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Abstract

In this work, the Demand Adjustment Problem (DAP) associated to urban traffic planning

is studied. The framework for the formulation of the DAP is mathematical programming with

equilibrium constraints. In particular, if the optimization program associated to the equilibrium

constraint is considered, the DAP results in a bilevel optimization problem. In this approach

the DAP via the Inexact Restoration method is treated.

Keywords: traffic, origin-destination matrix adjustment, Inexact Restoration method, bilevel

problem.

1 Introduction

The Demand Adjustment Problem (DAP) consists in the estimation of the origin-destination matrix

(OD matrix) of a congested transport network. This problem is of remarkable importance in the

transportation planning process. This matrix stores the number of trips originating and terminating

in each origin-destination pair.

The problem of adjusting the OD matrix can be modeled as an optimization problem with

equilibrium constraints and reformulated as a bilevel problem. Among its drawbacks it has bad

mathematical properties which make it difficult to solve it. Some of them are: non convexity, non

differentiability, huge dimensions of real size problems and the fact that the point-set-mapping

which gives the equilibrium flows is not explicitly known.

This version of the problem has been treated by many authors, some whose works are: Nguyen

S. (1977,[14]), Spiess (1990,[16]), Chen and Florian (1996,[2]), Yang et al. (1992,[20]), Codina and

Barceló (2004,[4]), Codina and Montero (2006,[5]), Lundgren and Peterson (2008,[9]), Lotito and

Parente (2015,[8]) and Walpen, Mancinelli and Lotito (2015, [19]).

It is of remarkable importance that, with the only exception of [8], all the methods proposed

in the mentioned papers are heuristics. In general, no convergence proofs are given due to the fact
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that no appropriate characterization of optimality points is available. These methods have another

characteristic in common: they all generate sequences of feasible points through their iterations

and test the descent of the objective function of the problem.

In [8], instead, the DAP is formulated as a general mathematical program with complementarity

constraints (MPCC). Applying a lifting method (see [17],[6]), a necessary optimality condition is

obtained in terms of a large non-linear semismooth system which is solved with a Newton-type

method. However, the price to pay is the increase of the numerical problem size and the fact that

the lower level structure is missed.

This work puts towards an approach to treat the DAP via Inexact Restoration. This method,

originally proposed by Martinez in [10] and [11] to solve optimization problems with no linear

constraints, has been adapted to solve bilevel problems by Andreani et. al. in [1].

The Inexact Restoration Method deals separately with feasibility and optimality at each itera-

tion. In the feasibility stage, called restoration phase, it seeks a feasible point (perhaps inexactly),

considering the original objective function and constraints.

In the optimality phase, it looks for a trial point that sufficiently reduces the value of a La-

grangian defined by the original data in a tangent set that approximates the feasible region, within

a trust region centered at the point obtained in the feasibility phase. Sufficient decrease of a merit

function which balances feasibility and optimality determines the acceptance of the trial point ob-

tained in the optimization phase. If the trial point is not accepted, the size of the trust region is

reduced.

The purpose of this work is to offer an innovative alternative to solve DAP and a tangible

application of the inexact restoration method.

This paper is organized as follows. In section 2 a model of the problem is presented as well

as the assumptions made over the network. In section 3 the Inexact Restorarion method and its

adaptation for bilevel problems are presented. In section 4 there is a complete description of the

application of the Inexact Restoration to the DAP. A detailed presentation of every step of the

algorithm is given and each subproblem is specifically treated in each subsection. Finally, in section

5 some numerical tests are presented. Conclusions are drawn in section 6.

2 Model

In this work, the DAP is considered as a mathematical program with equilibrium constraints

(MPEC) where, for each demand, the flows are constrained to satisfy a deterministic Wardrop’s

user equilibrium (DUE) in the lower level, and an OD matrix is adjusted in the upper level taking

into account a target matrix and some observed flows.

The transport network is represented as a directed graph G = (N ,A) where N is the set of

nodes and A is the set of directed links. C is chosen to represent the set of origin-destination pairs

(p, q).

Considering link flows, the DAP is formulated as:

(DAP) min F (v, d) = η1F1(v) + η2F2(d)

s.a. t(v)t(v′ − v) ≥ 0, ∀(v′, d) ∈ Ω,
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where Ω is the closed convex cone of pairs (v, d) with d ≥ 0 and v a feasible link flow for d, i.e. a

non-negative flow which satisfies the demand d. The equilibrium condition is expressed in terms

of a variational inequality for the associated link cost vector t(v). The function F1 measures the

deviation between the assigned flow for the demand d and the observed flow ṽ, in some links of the

network (Ā ⊂ A). The function F2 measures the distance between d and a target matrix (usually

an outdated OD-matrix d̃). The usually used metrics are those of minimum squares, maximum

entropy and maximum likelihood (see [2]). The parameters η1 and η2 reflect the confidence of the

data g̃ and ṽ respectively.

For a general version of DAP, Chen and Florian proved in [2], under minor hypotheses of

continuity of the functions F1, F2 and t, that the problem admits at least one solution. In this work,

the mapping d 7→ v∗(d), which assigns the equilibrium flows to a given demand d, is considered to be

single valued (i.e. the DUE admits an only one solution) and it is possible to write F (d) = F (v∗(d)).

For the problem to fit in this context it is necessary to make some assumptions over the traffic

network:

• the network is strongly connected, i.e. there exists at least one route for each o-d pair;

• the route cost functions are additive, i.e. they are the sum of the link costs which constitute

the route;

• the link costs are separable, i.e. the flow in each link is independent of the flow of all other

links in the network;

• the demand dpq is positive for each (p, q) ∈ C

• the link cost function ca : R 7→ R is positive, continuous and non decreasing for each a ∈ A.

These hypotheses guarantee the existence of equilibrium (both in the link and route flow vari-

ables) and uniqueness of OD equilibrium times. If each link cost function ca is assumed to be

strictly increasing, there is uniqueness of the equilibrium link flow solution.

3 Inexact Restoration and its adaptation to solve bilevel problems

The Inexact Restoration Method (IRM) is motivated by the bad behavior of feasible methods in the

presence of non linear constraints. To face these difficulties, the algorithms presented by Martinez

et al. in [10], [11] and [12], keep feasibility under control and are tolerant when the iterations are

far from the solution. In [13] there is an interesting overview of these algorithms and its main

characteristics.

Originally, the IRM was designed to solve the problem

min f(x)

s.t. C(x) = 0,

x ∈ Ω,

(1)

where f : Rn → R and C : Rn → R
p are continuously differentiable functions and S ⊂ R

n is a

closed convex set.
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The algorithm consists of two well distinguished stages: feasibility (or restoration stage) and

optimality. It is an iterative method which generates a sequence xk of feasible iterates with respect

to Ω but which not necessarily verifies C(x) = 0. Precisely, the restoration phase has the objective

of moving the sequence in a direction which generates a reduction of ||C(x)|| and an auxiliary

sequence yk, is built. In the second phase, the optimality of yk is improved by a minimization of a

Lagrangian over a space tangent to {C(x) = 0} in yk.

The innovative use of the Lagrangian in the optimality phase has to do with the fact that it

behaves similarly both in the tangent space and the feasible region. This may not be the case of

the non linear objective function.

The acceptance of the candidate yk depends on the value of a merit function which combines

feasibility and optimality.

Andreani et al. in [1] studied the possibility of adapting the Inexact Restoration Method to

solve bilevel problems. The attractiveness of IRM had to do with the fact that this method may

allow solving these problems without reformulating them as single level ones as most approaches for

bilevel problems do. What is more, the restoration phase gives the possibility of freely choosing a

method which improves feasibility. Consequently, if any globally convergent algorithm is available

to efficiently solve the lower level problem, its structure could be exploited.

However, the adaptation to IRM for bilevel problems required further analysis.

3.1 IRM adaptation for bilevel problems (IRMbi)

Given a bilevel problem of the type

min F (x, y)

s.t. x ∈ X

y = argmin
y

f(x, y)

s.t. h(x, y) = 0

y ≥ 0

, (2)

to adapt the method which originally solves (1), the Karush Kuhn Tucker optimality conditions of

the lower level problem are considered. In fact, they play the role of the constraint C(x) = 0,

C(x, y, µ, γ) = 0, y ≥ 0, γ ≥ 0,

with

C(x, y, µ, γ) =












∇yf(x, y) +∇yh(x, y)µ − γ

h(x, y)

γ1y1
...

γmym












.

The Lagrangian for the optimality phase

L(x, y, µ, γ, α) = F (x, y) + C(x, y, µ, γ)Tα. (3)
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The restoration phase searches for a point zk = (xk, ȳ, µ̄, γ̄) “more feasible” than the one

built in the previous iteration sk = (xk, yk, µk, γk). To reach that goal the lower level problem,

parameterized in the variable xk is solved. That is to say, a minimizer ȳ and associated multipliers

(µ̄, γ̄) for the problem

min
y

f(xk, y)

s.a. h(xk, y) = 0

y ≥ 0

(4)

must be found. zk is defined as an intermediate point. Then, a linear approximation, around zk,

of the feasible region of the simplified problem (5) is built.

min F (x, y)

C(x, y, µ, γ) = 0

s = (x, y, µ, γ) ∈ Ω×∆

(5)

where Ω×∆ represents the constraints x ∈ X, y ≥ 0, γ ≥ 0.

The linear approximation in zk is the tangent space

π(zk) = {s ∈ Ω×∆ : C ′(zk)(s− zk) = 0}

and the Cauchy tangent direction rktan = rtan(z
k) is

rktan = Pk[z
k − η∇sL(z

k, αk)]− zk,

where Pk[·] is the orthogonal projection over the space πk = π(zk) and L the Lagrangian presented

above (3). rktan is a feasible descent directon for L over πk.

For the optimization phase a trust region centered in zk is defined

Bk,i = {s ∈ R
n : ||s − zk|| ≤ δk,i},

and a candidate vk,i ∈ Bk,i ∩ πk that reduces L(·, αk) is sought. The acceptance of vk,i depends on

the value of a merit function. If it is rejected the trust radius is reduced and the scheme moves to

an iteration k, i+ 1 until it finds the minimizer zk,i
∗

.

The merit function used is:

Ψ(s, α, θ) = θL(s, α) + (1− θ)||C(s)||

where θ ∈ (0, 1] is a penalty parameter that gives different weights to the Lagrangian function and

the feasibility.

With all these considerations the Inexact Restoration Method for bilevel problems (IRMbi) was

introduced. What is more, it was proved that there is global convergence to points which satisfy

the Approximate Gradient Projection optimality conditions (AGP points). For a detailed insight

into these concepts see [1].
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4 IRM for DAP

4.1 DAP as a bilevel problem

The DAP was presented as a mathematical problem with equilibrium constraints. However,

Wardrop’s user equilibrium can be obtained as a solution to an optimization problem, the Traffic

Assignment Problem (TAP). The hypotheses under which this is true can be read in [18].

In this case, DAP results in

min F (d, v) = η1F1(v) + η2F2(d)

s.t. min T (v) =
∑

a∈A

∫ va

0
ca(s)ds

s.t
∑

r∈Rpq

hpqr = dpq,∀ (p, q) ∈ C,

hpqr ≥ 0,∀ r ∈ Rpq,∀ (p, q) ∈ C,
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = va,∀; a ∈ A.

d ≥ 0.

(6)

With this reformulation, DAP has bilevel structure. Consequently, there exists the possibility of

applying IRMbi to solve DAP. What is more, for the lower level problem TAP, there exist globally

convergent methods to obtain the solution and in contrast to most of the available methods for

DAP, the complex structure of the traffic assignment problem could be exploited.

4.2 Change of variables for Karush Kuhn Tucker (KKT) optimality conditions

calculation

It would be desirable to have KKT optimality conditions associated to the lower level problem

which are easy to handle. However, the original version of TAP has a complex structure of the

feasible set due to the presence of two flow variables v and h. To overcome this difficulty, the

TAP is reformulated in the node-arc version presented in [15], as it is done in the non-heuristical

approach in [8].

The new flow variable X = (xia)a∈A,i∈C represents the arc flow disaggregated by demand.

X ∈ R
|A||C| is a column vector.

In this context, Wardrop’s user equilibrium condition is rewritten as

T (X∗)T (X −X∗) ≥ 0,∀ X ∈ Ω̃(d)

where Ω̃(d) = {X ≥ 0 : Γd−MX = 0}.

The function T and the matrices Γ and M verify:

T (X) = RT t(RX)

with R ∈ R
|A|×|A||C| defined as

R = (I|A|, ..., I|A|
︸ ︷︷ ︸

|C| times

),

and I|A| the identity matrix in R
|A|×|A|.
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Γ =










γ1 0 · · · 0

0 γ2
. . .

...
...

. . .
. . . 0

0 · · · 0 γ|C|










∈ R
|C||N |×|C|,

with γi = (γik)k∈N such that γik =







−1 if k is the origin node for the demand i,

1 if k is the destination node for the demand i,

0 otherwise.

M =










A 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 A










∈ R
|C||N |×|C||A|,

with A ∈ R
|N |×|A| being the node-arc incidence matrix.

Finally, the KKT system for this reformulation of the lower level problem results in:







T (X) +MTα− β = 0,

Γd−MX = 0,

βTX = 0,

β ≥ 0,X ≥ 0,

Here, α is the multiplier vector associated to the equality constraints and β the multiplier vector

associated to the inequality constraints.

4.3 IRMbi for DAP

Having done the change of variables presented above (Section 4.2), the goal of applying IRMbi to

solve DAP is re established.

Firstly, the simplified problem (5) for DAP, together with the KKT system obtained, is written:

min F (d,X) = η1F1(RX) + η2F2(d) (7a)

s.a. T (X) +MTα− β = 0 (7b)

Γd−MX = 0 (7c)

βTX = 0 (7d)

β ≥ 0,X ≥ 0, d ≥ 0 (7e)

Then, choosing

C(d,X, α, β) =







T (X) +MTα− β

Γd−MX

βTX







and
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Ω×∆ = {s = (d,X, α, β)T ∈ R
|C|×R

|C||A|×R
|C||N |×R

|C||A| : d ≥ 0∧X ≥ 0∧β ≥ 0}, it results

in:
min F (d,X) = η1F1(RX) + η2F2(d)

s.a. C(s) = 0,

s ∈ Ω×∆.

(8)

Having checked that the restoration phase can be carried out for DAP under some considera-

tions, the same must be done for the optimization phase.

A linear approximation of the feasible set defined by the constraints of (8) must be considered.

For a point z = (g∗,X∗, α∗β∗) it results:

πz = {s ∈ Ω×∆ : C ′(z)(s − z) = 0}

where

C ′(z) =







0 T ′(X∗) MT −I|A||C|

Γ −M 0 0

0 Iβ∗ 0 IX∗







,

I|A||C| is the identity matrix of dimensions |A||C|,

Iβ∗ is a matrix of zeros which in its diagonal has the entries of vector β∗ and

IX∗ is a matrix of zeros which in its diagonal has the entries of vector X∗.

The matrix C ′(z), C ′
z for simplicity, always exists and can be easily obtained. Consequently, it

is possible to obtain the tangent space πz. C
′
z is a fixed matrix throughout the iterations, and the

linearization πz is the set of s ∈ Ω×∆ that are solutions to the linear system: C ′
z(s− z) = 0.

4.4 Algorithm

In this section the complete scheme adapted for DAP is presented. The details of implementation

are given in section 4.5.

The following constants are fixed. η > 0, M > 0, θ−1 ∈ (0, 1), δmin > 0, τ1 > 0, τ2 > 0. k = 0.

Let s0 = (d0,X0, α0, β0) ∈ R
|C| × R

|C||A| × R
|C||N | × R

|C||A| be an initial approximation, µ0 an

initial approximation of the multiplier and ωi a sequence of positive numbers such that:
∞∑

i=0
ωi < ∞.

Step 1. Penalty parameter initialization.

θmin
k = min{1, θk−1, ..., θ−1},

θlargek = min{1, θmin
k + ωk},

θk,−1 = θlargek .

Step 2. Restoration Phase.

Solve the traffic assignment problem for d = dk and get the Lagrangian multipliers associated

to the obtained equilibrium.

Let X∗ be the equilibrium solution and α∗, β∗ the associated multipliers.

Define zk = (dk,X∗, α∗, β∗).
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Step 3. Cauchy tangent direction.

Calculate rktan = Pk[z
k − η∇sL(z

k, µk)]− zk.

πk = {s ∈ Ω×∆ : C ′(zk)(s − zk) = 0}

* If zk = sk and rktan = 0, finish. (dk,Xk) is the solution to DAP.

* Otherwise, i = 0, δk,0 ≥ δmin and move to Step 4.

Step 4. Optimization Phase in πk.

* If rktan = 0, set vk,0 = zk.

* Otherwise, calculate tk,ibreak = min{1, δk,i/||r
k
tan||} and get vk,i such that:

- vk,i ∈ πk,

- ||vk,i − zk||∞ < δk,i,

- for some t ∈ (0, tk,ibreak],

L(vk,i, µk) ≤ max{L(zk + trktan, µ
k), L(zk, µk)− τ1δk,i, L(z

k, µk)− τ2}.

Step 5. Trial multipliers.

* If rktan = 0 set µk,i
trial = µk.

* Otherwise, calculate µk,i
trial ∈ R

2|C||A|+|C||N | such that |µk,i
trial| ≤ M .

Step 6. Predicted reduction.

Define ∀ θ ∈ [0, 1],

Predk,i(θ) = θ[L(sk, µk)− L(vk,i, µk)− C(zk)T (µk,i
trial − µk)] + (1− θ)[|C(sk)| − |C(zk)|].

Compute θk,i as the maximum θ ∈ [0, θk,i−1] which verifies

Predk,i(θ) ≥
1

2
[|C(sk)| − |C(zk)|].

Define Predk,i = Predk,i(θk,i).

Step 7. Compare actual and predicted reduction.

Calculate Aredk,i = θk,i[L(s
k, µk)− L(vk,i, µk,i

trial)] + (1− θk,i)[|C(sk)| − |C(vk,i|)].

* If Aredk,i ≥ 0.1Predk,i UPDATE:

sk+1 = vk,i, µk+1 = µk
trial, θk = θk,i, δk = δk,i, k = k + 1,

and TERMINATE iteration k.

* Otherwise, choose

- δk,i+1 ∈ [0.1δk,i, 0.9δk,i],

- i=i+1,

and move to step 4.

4.5 Implementation issues

So far in this work, both phases of the algorithm IRMbi have been revised and analyzed for the

DAP. In this section, details of implementation for each step of the scheme are given.
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4.5.1 Solving the traffic assignment problem: Step 2

For the bilevel problem DAP, there exist algorithms which efficiently solve the lower level problem:

TAP. In this work, the Disaggregated Simplicial Decomposition (DSD) algorithm is chosen. Par-

ticularly, the version implemented in CiudadSim (Scilab Toolbox [3], [7]) is used, as it gives the

possibility of working with the flow variable disaggregated by demand. Precisely, this variable is

an auxiliary one and it is available without any modifications to the code of the DSD, except for

the output.

Even though the DSD algorithm solves TAP for a fixed demand dk providing a solution Xk,

the associated multipliers αk and βk must be obtained to build the intermediate point zk =

(dk,Xk, αk, βk), and this cannot be done through the DSD.

However, the KKT system associated to TAP always admits solutions αk and βk. That is to

say, for a given demand dk and the associated equilibrium vector Xk, there exist αk and βk which

satisfy the system:







T (Xk) +MTα− β = 0,

Γdk −MXk = 0,

βTXk = 0,

β ≥ 0,Xk ≥ 0,

The above assertion is possible due to the linearity of the problem’s constraints and the fact

that there is a solution existence proof for TAP.

To obtain a pair (α, β) compatible with (dk,Xk), the following system is solved:

T (X∗) +MTα− β = 0, (9a)

βTX∗ = 0, (9b)

β ≥ 0, (9c)

The subroutine “linsolve” from ScicosLab 4.3 is used to solve (9). This algorithm solves op-

timization problems with linear constraints and consequently will provide a solution which is a

feasible point, that is to say, a pair (α, ᾱ) that satisfies (9) as it is needed.

4.5.2 Building the Cauchy tangent direction: Step 3

In this step a projection problem must be solved. Precisely, the projection of a vector z − v over

the tangent space πz is needed. To calculate it, the following optimization problem is solved:

min
s

1

2
||z − v − s||2

s.a. C ′
z(s− z) = 0.

(10)

Here, the vector v = −η∇sL(z
k, µk).

The optimality conditions of the problem are studied. Under appropriate hypotheses which

state non singularity of the matrix C ′
z (see Lemma 4 in [18]), the existence of the Cauchy tangent

direction is proved.
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The subroutine “quapro” from ScicosLab 4.3 which solves quadratic problems with linear con-

straints is chosen to solve (10) numerically.

Step 3 also includes the stopping condition. This is satisfied by any AGP point. See [1] for

more details.

To check the stopping condition for the candidate zk numerically, the following test is carried

out: if

||zk − sk|| < ε1 y ||rktan|| < ε2,

for ε1 and ε2 small, the algorithm is stopped.

4.5.3 Finding the candidate vk,i which improves optimality: Step 4

The original version of IRMbi gives freedom to choose the method to find vk,i which satisfies all

the conditions stated.

The optimization phase is carried out with the objective of making a descent of the value of

the Lagrangian. The Cauchy tangent direction is always a descent direction for such Lagrangian

as it is proved in [10]. However, in [11] it is stated that vk,i = zk + trktan may not always be the

best candidate.

vk,i must satisfy simultaneously:

• vk,i ∈ πk,

• ||vk,i − zk||∞ < δk,i,

• for some t ∈ (0, tk,ibreak],

L(vk,i, µk) ≤ max{L(zk + trktan, µ
k), L(zk, µk)− τ1δk,i, L(z

k, µk)− τ2}.

The last one is a descent condition, see Figure 1:

PSfrag replacements

L(zk)

L(zk)− τ2

L(zk)− τ1δk,i

max

t

L(zk + td)

Figure 1: Descent condition over the candidate vk,i

To find such vk,i an algorithm proposed by Martinez in [10] is used.

The following auxiliary problem is considered:

min L(v, µk)

s.a. C ′
zk
(v − zk) = 0,

||v − zk||∞ ≤ δk,i.

(11)
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The solution to this linearly constrained problem is undoubtedly a candidate for vk,i. However,

it is not be necessary to solve the problem to find an appropriate vk,i. The successive iterates

generated by the algorithm which solves (11) are tested and the scheme is stopped as soon as there

is one approximation which verifies all the conditions for vk,i.

Each iteration of the algorithm is associated to a fixed v, and a search direction rv is calculated.

Precisely, rv = PS(v−∇F (v))−v, where S is the feasible region of problem (11). Then, a backward

linear search is carried out until the norm of the direction is less than 10−3 or 100 points have been

tested.

To solve the projection problem, the associated minimum problem is considered:

min
1

2
||v −∇F (v) −w||2

s.a. ||w − zk||∞ ≤ δk,i,

w ∈ πk.

(12)

This problem has a solution due to the fact that it consists in the problem of minimizing a

continuous function over a compact set. What is more, the solution w∗ allows building in each

iteration of the mentioned algorithm the direction rv = w∗ − v, a feasible and descent direction for

L(v, µk).

The above assertion is proved in the following lemma:

Lemma 1. The direction rv = PS(v−∇F (v))− v, where S is the feasible set which the constraints

in (12) describe, is a feasible direction. What is more, rv is a descent direction for L(v, µk).

Proof. To see that rv is a feasible direction it is checked that there exists ε > 0 such that v+αrv ∈

S ∀α ∈ [0, ε). In fact, v ∈ S due to the fact that it is an approximation built by the proposed

scheme. Let u = v + αrv = v + α(w∗ − v) where w∗ is a solution to (12) and consequently verifies

w∗ ∈ S. Re-writing, u = (1− α)v + αw∗ with S convex, it results in u ∈ S if α ∈ [0, 1].

To see that rv is a descent direction for L(v, µk), it is first proved that it is a descent direction

for F (v). rv 6= 0 is assumed. Then, w∗ 6= v and due to the fact that w∗ ∈ S, it results in:

||w∗ − (v −∇F (v))||22 < ||v − (v −∇F (v))||22, then,

||w∗ − v||22 + 2〈w∗ − v,∇F (v)〉 + ||∇F (v)||22 < ||∇F (v)||22, and consequently:

〈rv,∇F (v)〉 < 0.

Taking into account that rv belongs to Ker(C ′
zk
), in fact,

C ′
zkdv = C ′

zk(w
∗ − v) = C ′

zk(w
∗ − zk + zk − v) = 0,

considering that w∗ and v are both in πk, it results in:

〈rv,∇L(v, µ)〉 = 〈rv,∇F (v)〉 < 0

as it was desired to prove.

Numerically, the descent direction is obtained by solving problem (12) with the subroutine

“quapro” from ScicosLab 4.3. A maximum of 10 iterations are performed and each approximation

is tested as a possible candidate vk,i.
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5 Numerical experiments: Validation test example

A toy problem has been chosen as an expository device to illustrate the applicability of the Inexact

Restoration Method for bilevel problems to solve DAP.

The transport network has 3 nodes, 4 links and 2 demands represented by the pink arrows.

1

2

3

1

3

2

4

d1

d2

Figure 2: Validation test example

The link flow variable, dissagregated by demand, is in this case:

X = (x11 x
1
2 x

1
3 x

1
4 x

2
1 x

2
2 x

2
3 x

2
4)

T ,

where xji : represents the flow in arc i associated to the demand j and consequently xi = x1i + x2i .

X defined in this way verifies X ∈ R
8.

The matrices R ∈ R
4×8, Γ ∈ R

6×2 and M ∈ R
6×8 are in this case:

R =









1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1









,

Γ =














−1 0

1 0

0 0

0 −1

0 0

0 1














, M =














−1 −1 0 0 0 0 0 0

1 0 −1 1 0 0 0 0

0 1 1 −1 0 0 0 0

0 0 0 0 −1 −1 0 0

0 0 0 0 1 0 −1 1

0 0 0 0 0 1 1 −1














and

T (X) = RT t(RX)

= (t1(x1) t2(x2) t3(x3) t4(x4) t1(x1) t2(x2) t3(x3) t4(x4))
T

= (x1 x2 x3 x4 x1 x2 x3 x4)
T .

The numerical tests are carried out considering a known target demand and observed flows in

arcs 1 and 2 which correspond to an affectation of such demand. The purpose of this approach

is to guarantee that there exists a global minimum where the objective function of the associated

DAP assumes value zero.
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The constants were fixed as follows: d1 = 1.5, d2 = 1.75, ṽ1 = 1.5833333, ṽ2 = 1.6666667,

η1 = 0.5, η2 = 0.5, F1 = ||v − ṽ||2, F2 = ||d− d||2.

In the following table we present the details of the experiments carried out and the results

obtained:

Exp. Initial demand d0i N◦ it Obj Value Dem

1
(

1 2
)

14 0.003475 (1.498189 1.751238)

2
(

1 1
)

10 0.020833 (1.624989 1.624989)

3
(

1 1.5
)

12 0.003475 (1.498139 1.751272)

4
(

1.8 2
)

9 0.003472 (1.499572 1.750095)

Table 1: Experiments details

The initial value for the variable s for each experiment is

s0i = (d0i , (0 0 0 0 0 0 0 0), (0 0 0 0 0 0), (0 0 0 0 0 0 0 0))T , i = 1, 2, 3, 4.

5.1 Comments

For three of a total of four experiments (Exp. 1, 3 and 4 precisely), convergence to a global optimum

of the problem was registered. However, this was not the case for experiment 2. The iterations got

stuck around a point which is not a global minimum of the problem but which verifies the AGP

optimality condition. What is more, the objective function assumes over such point a value which

is close to the minimum value of the problem.

6 Conclusions

In this work an application of the Inexact Restoration method for bilevel problems to a real problem,

the DAP, has been presented. The advantages of the method have been exploited. Few of the

available methods to treat DAP maintain the structure of the lower level problem TAP as IRMbi

does. Most methods deal with the single level version of the DAP. What is more, for IRMbi there

are proofs of convergence to AGP points while others are just heuristics or descent methods.

In the feasibility phase the TAP was solved exactly through available software. In the optimality

phase a descent method for the Lagrangian proposed by Martinez was implemented.

Some numerical tests over a small network were carried out and convergence to global optimum

was obtained in 3 out of 4 cases. In the remaining case, convergence to an AGP point was achieved.

When applied to real size networks, this formulation leads to very large-scale problems. Conse-

quently, future research will be directed towards avoiding the dissagregated flow variable in order

to obtain computationally treatable problems.
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[4] E. Codina and J. Barceló. Adjustment of O-D trip matrices from observed volumes: An al-

gorithmic approach based on conjugate directions. European Journal of Operational Research,

155:535–557, 2004.

[5] E. Codina and L. Montero. Approximation of the steepest descent direction for the o-d matrix

adjustment problem. Annals Operational Research, 144:329–362, 2006.

[6] A. F. Izmailov, A. L. Pogosyan, and M. V. Solodov. Semismooth Newton method for the lifted

reformulation of mathematical programs with complementarity constraints. Computational

Optimization and Applications, 51(1):199–221, 2012.

[7] P. A. Lotito, E. M. Mancinelli, J. P. Quadrat, and L. Wynter. The traffic assignment toolboxes

of scilab. INRIA - Rocquencourt, 2003.

[8] P. A. Lotito and L. A. Parente. A non heuristical approach for the bilevel O-D matrix estimation

problem from traffic counts. Preprint, 2015.

[9] J. T. Lundgren and A. Peterson. A heuristic for the bilevel origin-destination-matrix estimation

problem. Transport Research B, 42:339–354, 2008.

[10] J. M. Martinez. Two-phase model algorithm with global convergence for nonlinear program-

ming. Journal of Optimization Theory and Applications, 96(2):397–436, 1998.

[11] J. M. Martinez. Inexact-restoration method with Lagrangian tangent decrease and new

merit function for nonlinear programming. Journal of Optimization Theory and Applications,

111(1):39–58, 2001.

[12] J. M. Martinez and E. A. Pilotta. Inexact-restoration algorithm for constrained optimization.

Journal of Optimization Theory and Applications, 104(1):135–163, 2000.

15

http://www-rocq.inria.fr/metalau/ciudadsim/


[13] J. M. Martinez and E. A. Pilotta. Inexact-restoration methods for nonlinear programming:

Advances and perspectives. In L. Qi, K. Teo and X. Yang editors, Optimization and Control

with Applications, pages 271–292, Springer, 2005.

[14] S. Nguyen. Estimating an o-d matrix from network data: A network equilibrium approach.

Publication 87, Centre de recherche sur les transports (CRT), Université de Montréal, Montréal,
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1990.

[17] O. Stein. Lifting mathematical programs with complementarity constraints. Mathematical

Programming, 131:71–94, 2012.

[18] J. Walpen. Sobre la resolución del problema de ajustar la matriz origen destino en una red
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