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Abstract 

Medical image segmentation is a challenging task due to the high variation in shape, size and position of infections 
or lesions in medical images. It is necessary to construct multi-scale representations to capture image contents from 
different scales. However, it is still challenging for U-Net with a simple skip connection to model the global multi-scale 
context. To overcome it, we proposed a dense skip-connection with cross co-attention in U-Net to solve the semantic 
gaps for an accurate automatic medical image segmentation. We name our method MCA-UNet, which enjoys two 
benefits: (1) it has a strong ability to model the multi-scale features, and (2) it jointly explores the spatial and channel 
attentions. The experimental results on the COVID-19 and IDRiD datasets suggest that our MCA-UNet produces more 
precise segmentation performance for the consolidation, ground-glass opacity (GGO), microaneurysms (MA) and hard 
exudates (EX). The source code of this work will be released via https:// github. com/ McGre gorWw ww/ MCA- UNet/.

Keywords: Medical image segmentation, U-Net, Attention, Multi-scale feature fusion

Introduction
Medical image segmentation [1–5] of target objects pro-
vides valuable information for the analysis of pathologies. 
However, the high variation in shape, size and position of 
infections or lesions is one of the key challenges in medi-
cal image segmentation. As observed in Fig.  1, the size 
and shape with irregular and blurred appearances in CT 
between consolidation and ground-glass opacity (GGO) 
lesions vary significantly. The microaneurysms and hard 
exudates in fundus photography are tiny/small and dis-
persedly distributed, which easily results in the false-neg-
ative detection.

Recently, deep learning has shown its strong power of 
feature learning in image segmentation area. For medical 
image segmentation, U-Net-like encoder-decoder archi-
tectures have shown their power in medical image seg-
mentation applications [6]. Although U-shaped networks 

have achieved good performances in many medical image 
segmentation applications [7–9], they still have several 
key limitations. (1) Insufficient capability of extracting 
context information for reconstructing the fine-grained 
segmentation map. The global context information is 
generally captured by deeper layers of the encoder and 
is gradually transmitted to shallower layers, which may 
be progressively diluted. (2) Although skip connection 
can help recover the spatial information which gets lost 
through the pooling layers, it is unnecessarily restrictive 
due to demanding the feature maps fusion of the encoder 
and decoder of the same level without considering the 
semantic gap [10, 11]. Therefore, it raises an important 
question to the U-Net methods: can we solve the limita-
tion and develop a new framework that can improve over 
the restrictive skip connections in U-Net that requires 
fusion of only same-scale feature maps with simply 
concatenating?

To this end, we propose a U-shaped architecture with 
a more flexible multi-scale cross co-attention skip con-
nection enabling flexible feature fusion in decoders 
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for automatic segmentation. With the proposed dense 
connectivity, each node in a decoder is connected with 
the aggregation of all feature maps from the encoder 
by relaxing the unnecessarily restrictive skip connec-
tions where only the feature maps with the same scale 
are connected. It is different from UNet++ which 
fuses only the encoder features from the deeper layers 
without considering the fusion of the shallower layers 
(please refer to Fig. 2b). On the other hand, we design 
an attention mechanism [12, 13] from both the per-
spectives of channel-wise and spatial-wise to reduce 
the semantic gap between the encoder and decoder, 
termed co-attention mechanism. The co-attention 
mechanism can not only eliminate the semantic gap in 
feature fusion but also highlight salient features that are 
passed through the skip connections. Due to the reuse 

of feature maps, no extra computations and parameters 
are required, compared with UNet++ and MultiResU-
Net which solve the semantic gap by combining a series 
of convolution blocks. To facilitate the learning of the 
multi-scale feature fusion with cross co-attention con-
nections, we employ deep supervision to facilitate the 
feature learning in different stages of the decoder. Our 
experimental results indicate that the deep supervision 
mechanism is effective in improving the segmentation 
performances of U-shaped networks, especially in the 
cases that the target objects have multiple scales. The 
performance of deep supervision highly depends on 
appropriate corresponding task weights. Therefore, 
we regard it as a multi-task learning task and make 
the weights learnable through a balanced multi-task 
dynamic weight (BMTD) optimization algorithm. The 
contribution of this work are three-folds:

• We dissect the skip connections in U-Net and empiri-
cally demonstrate appropriate connections are 
important for segmentation. We propose a multi-
scale cross skip connection to boost semantic seg-
mentation by bridging the semantic gaps between 
low-level and high-level features by an effective fea-
ture fusion scheme. Compared with the plain skip 
connections, the multi-scale cross skip connection 
improve the receptive field of U-Net by jointly con-
sidering the multi-scale features and hence able to 
extract multi-scale features of the target object and 
incorporate larger context.

• While encoders have been studied rigorously, relatively 
few studies focus on the decoder side. The proposed 
bi-decoder module differs from the original decoder 
in three ways: (1) cross co-attention, which bridges 
the semantic gap between encoder and decoder fea-
ture maps by highlighting regions that present a 
significant interest for the diseases. (2) dual upsam-
pling, which improves the upsampling performance 
by exploiting the finer spatial recovery in the decoder. 
(3) deep supervision, which further facilitates the 
multi-scale features fusion with a direct supervision 
for each level. Based on a U-shape network, the pro-
posed decoder module can be easily embedded in 
the frameworks in the medical image segmentation 
tasks.

• The proposed MCA-UNet is evaluated on four lesion 
segmentation tasks of two different datasets with 
difficulties including large variations of shape/size, 
blurred boundaries and small lesions, and it is shown 
that it achieves better performance than the related 
UNet-based architectures.

(a) GGO (b) Consolidation

(c) MA (d) EX

Fig. 1 The major challenges in medical segmentation: the various 
shape and size of COVID-19 lesions in CT images (a, b), and small 
lesion scattered in fundus images (c, d). The right subfigures are the 
segmentation results of the left original images. ‘MA’ denotes microa-
neurysms and ‘EX’ denotes hard exudates
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Fig. 2 The comparison of the different skip connection settings
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Related works
Recently, deep learning has shown their strong power 
of feature learning in image segmentation applications, 
for example, brain lesion segmentation [14], organ seg-
mentation [15], electron microscopy image segmenta-
tion [6]. U-shaped architectures offer the advantages 
in medical image segmentation applications [6]. How-
ever, they still have some limitations such as lack of 
ability of modeling multi-scale global context and the 
semantic gap between the encoder and the decoder. 
To solve the issue, some methods with different skip 
connections for more flexible feature fusion are pro-
posed, as illustrated in Fig. 2. Zhou et al. [10] propose 
a nested U-shaped framework, UNet++, with nested 
dense skip pathways which replace the restrictive skip 
connections fusing only the same-scale feature maps 
in U-Net. Ibtehaz et al. [11] propose MultiResUNet to 
incorporate some residual convolutional layers along 
the skip connections. The study hypothesizes that the 
features propagating from the encoder stage may bal-
ance the possible semantic gaps. Attention-UNet [13] 
is proposed to reduce the semantic gap between the 
encoder and decoder by a spatial attention mechanism. 
The advantage of the methods is that they improve the 
segmentation performance by alleviating the seman-
tic gap and incorporating extra convolution layers or 
attention mechanism. Despite achieving good perfor-
mance, the works above are still incapable of effectively 

exploring sufficient information from full scales due to 
the designs of the skip connections which ignore the 
correlation of multiple scale encoder features.

Methods
The overall framework of MCA‑UNet
Our network consists of three parts: the encoder, the 
Multi-scale Cross Skip Connection and the Bidirectional 
Decoder (Bi-decoder) which consists of Dual Upsam-
pling, Cross Co-Attention (CCA) and Deep Supervi-
sion. We also employ a BMTD algorithm to optimize 
the multi-task loss from the deep supervised decoder 
layers. Figure  3 illustrates the architecture of our pro-
posed MCA-UNet network. To improve the representa-
tion capacity of the segmentation network, we replace 
the original two-layer convolution block with a Residual 
Block [16]. To better fuse features of inconsistent seman-
tics and scales, we propose a cross co-attention guided 
multi-scale fusion scheme, which addresses the issues 
that arise when fusing features given at different scales. 
To effectively fuse the multi-scale features from differ-
ent encoder levels to produce the final segmentation 
mask, we proposed a bi-decoder module which is directly 
enhanced by multi-scale context extracted from the con-
tracting path. The bi-decoder module also involves a 
dual upsampling process that improves the upsampling 
performance and a deep supervision scheme to facilitate 
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Fig. 3 The architecture of the proposed MCA-UNet
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back-propagation and convergence. We provide details 
for each step in the following sections.

Encoder
The encoder of the original U-Net consists of four dou-
bled convolution layers with an activation function, 
which is insufficient for feature extraction and repre-
sentation. Thus, we replace each convolution with a 
Residual Block [16] which has been proven to be useful 
for increasing the ability of learning richer represen-
tations and mitigating the degradation problem. The 
details can be seen in Table. 1.

Multi‑scale cross skip connection
Skip connection was first proposed in U-Net, which 
transmits the low-level information (textures, shapes, 
etc.) in the shallower encoder stages to the correspond-
ing stages of the decoder. However, each stage of the 
decoder can only get feature from one scale through the 
original skip connection, which may harm the decoder 
features due to the semantic gaps and lacks the ability 
of capturing multi-scale context information which has 
been proven essential for lesion segmentation tasks [17, 
18]. To solve these problems, we replace the original 
skip connection scheme with a multi-scale cross skip 
connection scheme. The proposed scheme transmits 
the resized (using up-samples or max-pooling) features 
from all the four encoder stages to each decoder stage, 
then combines them with a Bi-decoder block which will 
be introduced through the next section. The cross skip 
paths between the encoder and the decoder can aggre-
gate features generated by multiple scales thus leads to 
better segmentation prediction.

Bidirectional decoder, Bi‑decoder
The bi-decoder block is designed as a gating opera-
tion of the skip connection based on a learned atten-
tion map given to multiple feature maps from encoder. 
Unlike the traditional decoder, the proposed decoder 
has two inputs and two outputs. Each decoder block 
is connected with all encoder blocks via attentional 
skip connections as in the U-Net architecture. The 
inputs of bi-decoder involves two parts: multi-scale 
features from the encoder, and a complementary dual 
upsampled information from the deeper layers. The bi-
decoder processes the two inputs with two directions 
of horizontal and vertical paths, and then learns a more 
powerful representation and finer recovery by dealing 
with the feature learning in both directions. With the 
different scales inputs, the decoder further encode the 

feature maps as the inputs for extracting global con-
texts with attention mechanism to enhance finer details 
by recovering localized spatial information. The out-
puts are dual upsampled information to the shallower 
layers and the direct segmentation prediction with 
another upsampling to the original resolution.

In summary, we introduce three enhancements to 
the conventional decoder module in our proposed bi-
decoder: (1) Directly concatenating the feature maps 
from the encoder may cause redundancy, hence we pro-
posed a co-correlation with channel- and spatial-wise 
attention module to guide the channel and spatial infor-
mation filtration of the encoder feature maps through 
skip connections, allowing a fine spatial recovery in the 
decoder. (2) Both deconvolution and upsampling were 
added in the splicing process of the high-resolution fea-
tures in the contraction path to leverage the complemen-
tarity between two different upsampling operations. (3) 
Finally, the incorporation of deep supervision can further 
facilitate the multi-scale features fusion.

Dual upsampling
The bi-decoder contains two upsampling components 
of nearest neighbor upsampling and deconvolution to 
recover resolution from the previous layers. We argue 
that the two processions are totally different from each 
other in terms of operation mode and can be comple-
mentary for the following cross correlation. Among the 
existing algorithms, the upsampling or deconvolution 
algorithm is seperately used in the decoder. In our work, 
the upsampling and deconvolution comprises a dual-path 
decoder. The combination of the upsampling and decon-
volution can enhance the performance of the cross co-
attention when the multi-feature encoder and decoder 
are fused.

Cross co‑attention (CCA)
Attention Mechanism for medical image segmentation 
have also been used recently [13, 19, 20], showing great 
potential in improving the segmentation performance. 
In our work, we hypothesize that the information from 
multi-scale encoder blocks are different. We are focusing 
on the cross correlation between the feature maps from 
encoder and decoder rather than a self-attention within 
a single feature map. Hence, to better fuse features of 
inconsistent semantics and scales, we propose a multi-
scale channel-wise and spatial-wise attention module. 
The proposed module is incorporated into the bi-decoder 
to guide the channel and spatial information filtration of 
the encoder features through skip connections and elimi-
nate the ambiguity with the decoder features as signals.
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Specifically, instead of simply aggregating features from 
all levels, we propose to learn the attention in four paral-
lel different level features. Unlike the previously proposed 
attention modules, most of which only explore chan-
nel- or spatial-wise attention, the proposed multi-scale 
cross co-attention module applies attention mechanism 
of channel- and spatial-wise for high-level and low-level 
features to exploit the complementary space and channel 
simultaneously. With the cross co-attention, the decoder 
can learn the importance of each feature channels which 
come from multi-level feature maps, and emphasize a 
meaningful feature selection in the spatial map to locate 
the critical structures.

Motivated by Squeeze-and-Excitation (SE) block, 
we extend the self attention mechanism to a cross co-
attention in the multi-scale feature fusion to model the 
interactions of encoder-decoder with different scales for 
better feature representations. We introduce a cross co-
attention module and the process is shown in Fig.  4. It 
involves channel and spatial attention branches. As illus-
trated in Fig.  4, the two branches are conducted simul-
taneously rather than sequentially, thus better feature 
representations for pixel-level prediction are obtained. 
It takes the concatenated results of two up-sampled fea-
tures X̂U and X̂D as query feature X̂ , and the encoder fea-
tures from different scales as key features Xℓ , ℓ ∈ 1, 2, 3, 4 

indicates the level of encoder which the feature is skip-
connected from. For the ℓ th level encoder, each pair of 
feature maps ( Xℓ , X̂ ) are fed into the CCA module.

Mathematically, we consider the encoder feature 
maps Xℓ = [xℓ

1
, xℓ

2
, . . . , xℓC ] and decoder feature maps 

X̂ = [x̂1, x̂2, . . . , x̂C ] as combinations of channels 
xk ∈ R

H×W  and x̂k ∈ R
H×W  , where W , H and C indi-

cate width, height and channel dimension, respectively. 
Let P̃ℓ ∈ R

C×1×1 and Q̃ℓ ∈ R
1×H×W  are the channel 

and spatial attention mask. A global average pooling 
layer g(xk) = 1

H×W

∑H
i=1

∑W
j=1 xk(i, j) is used for Spa-

tial squeezing. This operation embeds the global spatial 
information in vector Pℓ . This vector is transformed by

where L1 ∈ R

Cx̂
2
×Cx , L2 ∈ R

Cx×
Cx̂
2  and L3 ∈ R

Cx̂×
Cx̂
2  being 

weights of three Linear layers and the ReLU operator δ(·).
This operation in Eq. (2) encodes the channel-wise 

dependencies. The resultant vector is used to recalibrate 
or excite Xℓ as follow:

where the activation σ(Pℓ
i ) indicates the importance of 

the ith channel, which are rescaled.

(1)Pℓ
= L1 · δ(L1 · g(x))+ L2 · δ(L3 · g(x̂))

(2)
P̃ℓ

= Fcatt(X
ℓ)

= [σ(Pℓ
1)x

ℓ
1, σ(P

ℓ
2)x

ℓ
2, . . . , σ(P

ℓ
C)x

ℓ
C ]

Linear Linear

Linear Linear

F (H×W×Cf)
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F (H×W×Cs)F (H×W×Cf)

S (H×W×Cs) S (H×W×Cs)

F (H×W×Cs) F (H×W×1)

F (H×W×Cf)

F (H×W×Cf)

F (H×W×(Cf+Cs))

F (1×1×Cs)F (Cs/2)F (Cs) F (Cs)

Conv 1×1

AveragePool

S (Cs/2)S (Cs) S (Cs)

Channel

Spatial

FU (H×W×C') FD (H×W×C')

Fig. 4 The structure of cross co-attention (CCA) module. The process of attention is similar to the self attention. The cross co-attention mod-
ule takes three inputs, an upsampled tensor X̂U ∈ R

H×W×Ĉ as well as a deconvoluted tensor X̂D ∈ R
H×W×Ĉ as queries, and an encoder tensor 

X
ℓ ∈ R

H×W×C as a key and a value at the same time
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The process of modeling the spatial relation-
ship is similar to the channel attention. We con-
sider it as an alternative slicing of the input feature 
maps Xℓ

= [xℓ
1,1
, xℓ

1,2
, . . . , xℓi,j , . . . , x

ℓ
H ,W ] and 

X̂ = [x̂1,1, x̂1,2, . . . , x̂i,j , . . . , x̂H ,W ] , where xℓi,j and 
x̂i,j ∈ R

1×1×C correspond to the spatial location (i, j) with 
i ∈ 1, 2, . . . ,H and j ∈ 1, 2, . . . ,W  . The spatial squeeze 
operation is achieved through a convolution

where W 1 ∈ R
1×1×Cx̂×1 is the weight of spatial squeeze 

convolution layer, W 2 ∈ R
Cx×Cx̂ and W 3 ∈ R

Cx̂×Cx̂ reduce 
the feature channels of Xℓ and X̂ to the same number Cx̂ . 
Each Qℓ

i,j of the projection represents the linearly com-
bined representation for all channels C for a spatial loca-
tion (i,  j). This projection is passed through a sigmoid 
layer σ(.) to rescale activations to [0, 1].

where each value σ(Qℓ
i,j) corresponds to the relative 

importance of a spatial information (i,  j) of a given fea-
ture map.

After computing the relevance between decoder and 
encoder during the fusion with the channel and spatial 
attention, next, we perform a tensor multiplication 
between the two attention tensor and the original 
encoder features. Third, we use an element-wise sum 
operation between the above tensor and original features 
to obtain the final representations reflecting effective 
fusion with skip connections for better segmentation. At 
last, we aggregate the features from these two attention 
modules, a cleaned up version is indicated as 
X̃ℓ
cs = P̃ℓ ⊗ Xℓ

+ Q̃ℓ ⊗ Xℓ , which is the element-wise 
addition of the channel and spatial excited features, 
where ⊗ is the element-wise multiplication. The final out-
put feature is expressed by concatenating all the features: 
X̃out = Concat

[

X̃cs
1
, X̃cs

2
, X̃cs

3
, X̃cs

4
, X̂U , X̂D

]

.

Deep supervision
To improve the back-propagation and make the decoder 
more stable, we introduce deep supervision [21] to the 
four stages of the decoder. Deep supervision is capable of 
guiding the feature learning of the hidden layers directly 
under the supervision of the loss and labels. We up-
sample the features from the first three hidden stages to 
the size of the last prediction stage and add three more 
losses to supervise them. The final output of the decoder 
is then re-scaled to the original input size. The re-scaled 
output is further fed into a softmax layer to produce the 

(3)Qℓ
= W 1 · δ(W 2X

ℓ
+W 3X̂)

(4)

Q̃ℓ
= Fsatt(X

ℓ)

= [σ(Qℓ
1,1)x

ℓ
1,1, σ(Q

ℓ
1,2)x

ℓ
1,2, . . . , σ(Q

ℓ
i,j)x

ℓ
i,j ,

· · · , σ(Qℓ
H ,W )xℓH ,W ]

class probability distribution. Note that the deep super-
vision does not work in the inference stage, we only use 
the last layer of decoder Side Output 1 for producing the 
segmentation prediction.

Training and inference
For the main idea of enhancing the decoder of U-Net, 
we add horizontal deep supervision in the four decoder 
levels. We choose deconvolution with kernel size 2 × 2, 
4 ×  4 and 8 ×  8 to resize the output of every layer in 
decoder to meet the size of the ground truth. Then we 
compute the losses of those four layers, and use back 
propagation to update the weights of them, so we can 
deploy a direct guidance to the decoder and further 
improve the accuracy of the reconstruction operation.

For each layer, we employ the combined binary cross 
entropy loss and dice loss as our loss function:

where Y  and Ŷ  denote the ground truth labels and pre-
dicted probabilities in the batch, Y n and Ŷ n denote the 
nth pixel of Y  and Ŷ  , N indicates the number of pixels 
within one batch. We empirically set the weights of the 
two terms in Eq. (5) to the same. The overall loss function 
for MCA-UNet is then defined as the weighted summa-
tion of the combined loss from each level of decoder:

where i indexes the level of the decoder and wi is the 
weight of each loss.

The performance of deep supervision highly depends 
on an appropriate choice of weights among the differ-
ent tasks. How to appropriately set the weights of differ-
ent tasks is a key issue in the deep supervision. A naive 
approach is to assign each individual task with an equal 
weight. It is not appropriate because the multiple tasks to 
be optimized have different difficulty levels. In this work, 
we consider the deep supervision as a multi-task learn-
ing formulation and assign different weights for different 
tasks. We propose a dynamic task weighting algorithm, 
named BMTD, which helps the model to automati-
cally achieve balanced training by dynamically tuning 
the weight of each task during the model optimization. 
The weight of each task changes every batch. Hence, we 
measure how well the model is trained by considering the 
loss ratio between the current loss and the initial loss for 
each task. The task which is not trained well has a larger 

(5)

Li(Y , Ŷ ) = Lbce + Ldice

= −
1

N

N
∑

n=1

(

Y n · logŶ n + 2 ·
Y n · Ŷ n

Y n + Ŷ n

)

(6)Lds(Y , Ŷ 1, Ŷ 2, Ŷ 3, Ŷ 4) =

4
∑

i=1

wi · Li(Y , Ŷ i)
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loss ratio. Hence, the harder tasks are optimized with 
more priority than the easier tasks.

Experiment and results

Implementation details
The proposed architecture is listed in Table  1. We used 
Adam as the optimizer and set the learning rate and 
batch size to 5e−3 and 24. To avoid over-fitting, we used 
early stopping and set the patience as 50 epochs. The final 
number of training epochs is about 200. For all the com-
pared methods, we used the same parameter settings.

Data and experimental setting
COVID‑19 lung CT images segmentation
We used the public COVID-19 CT images collected by 
Italian Society of Medical and Interventional Radiology 

(SIRM) dataset1 that contains 100 training and 10 test-
ing images. The ground-truth segmentation was done by 
a trained radiologist. Raw data are public available.2 We 
performed 5-fold cross validation and augmented the 
data by rotating and rescaling. To improve the compu-
tational efficiency of the model, we resized the image to 
256×256 pixels. Three evaluation metrics were adopted, 
including Dice coefficient (Dice), Precision and Recall.

Retinal microaneurysms segmentation
For this task, we used the Indian Diabetic Retinopathy 
Image Dataset (IDRiD) [22], which contains 81 images 
including 54 images for training and 27 images for test-
ing. The ground-truth segmentation has precise pixel 
level annotation of abnormalities associated with DR. 
We chose microaneurysms (MA) and hard exudates (EX) 
as the target lesion in our experiment since both lesions 
are small and dispersedly distributed. We computed the 
area under the precision-recall curve (AUC-PR), the 
area under the receiver operating characteristic curve 
(AUC-ROC) and Dice coefficient (Dice) to quantitatively 
evaluate the segmentation results. We used online data 

Table 1 The architecture of our segmentation network

The input (output) shapes are represented by  (size2 × channel). ‘MP’ denotes the MaxPooling operation, ‘DU’ denotes the proposed dual upsampling module which is 
a concatenated result of deconvolution and upsampling and ‘SOi’ denotes ith Side Output. For simplicity, we omit the upsampling operations in skip connections and 
the detail of CCA module which can be seen in Fig. 4

Stage encoder Input Kernel Output Stage Input Kernel Output
Encoder Decoder

Image – – 6402 × 3 D4 402 × 376 ResBlock × 3 + DU 802 × 128

E1 6402 × 3 ResBlock[16] × 2 6402 × 24 D3 802 × 248 ResBlock × 2 + DU 1602 × 64

E2 6402 × 24 ResBlock × 2 + MP 3202 × 32 D2 1602 × 184 ResBlock × 2 + DU 3202 × 32

E3 3202 × 32 ResBlock × 2 + MP 1602 × 64 D1 3202 × 168 ResBlock × 2 + DU 6402 × 24

E4 1602 × 64 ResBlock × 3 + MP 802 × 128 SO1 6402 × 24 Conv,1 × 1 6402 × 1

E5 802 × 128 ResBlock × 4 + MP 402 × 256 SO2 3202 × 32 Deconv,× 2 6402 × 1

– – – – SO3 1602 × 64 Deconv,4 × 4 6402 × 1

– – – – SO4 802 × 128 Deconv,8 × 8 6402 × 1

Table 2 The results of effectiveness of the proposed components

Best results are boldfaced

Res residual block, DS Deep supervision, MCA Multi-scale cross corelation Attention block, BMTD balanced multi-task dynamic weighting, ‘Prec.’ and ‘Sen.’ Precision and 
Sensitivity

Index Base Res DS MCA BMTD Ground glass(%) Consolidations (%) Average (%)

Dice Prec. Sen. Dice Prec. Sen. Dice Prec. Sen.

1 ✓ 61.15 59.00 68.01 38.69 38.21 46.73 49.92 48.61 57.37

2 ✓ ✓ 62.08 59.94 68.00 38.73 43.11 39.62 50.41 51.52 53.81

3 ✓ ✓ ✓ 62.36 61.49 67.00 40.19 41.53 45.56 51.27 51.51 56.28

4 ✓ ✓ ✓ 62.72 61.46 62.78 41.27 44.07 44.31 52.00 52.77 55.55

5 ✓ ✓ ✓ ✓ 62.92 60.92 68.82 42.28 43.24 47.77 52.60 52.08 58.30

6 ✓ ✓ ✓ ✓ ✓ 63.39 61.24 68.91 43.45 44.91 49.11 53.42 53.07 59.01

1 https:// www. sirm. org/ categ ory/ senza- categ oria/ covid- 19/
2 http:// medic alseg menta tion. com/ covid 19/

https://www.sirm.org/category/senza-categoria/covid-19/
http://medicalsegmentation.com/covid19/
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augmentation including resize, random crop, random 
rotate and CLAHE.

The comparison on COVID‑19 dataset
We carried out experiments on the COVID-19 dataset 
to evaluate the effectiveness of our method. Note that 
the comparable models have the same encoder-decoder 
framework as MCA-UNet, including the number of 
channels, network depth and training strategies. We 
chose U-Net with ResBlock as our backbone segmen-
tation architecture. The average Dice, Precision, and 
Sensitivity of all the methods were listed in Table  2. As 
shown in Table 2, it shows that these enhancements lead 
to notable improvements on the two segmentation tasks. 
Our model yields the overall highest performance, with 
an increase of 3.66% Dice for GGO segmentation and 
12.30% Dice for consolidations segmentation compared 
to the baseline U-Net. Particularly for Consolidation, the 
increase of performance is striking. Compared to U-Net, 
our MCA-UNet improves the performance remark-
ably. Compared with the U-Net with the residual blocks, 
the cross co-attention module brings 3.15% improve-
ment. The attention information from different layers in 
the encoder has complementary features, which obvi-
ously improves the segmentation accuracy. Meanwhile, 
deep supervision module individually outperforms the 
baseline by 1.71%. Therefore, learning the feature rep-
resentation with direct supervision in the deeper layers 
is important. When we integrated the deep supervision 
and MCA together, the performance further improves to 
52.60%, which outperforms the individual component of 
DS and MCA. With the BMTD optimization algorithm, 
improvements of 0.47% and 1.27% are achieved in ground 
glass and consolidations, respectively. These observation 
shows the crucial role of BMTD optimization. Moreover, 
it also indicates that the side outputs cannot be simply 
used with the same weights.

To more comprehensively evaluate our model, we 
chose some typical methods for further comparison. 
For the Covid19 dataset, we compared the proposed 

MCA-UNet to UNet++ (Resblock) [10], MultiResU-
Net [11], and Attention-UNet [13]. All of the networks 
have an encoder-decoder based architecture. We also 
compared to the UNet++ with ResNet-101 as powerful 
encoder.

The experimental results obtained by several state-of-
the-art segmentation networks are reported in Table  3. 
By comparing the results from Table  3, we can observe 
that the segmentation task achieves better performance 
in MCA-UNet. Compared to other networks that were 
proposed in the context of medical image segmentation: 
UNet++ (ResNet-101), MultiResUNet and Attention-
UNet, our network achieves average improvements of 
6.59%, 4.89% and 5.21% (in terms of Dice), 5.40%, 3.33% 
and 6.06% (in terms of Precision) and 5.09%, 4.76% and 
1.88% (in terms of Sensitivity), respectively. Except for 
the sensitivity, our model also obtains improvements of 
4.21% and 6.85% in terms of dice and precision compared 
with UNet++(ResBlock). Based on the above quantita-
tive analysis, we can see that the cross skip connections 
guided by co-attention mechanisms are helpful for the 
refinement and fusion of complementary information 
between multi-scale features. Particularly, the proposed 
multi-scale guided attention network performs bet-
ter results than Attention-UNet, which also integrates 
attention modules. Besides, we visualized the segmenta-
tion results of the comparable models in Fig. 5. The red 
boxes highlight regions where MCA-UNet performs bet-
ter than the other methods by making better use of the 
multi-scale context fusion and attention scheme. It shows 
that our MCA-UNet generates better segmentation 
results, which are more similar to the ground truth than 
the results of the competing models. Through the empiri-
cal results, we summarize the following findings:

1. For the 1st and 2nd cases where the boundaries of 
GGO often have low contrast and blurred appear-
ances, making them difficult to be identified. MCA-
UNet predicts finer boundary information and main-
tain the object coherence, which demonstrates the 

Table 3 Comparison of our method and the state‑of‑the‑art methods on the COVID dataset

Best results are boldfaced

Methods Ground glass (%) Consolidations (%) Average (%)

Dice Prec. Sen. Dice Prec. Sen. Dice Prec. Sen.

UNet(Baseline) 61.15 59.00 68.01 38.69 38.21 46.73 49.92 48.61 57.37

UNet++(Backbone:ResNet-101) 61.50 60.32 66.46 39.20 40.14 45.83 50.35 50.23 56.15

UNet++(ResBlock) 62.07 57.86 71.56 40.94 41.48 47.39 51.50 49.67 59.48
MultiResUNet 61.46 59.94 66.99 40.88 42.78 45.66 51.17 51.36 56.33

Attention-UNet 62.18 60.90 68.25 39.84 39.17 47.59 51.01 50.04 57.92

MCA-UNet 63.39 61.24 68.91 43.95 44.91 49.11 53.67 53.07 59.01
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effectiveness of modeling global context representa-
tions. It indicates that the multi-scale fusion help to 
discover more complete and accurate areas of classes 
of interest with low contrast.

2. 2. Consolidations vary significantly in size and shape 
and have irregular and ambiguous boundaries. For the 
3rd and 4th cases, the consolidations have a narrow 
shape. It can be seen that the predictions of MCA-
UNet captures the boundary well. It is obvious that 
MCA-UNet keeps more details due to its multi-scale 
features from different encoder levels. For the 5th case 
where the lesions contain irregular boundaries, the 
segmentation results generated by our method are 
closer to the ground truths. Moreover, it also intro-

duces fewer mislabeled pixels, which leads to better 
performance than other methods. These visual results 
indicate that our approach can successfully recover 
finer segmentation details while avoiding getting dis-
tracted in ambiguous regions. Nevertheless, the other 
networks produce smoother segmentations, result-
ing in a loss of fine grained details. As UNet++ and 
UNet++(ResBlock) also employed a multi-scale 
architecture, these differences suggest that the higher 
scale incorporation and effective cross co-attention 
can actually improve the performance of segmenta-
tion networks. It can be seen that both methods tend 
to have over-segmentation problems, which may be 
caused by the lack of higher resolution features.

(a) Original (b) GT (c) MCA-UNet (d) UNet++101 (e) UNet++RB (f) Att-UNet (g) MRUNet
Fig. 5 The qualitative comparison of the segmentation results on COVID-19 dataset produced by the comparable models and the proposed MCA-
UNet. The red boxes indicate the regions where our method exhibits better segmentation performance than the others
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In summary, the previous approaches suffer from two 
main limitations in the segmentation of COVID-19: 
large variations of consolidation and blurred boundary 
of GGO. For large variations of consolidation in CT lead 
to inaccurate prediction for the baseline and the com-
parable methods due to the insufficient multi-scale fea-
ture which fails to deal with such variations. The blurred 
boundary of GGO leads to inaccurate prediction due to 
the lack of the high spatial information which is lost or 
distorted in the pooling and upsampling. Both the quan-
titative evaluation in Table 3 and qualitative comparison 
in Fig. 5 demonstrate the effectiveness of the proposed 
MCA-UNet for COVID19 segmentation.

The comparison on IDRiD dataset
For the IDRiD dataset, we compared MCA-UNet with 
SESV-DLab [26], SSCL [24], DRU-Net [23], and three 
top-ranking methods on the IDRiD challenge leaderboard 
[22]. DRU-UNet (Deep Recurrent U-Net) is a model 
which combines the deep residual model and recurrent 

convolutional operations into U-Net. SSCL is an advanced 
semi-supervised collaborative learning (SSCL) model. 
DeepLabv3+ is an extension of DeepLabv3, which intro-
duces a decoder module to better recover the spatial reso-
lutions and further refine the final segmentation masks. 
Different from the common methods for constructing 
a more accurate segmentation model, the aim of SESV-
DLab is to predict the segmentation errors produced by 
an existing model and then correct them.

The performance of these methods is shown in Tables 4 
and 5. The results show that our model achieves the high-
est AUC-PR and AUC-ROC, especially for the segmenta-
tion of MA in Table 4, our model beats the top-3 ranking 
methods by 3.77%, 5.15% and 9.83% in terms of AUC-PR, 
setting the new state of the art. It demonstrates again that 
our model is able to produce precise and reliable results 
for medical image segmentation.

Most of the existing U-shaped methods perform well 
on the large object segmentation, but fail to the detec-
tion of the small objects, which are particularly preva-
lent in the eye diseases. Due to the downsampling and 
upsampling operations in U-Net, the feature maps in 
hidden layers are sparser than the original inputs, which 
causes a loss of image details and results in the compa-
rable segmentation models yield inferior segmentation 
performance for the small lesions. Figure 6 shows some 
representative results and the comparable methods to 
exhibit the superiority of the proposed method on the 
segmentation of MA and EX. As illustrated in Fig.  6, 
from the top three examples, we can find that the com-
parable segmentation methods are limited in small lesion 
segmentation and produce amounts of false positives. 
From the bottom three examples, it can be observed that 
both UNet++(ResNet-101) and UNet++(ResBlock) 
have over-segmentation problems. On the contrary, 
the boundary of the EX is under-segmented by both 
Attention-UNet and MultiResUNet. All the comparable 
segmentation models are not capable of precise segmen-
tation of the small lesions. In the medical image domain, 
the multi-scale information is required to be learned by 
the segmentation models which then facilitates the target 
segmentation. It shows that MCA-UNet can significantly 
reduce the false positives and correct some inaccurately 
segmented regions by the previous algorithms.

Discussion
Discussion on the number of dense skip connections
Multi-scale dense connection and cross co-attention 
(CCA) are two vital modules in our segmentation model 
to achieve better segmentation performances. To fur-
ther investigate the relative contribution of each com-
ponent, we conduct a series of experiments on the EX 
segmentation, to investigate the individual contribution 

Table 4 The comparison with the state-of-the-art MA seg-
mentation methods on the IDRiD dataset

Best results are boldfaced

Methods AUC‑PR (%) AUC‑ROC (%) Dice (%)

iFLYTEK-MIG (Rank #1) 50.17 N/A N/A

VRT (Rank #2) 49.51 N/A N/A

PATech (Rank #3) 47.40 N/A N/A

DRU-Net [23] N/A 98.20 N/A

SSCL [24] 49.60 98.28 N/A

DeepLabv3+ [25] 48.65 98.91 N/A

SESV-Dlab [26] 50.99 99.13 N/A

U-Net [6](Baseline) 45.04 94.46 16.24

Attention-UNet [13] 49.01 98.89 25.49

MultiResUNet [11] 49.13 99.19 25.51

UNet++ [10](ResNet-101) 46.92 98.01 32.03

UNet++(ResBlock) 49.32 99.27 19.45

MCA-UNet 52.06 99.12 38.50

Table 5 The comparison with the state-of-the-art EX seg-
mentation methods on the IDRiD dataset

Best results are boldfaced

Methods AUC‑PR (%) AUC‑ROC (%) Dice (%)

U-Net(Baseline) 75.52 99.34 60.46

Attention-UNet 75.33 99.16 62.18

MultiResUNet 70.76 98.60 62.03

UNet++(ResNet-101) 74.95 99.32 61.91

UNet++(ResBlock) 72.82 96.41 50.54

MCA-UNet 79.45 99.53 65.91
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by varying the number of skip connections, skip connec-
tion schemes, and positions of skip connections. By vary-
ing the number of skip connections in the bi-decoder, we 
explored the influence of different skip connections on 
the EX segmentation performance. Moreover, to evaluate 
the segmentation performance of the CCA, we replace 
CCA in all the bi-decoders with a simple concatenation 
fusion used in the U-Net. The illustration of the com-
peting models can be referred to Fig. 7. ‘w/o up’ or ‘w/o 

down’ means that the up-sampling or down-sampling 
operation in the skip connection is removed.

As shown in Table 6, our proposed CCA is able to con-
sistently achieve better performance compared with the 
simple concatenation fusion, which demonstrates its 
robustness and high flexibility for integrating informa-
tion from the earlier feature maps. Moreover, it can be 
seen from Table  6 that the segmentation performance 
of the model improves with the increase of the number 
of skip connections. For the comparison between mod-
els with up-sampled connection remained and ones with 
up-sampled connection removed, the former is worse 
when the connection number is the same. For example, 
MCA-UNet-2 (w/o up) achieves an improvement by 
1.05% compared with MCA-UNet-2(w/o down). which 
indicates that the higher resolution is important for the 
fine spatial recovery, whereas the connections from the 
encoders with lower resolution is not helpful for the 
decoders. Our findings show that the spatial information 
is more critical for the segmentation of the multi-scale 
lesion objects, especially for the small lesions. MCA-
UNet-2 (w/o down) performs the worst, even worse than 
MCA-UNet-1. The skip connection scheme in MCA-
UNet-2 (w/o down) is similar as the UNet++ where the 
decoders are connected with the lower resolution feature 

(a) Original (b) GT (c) MCA-UNet (d) UNet++101 (e) UNet++RB (f) Att-UNet (g) MRUNet
Fig. 6 The qualitative comparison of the segmentation results on IDRiD dataset produced by the comparable models and the proposed MCA-UNet

(a) MCA-UNet-4 (b) MCA-UNet-4 w/o up (c) MCA-UNet-3 (d) MCA-UNet-3 w/o up

(e) MCA-UNet-2 w/o up (f) MCA-UNet-2 w/o down (g) MCA-UNet-1

Fig. 7 Comparison among the MCA-UNets with different number of 
the skip connections
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maps of encoders. Another interesting finding is that 
MCA-UNet-4 without CCA achieved a relatively poor 
performance compared to MCA-UNet-1 with CCA in 
terms of AUPR. The results once again validate that sim-
ply connecting the feature maps with same level from the 
encoder and the decoder is not an optimal solution.

Discussion on different attention mechanisms
Based on the skip connections for information fusion, 
we systematically conduct the experiment of different 

attention mechanisms. The result is shown in Table 7. We 
conduct a series of comparison including the spatial- and 
channel-wise CCA vs. the spatial-wise CCA, the self-
attention (SA) of encoder or decoder vs. CCA and the 
sequential CCA vs. the concurrent CCA. The traditional 
self-attention mechanism is to capture the dependen-
cies within the same feature map from the spatial- and 
channel-wise perspective. Our CCA is to capture the 
correlation between two feature maps from the encoder 
and decoder. It is apparent to see that, the proposed con-
current CCA method obtain improvements upon the 
traditional self attention methods in terms of Dice and 
precision. The channel maps help capture the context 
information for the feature fusion. When we integrate 
the spatial- and channel-wise together, the performance 
further improves to 62.48% with respect to Dice. Further-
more, when we compare the sequential and concurrent 
fashion for the encoder-decoder cross co-attention, the 
concurrent fashion improves the segmentation perfor-
mance over the sequential model by 0.35% in terms of 
Dice.

Table 6 Different mappings from encoder to decoder

Best results are boldfaced

Models with different Layer nums Attention w/o Attention

AUPR (%) AUC (%) AUPR (%) AUC (%)

MCA-UNet-4 79.45 99.53 77.14 99.27

MCA-UNet-4(w/o up) 78.37 99.09 77.05 99.15

MCA-UNet-3 77.25 98.81 77.09 97.20

MCA-UNet-3(w/o up) 77.35 99.09 76.25 99.27

MCA-UNet-2(w/o up) 77.21 99.06 77.25 98.39

MCA-UNet-2(w/o down) 76.41 98.53 75.41 98.98

MCA-UNet-1 77.78 99.15 77.56 99.31

Table 7 The study on different fusion and attention mech-
anism

Best results are boldfaced

S spatial-wise, C channel-wise, SA self-attention

Index Attention structure Ground glass (%)

Dice Prec. Sen.

1 S (SA in encoder) 61.59 60.71 66.56

2 S+C (SA in encoder) 62.48 58.29 72.50
3 S+C (SA in encoder and decoder) 60.93 59.99 66.94

4 S+C (sequential en-de CCA) 62.54 59.43 69.42

5 S+C (concurrent en-de CCA) 62.76 60.93 66.98

Table 8 The performance of the proposed connections with different positions and side outputs

Best results are boldfaced

Positions of encoder and decoder AUPR (%) AUC (%) Side outputs for prediction AUPR (%) AUC (%)

(E1, E2, E3, E4) → (D1,D2,D3,D4) 79.45  99.53 D1 79.45 99.53
E1 → (D1,D2,D3,D4) 77.67 98.35 D2 78.82 99.26

E2 → (D1,D2,D3,D4) 76.56 98.65 D3 78.53 99.33

E3 → (D1,D2,D3,D4) 75.06 99.17 D4 73.46 99.48

E4 → (D1,D2,D3,D4) 72.53 99.06 D1 + D2 79.59 99.28

(E1, E2, E3, E4) → D1 75.66 99.29 D1 + D2 + D3 78.46 99.50

(E1, E2, E3, E4) → D2 76.50 99.15 D1 + D2 + D3 + D4 78.78 99.37

(E1, E2, E3, E4) → D3 75.86 98.13 – – –

(E1, E2, E3, E4) → D4 72.90 99.26 – – –
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Discussion on positions of the proposed dense skip 
connections
We performed a series of experiments with respect to 
the positions of the proposed skip connection in Table 8. 
Figure  8 shows the illustration of the settings. Let 
Ei → Dj , where i, j = 1, . . . , 4 , indicates how the encoder 
features are connected to the decoders. For example, 
E1 → (D1,D2,D3,D4) indicates that E1 encoder is con-
nected to the decoders of D1,D2,D3 and D4 . Although 
the proposed CCA module contributes to the perfor-
mance improvement as shown in the previous results, it 
is interesting to investigate 1) which level of encoder is 
more important for the decoders; and 2) which layer of 
decoder is more beneficial for the same combination of 
multi-scale encoder features. Obviously, MCA-UNet 
with multiple dense connection leads to improved per-
formance than the other models with the certain connec-
tions removed. It can be seen that E1 → (D1,D2,D3,D4) 
obtains the best performance in terms of AUPR, which 
indicates that the low-level features with higher resolu-
tion is important. The E1 → (D1,D2,D3,D4) can take full 
advantage of the rich spatial information, which can help 
refine the predicted boundary for the lesions with com-
plex structure. On the contrary, E4 → (D1,D2,D3,D4) 
shows the worst performance. The reason may be that 
the spatial information is lost in the contracting path 
and semantic gap is too large, resulting in poor fusion 
performance.

Deep supervision
To test the effectiveness of the deep supervision scheme, 
we show the performance of each individual side out-
put. From the Table  8, we observe small difference for 
the multiple predictions of side outputs except D4 . Fur-
thermore, we find the performance of D1 are slightly 
better than D2 and D3 . We also try to employ an ensem-
ble-based methods, where the multiple side outputs are 

combined to make a final prediction. We find the ensem-
ble of D1 +D2 achieves a slightly better performance 
than the individual performance.

Conclusion
In this work, we introduced a multi-scale Cross Co-
Attentional Skip Connection U-Net architecture for 
the medical image segmentation. Our MCA-UNet uti-
lized the multi-scale feature fusion strategy to combine 
semantic information at different levels and the cross 
co-attention module to aggregate relevant global depend-
encies. To validate our approach, we conducted experi-
ments on three different segmentation tasks on the two 
different medical image datasets: consolidation, GGO, 
Microaneurysms and Hard Exudates, indicating that it 
can be broadly applied to the other medical images seg-
mentation tasks. We provided extensive experiments to 
evaluate the impact of the individual components of the 
proposed architecture. Moreover, we will extend our 2D 
model to a 3D version for capturing the inter-slice conti-
nuity of the lesion in the future work.
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