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Abstract 

A good sleep is important for a healthy life. Recently, several consumer sleep devices have emerged on the market 
claiming that they can provide personal sleep monitoring; however, many of them require additional hardware or 
there is a lack of scientific evidence regarding their reliability. In this paper we proposed a novel method to assess 
the sleep quality through sound events recorded in the bedroom. We used subjective sleep quality as training label, 
combined several machine learning approaches including kernelized self organizing map, hierarchical clustering 
and hidden Markov model, obtained the models to indicate the sleep pattern of specific quality level. The proposed 
method is different from traditional sleep stage based method, provides a new aspect of sleep monitoring that sound 
events are directly correlated with the sleep of a person.
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Introduction
Sleep is an important physiological state of the human 
body. Almost one third of the time in a person’s life is 
spent sleeping. The quality of sleep is very important to 
a person’s health. Therefore, sleep monitoring technology 
has become an indispensable content in modern personal 
sleep management [7].

In clinical treatment and research, almost all the meth-
ods of sleep quality assessment are based on sleep stages, 
which are normally scored through the polysomnography 
(PSG) recordings. PSG is the primary tool for sleep study 
[9]. PSG monitors body functions through many meth-
ods, including electroencephalography for the brain, 
electrooculography for eye movements, electromyogra-
phy for muscle activity, and electrocardiography for heart 
rhythm, and is mainly used in medical science and treat-
ment by doctors [19, 24]. Due to its professional property 
and financial cost, PSG usage is limited to only clinics. 
Hence, instead of using PSG to score sleep stages, several 

works tried to estimate sleep stages through other device 
recordings, however, the accuracy is not satisfactory [11, 
35], a sleep quality assessment based on unfaithful sleep 
stages estimation is also unreliable. Therefore, recently 
the quality assessment approaches based on sleep stages 
are difficult to find a balance between cost and reliability.

On the other hand, as far as we know, many types of 
sleep disorder are respectively related to a distinctive type 
of sound, such as snoring, teeth grinding, limb move-
ment and sleep talking. Meanwhile, the environmental 
sound inside or outside the bed room will also directly 
impact the sleep. Hence, in this paper we proposed a 
novel method to assess the sleep quality through sound 
events recorded in the bedroom. We combined several 
machine learning approaches including kernelized self-
organizing map (SOM), hierarchical clustering (HC) 
and hidden Markov model (HMM), trained the mod-
els to indicate the sleep pattern of specific quality level. 
The training data was labelled by subjective sleep qual-
ity which obtained by self-rating questionnaire fulfilled 
by experiment subject. The proposed method is differ-
ent from traditional sleep stage based method, provides 
a new aspect of sleep monitoring that sound events were 
directly correlated with one’s sleep.
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The main features of our method are as follows:

Non-invasive The sound data can be recorded by any 
recording device placed near the user’s bed during 
sleep; hence, no burden is added to the user.
No additional cost Any off-the-shelf equipment with a 
microphone, including a smartphone, recording pen, 
or personal computer, can be used as the recording 
device.
Scientifically reliable We collaborated with medi-
cal experts in this study, a questionnaire was designed 
by the experts to evaluate the subjective sleep quality 
of experiment subjects, which made our training data 
with sufficient reliability.

In the previous work [41], we applied various kinds of 
SOM [21] algorithms to the extracted sound clips of 
sleep-related events to obtain cluster maps, and proved 
the reliability and feasibility of kernelized SOM for 
sleep-related sound data analysis. However, one of the 
problems of their method is cluster detection, even they 
could find the best match unit on the cluster map for 
every input data, it is difficult to find out the major clus-
ters on the cluster map without manually annotation of 
the input data, which will cost lots of time. In this paper, 
we applied HC on the cluster map from Kullback–Leibler 
kernel SOM (KL-KSOM) [13], HC is a method that seeks 
to build a hierarchy of clusters, builds nested clusters by 
merging or splitting them successively. We calculated the 
distances between cells on cluster map, and detected the 
hierarchical structure of cells by HC. According to the 
property of SOM, by setting an appropriate metric on 
cells splitting, the cells were divided into several major 
clusters, and each major cluster of the cells mainly indi-
cates a different kind of sleep related events, also every 
input vector can be assigned to a Best Match Unit (BMU, 
the nearest cell to the input vector) on the cluster map. 
Therefore this divided cluster map can be used as a vir-
tual classifier for input sound event. We call this classi-
fier the virtual classifier since it assigns input data into a 
certain cluster. Although we do not know the exact event 
type for each cells cluster, but the output from this virtual 
classifier is necessary and sufficient to form a categorized 
data sequence for the following HMM modelling.

In this study, the data set for experiments was consisted 
of 36 whole night sound recordings with 18 in good qual-
ity and 18 in poor quality, and we classified sound events 
that extracted from these recordings by the aforemen-
tioned virtual classifier. After we got these categorized 
sound events sequences which represents sleep pattern, 
the HMMs of good and poor sleep quality were trained 
respectively. Generally, HMM is used for structured pre-
dictions, for example on sequence data like speech [31], 

protein [38]. Also, there are works for classification with 
HMM [25]. In this study, the HMMs of good and poor 
sleep quality were used to predict the sleep quality. The 
likelihoods between an input sound event sequence and 
HMMs are calculated as input vectors, then several clas-
sification methods are applied, including support vector 
machines (SVM), adaptive Boosting (Adaboost), majority 
decision, etc.

We verified our method by 10-fold cross validation, 
the results revealed this novel approach of sleep quality 
assessment is feasible.

Methodology
Overview
In this section, we introduce the key methodologies 
applied in this study. Our method process includes fol-
lowing steps:

Sound recording Recording sound data by recording 
device, and converting sound format data to text for-
mat data through sound processing software.
Self-rating questionnaire In the morning, each subject 
fulfilled a self-rating questionnaire including questions 
about sleep quality of last night.
Data labelling The sound recordings were labelled by 
good or poor sleep quality based on the answers from 
the questionnaire, which are used only in training 
phase.
Events extraction Sound clips of events were extracted 
from the sound recordings, burst extraction algorithm 
(“Burst extraction algorithm 2.2” section) is applied.
Input data preprocessing Applying FFT to obtain the 
frequency power spectrum of each sound clips as 
input vector.
Clustering Using the frequency power spectrum of 
each data point, which is a vector of discretized fre-
quencies as input vectors, we applied KL-KSOM 
(“Clustering by KL-KSOM” section  2.3) to get the 
cluster map. Then agglomerative HC (“Categorizing by 
HC” section  2.4) was used on the cells of the cluster 
map to reflect hierarchical structure of the map. Two 
steps of KL-KSOM and HC is effective, as KL-KSOM 
firstly captures the manifold of data distribution in 
the high dimensional spectrum feature space, which 
is very complex, and convert into simple two dimen-
sional space which preserves the data distribution as 
much as possible that makes easier to identity a few 
numbers of major clusters (event type) by HC.
Sound events categorizing By selecting an appropriate 
stop-criteria for agglomerative HC through silhouette 
[34], the cells was divided into several major clusters, 
thus we obtained a virtual classifier as aforemen-
tioned. Classification was performed on all extracted 
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sound events, then a sequence with categorized data 
points was obtained for each sound recording.
Modelling by HMM According to the sleep quality 
labels on sound recordings, data sequences obtained 
from last step were divided into good and poor data 
sequence sets. The multinomial HMMs (“Modelling 
by hidden Markov model 2.5” section ) for good or 
poor sleep quality were trained respectively by corre-
sponding data sequence set.
Classification based on HMMs The likelihoods 
between an input sound event sequence and obtained 
HMMs are used as input data for sleep quality level 
classification (“Classification based on HMMs 2.6” 
section)
Evaluation 10-fold cross validation was used to evalu-
ate the accuracy of classification.

Burst extraction algorithm
The first step to be followed after recording the sound is 
to determine the useful events inside an all-night-long 
sound recording. Manually searching the events will 
waste considerable time and is definitely unacceptable. In 
this study, we used the method in [13] to differentiate the 
steady noise from other types of sound events including 
sleep disorder symptoms, such as snoring, teeth grind-
ing, or body movement, and environmental sound, such 
as air-conditioner operation or outdoor traffic. The sound 
events were extracted by the statistical burst extraction 
method [20].

By using Kleinberg’s method, we no longer need to 
consider the size of the sliding window or amplitude 
threshold. Furthermore, by introducing the cost function, 
this method can extract an event that has been broken 
apart due to brief gaps during a single event; threshold 
methods are basically unable to perform this extraction.

Let zt (t = 1, . . . , tend) be the amplitude at time t, and 
sound signals are assumed to be generated from a Gauss-
ian probability density function:

where µ =
∑

t zt/tend is the mean for all sound signals, 
σ0(steady state) is the variance of all sound values, and 
σj = sjσ0( j ≥ 1, burst state). Here, s > 1 is a parameter 
that controls the resolution of bust levels. This model 
assumes that the different burst levels of the sound sig-
nals are generated by the different variances of the Gauss-
ian functions. Let Costj(t) be a necessary cost for zt to be 
state j, then the burst extraction algorithm is as follows:

Step 1 Initialize costs at t = 0 as Costj(0) = 0 (j = 0) 
and Costj(0) = ∞ (j ≥ 1).

(1)
fj(zt) =

1
√
2πσj

exp

{

−
(zt − µ)2

2σ 2
j

}

(j = 0, . . . , L),

Step 2 t → t + 1.
Step 3 Calculate Costj(t) for j = 0, . . . , L by the follow-
ing equation: 

where j is a state at t and l is a state at t − 1. In addi-
tion, τ (l, j) is the transition cost from state l to j given 
by 

 where γ > 0 is a parameter that controls the effect of 
transition cost.

Step 4 Continue Steps 2 and 3 until t = tend.
Step 5 Estimate the optimal state sequence that gives 
the minimum cost using the Viterbi algorithm. The 
Viterbi algorithm traces in the reverse direction from 
the last signal tend, i.e., the Viterbi algorithm starts from 
state∗(tend) = arg min0≤j≤L Costj(tend), and is iterated 
repeatedly until t = 1, choosing a previous optimal 
state as state∗(t − 1), which gives the current optimal 
state state∗(t).

After calculating the optimal burst levels, sound events 
are obtained by extracting areas where the burst level is 
greater than 1 ( j ≥ 1).

Clustering by KL‑KSOM
The SOM [22] is an artificial neural network and origi-
nally a model of associative memory, but has recently 
been widely used for visual data mining, for example, in 
exploratory analysis support of documents [23], for the 
monitoring of machinery [37], and for application to 
medical care or economics. Data distribution in the high 
dimensional feature space can be captured by SOM and 
converted into low dimensional space, which makes it 
easier to identity a few numbers of major clusters among 
the data.

In this study, we used the frequency spectrum as input 
vector. However, the standard SOM uses Euclidean dis-
tance as a similarity measure of data points, so the dis-
tribution structure of a frequency spectrum cannot be 
captured since each discrete point is treated as an inde-
pendent variable. The authors in [13] proposed the use 
of Kullback–Leibler (KL) divergence to introduce a dis-
tribution structure into a similarity measure of frequency 
spectrum of acoustic emission events and obtained a 
good effect. In this study, KL-KSOM was used to cluster 
the sleep-related sound events. Moreover, each spectrum 
data is normalized as 

∑v
k=1 xk = 1 for the requirement of 

the KL kernel.

(2)

Costj(t) = − ln fj(zt)+ min
0≤l≤v

{Costl(t − 1)+ τ (l, j)},

(3)τ (l, j) =
{

(j − l)γ ln tend if j > l
0 otherwise,
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The KL kernel function is defined as:

where KL(xi, xj) is the KL divergence, which is the dis-
tance between probability distributions, JS(xi, xj) denotes 
the Jensen-Shannon divergence, which symmetrizes the 
KL divergence, and β > 0 is a scaling parameter.

The basic concept of the kernel SOM is the same as that 
of the SOM. However, in the kernel SOM, the reference 
vector is updated in an indirect manner because the ref-
erence vector in the mapped space cannot be calculated.

By replacing x in the updating formula of a reference 
vector in the standard batch type SOM by a mapping 
φ(x), the following updating formula can be obtained:

where t is an iteration step, and γ is a regularization term 
γ = 1/

∑n
j hc(xj),i. However, since φ(xn) cannot be calcu-

lated, the ith reference vector is updated using the dis-
similarity to all data points ∀n di,n, as follows:

The following describes the algorithm of the batch type 
KL-SOM:

Step 1 Initialize all dissimilarity between reference vec-
tors and data points ∀i, n di,n randomly and set the iter-
ation step as t = 1.
Step 2 Search the best matching units {c(x1), . . . , c(xN )} 
for all inputs by the nearest neuron: 

Step 3 Exit if the best matching units {c(x1), . . . , c(xN )} 
were not changed or the iteration reached t = tmax.
Step 4 Update the dissimilarity of each reference vec-
tor to all inputs ∀n di,n by Eq. (7).
Step 5 Decrease the neighborhood radius σ and 
increase the iteration counter t → t + 1. Then, return 
to Step 2.

(4)KKL(xi, xj) = exp(−βJS(xi, xj)),

(5)

JS(xi, xj) = KL(xi, xj)+ KL(xj , xi)

=

v
∑

k=1

{

xi,k log
xi,k

xj,k
+ xj,k log

xj,k

xi,k

}

,

(6)mi(t + 1) := γ
∑

n

hc(xn),iφ(xn),

(7)

di,n(t + 1) ≡ ||φ(xn)−mi(t + 1)||2

= K (xn, xn)− 2γ

n
∑

j

hc(xj),iK (xn, xj)

+ γ 2

n
∑

k

n
∑

l

hc(xk ),ihc(xl),iK (xk , xl).

(8)c(xn) = arg min
i=1,...,M

di,n,

Categorizing by HC
HC algorithms organize a data set into a hierarchical 
structure according to a similarity measure. It is based 
on the belief that nearby objects are more related than 
objects that are farther away [33]. HC is applied in this 
study instead of other methods like K-Means because it is 
typically used to obtain major clusters in SOM [40].

HC algorithms connect objects based on their similar-
ity to form clusters, which is usually represented using a 
dendrogram. HC algorithms differ in the choice of simi-
larity measures, the linkage criterion (distance between 
clusters), and whether the process is agglomerative 
(bottom-up) or divisive (top-down). Agglomerative HC 
starts with singleton clusters and then recursively merges 
appropriate clusters, and divisive HC starts with one 
cluster containing all objects and recursively splits appro-
priate clusters [3].

Since the kernel function was introduced into the 
KL-KSOM, the similarity between cells on the cluster 
map is unable to be calculated. In this work, the simi-
larity between cell a and b is calculated by the following 
formula:

where xi(i = 1, . . . , n) is all the input vector train-
ing the KL-KSOM map, γ is a regularization term 
γn = 1/

∑n
j hc(xj),i, and h, K is same as in Eq. (7).

After the similarities between cells in KL-KSOM clus-
ter map were calculated, we applied agglomerative HC 
algorithm with ward criterion. By selecting an appropri-
ate stop-criteria for agglomerative HC through silhouette 
[34], the cells was divided into several major clusters. 
According to the property of SOM, we assumed that each 
major cluster of the cells mainly indicates a different kind 
of sleep related events.

According to SOM algorithm, every input vec-
tor can be assigned to its BMU on the SOM cluster 
map, which is the nearest cell to the input vector. In 
this work, because of the kernelization, instead of tra-
ditional Euclidean distance, besides n input vectors 
xi(i = 1, . . . , n) training the KL-KSOM map, the similar-
ity from a new input vector xn+1 to the cell i on the map 
will be calculated as follow:

(9)

da,b ≡ ||ma −mb||2 = γ 2
a

n
∑

i

n
∑

j

hc(xi),ahc(xj),aK (xi, xj)

− 2γaγb

n
∑

k

n
∑

l

hc(xk ),ahc(xl),bK (xk , xl)

+ γ 2
b

n
∑

u

n
∑

v

hc(xu),bhc(xv),bK (xu, xv),
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where γ is a regularization term γ = 1/
∑n+1

j hc(xj),i, and 
h, K is same as in Eq. (7).

Then, the new input vector can be assigned to the 
major cluster that the BMU belonging to as well, where 
BMU of the new input can be calculated by:

Therefore the virtual classifier for input sound event was 
created. Classification was performed on all extracted 
sound events, then a sequence with categorized data points 
was obtained for each sound recording. Although we do 
not know the exact event type for each cells cluster, but 
the output from this virtual classifier is necessary and suffi-
cient to form a categorized data sequence for the following 
HMM to generate a model to indicate the characteristic of 
sleep, also as known as sleep pattern in this study.

Modelling by hidden Markov model
The HMM is a generative probabilistic model, in which 
a sequence of observable X variable is generated by a 
sequence of internal hidden state Z. The hidden states 
can not be observed directly. The transitions between 
hidden states are assumed to have the form of a (first-
order) Markov chain. They can be specified by the start 
probability vector 5 and a transition probability matrix A. 
The emission probability of an observable can be any dis-
tribution with parameters �i conditioned on the current 
hidden state (e.g. multinomial, Gaussian). The HMM is 
completely determined by 5,A and �i [31].

According to the sleep quality labels on sound record-
ings, data sequences obtained from KL-KSOM and HC 
were divided into good and poor data sequence sets. 
Multinomial HMM was applied on these data sequences 
to study the sleep pattern since it is an appropriate tool 
for sequence data modelling, also the likelihood between 
a model and an observed sequence is a proper metric 
on the similarity comparison of time series data. In this 
study, the likelihood was calculated by the log-likelihood 
function.

In our work, determining the number of hidden states 
of HMM is challenging, theoretically it should refer 
the number of different state of sleep. As we know, 
sleep occurs in cycles [30], proceeds in cycles of rapid 
eye movement (REM) and Non-REM (NREM). The 

(10)

di,n+1 ≡ ||φ(xn+1)−mi||2

= K (xn+1, xn+1)

− 2γ

n+1
∑

j

hc(xj),iK (xn+1, xj)

+ γ 2

n+1
∑

k

n+1
∑

l

hc(xk ),ihc(xl),iK (xk , xl),

(11)c(xn+1) = arg mini=1,...,Mdi,n+1.

American Academy of Sleep Medicine (AASM) divides 
NREM into three stages: N1, N2, and N3 [36]. However, 
the distinctions between these sleep stages are some-
what arbitrary, and the physiological boundaries between 
them are blurred and continuous. Hence, it is difficult to 
determine the exact number of hidden states of HMM. 
In order to improve the accuracy of classification, we 
trained HMMs on different numbers of hidden state, 
including 2, 3, 4 and 5 hidden states. In other words, we 
obtained 4 HMMs for good sleep and other 4 for poor 
sleep, 8 HMMs in total. During the experiment, we found 
out that the best number of hidden states is different 
modelling good or poor sleep quality.

Classification based on HMMs
To classify the sleep quality level of a new obtained sound 
recording, we firstly extract the clips of sleep-related 
sound events, categorize each events and form as a data 
sequence. Then we calculate likelihoods between the data 
sequence and HMMs obtained from previous section. In 
this study, several classification methods are applied:

SVM SVM [10] with two different kinds of input data 
are used in this study: 1. Likelihoods between input 
data sequence and 8 HMMs formed a 8-dimensional 
vector as input; 2. Event counts on three major clusters 
formed a 3-dimensional vector as input. The latter is a 
typical framework in classification. We applied event 
counts vector as input to make a comparison and dem-
onstrate the significance of time sequential property in 
the sleep quality assessment.
Adaptive Boosting (Adaboost) Adaboost [12] applied 
same likelihoods vector input as SVM, with decision 
trees as the weak learners.
Majority decision The easiest way of determine the 
class of a data sequence is comparing its likelihoods 
to two HMMs from different sleep quality level, and 
choosing the greater side. Since it is difficult to deter-
mine the hidden state number of HMMs, we decided 
to make this comparison on 3, 4 and 5 hidden state 
HMMs respectively and choose the final class by 
majority decision. For example, if a data sequence was 
close to poor sleep HMM on 3 hidden state but close 
to good sleep HMMs on 4 and 5 hidden state, it will be 
classified as good.
Likelihood summations We simply sum likelihoods 
from 2, 3, 4 and 5 hidden states HMMs of good or poor 
sleep quality respectively, and choose the greater side.

Experiment
Overview
We first applied the KL-KSOM to the extracted sound 
data, obtained the cluster map as result. Then HC was 
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applied on the cells in the cluster map to get the hier-
archical structure of cells. By selecting an appropriate 
stop-criteria for agglomerative hierarchical clustering 
by silhouette coefficient, the cells was divided into sev-
eral major clusters, and we obtained a virtual classifier as 
aforementioned for sleep sound events. After getting this 
classifier, classification was performed on all extracted 
sound events, then for every night’s sound recording, a 
sequence with categorized data points was obtained.

The data sequences were labelled as good or poor sleep 
according to the subjective sleep quality from question-
naire, trained the HMMs for good or poor sleep quality 
respectively by corresponding data sequences.

In the end, we built several sleep quality classifiers 
based on these HMMs and evaluated the performance 
via 10-fold cross validation.

Experimental setting
The data used in this study were prepared by the Gradu-
ate School of Dentistry of Osaka University. The study 
protocol was approved by the research ethics committee. 
Written informed consent was obtained from all sub-
jects. All subjects were asked to sleep in a specific room 
(Fig. 1) from 22:30 to 6:30. The recording device included 
LA1250 (Ono Sokki)1 and R-4 Pro (Roland).2 A micro-
phone was placed at a distance of 50  cm from the sub-
jects heads. The sound data were recorded on a single 
channel (mono) at a sampling rate of 48 kHz. In addition, 
all subjects were measured by PSG simultaneously.

Subjects were asked to fulfill a self-rating questionnaire 
after waking up during the experiment. The questions 
regarding sleep quality are showed in Table 1. Questions 
1–4 are general sleep quality evaluation criteria, question 
5 is the overall self-rating of sleep quality. Based on the 
statistics on these questionnaires, we found that subjects 
who answered “Very good” or “Good” on question 5 are 
more likely to had a short falling asleep period, few awak-
ing times, long sleep duration and deep sleep depth, and 

1  https://www.onosokki.co.jp/English/hp_e/products/keisoku/s_v/la1200.
html.
2  http://proav.roland.com/products/r-4_pro/.

vice versa, this is consistent with the observation of the 
factors affecting the quality of sleep in medicine [39]. 
Based on this founding, the sound recordings from sub-
ject with answer “Very good” or “Good” for the ques-
tion 5 were regarded as good sleep data, on the contrary, 
recordings with “Poor” or “Very poor” were regarded as 
poor sleep data. Based on this rule, we selected 36 sound 
recordings from 36 different subjects with 18 in good 
quality and 18 in poor quality. The age range of these sub-
jects is 20–29, and gender distribution was balanced.

The sound data is stored and processed on a Linux 
server with two Intel Xeon 12-Core 2.7GHz CPU and 
128GB memory.

Event extraction
Based on the burst extraction method, from 36 record-
ings, we obtained a total of 39,105 sound events, with 
hyper-parameters of L = 6, s = 1.5, and γ = 100. The 
hyper-parameters were tuned manually in a certain range 
to extract as more useful events as possible, and keep the 
extracted useless noise in an acceptable amount. FFT 
was applied to the extracted sound data to obtain the 
frequency power spectrum. From 20 Hz to 20 kHz, at 
intervals of 20 Hz, 1000 discretized points as an input for 
KL-KSOM were obtained for every sound data. Figure 2 

Table 1  Questionnaire for sleep quality

Question Answer options

1 How long it took until falling asleep last night comparing to usual? A Very long B Long C Same D Short E Very short

2 How many times you woke up last night comparing to usual? A Very many B Many C Same D few E Very few

3 The sleep duration of last night comparing to usual. A Very long B Long C Same D Short E Very short

4 How was the sleep depth of last night comparing to usual? A Very deep B Deep C Same D Light E Very light

5 Overall, how was the sleep of last night comparing to usual? A Very good B Good C Same D Poor E Very poor

Fig. 1  Experiment room

https://www.onosokki.co.jp/English/hp%5fe/products/keisoku/s%5fv/la1200.html
https://www.onosokki.co.jp/English/hp%5fe/products/keisoku/s%5fv/la1200.html
http://proav.roland.com/products/r-4%5fpro/
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shows an example of an extracted sound event and its 
preprocessed frequency spectrum.

Sound events categorizing by KL‑KSOM and HC
In the first part of this experiment, 5000 extracted data 
were randomly selected and combined into one dataset for 
KL-KSOM training. The number of cells was set to 10× 10 
with a two-dimensional regular grid. In general, the num-
ber of neurons is not sensitive to these results, in that SOM 
captures the data distribution in the feature space.

After obtained the KL-KSOM cluster map, the simi-
larities between cells on the map were calculated by Eq. 
(9). Then, we applied agglomerative HC algorithm with 
Ward’s criterion, the dendrogram is shown as Fig.  3. 
The stop-criteria for agglomerative HC was determined 
through silhouette, the silhouette coefficient on different 
stop-criteria is showed in Fig. 4. In this experiment, 0.15 
was selected as the stop-criteria, thus cells was divided 
into three clusters as shown in Fig. 5.

We determined BMU for extracted sound events 
through Eq. (11), each sound event was then assigned 
to one of the three clusters. As aforementioned, we 
assumed that each cluster mainly indicates a different 
kind of sleep related events, we checked several specific 
events we observed from sound recordings, and found 
similar events were mainly categorized into same cluster. 
Therefore, all the events with time stamps extracted from 
one same sound recording formed a categorized data 
sequence to indicate that subject’s sleep pattern.

Sleep quality classification by HMM
According to sleep quality level from self-rating ques-
tionnaire, the data sequences obtained from last step 
were divided into good and poor quality sequence sets, 
each containing 18 sequences. We trained multinomial 
HMMs with 2, 3, 4 and 5 hidden states for good or poor 
sleep quality respectively by corresponding sequence 
set, in other words, 4 pairs of HMMs were generated. 
The likelihoods between a new input data sequence and 
HMMs were calculated through the log-likelihood func-
tion. Radial basis function kernel was used in SVM and 

we tuned the hyper-parameter of the kernel through 
nested cross-validation with grid search approach.

To evaluate the classifiers, 10-fold cross validation was 
performed. The results shown in Table  2 revealed this 
novel approach of sleep quality assessment is feasible as 
we achieved 77% accuracy in maximum, and SVM used 
likelihoods vector as input made a significant improve-
ment in accuracy. Also, we checked the accuracy of SVM 
method with 2-dimensional input vector from 2, 3,  4,  5 
and 6 hidden states HMMs respectively, and as shown 
in Table 3, we found out data with good sleep quality got 
best accuracy on 5 hidden states models and poor ones 
on 3 hidden states models. The highest scores are high-
lighted with bold fonts.  According to the experiment 
result, we found that SVM with likelihoods as input per-
formed much better than the one with event counts as 
input, which indicated time sequential property is impor-
tant in quality assessment of sleep.

The matrices of transition probabilities of 3 and 5 hid-
den states HMMs on sound event are shown as Fig.  6a 
and sleep stage as Fig.  6b. Sleep stages were scored by 
medical experts based on PSG data recorded simultane-
ously, and HMMs of sleep stage sequences were trained 
for the comparison to that of sound events. However, 
we found there is no significant difference on sleep stage 
sequence HMMs between good and poor sleep quality 
(Fig.  6b). On the contrary, the HMMs of sound events 
from different sleep quality level have obvious differ-
ence (Fig. 6a). This evidence is interesting that sleep stage 
sequence is useless for assessing sleep quality.

By comparing good and poor models of 5 hidden state 
HMM on sound events (Fig. 6a), the good model is sta-
ble as self-loop probabilities are high. Also some transi-
tions are completely do not appear. These properties 
are reasonable from the aspect of sleep science (e.g., 
N3 → Wake does not happen), this property also appears 
in HMM on sleep stage sequence (Fig.  6b). In contrast, 
transition probabilities in the poor model on sound event 
are varied, which implies poor sleep do not have specific 
sleep pattern related to sounds.

Fig. 2  An example of an extracted sound wave and frequency 
spectrum
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Discussion
The age range of the subjects is not general since all of 
subjects are university students, but with the scope of 
data collection enlarging, this problem will be solved. 
Furthermore, sometimes there is a long time interval 
between two sound events, it usually happened on quiet 
subjects, in the future work, we will try to insert virtual 
events into these intervals, we assume it will make the 
distribution of events on the timeline more balanced and 
the entire sleep process can be reflected more accurately.

Currently we are still focus on single user application, 
for multi-user scenarios, also known as “Cocktail Party 
Problem [17] for sound based method, it can be solved 
by place multiple devices on different place in the room, 
for example: both sides of the bed, and extract different 
sound sources based on aspect and phase difference.

Related work
Regarding sleep quality assessment, Pittsburgh Sleep 
Quality Index (PSQI), a self-report questionnaire, is 
a popular method that assesses sleep quality over a 
1-month time interval [6]. However, the limitation is obvi-
ous, the variation of scores is highly dependent on the 
subject completing them, also as a relatively new measure, 
it has not received enough investigation to determine the 
entirety of the psychometric measures [28].

According to American Academy of Sleep Medicine, 
the sleep stage scoring based on PSG has long been con-
sidered as the “gold standard” of sleep study [4]. The 
result of PSG includes a collection of indices such as sleep 
onset latency, total sleep time and etc., which are consid-
ered together to infer the sleep quality. There have been a 
handful of investigations of the correlation between per-
ceived sleep quality and PSG-based sleep stage [1, 5, 18, 
32]. There are some consensuses from these researches, 
for example: poor sleep quality estimates are associated 
with reduced Stage N1 and more Stages N3. However, 
in these researches, sleep quality was still assessed based 
on sleep stage scoring, the direct correlation between 
physiological signals and sleep quality has not been 
established.
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Fig. 5  Major clusters on KL-KSOM cluster map with frequency spec‑
trum of event examples from each cluster

Table 2  Classification accuracy of different methods

Method Mean accuracy

Total data Good sleep quality data Poor sleep quality data

SVM on likelihood 0.775 0.767 0.783

SVM on event count 0.483 0.531 0.435

Adaboost 0.615 0.583 0.647

Majority decision 0.722 0.757 0.687

Likelihood summations 0.694 0.667 0.722

Table 3  SVM classification accuracy by input data from dif-
ferent hidden states number HMMs

Test data Number of hidden states

2 3 4 5 6

Good quality data 0.572 0.693 0.722 0.757 0.722

Poor quality data 0.667 0.754 0.667 0.652 0.652

Mean 0.619 0.723 0.694 0.704 0.687
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Besides PSG, in the academic field of sleep analysis, 
various studies using other methods trying to simplify 
the operation, such as infrared thermography [14], water 
filled mat [29] and Kinect [27] have been proposed. These 
methods still require additional professional equipment 
to record the sleep data and specialized knowledge to 
use the equipment; the data collection work is limited 
within the scope of medical specialists. Our method, by 
contrast, can be applied through any off-the-shelf sound 
recording device including a smartphone or a personal 
computer, therefore greatly reduces the cost of data col-
lection and making large-scale data collection possible.

Currently, there are many products on the market that 
aim to make sleep assessment portable at a reduced cost. 
ZEO3 is a popular PSG-based home sleep analysis prod-
uct. Besides traditional PSG, actigraphy has also been 
used as an alternative tool; there are many actigraphy-
based products including Beddit4 and Fitbit.5 The accu-
racy of these devices is still controversial, according to 
[26], medical experts do not suggest to use the results 
from these consumer equipment for medical research, 
which means they are not reliable enough; authors in 
[35] made comparisons between PSG scored sleep stages 
and outputs of several consumer sleep devices, which 
showed high degree of inconsistency; similar discussion 
can also be found in [11]. Another problem of these 
products is that they are invasive to users, which means 
that users have to wear an additional device or place a 
device on their bed during sleep. According to a recent 
survey, many people are resistant to wearing a device 
during sleep [8]. Even if users accept to wear the device, 

3  https://en.wikipedia.org/wiki/Zeo,_Inc.
4  http://www.beddit.com/.
5  https://www.fitbit.com/.

it is not easy to properly place the sensors in the correct 
position.

Moreover, additional devices add extra financial bur-
den to the user. The efforts in the market to reduce the 
cost are mostly through mobile apps. Mobile apps use a 
smartphone’s built-in sensors, and hence, users do not 
need to purchase additional hardware. There are some 
academic publications regarding smartphone applica-
tion for sleep analysis. Gu et al. proposed a method for 
scoring sleep quality by a smartphone application 
named Sleep Hunter [15], and Hao et  al. developed an 
application called iSleep [16]. Gu used not only sound 
data but also data from the accelerometer and light sen-
sor, which limited the range of the available equipment. 
Hao used only sound data; however their ground truth 
is another high-quality sound data, which lacks medical 
reliability. Currently, neither Sleep Hunter nor iSleep 
can be found in any application store. Moreover, we 
investigated two popular applications: Sleep as Android6 
and Sleep Cycle alarm clock7; however, no academic 
proof or accuracy evaluation for their outputs exists, 
which is consistent with [2], that the authors mentioned 
very few of the apps are based on published scientific 
evidence.

Conclusion
In this paper we proposed a novel approach to assess the 
sleep quality through sound data. We combined several 
machine learning approaches including kernelized SOM, 
hierarchical clustering and HMM, obtained the models 
to indicate the sleep pattern of specific quality level. The 

6  http://sleep.urbandroid.org/.
7  http://www.sleepcycle.com/.

5 hidden states models 3 hidden states models

Good

Poor

a b

Fig. 6  Transition probability matrices of HMMs. a HMMs trained on sound events. b HMMs trained on sleep stage sequences
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Page 10 of 11Wu et al. Health Inf Sci Syst (2017) 5:11

proposed method is different from traditional sleep stage 
based method, provides a new aspect of sleep quality 
assessment.

According to the experiment, the classifier by HMMs 
obtained a feasible result, which empirically warrants 
our approach on the assessment of personal sleep quality 
by sound data. In the future work, we will try to further 
improve the accuracy of our method and integrate it into 
smartphone application for daily use.
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