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Abstract
A structure-preserving implicit Euler finite-element scheme for a degenerate cross-diffusion
system for ion transport is analyzed. The scheme preserves the nonnegativity and upper
bounds of the ion concentrations, the total relative mass, and it dissipates the entropy (or free
energy). The existence of discrete solutions to the scheme and their convergence towards
a solution to the continuous system are proved. Numerical simulations of two-dimensional
ion channels using the finite-element scheme with linear elements and an alternative finite-
volume scheme are presented. The advantages and drawbacks of both schemes are discussed
in detail.

Keywords Ion transport · Finite-element method · Entropy method · Existence of discrete
solutions · Convergence of the scheme · Calcium-selective ion channel · Bipolar ion channel

Mathematics Subject Classification 65M08 · 65L60 · 65M12 · 35K51 · 35K65 · 35Q92

1 Introduction

Ion channels are pore-forming proteins that create a pathway for charged ions to pass through
the cell membrane. They are of great biological importance since they contribute to processes
in the nervous system, the coordination of muscle contraction, and the regulation of secretion
of hormones, for instance. Ion-channel models range from simple systems of differential
equations (Hodgkin and Huxley 1952) as well as Brownian and Langevin dynamics (Im
et al. 2000; Nadler et al. 2005) to the widely used Poisson–Nernst–Planck model (Eisenberg
1998). The latter model fails in narrow channels since it neglects the finite size of the ions.
Finite-size interactions can be approximately captured by adding suitable chemical potential

Communicated by Jorge X. Velasco.

B Ansgar Jüngel
juengel@tuwien.ac.at

Anita Gerstenmayer
anita.gerstenmayer@tuwien.ac.at

1 Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner
Hauptstrasse 8–10, 1040 Wien, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-019-0882-9&domain=pdf
http://orcid.org/0000-0003-0633-8929


108 Page 2 of 23 A. Gerstenmayer, A. Jüngel

terms (Gillespie et al. 2005; Nonner et al. 2000), for instance. In this paper, we follow another
approach. Starting from a random walk on a lattice, one can derive in the diffusion limit an
extended Poisson–Nernst–Planck model, taking into account that ion concentrations might
saturate in the narrow channel. This leads to the appearance of cross-diffusion terms in the
evolution equations for the ion concentrations (Burger et al. 2010; Simpson et al. 2009). These
nonlinear cross-diffusion terms are common in diffusive multicomponent systems (Jüngel
2016, Chapter 4). A lattice-free approach, starting from stochastic Langevin equations, can
be found in Bruna and Chapman (2014). The scope of this paper is to present a new finite-
element discretization of the degenerate cross-diffusion system and to compare this scheme
to a previously proposed finite-volume method (Cancès et al. 2019).

The dynamics of the ion concentrations u = (u1, . . . , un) is governed by the evolution
equations

∂t ui + divFi = 0, Fi = −Di
(
u0∇ui − ui∇u0 + u0uiβzi∇�

)
in �, t > 0, (1)

where u0 = 1−∑n
i=1 ui denotes the solvent concentration, Di > 0 is the diffusion constant,

zi the ion charge, and β a mobility parameter. To be precise, ui is the mass fraction of the
i th ion, and we refer to

∑n
i=0 ui = 1 as the total relative mass, just meaning that the ion-

solvent mixture is saturated. The electric potential� is self-consistently given by the Poisson
equation

− λ2�� =
n∑

i=1

zi ui + f in �, (2)

with the permanent charge density f = f (x) and the scaled permittivity constant λ2. The
equations are solved in a bounded domain � ⊂ R

d with smooth boundary ∂�. Equations
(1) are equipped with initial data u(0) = uI satisfying 0 <

∑n
i=1 u

I
i < 1. The boundary ∂�

consists of an insulating part �N and the union �D of contacts with external reservoirs:

Fi · ν = 0 on �N, ui = ui on �D, i = 1, . . . , n, (3)

∇� · ν = 0 on �N, � = � on �D. (4)

System (1)–(2) can be interpreted as a generalized Poisson–Nernst–Planck model. The
usual Poisson–Nernst–Planck equations (Eisenberg 1998) follow from (1) by setting u0 =
const. In the literature, there are several generalized versions of the standard model. For
instance, adding a term involving the relative velocity differences in the entropy production
leads to cross-diffusion expressions different from (1) (Hsieh et al. 2015). This model, how-
ever, does not take into account effects from the finite ion size. Thermodynamically consistent
Nernst–Planck models with cross-diffusion terms were suggested in Dreyer et al. (2013), but
the coefficients differ from (1). The model at hand was derived in Burger et al. (2010) and
Simpson et al. (2009) from a lattice model taking into account finite-size effects.

Model (1)–(4) contains some mathematical difficulties. First, its diffusion matrix A(u) =
(Ai j (u)) ∈ R

n×n , given by Ai j (u) = Diui for i �= j and Aii (u) = Di (u0 + ui ) for
i = 1, . . . , n is generally neither symmetric nor positive definite. Second, it degenerates in
regions where the concentrations vanish. Third, the standard maximum principle cannot be
applied to achieve 0 ≤ ui ≤ 1 for i = 1, . . . , n. In the following, we explain how these
issues can be solved.
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The first difficulty can be overcome by introducing so-called entropy variableswi defined
from the entropy (or, more precisely, free energy) of the system,

H(u) =
∫

�

h(u)dx, where h(u) =
n∑

i=0

∫ ui

ui
log

s

ui
ds + βλ2

2
|∇(� − �)|2. (5)

Indeed, writing Eq. (1) in terms of the entropy variables w1, . . . , wn , given by

∂h

∂ui
= wi − wi , where

wi = log
ui
u0

+ βzi�, wi = log
ui
u0

+ βzi�, i = 1, . . . , n, (6)

it follows that

∂t ui (w,�) = div

( n∑

j=1

Bi j (w,�)∇w j

)
, (7)

where the new diffusion matrix B = (Bi j (w,�)) ∈ R
n×n with

Bi j (w,�) = Diu0(w,�)ui (w,�)δi j , i, j = 1, . . . , n,

is symmetric and positive semidefinite (in fact, it is even diagonal). This procedure has a
thermodynamical background: the quantities ∂h/∂ui are known as the chemical potentials,
and B is the so-called mobility or Onsager matrix [de Groot and Mazur (1984)].

The transformation to entropy variables also solves the third difficulty. Solving the trans-
formed system (7) for w = (w1, . . . , wn), the concentrations are given by

ui (w,�) = exp(wi − βzi�)

1 + ∑n
j=1 exp(w j − βz j�)

, i = 1, . . . , n, (8)

showing that ui is positive and bounded from above:

u(w,�) ∈ D :=
{
u ∈ (0, 1)n :

n∑

i=1

ui < 1

}
. (9)

Moreover, the entropy structure leads to gradient estimates via the entropy inequality

dH

dt
+ 1

2

∫

�

n∑

i=1

Diu0ui |∇wi |2dx ≤ C,

where the constant C > 0 depends on the Dirichlet boundary data.
Still, we have to deal with the second difficulty, the degeneracy. It is reflected in the

entropy inequality since we lose the gradient estimate if ui = 0 or u0 = 0. This problem
is overcome using the “degenerate” Aubin–Lions lemma of Jüngel 2015, Appendix C or its
discrete version in Cancès et al. 2019, Lemma 10.

These ideas were employed in Burger et al. (2010) for n = 2 ion species and without
electric potential to show the global existence of weak solutions. The existence result was
extended to an arbitrary number of species in Jüngel (2015), Zamponi and Jüngel (2017), still
excluding the potential. A global existence result for the full problem (1)–(4) was established
in Gerstenmayer and Jüngel (2018).

We are interested in devising a numerical scheme which preserves the structure of the
continuous system, like nonnegativity, upper bounds, and the entropy structure, on the discrete
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level. A first result in this direction was presented in Cancès et al. (2019), analyzing a finite-
volume scheme preserving the aforementioned properties. However, the scheme preserves
the nonnegativity and upper bounds only if the diffusion coefficients Di are all equal, and the
discrete entropy is dissipated only if additionally the potential term vanishes. In this paper,
we propose a finite-element scheme for which the structure preservation holds under natural
conditions.

Before we proceed, we briefly discuss some related literature. While there are many
results for the classical Poisson–Nernst–Planck system, see for example Lu et al. (2010),
Prohl and Schmuck (2009), there seems to be no numerical analysis of the ion-transport
model (1)–(4) apart from the finite-volume scheme in Cancès et al. (2019) and simulations
of the stationary equations in Burger et al. (2012). Let us mention some other works on
finite-element methods for related cross-diffusion models. In Barrett and Blowey (2004), a
convergent finite-element scheme for a cross-diffusion population model was presented. The
approximation is not based on entropy variables, but a regularization of the entropy itself that
is used to define a regularized system. The same technique was also employed in Galiano
and Selgas (2014). A lumped finite-element method was analyzed in Frittelli et al. (2017)
for a reaction-cross-diffusion equation on a stationary surface with positive definite diffusion
matrix. In Jüngel and Leingang (2018), an implicit Euler Galerkin approximation in entropy
variables for a Poisson–Maxwell–Stefan systemwas shown to converge. Recently, an abstract
framework for the numerical approximation of evolution problemswith entropy structurewas
presented in Egger (2018). The discretization is based on a discontinuous Galerkin method
in time and a Galerkin approximation in space. When applied to cross-diffusion systems,
this approach also leads to an approximation in entropy variables that preserves the entropy
dissipation. However, neither the existence of discrete solutions nor the convergence of the
scheme are discussed.

Our main results are as follows:

• We propose an implicit Euler finite-element scheme for (1)–(4) in entropy variables
with linear finite elements (Sect. 2). The scheme preserves the nonnegativity of the
concentrations and the upper bounds, the total relative mass, and it dissipates the discrete
entropy associated to (5) if the boundary data are in thermal equilibrium; see theRemark1.

• We prove the existence of discrete solutions (Lemma 1) and their convergence to the
solution to (1)–(4) when the approximation parameters tend to zero (Theorem 3). The
convergence rate can be only computed numerically and is approximately of second order
(with respect to the L2 norm).

• The finite-element scheme and the finite-volume scheme of Cancès et al. (2019) (recalled
in Sect. 3) are applied to two test cases in two space dimensions: a calcium-selective
ion channel and a bipolar ion channel (Sect. 4). Static current–voltage curves show the
rectifying behavior of the bipolar ion channel.

• The advantages anddrawbacks of both schemes are discussed (Sect. 5). Thefinite-element
scheme allows for structure-preserving properties under natural assumptions, while the
finite-volume scheme can be analyzed only under restrictive conditions. On the other
hand, the finite-volume scheme allows for vanishing initial concentrations and faster
algorithms compared to the finite-element scheme due to the highly nonlinear structure
of the latter formulation.
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2 The finite-element scheme

2.1 Notation and assumptions

Beforewedefine the finite-element discretization,we introduce our notation andmake precise
the conditions assumed throughout this section. We assume:

(H1) Domain: � ⊂ R
d (d = 2 or d = 3) is an open, bounded, polygonal domain with

∂� = �D ∪ �N ∈ C0,1, �D ∩ �N = ∅, �N is open in ∂�, and meas(�D) > 0.
(H2) Parameters: T > 0, Di > 0, β > 0, and zi ∈ R, i = 1, . . . , n.
(H3) Background charge: f ∈ L∞(�).
(H4) Initial and boundary data: uI

i ∈ H2(�) and ui ∈ H2(�) satisfy uI
i > 0, ui > 0 for

i = 1, . . . , n, 1 − ∑n
i=1 u

I
i > 0, 1 − ∑n

i=1 ui > 0 in �, and � ∈ H2(�) ∩ L∞(�).

The H2 regularity of the initial and boundary data ensures that the standard interpolation
converges to the given data, see (10) below.

We consider equations (1) on a finite time interval (0, T ) with T > 0. For simplicity, we
use a uniform time discretization with time step τ > 0 and set tk = kτ for k = 1, . . . , N ,
where N ∈ N is given and τ = T /N .

For the space discretization, we introduce a family Th (h > 0) of triangulations of �,
consisting of open polygonal convex subsets of� (the so-called cells) such that� = ∪K∈Th K
with maximal diameter h = maxK∈Th diam(K ). We assume that the corresponding family
of edges E can be split into internal and external edges, E = Eint ∪ Eext with Eint = {σ ∈
E : σ ⊂ �} and Eext = {σ ∈ E : σ ⊂ ∂�}. Each exterior edge is assumed to be an element
of either the Dirichlet or Neumann boundary, i.e., Eext = ED

ext ∪ EN
ext. For given K ∈ Th , we

define the set EK of the edges of K , which is the union of internal edges and edges on the
Dirichlet or Neumann boundary, and we set EK ,int = EK ∩ Eint .

In thefinite-element setting, the triangulation is completed by the set of nodes {p j : j ∈ J }.
We impose the following regularity assumption on the mesh. There exists a constant γ ≥ 1
such that

ρK ≤ hK ≤ γρK for all K ∈ Th,

where ρK is the radius of the incircle and hK is the diameter of K .
We associate with Th the usual conforming finite-element spaces

S(Th) := {ξ ∈ C0(�) : ξ |K is linear for all K ∈ Th} ⊂ H1(�),

SD(Th) := S(Th) ∩ H1
D(�),

and H1
D(�) is the set of H1(�) functions that vanish on�D in the weak sense. Let {χ j } j∈J be

the standard basis functions for S(Th)with χ j (pi ) = δi j for all i, j ∈ J . We define the nodal
interpolation operator Ih : C0(�) → S(Th) via (Ihv)(p j ) = v(p j ) for all v ∈ S(Th) and
j ∈ J . Due to the regularity assumptions on the mesh, Ih has the following approximation
property [(see, e.g., (Ciarlet 1978, Chapter 3)]:

lim
h→0

‖φ − Ihφ‖H1(�) = 0 for all φ ∈ H2(�). (10)

2.2 Definition of the scheme

To define the finite-element scheme, we need to approximate the initial and boundary data.
We setw0

i = Ih(log(uI
i /u

I
0))+βzi�0, where�0 is the standard finite-element solution to the
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linear equation (2) with uI
i on the right-hand side. Furthermore, we setwh = Ih(log(ui/u0)+

βzi�) and �h = Ih(�).
The finite-element scheme is now defined as follows. Given wk−1 ∈ S(Th)n and �k−1 ∈

S(Th), find wk − wh ∈ SD(Th)n and �k − �h ∈ SD(Th) such that

1

τ

∫

�

(
u(wk,�k) − u(wk−1,�k−1)

) · φ dx

+
∫

�

∇φ : B(wk,�k)∇wkdx + ε

∫

�

(wk − wh) · φ dx = 0, (11)

λ2
∫

�

∇�k · ∇θdx =
∫

�

( n∑

i=1

zi ui (w
k,�k) + f

)
θdx, (12)

for all φ ∈ SD(Th)n and θ ∈ SD(Th). The symbol “:” signifies the Frobenius matrix product;
here, the expression reduces to

∇φ : B(wk,�k)∇wk =
n∑

i=1

Diui
(
wk,�k

)
u0

(
wk,�k

)
∇φi · ∇wk

i .

The term involving the parameter ε > 0 is only needed to guarantee the coercivity of
(11), (12). Indeed, the diffusion matrix B(wk,�k) degenerates when wk

i → −∞, and the
corresponding bilinear form is only positive semidefinite. To emphasize the dependence
on the mesh and ε, we should rather write w(h,ε,k) instead of wk and similarly for �k ;
however, for the sake of presentation, we will mostly omit the additional superscripts. The
original variables are recovered by computing uk = u(wk,�k) according to (8). Setting
u(τ )(x, t) = uk(x) for x ∈ �, t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N , and u(τ )(·, 0) = Ihu I as
well as similarly for �(τ), we obtain piecewise constant in time functions.

2.3 Existence of discrete solutions

The first result concerns the existence of solutions to the nonlinear finite-element scheme
(11), (12).

Lemma 1 (Existence of solutions and discrete entropy inequality) There exists a solution to
scheme (11), (12) that satisfies the following discrete entropy inequality:

H(uk) + τ

∫

�

∇(wk − wh) : B
(
wk,�k

)
∇wkdx + ετ‖wk − wh‖2L2(�)

≤ H
(
uk−1

)
,

(13)

where H is defined in (5) and uk = u
(
wk,�k

)
, uk−1 = u

(
wk−1,�k−1

)
are defined in (8).

The proof of the lemma is similar to the proof of Theorem 1 in Gerstenmayer and Jüngel
(2018). The main difference is that in Gerstenmayer and Jüngel (2018), a regularization
term of the type ε

(
(−�)mwk + wk

)
has been added to achieve via Hm(�) ↪→ L∞(�) for

m > d/2 compactness and L∞ solutions. In the finite-dimensional setting, this embedding is
not necessary but we still need the regularization εwk to conclude coercivity. We conjecture
that this regularization is just technical but currently, we are not able to remove it. Note,
however, that we can use arbitrarily small values of ε in the numerical simulations such that
the additional term does not affect the solution practically.
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Proof of Lemma 1 Let y ∈ S(Th)n and δ ∈ [0, 1]. There exists a unique solution �k to (12)
withwk replacedby y+wh , satisfying�k−�h ∈ SD(Th), since the function� �→ zi ui (y,�)

is bounded and nonincreasing. Indeed, let �1 and �2 be two solutions with the same initial
datum. Then, taking the difference of the corresponding weak formulations (12) and using
the test function �1 − �2, we find that

λ2
∫

�

|∇(�1 − �2)|2dx=
∫

�

n∑

i=1
zi

(
ui (y+wh,�1) − ui (y + wh,�2)

)
(�1 − �2)dx ≤ 0.

Moreover, the estimate

‖�k‖H1(�) ≤ C
(
1 + ‖�h‖H1(�)

)
, (14)

holds for some constant C > 0.
Next, we consider the linear problem

a(v, φ) = F(φ) for all φ ∈ SD(Th)n, (15)

where

a(v, φ) =
∫

�

∇φ : B
(
y + wh,�

k
)

∇v dx + ε

∫

�

v · φ dx,

F(φ) = − δ

τ

∫

�

(
u(y + wh,�

k) − u
(
wk−1,�k−1

) ) · φdx

− δ

∫

�

∇φ : B(y + wh,�
k)∇whdx .

The bilinear form a and the linear form F are continuous on SD(Th)n . The equivalence of
all norms on the finite-dimensional space SD(Th) implies the coercivity of a,

a(v, v) ≥ ε‖v‖2L2(�)
≥ εC‖v‖2H1(�)

.

By the Lax–Milgram lemma, there exists a unique solution v ∈ SD(Th)n to this problem.
This defines the fixed-point operator S : SD(Th)n × [0, 1] → SD(Th)n , S(y, δ) = v. The
inequality

εC‖v‖2H1(�)
≤ a(v, v) = F(v) ≤ C(τ )‖v‖H1(�)

shows that all elements v are bounded independent of y and δ and thus, all fixed points
v = S(v, δ) are uniformly bounded. Furthermore, S(y, 0) = 0 for all y ∈ SD(Th)n . The
continuity of S follows from standard arguments and the compactness comes from the fact
that SD(Th)n is finite-dimensional. By the Leray–Schauder fixed-point theorem, there exists
vk ∈ SD(Th)n such that S(vk, 1) = vk , and wk := vk + wh is a solution to (11).

The discrete entropy inequality (13) is proven using τ(wk − wh) ∈ SD(Th)n as a test
function in (11) and exploiting the convexity of H ,
∫

�

(uk − uk−1) ·
(
wk − wh

)
dx =

∫

�

(uk − uk−1) · ∇h(uk)dx ≥ H(uk) − H
(
uk−1

)
,

which concludes the proof. ��
Remark 1 (Structure preservation of the scheme) Lemma 1 shows that if the boundary data
are in thermal equilibrium, i.e.,∇wh = 0, then the finite-element scheme (11), (12) dissipates
the entropy (5), i.e., H

(
uk

) ≤ H
(
uk−1

)
. Moreover, it preserves the invariant region D, i.e.,

uk ∈ D, and the mass fraction uki is nonnegative and bounded by one. The scheme conserves
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the total relative mass, i.e.,
∑n

i=1 ‖uki ‖L1(�) = 1, which is a direct consequence of the
definition of uk0. ��

2.4 Uniform estimates

The next step is the derivation of a priori estimates uniform in the parameters ε, τ , and h.
To this end, we transform back to the original variable uk and exploit the discrete entropy
inequality (13).

Lemma 2 (A priori estimates) For the solution to the finite-element scheme from Lemma 1,
the following estimates hold:

‖uki ‖L∞(�) + ετ

k∑

j=1

‖w j
i − wi,h‖2L2(�)

≤ C, (16)

τ

k∑

j=1

(
‖(u j

0)
1/2‖2H1(�)

+ ‖u j
0‖2H1(�)

+ ‖(u j
0)

1/2∇(u j
i )

1/2‖2L2(�)

)
≤ C, (17)

for i = 1, . . . , n, where here and in the following, C > 0 is a generic constant independent
of ε, τ , and h.

Proof As the proof is similar to that one in the continuous setting, we give only a sketch.
Note that our finite-element space is a subset of H1(�), so the computations can be done
as in Gerstenmayer and Jüngel (2018), and in particular, the chain rule holds. Observe that
the definition of the entropy variables implies that 0 < uki < 1 in � for i = 1, . . . , n and
k = 1, . . . , N . It is shown in the proof of Lemma 6 of Gerstenmayer and Jüngel (2018) that

∇(wk − wh) : B(wk , �k)∇wk ≥ Dmin

4

n∑

i=1

uki u
k
0

∣
∣
∣∣∇ log

uki
uk0

∣
∣
∣∣
2

− Dmin

2

n∑

i=1

|βzi∇�k |2

− Dmax

2

n∑

i=1

|∇wi |2,

where Dmin = mini=1,...,n Di and Dmax = maxi=1,...,n Di . Then (13) gives

H(uk) + τ
Dmin

4

∫

�

n∑

i=1

uki u
k
0

∣∣
∣
∣∇ log

uki
uk0

∣∣
∣
∣
2
dx + ετ‖wk − wh‖2L2(�)

≤ H(uk−1) + τ
Dmin

2

n∑

i=1

|βzi∇�k |2dx + τ
Dmax

2

∫

�

n∑

i=1

|∇wi,h |2dx .

We resolve this recursion to find that

H(uk) + τ
Dmin

4

k∑

j=1

∫

�

n∑

i=1

u j
i u

j
0

∣∣∣∣∇ log
u j
i

u j
0

∣∣∣∣

2

dx + ετ

k∑

j=1

‖w j − wh‖2L2(�)

≤ H(u0) + τ
Dmin

2

k∑

j=1

∫

�

n∑

i=1

|βzi∇� j |2dx + τk
Dmax

2

∫

�

n∑

i=1

|∇wi,h |2dx .
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The right-hand side is bounded because of (14), τk ≤ T , and the boundedness of the inter-
polation operator. Inserting the identity

n∑

i=1

u j
i u

j
0

∣
∣
∣
∣∇ log

u j
i

u j
0

∣
∣
∣
∣

2

= 4u j
0

n∑

i=1

|∇(u j
i )

1/2|2 + |∇u j
0|2 + 4|∇(u j

0)
1/2|2,

the estimates follow. ��

2.5 Convergence of the scheme

The a priori estimates from the previous lemma allow us to formulate our main result, the
convergence of the finite-element solutions to a solution to the continuous model (1)–(4).

Theorem 3 (Convergence of the finite-element solution)Let (u(h,ε,τ ), �(h,ε,τ )) be an approx-
imate solution constructed from scheme (11), (12). Set u(h,ε,τ )

0 = 1−∑
i u

(h,ε,τ )
i . Then there

exist functions u0, u = (u1, . . . , un), and �, satisfying u(x, t) ∈ D (D is defined in (9)),
u0 = 1 − ∑n

i=1 ui in �, the regularity

u1/20 , u1/20 ui , � ∈ L2 (
0, T ; H1(�)

)
, ∂t ui ∈ L2 (

0, T ; H1
D(�)′

)
,

for i = 1, . . . , n, such that as (h, ε) → 0 and then τ → 0,

(u(h,ε,τ )
0 )1/2 → u1/20 , (u(h,ε,τ )

0 )1/2u(h,ε,τ )
i → u1/20 ui strongly in L2 (� × (0, T )) ,

�(h,ε,τ ) → � strongly in L2 (� × (0, T )) ,

and (u,�) are weak solutions to (1)–(4). In particular, for all φ ∈ L2(0, T ; H1
D(�)) and

i = 1, . . . , n, it holds that
∫ T

0
〈∂t ui , φ〉 dt + Di

∫ T

0

∫

�

u1/20

(∇(u1/20 ui ) − 3ui∇u1/20

) · ∇φ dxdt

+ Di

∫ T

0

∫

�

uiu0βzi∇� · ∇φ dxdt = 0, (18)

λ2
∫ T

0

∫

�

∇� · ∇φ dxdt =
∫ T

0

∫

�

( n∑

i=1

zi ui + f

)
φ dxdt, (19)

where 〈·, ·〉 is the duality pairing in H1
D(�)′ and H1

D(�), and the boundary and initial
conditions are satisfied in a weak sense.

Proof We pass first to the limit (ε, h) → 0 and then τ → 0, since the latter limit can
be performed as in the proof of Theorem 1 in Gerstenmayer and Jüngel (2018). Fix k ∈
{1, . . . , N } and let u(ε,h)

i = u(ε,h,k)
i and �(ε,h) = �(ε,h,k) be the approximate solution from

Lemma 1.We set u(ε,h)
0 = 1−∑n

i=1 u
(ε,h)
i . Using the compact embedding H1(�) ↪→ L2(�)

and the a priori estimates from Lemma 2, it follows that there exists a subsequence which is
not relabeled such that, as (ε, h) → 0,

u(ε,h)
i ⇀∗uki weakly* in L∞(�), i = 1, . . . , n, (20)

(u(ε,h)
0 )1/2⇀(uk0)

1/2, �(ε,h)⇀�k weakly in H1(�), (21)
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u(ε,h)
0 → uk0, �(ε,h) → �k strongly in L2(�), (22)

ε(w
(ε,h)
i − wi,h) → 0 strongly in L2(�). (23)

Combining (17) and (21), we infer that (up to a subsequence)

u(ε,h)
i (u(ε,h)

0 )1/2⇀uki (u
k
0)

1/2 weakly in H1(�) and strongly in L2(�). (24)

Next, let φ ∈ (H2(�)∩ H1
D(�))n . As we cannot use φi directly as a test function in (11),

we take Ihφ ∈ SD(Th)n , where Ih is the interpolation operator, see (10). To pass to the limit
in (11), we rewrite the integral involving the diffusion matrix:

∫

�

∇(Ihφ) : B(w(ε,h), �(ε,h))∇w(ε,h)dx =
∫

�

n∑

i=1

Diu
(ε,h)
i u(ε,h)

0 ∇w
(ε,h)
i · ∇(Ihφi )dx

=
∫

�

n∑

i=1

Di

(
(u(ε,h)

0 )1/2∇(
u(ε,h)
i (u(ε,h)

0 )1/2
) − 3u(ε,h)

i (u(ε,h)
0 )1/2∇(u(ε,h)

0 )1/2

+ βzi u
(ε,h)
i u(ε,h)

0 ∇�(ε,h)
)

· ∇(Ihφi )dx . (25)

We estimate each of the above summands separately. For the last term, we proceed as follows:
∣∣∣∣

∫

�

u(ε,h)
i u(ε,h)

0 ∇�(ε,h) · ∇(Ihφi )dx −
∫

�

uki u
k
0∇�k · ∇φi dx

∣∣∣∣

≤
∣∣∣∣

∫

�

u(ε,h)
i u(ε,h)

0 ∇�(ε,h) · ∇(Ihφi − φi )dx

∣∣∣∣

+
∣∣∣∣

∫

�

(u(ε,h)
i u(ε,h)

0 ∇�(ε,h) − uki u
k
0∇�k) · ∇φidx

∣∣∣∣

≤ ‖u(ε,h)
i u(ε,h)

0 ∇�(ε,h)‖L2(�)‖∇(Ihφi − φi )‖L2(�)

+
∣∣∣∣

∫

�

(u(ε,h)
i u(ε,h)

0 ∇�(ε,h) − uki u
k
0∇�k) · ∇φidx

∣∣∣∣. (26)

Similarly as for (24), it follows that

u(ε,h)
i u(ε,h)

0 → uki u
k
0 strongly in L2(�).

Then, together with the weak convergence of ∇�(ε,h), we infer that

u(ε,h)
i u(ε,h)

0 ∇�(ε,h)⇀uki u
k
0∇�k weakly in L1(�).

Since (u(ε,h)
i u(ε,h)

0 ∇�(ε,h)) is bounded in L2(�), this weak convergence also holds in L2(�).
Because of the interpolation property (10) and estimate (26),

∫

�

u(ε,h)
i u(ε,h)

0 ∇�(ε,h) · ∇(Ihφi )dx →
∫

�

uki u
k
0∇�k · ∇φidx .

Following the arguments of Step 3 in Gerstenmayer and Jüngel (2018), Section 2, [using
(24)], we have

(u(ε,h)
0 )1/2∇(

u(ε,h)
i (u(ε,h)

0 )1/2
) − 3u(ε,h)

i (u(ε,h)
0 )1/2∇(

(u(ε,h)
0 )1/2

)

⇀(uk0)
1/2∇(

uk0(u
k
0)

1/2) − 3uki (u
k
0)

1/2∇((uk0)
1/2) weakly in L2(�).
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Thus, the limit (ε, h) → 0 in (25) gives

lim
(ε,h)→0

∫

�

∇(Ihφ) : B(w(ε,h), �(ε,h))∇w(ε,h)dx =
∫

�

n∑

i=1

Di

(
(uk0)

1/2∇(
uk0(u

k
0)

1/2)

− 3uki (u
k
0)

1/2∇((uk0)
1/2) + βzi u

k
i u

k
0∇�k

)
· ∇φidx .

Furthermore, we deduce from (23) that
∣
∣
∣
∣ε

∫

�

(w
(ε,h)
i − wi,h)(Ihφi )dx

∣
∣
∣
∣ ≤ ε‖w(ε,h)

i − wi,h‖L2(�)‖Ihφi‖L2(�) → 0.

Thus, passing to the limit (ε, h) → 0 in scheme (11), (12) leads to

1

τ

∫

�

(uk − uk−1) · φdx +
∫

�

n∑

i=1

Di (u
k
0)

1/2(∇(uki (u
k
0)

1/2) − 3uki ∇(uk0)
1/2) · ∇φidx

+
∫

�

n∑

i=1

Diβzi u
k
i u

k
0∇�k · ∇φidx = 0,

λ2
∫

�

∇�k · ∇θdx =
∫

�

( n∑

i=1

zi u
k
i + f

)
θdx,

for all φi , θ ∈ H2(�) ∩ H1
D(�). A density argument shows that we can take test functions

φi , θ ∈ H1
D(�). The a priori estimates from Lemma 2 remain valid in the weak limit.

Now the limit τ → 0 can be done exactly as in Gerstenmayer and Jüngel (2018), Theo-
rem 1, Step 4, which concludes the proof. ��

3 The finite-volume scheme

We briefly recall the finite-volume scheme from Cancès et al. (2019) and summarize the
assumptions and results, as this is necessary for the comparison of the finite-element and
finite-volume scheme in Sect. 5.

We assume that Hypotheses (H1)–(H4) from the previous section hold and we use the
same notation for the time and space discretizations. For a two-point approximation of the
discrete gradients, we require additionally that the mesh is admissible in the sense of Eymard
et al. (2000), Definition 9.1. This means that a family of points (xK )K∈T is associated to the
cells and that the line connecting the points xK and xL of two neighboring cells K and L is
perpendicular to the edge K |L . For σ ∈ Eint with σ = K |L , we denote by dσ = d(xK , xL)

the Euclidean distance between xK and xL , while for σ ∈ Eext, we set dσ = d(xK , σ ). For a
given edge σ ∈ E , the transmissibility coefficient is defined by τσ = m(σ )/dσ , where m(σ )

denotes the Lebesgue measure of σ .
For the definition of the scheme, we approximate the initial, boundary, and given functions

on the elements K ∈ T and edges σ ∈ E :

uI
i,K = 1

m(K )

∫

K
uI
i (x)dx, fK = 1

m(K )

∫

K
f (x)dx,

ui,σ = 1

m(σ )

∫

σ

uids, �σ = 1

m(σ )

∫

σ

�ds,
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and we set uI
0,K = 1 − ∑n

i=1 u
I
i,K and u0,σ = 1 − ∑n

i=1 ui,σ . Furthermore, we introduce
the discrete gradients

DK ,σ (ui ) = ui,K ,σ − ui,K , where ui,K ,σ =

⎧
⎪⎨

⎪⎩

ui,L for σ ∈ Eint, σ = K |L,

ui,σ for σ ∈ ED
ext,K ,

ui,K for σ ∈ EN
ext,K .

The numerical scheme is now defined as follows. Let K ∈ T , k ∈ {1, . . . , N }, i ∈
{1, . . . , n}, and uk−1

i,K ≥ 0 be given. Then the values uki,K are determined by the implicit Euler
scheme

m(K )
uki,K − uk−1

i,K

�t
+

∑

σ∈EK

Fk
i,K ,σ = 0, (27)

where the fluxes Fk
i,K ,σ are given by the upwind scheme

Fk
i,K ,σ = −τσ Di

(
uk0,σDK ,σ (uki ) − uki,σ

(
DK ,σ (uk0) − ûk0,σ,iβziDK ,σ (�k)

))
.

Here, we have set

uk0,K = 1 −
n∑

i=1

uki,K , uk0,σ = max
{
uk0,K , uk0,L

}
,

uki,σ =
{
uki,K if Vk

i,K ,σ ≥ 0,

uki,K ,σ if Vk
i,K ,σ < 0,

, ûk0,σ,i =
{
uk0,K if ziDK ,σ

(
�k

) ≥ 0,

uk0,K ,σ if ziDK ,σ

(
�k

)
< 0,

,

and Vk
i,K ,σ is the “drift part” of the flux,

Vk
i,K ,σ = DK ,σ (uk0) − ûk0,σ,iβziDK ,σ

(
�k

)
,

for i = 1, . . . , n. Observe that we employed a double upwinding: one related to the electric
potential, defining ûk0,σ,i , and another one related to the drift part of the flux, Vk

i,K ,σ . The
potential is computed via

−λ2
∑

σ∈EK

τσDK ,σ (�k) = m(K )

(
n∑

i=1

zi u
k
i,K + fK

)

.

The finite-volume scheme preserves the structure of the continuous equations only under
certain assumptions:

(A1) ∂� = �N , i.e., we impose no-flux boundary conditions on the whole boundary.
(A2) The diffusion constants are equal, Di = D > 0 for i = 1, . . . , n.
(A3) The drift terms are set to zero, � ≡ 0.

Without these assumptions, we can only assure the nonnegativity of the discrete concentra-
tions ui , i = 1, . . . , n. Since we lack a maximum principle for cross-diffusion systems, the
upper bounds can only be proven if we assume equal diffusion constants (A2). Under this
assumption, the solvent concentration satisfies

∂t u0 = D div (∇u0 − u0w∇�) , where w = β

n∑

i=1

zi ui ,
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forwhich a discretemaximumprinciple can be applied. The L∞ bounds on the concentrations
then ensure the existence of solutions for the scheme. If additionally the drift term vanishes
(A3), a discrete version of the entropy inequality, the uniqueness of discrete solutions and
most importantly, the convergence of the scheme can be proven (under an additional regularity
assumption on the mesh). For details, we refer to Cancès et al. (2019).

4 Numerical experiments

4.1 Implementation

The finite-element discretization is implemented within the finite-element library NGSolve/
Netgen, see Schöberl (1997, 2014). The nonlinear equations are solved in every time step by
Newton’smethod in the variableswi and�. The Jacobimatrix is computed using theNGSolve
function AssembleLinearization. The finite-volume scheme is implemented in Mat-
lab. Also here, the nonlinear equations are solved by Newton’s method in every time step,
using the variables u, �, and u0. The integrals appearing in scheme (11), (12) are computed
using a Gauß quadrature implemented in NGSolve that computes the trial functions exactly.
Because of the nonlinear functions appearing in the integrals, the quadrature yields only
approximate values.

We remark that the finite-volume scheme also performs well when we use a simpler semi-
implicit scheme, where we compute u from Eq. (27) with� taken from the previous time step
via Newton’s method and subsequently only need to solve a linear equation to compute the
update for the potential. It turned out that this approach is not working for the finite-element
discretization. Furthermore, the computationally cheaper implementation used in Jüngel and
Leingang (2018) for a similar scheme in one space dimension, where a Newton and Picard
iteration are combined, did not work well in the two-dimensional test cases presented in this
paper.

4.2 Test case 1: calcium-selective ion channel

Our first test case models the basic features of an L-type calcium channel (the letter L stands
for “long-lasting”, referring to the length of activation). This type of channel is of great
biological importance, as it is present in the cardiac muscle and responsible for coordinating
the contractions of the heart (Carafoli et al. 2001). The selectivity for calcium in this channel
protein is caused by the so-called EEEE-locus made up of four glutamate residues.We follow
the modeling approach of Nonner et al. (2001), where the glutamate side chains are each
treated as two half-charged oxygen ions, accounting for a total of eight O1/2− ions confined
to the channel. In contrast to Nonner et al. (2001), where the oxygen ions are described by
hard spheres that are free to move inside the channel region, we make a further reduction and
simply consider a constant density of oxygen in the channel that decreases linearly to zero
in the baths (see Fig. 1),

uox(x, y) = uox,max ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for 0.45 ≤ x ≤ 0.55,

10(x − 0.35) for 0.35 ≤ x ≤ 0.45,

10(0.65 − x) for 0.55 ≤ x ≤ 0.65,

0 else,
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Fig. 1 Schematic picture of the
ion channel � used for the
simulations. Dirichlet boundary
conditions are prescribed on �D
(blue), homogeneous Neumann
boundary conditions are given on
�N (black). The red color
represents the density of confined
O1/2− ions (colour figure online)

ΓD

ΓN

ΓD

ΓN

where the scaled maximal oxygen concentration equals uox,max = (NA/utyp) × 52 mol/L.
Here, NA ≈ 6.022 × 1023 mol−1 is the Avogadro constant and utyp = 3.7037 × 1025L−1

the typical concentration [taken from (Burger et al. 2012, Table 1)]. In addition to the immo-
bile oxygen ions, we consider three different species of ions, whose concentrations evolve
according to model equations (1): calcium (Ca2+, u1), sodium (Na+, u2), and chloride (Cl−,
u3). We assume that the oxygen ions not only contribute to the permanent charge density
f = −uox/2, but also take up space in the channel, so that we have u0 = 1−∑3

i=1 ui − uox
for the solvent concentration.

For the simulation domain, we take a simple geometric setup resembling the form of
a channel; see Fig. 1. The boundary conditions are as described in the introduction, with
constant values for the ion concentrations and the electric potential in the baths. The phys-
ical parameters used in our simulations are taken from (Burger et al. 2012, Table 1). The
simulations are performed with a constant (scaled) time step size τ = 2 × 10−4. The ini-
tial concentrations are simply taken as linear functions connecting the boundary values. An
admissible mesh consisting of 74 triangles was created with Matlab’s initmesh com-
mand, which produces Delauney triangulations. Four finer meshes were obtained by regular
refinement, dividing each triangle into four triangles of the same shape.

We remark that the same test case was already used in Cancès et al. (2019) to illustrate
the efficiency of the finite-volume approximation. Furthermore, numerical simulations for a
one-dimensional approximation of the calcium channel can be found in Burger et al. (2012)
for stationary solutions and in Gerstenmayer and Jüngel (2018) for transient solutions.

Figures 2 and 3 present the solution to the ion-transport model in the original variables u
and � at two different times; the first one after only 600 time steps and the second one after
6000 time steps, which is already close to the equilibrium state. The results are computed
on the finest mesh with 18,944 elements. In the upper panel, the concentration profiles and
electric potential as computed with the finite-element scheme are depicted. In the lower
panel, the difference between the finite-volume and finite-element solutions is plotted. We
have omitted the plots for the third ion species (Cl−), since it vanishes almost immediately
from the channel due to its negative charge. While absolute differences are relatively small,
we can still observe that the electric potential in the finite-element case is always smaller
compared to the finite-volume solution, while the peaks of the concentration profiles are
more distinctive for the finite-element than for the finite-volume solution.

To compare the two numerical methods, we test the convergence of the schemes with
respect to the mesh diameter. Since an exact solution to our problem is not available, we
compute a reference solution both with the finite-volume and the finite-element scheme on a
very fine mesh with 18,944 elements and maximal cell diameter h ≈ 0.01. The differences
between these reference solutions in the discrete L1 and L∞ norms are given in Table 1
for the various unknowns. Since the finite-element and finite-volume solutions are found in
different function spaces, one has to be careful how to compare them. The values in Table 1 are
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Fig. 2 Solution after 600 time steps computed from the finite-element scheme (top) and difference between
the finite-volume (FV) and finite-element (FE) solutions (bottom)

Fig. 3 Solution after 6000 time steps (close to equilibrium) computed from the finite-element scheme (top)
and difference between the finite-volume (FV) and finite-element (FE) solutions (bottom)

obtained by projecting the finite-element solution onto the finite-volume space of functions
that are constant on each cell in NGSolve, thereby introducing an additional error. However,
the difference between the reference solutions is still reasonably small, especially when the
simulations are already close to the equilibrium state.

To avoid the interpolation error in the convergence plots, we compare the approximate
finite-element or finite-volume solutions on coarser nested meshes with the reference solu-
tions computed with the corresponding method. In Fig. 4, the errors in the discrete L1 norm
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Table 1 Difference between the finite-volume and finite-element reference solutions after 600 and after 6000
time steps

u1 u2 u3 u0 �

L∞ norm, k = 600 2.2405e−02 2.0052e−02 1.0319e−04 1.6695e−02 1.0600e−01

L1 norm, k = 600 2.2642e−04 3.0275e−04 1.3776e−05 2.5983e−04 5.1029e−03

L∞ norm, k = 6000 1.0036e−02 2.3619e−03 1.3677e−04 9.1095e−03 9.5080e−02

L1 norm, k = 6000 1.4161e−04 7.0981e−05 1.5498e−05 1.5615e−04 4.6543e−03

0.05 0.1 0.15
10 -5

10 -4

10 -3

10 -2
L1-error u 1

2

1

0.05 0.1 0.15
10 -5

10 -4

10 -3

10 -2
L1-error u 2

2

1

0.05 0.1 0.15
10 -6

10 -5

10 -4

10 -3

2

1

L1-error u 3

0.05 0.1 0.15
10 -4

10 -3

10 -2

10 -1 L1-error

2

1

k=600 FV
k=6000 FV
k=600 FE
k=6000 FE

Fig. 4 L1 error relative to the reference solution after 600 time steps (black) and 6000 time steps (red) plotted
over the mesh size h. Dashed lines are used for the finite-element solution, full lines for the finite-volume
solution

between the reference solution and the solutions on the coarser meshes at the two fixed time
steps k = 600 and k = 6000 are plotted. For the finite-volume approximation, we clearly
observe the expected first-order convergence in space, whereas for the finite-element method,
the error decreases, again as expected, with h2. These results serve as a validation for the
theoretical convergence result proven for the finite-element scheme and show the efficiency
of the finite-volume method even in the general case of ion transport, which is not covered
by the convergence theorem in Cancès et al. (2019).

In Table 2, the average time needed to compute one time step with the finite-element or
finite-volume scheme for the five nested meshes is given. Clearly, the finite-volume scheme
is much faster than the finite-element method. This is mostly due to the computationally
expensive assembly of the finite-element matrices.
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Table 2 Average time needed to compute one time step (in s)

T1 T2 T3 T4 T5

FE 2.4065e−01 7.9982e−01 2.1125e+00 4.9844e+00 17.7788e+00

FV 6.7707e−03 2.2042e−02 3.0532e−01 1.7660e+00 2.2418e+00

FE finite-element scheme, FV finite-volume scheme

0 0.5 1 1.5 2
10 -10

10 -8

10 -6

10 -4

10 -2

10 0
Entropy relative to equilibrium

0 0.5 1 1.5 2
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1
L1-error compared to equilibrium

FV mesh 1
FV mesh 4
FE mesh 1
FE mesh 4
Reference

Fig. 5 Relative entropy (left) and sum of L1 differences of u and � relative to the equilibrium state (right)
over time for various meshes. Mesh 1 has 74 triangles, mesh 4 has 18,944 elements

In addition to the convergence analysis, we also study the behavior of the discrete entropy
for both schemes.We consider in both cases the entropy relative to the steady state (u∞

i ,�∞),
which is computed from the corresponding discretizations of the stationary equationswith the
same parameters and boundary data. Figure 5 shows the relative entropy [see (Cancès et al.
2019, Section 6)] and the L1 error compared to the equilibrium state for the finite-element and
finite-volume solutions on different meshes. Whereas for the coarsest mesh the convergence
rates differ notably, we can observe a similar behavior when the mesh is reasonably fine.
In Fig. 6, we investigate the convergence of the relative entropy with respect to the mesh
size. As before, we observe second-order convergence for the finite-element scheme and a
first-order rate for the finite-volume method.

4.3 Test case 2: bipolar ion channel

The second example models a pore with asymmetric charge distribution, which occurs natu-
rally in biological ion channels but also in synthetic nanopores. Asymmetric pores typically
rectify the ion current, meaning that the current measured for applied voltages of positive
sign is higher than the current for the same absolute value of voltage with negative sign. The
setup is similar to that of an N–P semiconductor diode. The N-region is characterized by the
fixed positive charge. The anions are the counter-ions and thus the majority charge carriers,
while the cations are the co-ions and minority charge carriers. In the P-region, the situation
is exactly the other way around. In the on-state, the current is conducted by the majority
carriers, while in the off-state, the minority carriers are responsible for the current, which
leads to the rectification behavior.
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Fig. 6 Error for the relative
entropy with respect to mesh size

0.05 0.1 0.15
10 -4

10 -3

10 -2

10 -1

2

1

Error entropy

L2 error FV
L  error FV
L2 error FE
L  error FE

Fig. 7 Simulation domain with
triangulation for the bipolar ion
channel. The blue circles
represent positively charged
confined ions, the red circles
negatively charged ions. The
black (blue) part of the boundary
is equipped with Neumann
(Dirichlet) boundary conditions
(colour figure online)
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Often, bipolar ion channels are modeled with asymmetric surface charge distributions
on the channel walls. However, to fit these channels into the framework of our model, we
follow the approach described in Ható et al. (2016). Similar to the first test case, we assume
that there are eight confined molecules inside the channel, but this time four molecules are
positively charged (+ 0.5e) and the other fourmolecules are negatively charged (− 0.5e). The
simulation domain� ⊂ R

2 is depicted in Fig. 7. The shape of the domain and the parameters
used for the simulations are taken from Ható et al. (2016) and are summarized in Table 3.
The mesh (made up of 2080 triangles) was created with NGSolve/Netgen. We consider two
mobile species of ions, one cation (Na+, u1) and one anion (Cl−, u2). The confined ions are
modeled as eight fixed circles of radius 1.4, where the concentration c ≡ cmax is such that
the portion of the channel occupied by these ions is the same as in the simulations in Ható
et al. (2016). The solvent concentration then becomes u0 = 1 − u1 − u2 − c.

By changing the boundary value�right for the potential� on the right part of the Dirichlet
boundary (on the left side, it is fixed to zero), we can apply an electric field in forward bias (on-
state,�right = 1) or reverse bias (off-state,�right = −1). Figures 8 and 9 show the stationary
state computedwith the finite-elementmethod in the on- and off-state, respectively. Evidently,
the ion concentrations in the on-state are much higher than in the off-state. In comparison
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Table 3 Dimensionless
parameters used for the
simulation of the bipolar ion
channel and values used for the
scaling

Meaning Value Unit

Diffusion coefficients D1, D2 1

Effective permittivity λ2 1.1713

Effective mobility β 3.8922

Bath concentrations u1, u2 0.0016

Confined ion concentration cmax 0.2971

Typical length L typ 1e−10 m

Typical concentration utyp 3.7037e+28 Nm−3

Typical voltage �typ 0.1 V

Typical diffusion Dtyp 1.3340e-9 m2s−1
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Fig. 8 Stationary solution in the on-state (channel region)

with the results from Ható et al. (2016), where the Poisson–Nernst–Planck equations with
linear diffusion (referred to as the linear PNPmodel) were combined with Local Equilibrium
Monte–Carlo simulations, we find thatwith the Poisson–Nernst–Planck equationswith cross-
diffusion (referred to as the nonlinear PNP model), the charged ions in the channel attract an
amount of ions higher than the bath concentrations even in the off-state.

From a modeling point of view, it is an important question whether the nonlinear PNP
model reproduces the rectification mechanism described above. For this purpose, we need to
calculate the electric current I flowing through the pore, given by
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Fig. 9 Stationary solution in the off-state (channel region)

I = −
∑

i

zi

∫

A
Fi · νds, (28)

where A is the cross section of the pore and ν the unit normal to A. In the finite-
element setting, we can use the representation of the fluxes in entropy variables, Fi =
Diui (w,�)u0(w,�)∇wi and compute the integrals in (28) using a quadrature formula
along the line x = 10.

Figure 10 shows the current–voltage curves obtained with the finite-element solutions. In
addition, the rectification is depicted, which is calculated for voltages U ≥ 0 according to

r(U ) =
∣∣∣∣
I (U )

I (−U )

∣∣∣∣.

We also compute the current–voltage curve for the linear PNPmodel, which is obtained from
the model equations by setting u0 ≡ 1, such that

∂t ui = div
(
Di∇ui + Diβzi ui∇�

)
.

We expect from the simulations done in Burger et al. (2012) for the calcium channel that the
current of the nonlinear PNP model is lower than that one from the linear PNP model. This
expectation is also confirmed in this case. As Fig. 10 shows, the rectification is stronger in
the nonlinear PNP model. The difference between the two models is even more pronounced
when we increase the concentration of the confined ions to cmax = 0.7. In that case, the
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Fig. 10 Current–voltage curves and rectification. First row: the parameters are as in Table 3; second row: with
cmax = 0.7

channel gets more crowded and size exclusion has a bigger effect. We observe a significantly
lower current and higher rectification for the nonlinear PNP model.

5 Conclusions

In this work, we have presented a finite-element discretization of a cross-diffusion Poisson–
Nernst–Planck system and recalled a finite-volume scheme that was previously proposed and
analyzed (Cancès et al. 2019). In the following, we summarize the differences between both
approaches from a theoretical viewpoint and our findings from the numerical experiments.

• Structure of the schemeThe finite-element scheme strongly relies on the entropy structure
of the system and is formulated in the entropy variables. From a thermodynamic view-
point, the entropy variables are related to the chemical potentials, which gives a clear
connection to nonequilibrium thermodynamics. On the other hand, the finite-volume
scheme exploits the drift-diffusion structure that the system displays in the original vari-
ables.

• L∞ bounds Due to the formulation in entropy variables, the L∞ bounds for the finite-
element solutions follow immediately from (8) without the use of a maximum principle.
In other words, the lower and upper bounds are inherent in the entropy formulation. In
the case of the finite-volume scheme, we can apply a discrete maximum principle, but
only under the (restrictive) assumption that the diffusion coefficients Di are the same.
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• Convergence analysisThe entropy structure used in thefinite-element schemeallowsus to
use the samemathematical techniques for the convergence proof as for the continuous sys-
tem, but a regularizing term has to be added to ensure the existence of discrete solutions.
The convergence of the finite-volume solution requires more restrictive assumptions: in
addition to the equal diffusion constants necessary for proving the existence and L∞
bounds, we can only obtain the entropy inequality and gradient estimates for vanishing
potentials.

• Initial data Since the initial concentrations have to be transformed to entropy variables
via (6), the finite-element scheme can only be applied for initial data strictly greater than
zero. The finite-volume scheme, on the other hand, can handle exactly vanishing initial
concentrations.

• Experimental convergence rate In the numerical experiments, both schemes exhibit the
expected order of convergence with respect to mesh size (even if we cannot prove any
rates analytically): first-order convergence for the finite-volume scheme and second-order
convergence for the finite-element scheme.

• Performance The numerical experiments done for this work suggest that the finite-
element algorithm needs smaller time steps for the Newton iterations to converge than for
the finite-volume scheme, especially when the solvent concentration is close to zero. Fur-
thermore, the assembly of the finite-element matrices is computationally quite expensive
resulting in longer running times compared to the finite-volume scheme.

• Mesh requirements A finite-volume mesh needs to satisfy the admissibility condition.
This might be a disadvantage for simulations in three space dimensions.
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