, which we call 
items. Each subset of X ⊆ C is called an itemset. We 
define a projection function π : (E × T )N → CN :  
π(E(pi)) = C(pi) = (c1i, c2i, . . . , cmi), such that for each 
patient pi ∈ P the projected time sequence contains 
only the first occurrence (onset) of each chronic dis-
order recorded in E(pi). Let D ⊆ P × 2C be the set of 
all itemsets in our collection after projection π in the 
format 〈pid, itemset〉. We will call D database. We are 
looking for itemsets X ⊆ C with frequency (sup(X)) 
above given minsup. Let F  denote the set of all frequent 
itemsets, i.e. F = { X |X ⊆ C and sup(X) ≥ minsup} . 
A frequent itemset X ∈ F  is called maximal 
if it has no frequent supersets. Let M denote 
the set of all maximal frequent itemsets, i.e. 
M = { X |X ∈ F and ∄Y ∈ F , such that X ⊂ Y }   . 
Let 2X denote the power set (set of all subsets) of 
itemset X . Then each subset of X ∈ F  is also fre-
quent itemset, i.e. ∀Y ∈ 2X implies that Y ∈ F  . 
For each item c ∈ C we define the set called pidset: 
p(c) = { pi|�pi,C(pi)� ∈ D and c ∈ C(pi)}.

We preprocess the database D by generating pid-
sets and transform it to vertical database DV : 
DV = �{ c, p(c)�|c ∈ C}. Let w ∈ C, we define projec-
tion Pw of the database DV  by pidsets intersection: 
Pw

(

DV
)

= { �c, p′(c)�|�c, p(c)� ∈ DV , c �= w and p′(c) =

p(c)∩ p(w)} and its complement by pidsets difference: 
Pw

(

DV
)

= {�c, p′′(c)�|�c, p(c)� ∈ DV , c �= w and p′′(c) =  
p(c)− p(w)} . Let f (c) denotes the frequency of item 
c ∈ C in database DV . An item w ∈ C is called weak, if 
there has no item in C with support lower than f (w), i.e. 
∄c ∈ C such that f (c) < f (w).

Algorithm MIxCO (MIning COmorbidity)
Assume that the set of all maximal frequent itemsets M 
is initially the empty set. We reduce the database DV  by 

Structured 
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Context 
Information 
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Comorbidity
Outpatient 
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Fig. 1  System architecture

http://apps.who.int/classifications/icd10/browse/2015/en
http://www.who.int/topics/chronic_diseases/en/
http://www.who.int/topics/chronic_diseases/en/
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deleting all tuples that contain items with support below 
minsup and process further the obtained database DV ′ . 
Obviously the maximal frequent itemsets will contain 
as many as possible items, thus they must contain also 
items with low frequency. In order to identify maximal 
frequent itemsets we start from the weakest item w ∈ C 
in DV ′. There are two cases: either a maximal frequent 
itemset X contains w, or it does not contain it. Thus we 
need to split DV ′ in two subsets by projections Pw

(

DV ′
)

 
and Pw

(

DV ′
)

. We apply recursively the algorithm MIxCO 
for searching all maximal frequent itemsets in Pw

(

DV ′
)

 . 
Let the result set of all maximal frequent itemsets in 
Pw

(

DV ′
)

 be Mw. We add to each of them the item w: 
M

′

w = { Y |X ∈ Mw ,Y = X ∪ {w}} and obtain the maxi-
mal frequent itemsets that contain w. Let B be the set of 
all members of Pw

(

DV ′
)

 that were reduced from the algo-
rithm MIxCO due to low frequency (bellow the minsup).  
These items cannot be reduced from further considera-
tions because they have low frequency in combination 
with w, but support above minsup in the entire database 
DV ′ and they can be members of maximal frequent item-
sets that do not contain w. We update Pw

(

DV ′
)

 by adding 
those itemsets that contain members of B:
Pw

(

DV ′
)U

= Pw
(

DV ′
)

∪ { �c, y∪ (z ∩ p(x))�|�x, p(x)� ∈ B,

�c, z� ∈ Pw

(

DV ′
)

, �c, y� ∈ Pw
(

DV ′
)

}. We apply recur-

sively the algorithm MIxCO for searching all maximal 
frequent itemsets in Pw

(

DV ′
)U

. Let the result set of all 

maximal frequent itemsets in Pw
(

DV ′
)U

 be Mw  . Then 
the result set of all maximal frequent itemsets of the 
database D is the union M = M′

w ∪Mw . Finally we 
reduce M by removing all frequent patterns that are not 
maximal, if any.

We illustrate MIxCO by a synthetic example (Fig.  2). 
Itemsets of ICD-10 codes for 10 patients are pre-
sented. For each ICD-10 code (F20, E11, I11, M17, 
I20, E66, J44) is generated a set of pids, i.e. DV  . 
We apply reduction for minsup = 3 and obtain 
B = {�M17, {2, 4}�, �E66, {10}�, �J44, {5}�}. The weakest 
item of the new set DV ′ is w = I20. On the next step we 
partition DV ′ into two subsets by projection PI20

(

DV ′
)

 
and PI20(DV ′). First we start processing PI20

(

DV ′
)

 
and apply reduction with B′ = {�I11, {8}�}. The weak-
est item in the resuced set PI20

(

DV ′′
)

 is w = F20. We 
apply projection and obtain to subsets PF20

(

PI20
(

DV ′′
))

 
and PF20(PI20(DV ′′)). Because for PF20

(

PI20
(

DV ′′
))

 no 
reduction is applied and its cardinality is 1, we return the 
frequent itemset M = {{F20,E11, I20}}, which contains 
items from both projections F20 and I20 and the only left 
item E11 in the later subset. The subset PF20(PI20(DV ′′)) 
is empty and the algorithm terminates processing the 
subset PI20

(

DV ′
)

. We continue by processing PI20(DV ′) 
and update it by the reduced data from B′. No further 
reductions are applied to the updated set PI20(DV ′′), 
because all subsets have support above minsup. The 
weakest item in PI20(DV ′′) is w = F20. We apply pro-
jection and obtain to subsets PF20

(

PI20(DV ′′)
)

 and 
PF20

(

PI20(DV ′′)
)

. For PF20
(

PI20(DV ′′)
)

 no reduction is 
applied and its weakest item is w = E11. We apply pro-
jection and obtain to subsets PE11

(

PF20
(

PI20(DV ′′)
))

 and 
PE11

(

PF20
(

PI20(DV ′′)
))

 and so on. The frequent itemsets 
M = {{F20,E11, I20}, {F20,E11}, {F20, I11}, {E11, I11}} , 
produced at the end, are presented in oval shapes in the 
leaves of the tree on Fig. 2. Finally we reduce the non max-
imal itemsets from M, i.e. {F20,E11} ⊂ {F20,E11, I20} , 
presented in shadow in Fig.  2. The result set 
M = {{F20,E11, I20}, {F20, I11}, {E11, I11}} contain 
maximal frequent itemsets only.
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F20 E11 I11 M17 I20 E66 J44

1,4,5,7,8,9,10 1,2,3,4,6,8,9,10 3,5,6,7,8,9 2,4 1,8,10 10 5

F20 E11 I11 I20

1,4,5,7,8,9,10 1,2,3,4,6,8,9,10 3,5,6,7,8,9 1,8,10 Weak: I20

F20 E11 I11

1,8,10 1,8,10 8

F20 E11 I11

4,5,7,9 2,3,4,6,9 3,5,6,7,9

Reduction    

F20 E11

1,8,10 1,8,10

F20 E11 I11

4,5,7,8,9 2,3,4,6,8,9 3,5,6,7,8,9 Weak: F20

E11 I11

4,8,9 5,7,8,9

E11 I11

2,3,6 3,6Weak: E11

I11

8,9

I11

5,7

I11

5,7,8,9

E11 I11

2,3,6,8,9 3,6,8,9 Weak: I11

E11

3,6,8,9

E11

2

pid itemset
1 F20 E11 I20

2 E11 M17

3 E11 I11

4 F20 E11 M17

5 F20 I11 J44

6 E11 I11

7 F20 I11

8 F20 E11 I11 I20

9 F20 E11 I11

10 F20 E11 I20 E66

PI20

Reduction      

Reduction

Weak: F20

E11

1,8,10

PF20

PE11

Update 

Update 

Update Reduction

PF20

Pattern: 
F20 E11 I20

PI11

Pattern: 
E11 I11

Pattern: 
F20 E11 Pattern: 

F20 I11

Fig. 2  Example of maximal frequent itemsets mining
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Context information
Comorbidities need to be studied in the context where they 
occur so we add semantic attributes to each event—patient 
demographics, age and gender, treatment, status etc.

We define a set of attributes of interest 
A = {a1, a2, . . . , ak}. Context Q for some patient pi ∈ P is 
defined as the set of attribute-value pairs from patient pro-
file information: Q(pi) = {�a1, q1�, �a2, q2�, . . . , �ak , qk�}. 
In order to decrease the number of possible values of 
attributes we apply some aggregation of data. For instance 
age value is categorized according to the World Health 
Organization (WHO) standard age groups.4 Data for body 
mass index (BMI) are also categorized according to the 
WHO5 standard classification—underweight, normal 
weight, overweight, obesity. For some data concerning 
demographic information, like region ID we have large 
number of distinct values. For such data we add also some 
additional properties concerning background information 

4  WHO, Standard age groups http://www.who.int/healthinfo/paper31.pdf.
5  WHO, BMI Classification http://apps.who.int/bmi/index.
jsp?introPage=intro_3.html.

for the region—e.g. whether it is south, north, west, east, 
central, northwest etc., and mountain, river, sea, thermal 
spring, urban region etc.

From Q(pi) we generate a feature vector 
v(pi) = (v1i, v2i, . . . , vmi), where each attribute aj ∈ A 
with Nj possible values is represented by Nj consecutive 
positions in the vector. For the set of maximal frequent 
itemset M with cardinality |M| = K we have K classes of 
comorbidities. We apply classification of multiple classes 
in order to generate rules for each comorbidity class. We 
use SVM and optimization based on block minimization 
method described by Yu et al. [14].

Experiments and medical relevance
MIxCO algorithm evaluation
Some evaluation experiments were performed for 
MixCO and FPMax algorithms with two databases A 
and B. The number of transaction in both collections 
is 11,345, but A is very dense, and in contrast B is very 
sparse. The number of items in A is 4337, and in B is 
3412. Table  2 shows the execution time in milliseconds 
for a relative minsup between 0.01 and 0.05.

http://www.who.int/healthinfo/paper31.pdf
http://apps.who.int/bmi/index.jsp%3fintroPage%3dintro_3.html
http://apps.who.int/bmi/index.jsp%3fintroPage%3dintro_3.html
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The evaluation results show that FP-Max outperforms 
MIxCO for big sparse databases. In contrast MIxCO 
shows better results for big dense databases.

Comorbidity identification
The term “comorbid” here means “indicating two or more 
medical conditions existing simultaneously regardless of 
their causal relationship”. One comprehensive study of 
the possible relations between comorbid diseases is [15]. 
The authors describe 13 comorbid models, also known as 
“NK models”, which allow to examine the etiology of the 
comorbidity between disorders and to predict mortality 
and other outcomes.

Our experiments for pattern search are made on five 
OR collections that are used as training and test corpora 
(Table 3). They contain data about patients suffering from 
Schizophrenia (ICD-10 code F20), Hyperprolactinae-
mia (ICD-10 code E22.1), and Diabetes Mellitus Type 2 
(ICD-10 code E11). Schizophrenia and Diabetes Mellitus 
are chronic diseases with a variety of complications that 
are also chronic diseases. The collections are extracted 
by using a Business Intelligence Tool (BITool) [13] from 
the repository of ORs for approx. 5 million patients for a 
3-years period.

The minsup value was set as relative minsup function 
of the ration between the number of patients and ORs. 

It is approximately between 0.015% for S2 and S3 and 
0.005% for S1. This is a rather small minsup value that 
will guarantee coverage even for more rare chronic dis-
eases but with sufficient support.

The noise in the data is not taken into account. We do 
not discuss the correctness of the clinical data from med-
ical point of view. The average number of ORs per patient 
is distributed almost evenly in the collections S1–S3: 12.2 
(set S1), 9.85 (S2) and 14.5 (S3) and each patient has sev-
eral visits each year. On the other hand the collections 
are almost complete and cover the population in Bulgaria 
for these period.

The experimental collections were carefully selected. The 
association between Schizophrenia, Hyperprolactinemia, 
and Diabetes Mellitus Type 2 is well known so it is easier 
to assess the novelty of discovered comorbidities corre-
sponding to the extracted maximal frequency itemsets.

Comorbidity interpretation in psychiatric diseases has 
specific aspects because in mental health comorbidity 
does not necessarily imply the presence of multiple dis-
eases. It usually is the result of imprecisely distinguished 
mental illnesses and inability to supply a single diagnosis 
that accounts for all symptoms. For example in collection 
S1 the support of itemset {F20, F31} is 871, where F31 
is Bipolar affective disorder and F20 is Schizophrenia. 
Despite this imperfection, we see that the longest maxi-
mal frequent itemsets overcome this problem. Table  4 
contains diseases with ICD-10 codes I11 (Hypertensive 
heart disease with heart failure), I20 (Angina pecto-
ris), I50 (Heart failure), I69 (Sequelae of cerebrovascu-
lar disease). The result is not quite surprising due to the 

Table 2  The execution time in milliseconds for experiments with two synthetic datasets

The best results in experiments are highlighted in bold

Database Algorithm minsup

0.01 0.02 0.03 0.04 0.05

A FP-Max 9,952,681 596,652 100,899 31,148 13,461

MIxCO 45,276 35,700 32,456 29,026 27,315

B FP-Max 112 94 87 81 77

MIxCO 9879 7066 5913 5255 4456

Table 3  Characteristics of data collections

Collection S1 S2 S3

Main diagnosis Schizophrenia Hyperprolacti-
naemia

Diabetes Mellitus 
Type 2

ICD-10 code F20 E22.1 E11

Minsup(Relative) 80(0.005%) 45(0.015%) 1092 (0.017%)

Patients number 45,945 9777 435,953

ORs 1,682,429 288,977 6,327,503

Period 3 years 3 years 1 year

Total MFI 204 316 305

Longest MFI 6 5 6

ICD-10 codes 5790 4697 5473

Chronic diseases 227 228 228

Table 4  The longest maximal frequent itemsets for Schizo-
phrenia with size = 6

Maximal frequent itemset Support

{E11, F20, I11, I20, I50, I69} 100

{F20, I11, I20, I48, I50, I69} 83
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well-studied comorbidity between Schizophrenia and 
Cardio-vascular diseases [15].

Interesting and unexpected results were found in the 
set of maximal frequent itemsets with size 5 (Table 5)—
comorbidity with M17 Gonarthrosis (arthrosis of knee).

This correlation seems to be a new hypothesis: a 
search PubMed found only 3 papers referring to rela-
tions between delusions and physical diseases such as 
knee osteoarthritis. Even more interesting results were 
obtained after adding context information. The demo-
graphic data show some relation between comorbidity 
of {F20,M17} and location of thermal springs in Bulgaria 
(Fig.  3). Expected BMI values of these patients are high 
but most of them have normal BMI or a little overweigh. 
Thus, contextualizing the FPM findings, the proposed 
technology supports discovery and exploration of novel 
correlations between phenotypes and comorbidity.

The role of phenotype for comorbidity of various dis-
eases is known. For instance, the most often psychi-
atric disorder—depression—is comorbid with anxiety 
disorders, abuse with psychoactive substances, alcohol 
and drug dependence. High comorbidity is established 
between depression and somatic dysfunctions as well, 
e.g. 22–33% of the patients hospitalised for treatment 
of somatic diseases have depressive disorders too [16]. 
It is accepted that the predisposition to the develop-
ment of certain disease is due to the contribution of 
multiple genes with little effect. The correlation between 

the genetic fingerprint and the environment works in 
both directions: people with genetic predisposition can 
develop certain illness when they live in the respective 
environment; on the other hand the genes can change the 
individual sensitivity to the environmental factors and 
contribute to the development of predisposition [17].

The experiments presented here show that deeper 
understanding of the interrelations between comorbidity, 
phenotypes and environmental factors can be achieved 
by finer tuning of the classical data mining techniques 
in order to discover unknown correlations between data 
items in patient records and contextual information.

Conclusion and future work
This paper presents a novel algorithm MixCO for MFI 
mining. The main advantage of MixCO is that it can 
process efficiently big dense datasets for small relative 
minsup values. This is a bottom-up approach which elim-
inates at the beginning the most critical items that are 
highly possible to be reduced in the MFI. The expected 
application impact of MixCO is significant. The expli-
cation of maximal frequent itemsets enables to build 
hypotheses concerning the causality relationships among 
the exogeneous and endogeneous factors that trigger the 
formation of these sets. Mining of patterns is shown here, 
and mining sequences is the next task in our agenda.

Future work includes also in-depth experiments with 
various OR subsets and evaluation of the effectiveness of 
MixCO.

The diagnoses with several possible ICD-10 codes or 
similar diagnoses are also not interpreted in this model. 
This is an important issue and we plan further investiga-
tion of it in our future work.

Finally we note that the technology can be successfully 
used for explication of risk groups of patients that have 
predisposition to develop socially-significant disorders 
like diabetes. This is possible given the large repository of 

Fig. 3  Map of Bulgaria with comorbidity of {F20, M17} (left) and Thermal springs (right)

Table 5  Some maximal frequent itemsets for  Schizophre-
nia with size = 5

Maximal frequent itemset Support

{E11, F20, I11, I20,M17} 133

{F20, I11, I20, I50,M17} 125

{F20, I11, I20, I69,M17} 108
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patient-related data organised now in a national Diabetes 
Register for Bulgaria.6 In this way advanced DM algo-
rithms like MixCO and their application to repositories 
like the Diabetes Register in Bulgaria will turn static 
archives to powerful alerting and predictive frameworks.
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