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Abstract
This paper aims to solve the Black–Scholes (B–S) model for the European options pricing
problem using a hybrid method called fractional generalized homotopy analysis method
(FGHAM). The convergence region of the B–S model solutions are clearly identified using
h-curve and the closed form series solutions are produced using FGHAM. To verify the
convergence of the proposed series solutions, sequence of errors are obtained by estimating
the deviation between the exact solution and the series solution, which is increased in number
of terms in the series. The convergence of sequence of errors is verified using the convergence
criteria and the results are graphically illustrated. Moreover, the FGHAM approach has
overcome thedifficulties of applyingmultiple integration anddifferentiationprocedureswhile
obtaining the solution using well-established methods such as homotopy analysis method
and homotopy perturbation method. The computational efficiency of the proposed method
is analyzed using a comparative study. The advantage of the proposed method is shown
with a numerical example using the comparative study between FGHAM and Monte Carlo
simulation. Using the numerical example, analytical expression for the implied volatility is
derived and the non-local behavior is studied for the various values of the fractional parameter.
The results of FGHAMare statistically validatedwith the exact solution and the other existing
computational methods.

Keywords Fractional calculus · Laplace-type integral transform · Fractional partial
differential equations · Mittag–Leffler function · Implied volatility · Monte Carlo simulation

Mathematics Subject Classification 65H20 · 35G31 · 35C10 · 26A33 · 34A08 · 35R11

1 Introduction

The Black–Scholes equations are the most popular mathematical models used for analyz-
ing the pricing option problems in financial mathematics. Several authors have analyzed
BS model using the various mathematical and numerical techniques, and proposed either
closed form solution or numerical solution, respectively. Even though the BSmodel provides
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reasonable solution to analyze pricing option problems, the governing BS equation was con-
structed under certain limitations of assuming various financial parameters such as volatility
and risk-free rate as constants. Hence, determining the essential financial parameter ‘implied
volatility’ for options cannot be estimated in closed form. To overcome the difficulty, many
authors have proposed several types of BS models in different perspective. Rouah (2014)
derived various types of Black–Scholes PDE for the option by considering hedging and
Replication, etc. James and Garven (1986) has demonstrated an alternative derivation of the
Black–Scholes option pricing formula based on the risk neutrality arguments.

Orlando and Taglialatela (2017) estimated the implied volatility for the options using
both the closed form solutions, and numerical solutions and the results are computationally
illustrated. This motivated to solve fractional BS equations through which the non-local
behavior of option price and implied volatility can be analyzed. Fractional BS equations
were initiated especially to study the fractal structure of the financial market. Wyss (2000)
developed a fractional Black–Scholes equation with a time-fractional derivative to the price
European call option. Jumarie (2008, 2010 derived the time- and space-fractional Black–
Scholes equations and studied the pricing problems for both the European and American put
options and gave optimal fractional Merton’s portfolio.

Recently, the theory and development of new computational methodology of solving
fractional Black–Scholes partial differential equation has attracted the attention of many
researchers over the past 2 decades. Company et al. (2008) applied a semi-discretization
technique to solve the B–S option pricing consisting of partial differential equations. Gülkaç
(2010) designed an homotopy perturbation method (HPM) to yield a solution for the B–S
equation with the European option pricing problem. Grossinho andMorais (2013) introduced
anupper and lower solutionsmethod to solve the non-linear boundary value problem related to
financialmodeling. Lesmana andWang (2013) developed an upwind finite-differencemethod
to solve the non-linearB–Sequation for governing theEuropeanoption pricing problem.Song
andWang (2013) applied a finite-differencemethod to solve the fractional B–S option pricing
model. Elbeleze et al. (2013) initiated a combination of HPM, Sumudu transform, and He’s
polynomials to produce a solution for the fractional B–S equation. Kumar et al. (2014) used
both theHPMand homotopy analysismethod (HAM) techniques to tackle the time-fractional
B–S equation with boundary conditions pertaining to the European option pricing problem.
Ghandehari and Ranjbar (2014) identified the Lagrange multipliers by means of the Sumudu
transform to produce an accurate solution for the fractional B–S equation along with the
initial condition for the European option pricing problem. Xiaozhong et al. (2016) proposed
a universal difference method for handling the time–space-fractional B–S equation. Ravi
Kanth and Aruna (2016) employed the fractional differential transformmethod and modified
the fractional differential transformmethod to solve the time-fractional B–S European option
pricing equation.

Khan and Ansari (2016) solved the fractional B–S European option pricing equation using
the Sumudu transform and its derivatives. Granada et al. (2017) applied the HPM model to
solve the B–S equation. Ouafoudi and Gao (2018) used both HPM and modified HPM and
Sumudu transform to yield solutions for the B–S equation in the form of convergence power
series with a regularly calculated element. Farhadi and Erjaee (2018) introduced a time-
fractional derivative for solving the B–S equation. Sawangtong et al. (2018) investigated
an analytical solution for undertaking the B–S equation with two assets using the Laplace
transform HPM approach in the Liouville–Caputo fractional derivative sense. Yavuz and
Ozdemir (2018) initiated a conformable fractional adomiandecompositionmethod (CFADM)
and conformable fractional modified HPM to tackle the fractional B–S equation. Kittipoom
(2018) applied an invariant subspace method to solve the time- and pricing-fractional B–S
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equation. Jena and Chakraverty (2019) introduced a residual power series (RPS) method for
finding the analytical solution for the fractional B–S equation with an initial condition in the
European option pricing problem. Prathumwan andTrachoo (2019) applied the LaplaceHPM
to yield an approximate solution for the B–S partial differential equation in the European
put option with two assets. Uddin and Taufiq (2019) solved the time-fractional B–S equation
through a transformation method with the radial basis kernel. Sumiati (2019) introduced the
Laplace–Adomian decomposition method to solve the B–S equation.

Osman et al. (2018) investigated the coupled Schrodinger–Boussinesq equation with vari-
able coefficients and used the unifiedmethod to obtain two categories of newnon-autonomous
complex wave solutions. Osman and Machado (2018) analyzed the (2 + 1)-dimensional
Bogoyavlensky–Konopelchenko equation with variable coefficients via the generalized uni-
fied method. They also studied the propagation and dynamical behaviors of these solutions
for the different choices of arbitrary variable coefficients. Rezazadeh et al. (2019) examined
the hyperbolic rational solutions for four conformable fractional Boussinesq-like equations
using the exponential rational function method. Osman et al. (2019a) applied the unified
method to examine the (3 + 1)-dimensional conformable fractional Zakharov–Kuznetsov
equation with power-law non-linearity and determined the following types of wave solutions:
solitary, soliton, elliptic, and periodic (hyperbolic) wave rational solutions. Ghanbari et al.
(2019) proposed new analytical obliquely propagating wave solutions for the time-fractional
extended Zakharov–Kuzetsov equation with conformable derivative. Osman (2019) ana-
lytically studied the water wave solutions for the coupled fractional variant Boussinesq
equation and investigated the waves in fluid dynamics. Osman et al. (2019b) investigated
the non-autonomous Schrödinger–Hirota equation with power-law non-linearity using the
unifiedmethod.Osman andWazwaz (2019) studied (3 + 1)-dimensionalBoiti–Leon–Manna–
Pempinelli equation and analyzed the propagation and dynamical behaviors of the solutions
with different free parameters. Liu et al. (2019) investigated the Hirota equation with vari-
able coefficients. This method described the pulse propagation in inhomogeneous fibersmore
realistically than the other constant coefficient equation. Javid et al. (2019) applied the gen-
eralized unified method to analyze the thermophoretic motion equation. They analyzed the
soliton-like thermophoresis of wrinkles in graphene sheet based on the Korteweg-de Vries
(KdV) equation and illustrated the solutions graphically. Osman et al. (2019c) applied the
modified auxiliary equation method to investigate the complex wave structures related to the
complex Ginzburg–Landau model. Lu et al. (2020) examined the Cahn–Hilliard equation
to study the physical behaviors of the basic elements related to the phase decomposition of
(Fe–Cr–Mo) and (Fe–Cr–Cu) ternary alloys using both the analytical and numerical methods.
Furthermore, they studied the relevant dynamical separation process.

Saratha et al. (2020) developed the FGHAM approach for solving non-linear fractional
differential equations. The proposed method overcame the limitations of HAM by avoiding
the iterative differentiation and integration requirements. Furthermore, themethod also solved
the limitations of usual Laplace-type integral transform (G-transform).

The effectiveness of FGHAMmotivated to study its application to tackle B–S equation in
the European option pricingmodel. Themerits of solving the B–S equation with FGHAMare
clearly illustrated by identifying the convergence regions through the h-curve. The solutions
thus obtained present an excellent agreement with the existing results.

The organization of this paper is as follows: Sect. 2 discusses the preliminaries of FGHAM
for solving theB–Smodel, the basic definitions, and the fundamental results that are necessary
for understanding the present analysis. Section 3 proposes an elaborate description of the new
hybrid methodology to solve non-linear fractional differential equations. Section 4 justifies
the reason for using FGHAM to solve the non-linear fractional B–S equation governing
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European option valuation under transaction costs. Section 5 presents an analysis of the
non-linear generalized fractional B–S equation governing European option valuation under
transaction costs. Section 6 presents an analysis of fractional B–S option pricing equation
and also compares with Monte Carlo simulation. Section 7 validates the statistical analysis
for the above numerical examples. Section 8 draws the concluding remarks and presents the
suggestions for future research.

2 Preliminaries

This section discusses some basic definitions of fractional calculus used in this study.

Definition 2.1 The Riemann–Liovillie fractional integrals (Samko et al. 1993) of the left and
right sides are defined for any function φ(x) ∈ L1(a, b) as:

(Iα
a+φ)(x) = 1

�(α)

∫ ∞

a
(x − t)α−1φ(t)dt, x > a.

(Iα
b−φ)(x) = 1

�(α)

∫ b

−∞
(t − x)α−1φ(t)dt, x < b.

Definition 2.2 TheRiemann integral on the half axis (Samko et al. 1993) subjects to a variable
limit which can be expressed as:

(Iα
0+φ)(x) = 1

�(α)

∫ x

0
(x − t)α−1φ(t)dt, 0 < x < ∞.

Definition 2.3 The left- and right-handed Riemann–Liouville fractional derivatives (Samko
et al. 1993) of order α, 0 < α < 1, in the interval [a, b] are defined as:

(Dα
a+ f )(x) = 1

�(1 − α)

d

dx

∫ x

a
(x − t)−α f (t)dt .

(Dα
b− f )(x) = 1

�(1 − α)

d

dx

∫ b

x
(t − x)−α f (t)dt .

Definition 2.4 The Caputo fractional derivative of order α is defined as:

Dα
a f (x) = 1

�(m − α)

∫ x

a

f (m)ξ

(x − ξ)α−m+1 dξ,

where m − 1 < α ≤ m, m ∈ N .

Definition 2.5 The Mittag–Leffler function, which is a generalization of the exponential
function, is defined as:

Eα(z) =
∞∑
n=0

zn

�(αn + 1)
,

where α ∈ C, R(α) > 0.

Definition 2.6 The continuous function f : R → R, t → f (t) has a fractional derivative of
order kα. For any positive integer k and for any α, 0 < α < 1, the Taylor series of fractional
order is given by:

f (t + h) =
∞∑
k=0

hαk

(αk)! f
(αk)(t), 0 < α < 1,
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where �(1 + αk) = (αk)! .
Lemma 2.1 Let f (t) be a continuous function. Then, the solution y(t), y(0) = 0 is given
by:

y =
∫ t

0
f (ξ)(dξ)α

= α

∫ t

0
(t − ξ)(α−1) f (ξ)dξ, 0 < α < 1.

2.1 Fractional generalized integral transform (fractional G-transform)

This section introduces the fractional G-transform and discusses some of the properties
proposed by Saratha et al. (2020).

Definition 2.7 Let g(t) be any time-domain function defined for t > 0. Then, the fractional
G-transform of order α of g(t) is denoted by Gα[g(t)] and is defined as:

Gα[g(t)] = Hα[u] = u p+1
∫ ∞

0
g(ut)Eα(−t)α(dt)α

= u p−α+1
∫ ∞

0
g(t)Eα

(−t

u

)α

(dt)α

= lim
M→∞ u p−α+1

∫ M

0
g(t)Eα

(−t

u

)α

(dt)α,

where Eα is the Mittag–Leffler function.

The fractional G-transform satisfies the following properties:

Theorem 2.1 (Duality in fractional G-transform)
If the fractional-order Laplace Transform of a function g(t) is Lα{g(t)} = Fα(s), then the
fractional G-transform of order α of g(t) is:

Gα[g(t)] = Hα(u) = u p−α+1Fα

(
1

u

)
.

Theorem 2.2 (Scaling property) If Gα[g(t)] = Hα(u), then:

Gα[g(at)] = 1

aα
Hα

[u
a

]
,

where a is a non-zero constant.

Theorem 2.3 If Gα[g(t)] = Hα(u), then:

Gα[g(t − b)] = Eα

(−b

u

)α

Hα(u).

Theorem 2.4 If Gα[g(t)] = Hα(u), then:

Gα[Eα(aαtα)g(t)] =
(

1

1 − au2

)α

Hα

(
u

1 − au

)
.

The systematic procedure for the FGHAM (Saratha et al. 2020) is given in the next section.
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3 Fractional generalized homotopy analysis method (FGHAM)

Consider a fractional time non-linear partial differential equation with the following initial
condition:

Dαv(x, t) + Rv(x, t) + Nv(x, t) = g(x, t), v(x, 0) = f (x), (3.1)

where Dα is the fractional differential operator Dα = ∂α

∂tα , R is the linear differential operator
, N is the non-linear differential operator, and g(x, t) is the source term.
The following systematic procedure steps are used to solve the non-linear fractional differ-
ential equations:
Step 1: Using fractional G-transform, Eq. (3.1) is transformed to:

Gα[Dαv(x, t)] + Gα[Rv(x, t)] + Gα[Nv(x, t)] = Gα[g(x, t)]. (3.2)

Step 2: Applying the derivative property of fractional G-transform, Eq. (3.2) is expressed
as:

Gα[v(x, t)] − u p+1v0(x, t) + uα(Gα[Rv(x, t)] + Gα[Nv(x, t)] − G[g(x, t)]) = 0.

(3.3)

Step 3: Decomposing the non-linear terms in Eq. (3.3), the following homotopy is con-
structed:

(1 − s)Gα[φ(x, t; s) − v0(x, t)] = hsH(x, t)N [φ(x, t; s)], (3.4)

where s ∈ [0, 1] is an embedding parameter and φ(x, t; s) is a real function of x , t , and s,
while h is a non-zero auxiliary parameter, H(x, t) �= 0 is an auxiliary function, v0(x, t) is
an initial guess of v(x, t), and φ(x, t; s) is an unknown function. Equation (3.4) is called the
zeroth-order deformation equation.
In (3.4), if s = 0 and s = 1, then φ(x, t, 0) = v0(x, t) and φ(x, t, 1) = v(x, t), respectively.
If s ∈ [0, 1], then the solution is transferred from v0(x, t) to v(x, t).
Step 4: Deriving the nth-order deformation equation in (3.5) as in (Liao 1992):

Gα[vn(x, t) − χnvn−1(x, t)] = hH(x, t)Rn(vn−1(x, t)). (3.5)

Step 5: Using the Inverse G-transform on both the sides of Eq. (3.5), the following equation
is obtained:

vn(x, t) = χnvn−1(x, t) + hG−1
α [H(x, t)Rn(vn−1, x, t)], (3.6)

where

Rn(vn−1, x, t) = Gα[v(x, t)] − u p+1(1 − χn)v0(x, t)

+uα(Gα[Rv(x, t)] + G[Nv(x, t)] − Gα[g(x, t)]). (3.7)

and

χn =
{
0 n ≤ 1

1 n > 1.

Step 6: The following solution is obtained:

v(x, t) = v0(x, t) +
∞∑
n=1

vn(x, t). (3.8)
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3.1 Error calculation and convergence of FGHAM

It is essential to evaluate the convergence of the series solution obtained in Eq. (3.8) by
FGHAM as in Bagyalakshmi et al. (2016). The approximate solution of (3.1) is obtained as
vapp(k)(x, t) = ∑k

n=0 vn(x, t) from (3.8) by truncating the terms for n = k+1, k+2, . . . ∞.
Then, the exact solution of Eq. (3.1) is represented as:

v(x, t) = vapp(k)(x, t) + evk(x, t), (3.9)

where evk(x, t) is the error function. Generally, the absolute error is defined as evk(x, t) =
|v(x, t) − vapp(k)(x, t)|. To establish convergence of equation (3.8), it is necessary to show
that the sequence Evk(x, t) is a convergent sequence. Since the sequence is bounded below,
it is sufficient to prove that the sequence Evk(x, t) is monotonically decreasing. As such, the

convergence criteria are Evp(x,t)
Evk (x,t)

< 1 for k < p.
Using the following algorithm, convergence of the iterative solution vapp(k)(x, t) to the

exact solution v(x, t) is shown below:

• Compute vapp(k)(x, t);
• Compute vapp(p)(x, t), for k ≤ p;
• Define Evk(x, t) = |v(x, t) − vapp(k)(x, t)| Evp(x, t) = |v(x, t) − vapp(p)(x, t)| for

some x and t ;
• If Evk(x, t) ≥ Evp(x, t), then vapp(k)(x, t) converges to the exact solution v(x, t), when

k → ∞
The following section solves the fractional B–S equation and generalized fractional B–S
equation using FGHAM. The obtained solutions are compared with those of the exact solu-
tion along with statistical validation. The results indicate an excellent agreement with some
existing methods.

4 Fractional Black–Scholes equation

Considering the fractional B–S equation:

∂αv

∂tα
= ∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, 0 < α ≤ 1, (4.1)

with the initial condition: v(x, 0) = max(ex − 1, 0).
Equation (4.1) contains parameter k = 2r

σ 2 , where k represents a balance between the interest

rate and variability of stock returns, with the dimensionless time to expiry σ 2

2T . The other
four dimensionless parameters are the exercise price E , expiry T , volatility of the underlying
asset σ 2, and risk-free interest rate r as in the original problem. Applying the fractional
G-transform on both the sides of Eq. (4.1):

Gα

[
∂αv(x, t)

∂tα

]
= Gα

[
∂2v(x, t)

∂x2
+ (k − 1)

∂v(x, t)

∂x
− kv(x, t)

]

1

uα
Gα [v(x, t)] − 1

uα−1 v(x, 0)u p = Gα

[
∂2v(x, t)

∂x2
+ (k − 1)

∂v(x, t)

∂x
− kv(x, t)

]

Gα [v(x, t)] − u p+1v(x, 0) − uαGα

[
∂2v(x, t)

∂x2
+ (k − 1)

∂v(x, t)

∂x
− kv(x, t)

]
= 0.
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Applying FGHAM:

vn(x, t) = χnvn−1(x, t) + hG−1
α [Rn(vn−1, x, t)],

where

Rn[vn−1, x, t] = Gα[vn−1(x, t)] − (1 − χn)u
p+1v(x, 0)

−uαGα

[
∂2vn−1(x, t)

∂x2
+ (k − 1)

∂vn−1(x, t)

∂x
− kvn−1(x, t)

]
.

Solving the above equation for n = 1, 2, 3, . . .:

v0(x, t) = max(ex − 1, 0)

v1(x, t) = −hk
tα

�(α + 1)
[max(ex , 0) − max(ex − 1, 0)]

v2(x, t) = −h(h + 1)k
tα

�(α + 1)
[max(ex , 0) − max(ex − 1, 0)]

−h2k2
t2α

�(2α + 1)
[max(ex , 0) − max(ex − 1, 0)]

v3(x, t) = (1 + h)v2(x, t) − h2(h + 1)k2
t2α

�(2α + 1)
[max(ex , 0) − max(ex − 1, 0)]

−h3k3
t3α

�(3α + 1)
[max(ex , 0) − max(ex − 1, 0)].

Similarly, v4, v5, . . . are estimated and the series solution is obtained, that is:

v(x, t) =
∞∑
n=0

vn(x, t)

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · · (4.2)

If h = −1, Eq. (4.2) can be expressed as:

v(x, t) = max(ex − 1, 0)Eα(−ktα) + max(ex , 0)
(
1 − Eα(−ktα)

)
, (4.3)

where Eα represents the Mittag–Leffler function.
The series solution of the fractional time equation (4.1) obtained in terms of the Mittag–

Leffler function in Eq. (4.3) approaches the exact solution shown in Eq. (4.4), when α = 1
÷:

v(x, t) = max(ex − 1, 0)e−kt + max(ex , 0)(1 − e−kt ). (4.4)

Case 1. Consider the Vanilla call option (Company et al. 2008) with parameter σ = 0.2,
r = 0.04, α = 1, τ = 0.5 year, then k = 2.
The solution of Eq. (4.4) is:

v(x, t) = max(ex − 1, 0)e−2t + max(ex , 0)(1 − e−2t ). (4.5)

Equation (4.5) is the exact solution of the standard B–S equation.
Table 1 shows the absolute errors subject to some particular points α = 1 and x = 0.5.

This proves the convergence of the series solution of (4.1). Figure 1 depicts a comparison of
the absolute errors for the different sequences of partial sums.
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Table 1 Absolute errors for the
Black–Scholes equation

t Ev3(x, t) Ev4(x, t) Ev5(x, t)
0 0. 0. 0.

0.1 −0.0000640864 2.58026 × 10−6 −8.64113 ∗ 10−8

0.2 −0.000986713 0.000079954 −5.37937 ∗ 10−6

0.3 −0.00481164 0.000588364 −0.0000596361

0.4 −0.0146623 0.00240437 −0.000326297

0.5 −0.0345461 0.00712056 −0.00121277

0.6 −0.0691942 0.0172058 −0.00353021

0.7 −0.12393 0.0361364 −0.0086823

0.8 −0.204563 0.0685035 −0.0188779

0.9 −0.317299 0.120101 −0.0373629

1 −0.468669 0.197998 −0.0686686

Fig. 1 A comparison of absolute errors between FGHAM and exact solution

Fig. 2 The h-curve of the solution for the B–S equation

4.1 Results and discussion

The convergence region is obtained using the h-curve. Figure 2 shows the convergence
region of Eq. (4.1) between − 2 and 1. Figure 3 indicates that the FGHAM results almost
coincide with those of HAM (Kumar et al. 2014), HPM [Kumar et al. (2014)],MFDTM [Ravi
Kanth andAruna (2016)], RPS [Jena and Chakraverty (2019)], CFADM [Yavuz andOzdemir
(2018)], and exact solution v(x, t) of the B–S equation. Figure 4 illustrates the solution of
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Fig. 3 Comparison among the results of FGHAM, HAM, HPM, MFDTM, RPS, CFADM, and the exact
solution for the B–S equation using the fractional parameter α = 1

Fig. 4 Agraphical illustration of the solution for theB–S equation using various settings of fractional parameter
α = 0.25, 0.5, 0.75, 1

the B–S equation with the various settings of the fractional parameter α = 0.25, 0.5, 0.75, 1,
respectively.

Figure 5 depicts the financial pricing derivatives subjects to the different settings of the
fractional parameter α = 0.25, 0.5, 0.75 and 1.

Table 2 provides the pricing option derivatives using the fractional parameterα = 1,which
depicts a good agreement with the results of FGHAM, exact solution, RPS, and CFADM,
respectively.

Table 3 and 4 provide the pricing option derivatives using the fractional parameter α =
0.75, α = 0.5, and depict a good agreement with the results of FGHAM, MFDTM, RPS,
and CFADM, respectively.
Case 2. Consider the Vanilla call option (Company et al. 2008) with parameter σ = 0.2,
r = 0.01,α = 1, τ = 1 year, then k = 5.
The solution of equation (4.6) is obtained as:

v(x, t) = max(ex − 1, 0)e−5t + max(ex , 0)(1 − e−5t ). (4.6)

Equation (4.6) is the exact solution for the given equation.
Table 5 shows the absolute errors with respect to some particular points α = 1 and x = 1.

This proves the convergence of the series solution of (4.1). Figure 6 shows a comparison of
the approximate absolute errors subject to the different sequences of partial sums.
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Fig. 5 The solution for Black–Scholes equation subject to various settings of fractional parameter α =
0.25, 0.5, 0.75, 1 and auxiliary parameter h = −1 are shown in a–d, respectively

4.2 Results and discussion

The convergence region is obtained using the h-curve. Figure 7 shows that the convergence
region of Eq. (4.1) is between − 2 and 2. Figure 8 indicates that the FGHAM results almost
coincide with those of HAM, HPM, MFDTM, RPS, CFADM, and the exact solution for the
B–S equation. Figure 9 illustrates the solution for the B–S equation subject to the various
settings of the fractional parameter α = 0.25, 0.5, 0.75, 1,.

Figures 10 depicts the financial pricing derivatives for the different settings of the fractional
parameter α = 0.25, 0.5, 0.75 and 1, respectively.

Table 6 provides the pricing option derivatives using fractional parameter α = 1, depicts
a good agreement among the results of FGHAM, the exact solution, RPS, and CFADM
respectively.

Tables 7 and 8 provide the pricing option derivatives using fractional parameter α = 0.75,
α = 0.5, and depict a good agreement among the results of FGHAM, MFDTM, RPS, and
CFADM, respectively.

4.3 Non-local behavior of implied volatility

The implied volatility, an important financial parameter, which plays a vital role in pricing
option problem.Generally, due to themathematical structure of the integer orderB–S formula,
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Fig. 6 A comparison of absolute errors between FGHAM and exact solution

Fig. 7 The h-curve of the solution for the B–S equation

Fig. 8 Comparison among the results of FGHAM, HAM, HPM, MFDTM, RPS, CFADM, and the exact
solution for the B–S equation using fractional parameter α = 1

Fig. 9 A graphical illustration of the solution for the B–S equation subject to the various settings of the
fractional parameter α = 0.25, 0.5, 0.75, 1
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Table 5 Absolute errors
calculation for the B–S equation

t Ev3(x, t) Ev4(x, t) Ev5(x, t)
0 0. 0. 0.

0.05 −0.00015495 7.81068 × 10−6 −3.27342 × 10−7

0.1 −0.00236399 0.000240174 −0.000020243

0.15 −0.0114291 0.00175454 −0.000222998

0.20 −0.0345461 0.00712056 −0.00121277

0.25 −0.0807756 0.0209496 −0.00448168

0.30 −0.16063 0.0503073 −0.0129739

0.35 −0.285753 0.105035 −0.0317411

0.40 −0.468669 0.197998 −0.0686686

0.45 −0.722587 0.345284 −0.135258

0.50 −1.06125 0.566353 −0.24745

Fig. 10 The solution for the B–S equation subject to the various settings of the fractional parameter α =
0.25, 0.5, 0.75, 1 and the auxiliary parameter h = −1 are shown in a–d, respectively

the analytical expression to estimate the implied volatility cannot be obtained in the closed
form. However, it is worth to mention that the presence of fractional parameter α in the
fractional B–S mathematical model has an advantage of memory-less property. Thus, the
non-local behavior of the implied volatility in terms of option can be analytically estimated
in the closed form for the various values of the fractional parameter α.
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Table 9 Implied volatility for various values of α, k = 2, r = 0.04, σ = 0.2, and t = 0.5

Dataset σ0.25 σ0.5 σ0.75 σ1 = σ

x = 5 0.26959013221709927 0.25020190169869055 0.22534626071806207 0.19999999999999615

x = 10 0.2695901322167636 0.2502019016993923 0.22534626071782968 0.2

x = 15 0.269590132197852 0.2502019016920359 0.22534626079582623 0.20000000006328994

x = 20 0.26959013146068167 0.2502019010464151 0.22534625921403661 0.2

x = 25 0.269588858270559 0.25020118683230536 0.22534732629077037 0.19999896305091158

x = 30 0.26983459277301525 0.24979419077707743 0.2252233381567576 0.20039801034391733

x = 35 0.2 0.2 0.17888543819998318 0.1932993161855452

Table 10 Implied volatility σα for various values of α, k = 5, r = 0.01, σ = 0.2, and t = 1

Dataset σ0.25 σ0.5 σ0.75 σ1 = σ

x = 5 0.15148352991336414 0.14407514870762786 0.15247084850620074 0.1932455532033679

x = 10 0.15148352991267927 0.14407514870761357 0.15247084850689208 0.19324555320331422

x = 15 0.15148352981675964 0.1440751489405439 0.15247084831011348 0.19324555322044148

x = 20 0.15148353648258622 0.1440751628169402 0.15247083948762233 0.19324555276627591

x = 25 0.15147975638390557 0.14407393257075862 0.15247068853641338 0.19324594484458788

x = 30 0.1513339379792706 0.14319019692101542 0.1526270590592904 0.19327419053931703

The implied volatility function σ(x, t)with respect to the fractional parameterα is denoted
by σα(x, t) and can be derived from (4.1) as shown below: (Dadachanji 2015).

σα(x, t) =

√√√√√ 2r
[

∂v(x,t)
∂x − v(x, t)

]
∂αv(x,t)

∂tα − ∂2v(x,t)
∂x2

+ ∂v(x,t)
∂x

. (4.7)

Using Eq. (4.7), the implied volatility σα is estimated for the various values of fractional
parameter α and the results are shown in Tables 9 and 10. Even though the implied volatility is
assumed to be a constant, the observation from theTables 9 and 10 clearly reveals the pre-local
change in the implied volatility. This result illustrates the importance of the fractional-order
B–Smodel over the integer order in analyzing the non-local behavior of the implied volatility.

Even though the B–S model is considered with the constant volatility due to the presence
of the fractional parameter α, the non-local behavior of implied volatility [α ∈ (0, 1)] is
observed and the results are presented in Tables 9 and 10.

5 Generalized fractional Black–Scholes equation

Considering the following generalized B–S equation:

∂αv(x, t)

∂tα
+ 0.08(2 + sinx)2x2

∂2v(x, t)

∂x2
+ 0.06x

∂v(x, t)

∂x
− 0.06v(x, t) = 0, 0 < α ≤ 1,

(5.1)

with the initial condition v(x, 0) = max(x − 25e−0.06, 0).
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Applying the fractional G-transform on both the sides of Eq. (5.1):

Gα

[
∂αv(x, t)

∂tα
+ 0.08(2 + sinx)2x2

∂2v(x, t)

∂x2
+ 0.06x

∂v(x, t)

∂x
− 0.06v(x, t)

]
= 0

Gα[v(x, t)] − u p+1v(x, 0)

+uαGα

[
0.08(2 + sinx)2x2

∂2v(x, t)

∂x2
+ 0.06x

∂v(x, t)

∂x
− 0.06v(x, t)

]
= 0.

Applying FGHAM ÷:

vn(x, t) = χnvn−1(x, t) + hG−1
α [Rn(vn−1, x, t)],

where

Rn[vn−1, x, t] = Gα[vn−1(x, t)] − (1 − χn)u
p+1v(x, 0)

+uαGα

[
0.08(2 + sinx)2x2

∂2v(x, t)

∂x2
+ 0.06x

∂v(x, t)

∂x
− 0.06v(x, t)

]
.

Solving the above equation for n = 1, 2, 3, . . .:

v0(x, t) = max(x − 25e−0.06, 0)

v1(x, t) = hx
0.06tα

�(α + 1)
− hmax(x − 25e−0.06, 0)

0.06tα

�(α + 1)

v2(x, t) = h(h + 1)
0.06tα

�(α + 1)
[x − max(x − 25e−0.06, 0)]

−h2
(0.06)2t2α

�(2α + 1)
[x − max(x − 25e−0.06, 0)]

v3(x, t) = (1 + h)v2(x, t) − h2(h + 1)
(0.06)2t2α

�(2α + 1)
[x − max(x − 25e−0.06, 0)]

+h3
(0.06)3t3α

�(3α + 1)
[x − max(x − 25e−0.06, 0)].

Similarly, v4, v5, . . . are estimated and the series solution is obtained as÷:

v(x, t) =
∞∑
n=0

vn(x, t)

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · · (5.2)

If h = −1, Eq. (5.2) can be expressed as:

v(x, t) = x
(
1 − Eα(−0.06tα)

) + max(x − 25e−0.06, 0)Eα

(−0.06tα
)
, (5.3)

where Eα represents the Mittag–Leffler function.
The series solution of the fractional time equation (5.1) obtained in term of the Mittag–

Leffler function in Eq. (5.3) approaches the exact solution as shown in Eq. (5.4), when α = 1:

v(x, t) = x(1 − e0.06t , 0) + max(x − 25e−0.06, 0)e−0.06t . (5.4)

Table 11 shows the absolute errors with respect to some particular points α = 1 and x = 5.
This proves the convergence of series solution of Eq. (5.1). Figure 11 depicts a comparison
of the approximate absolute errors subject to the different sequence of the partial sums.
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Table 11 Absolute errors for the generalized B–S equation

t Ev3(x, t) Ev4(x, t) Ev5(x, t)
0 0. 0. 0.

2 −0.0000442579 − 1.0579 ∗ 10−6 − 2.10969 × 10−8

4 −0.000725752 −0.0000345516 − 1.37401 × 10−6

6 −0.00376707 −0.000267873 −0.0000159304

8 −0.012212 −0.00115281 −0.0000911278

10 −0.030594 −0.003594 −0.000354002

12 −0.0651261 −0.00913885 −0.0010767

14 −0.123915 −0.0201917 −0.00276619

16 −0.217202 −0.0402552 −0.0062813

18 −0.357638 −0.0742026 −0.0129806

20 −0.560585 −0.128585 −0.0249046

Fig. 11 A comparison of absolute errors between FGHAM and the exact solution

Fig. 12 The h-curve of the solution for the B–S equation

5.1 Results and discussion

The convergence region is obtained using the h-curve. Figure 12 shows that the conver-
gence region of equation (4.1) is between -2 and 2. Figure 13 indicates that the FGHAM
results coincide with those of HAM, HPM, MFDTM, RPS, CFADM, and the exact solution
v(x, t) of the B–S equation. Figure 14 illustrates the solution v(x, t) for the B–S equation
subject to the various settings of the fractional parameter α = 0.25, 0.5, 0.75, 1, respectively.
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Fig. 13 Comparison among the results of FGHAM, HAM, HPM, MFDTM, RPS, CFADM, and the exact
solution for the B–S equation using fractional parameter α = 1

Fig. 14 Graphical illustrations of the solution for the B–S equation subject to the various settings of the
fractional parameter α = 0.25, 0.5, 0.75, 1

Figure 15 depicts the information on the financial pricing derivatives using different set-
tings of the fractional parameter α = 0.25, 0.5, 0.75 and 1, respectively.

Table 12 provides the pricing option derivatives using fractional parameter α = 1, which
depicts a good agreement among the results of FGHAM, the exact solution, RPS, and
CFADM, respectively.

Tables 13 and 14 provide the pricing option derivatives subject to the fractional parameter
α = 0.75, α = 0.5, which depict a good agreement among the results of FGHAM,MFDTM,
RPS, and CFADM, respectively.

6 Fractional Black–Scholes option pricing equation

Considering the following fractional Black–Scholes option pricing equation:

∂αv(x, t)

∂tα
+ σ 2

2
x2

∂2v(x, t)

∂x2
+ (r − τ)x

∂v(x, t)

∂x
− rv(x, t) = 0, 0 < α ≤ 1 (6.1)

subject to the initial condition:

v(x, 0) = max(Ax − B, 0).

Applying the fractional G-transform on both the sides of the equation (6.1):

Gα

[
∂αv(x, t)

∂tα
+ σ 2

2
x2

∂2v(x, t)

∂x2
+ (r − τ)x

∂v(x, t)

∂x
− rv(x, t)

]
= 0
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Fig. 15 The solution of v(x, t) for the B–S equation using the various settings of the fractional parameter
α = 0.25, 0.5, 0.75, 1 and the auxiliary parameter h = −1 are shown in a–d, respectively

Gα [v(x, t)] − u p+1v(x, 0)+uαGα

[
σ 2

2
x2

∂2v(x, t)

∂x2
+ (r−τ)x

∂v(x, t)

∂x
− rv(x, t)

]
= 0.

Applying FGHAM:

vn(x, t) = χnvn−1(x, t) + hG−1
α [Rn(vn−1, x, t)],

where

Rn[vn−1, x, t] = Gα[vn−1(x, t)] − (1 − χn)u
p+1v(x, 0)

+uαGα

[
σ 2

2
x2

∂2v(x, t)

∂x2
+ (r − τ)x

∂v(x, t)

∂x
− rv(x, t)

]
.

Solving the above equation for n = 1, 2, 3, . . .

v0(x, t) = max(Ax − B, 0)

v1(x, t) = h
tα

�(α + 1)
[(r − τ)]xmax(A, 0) − rmax(Ax − B, 0)]

v2(x, t) = (h + 1)v1(x, t) + h2
t2α

�(2α + 1)
[r2max(Ax − B) − (r2 − τ2)xmax(A, 0)]

v3(x, t) = (h + 1)v2(x, t) + h2(h + 1)
t2α

�(2α + 1)
[r2max(Ax−B, 0) − (r2−τ2)xmax(A, 0)]
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Fig. 16 The h-curve of the solution for the B–S equation

Fig. 17 A graphical illustration of the solution for the B–S equation subject to the various settings of the
fractional parameter α = 0.25, 0.5, 0.75, 1

+h3
t3α

�(3α + 1)
[(r3 − τ3)xmax(A, 0) − r3max(Ax − B, 0)].

Similarly, v4, v5, . . . are estimated and the series solution is obtained as:

v(x, t) =
∞∑
n=0

vn(x, t)

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · · (6.2)

If h = −1, Eq. (6.2) can be expressed as:

v(x, t) = max(Ax − B, 0) − tα

�(α + 1)

+ t2α

�(2α + 1)
[r2max(Ax − B) − (r2 − τ 2)xmax(A, 0)]

− t3α

�(3α + 1)
[(r3 − τ 3)xmax(A, 0) − r3max(Ax − B, 0)] + · · · (6.3)

6.1 Results and discussion

The convergence region is obtained using the h-curve. Figure 16 shows that the con-
vergence region of equation is between − 4 and 1. Figure 17 indicates that the solution
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Fig. 18 The solution for the B–S equation subject to the various settings of the fractional parameter α =
0.25, 0.5, 0.75, 1 and the auxiliary parameter h = −1 are shown in a–d, respectively

v(x, t) for the B–S equation subject to the various settings of the fractional parameter
α = 0.25, 0.5, 0.75 and 1, respectively.

Figure 18 depicts the financial pricing derivatives for the different settings of the fractional
parameter α = 0.25, 0.5, 0.75 and 1, respectively.

6.2 Comparison with Monte Carlo method

To verify the accuracy of the proposed method, the numerical results of the call option
obtained using FGHAM for α = 1 which is compared with the results estimated using
Monte Carlo simulation (MATLAB) and the results are shown in Table 15. From Table 15, it
is evident that the numerical results obtained by FGHAM show an excellent agreement with
the results estimated using Monte Carlo simulation.

7 Statistical analysis

The statistical significance pertaining to the difference among the mean results obtained by
FGHAM, exact solution, RPS, and CFADM for the B–S equation using fractional parameter
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Table 15 Comparison between FGHAM and Monte Carlo method

Stock Price Strike Price Time(y) Rate Volatility Monte Carlo FGHAM

90 90 1 4 20 9.301401 9.5119

95 95 1 4 20 10.139644 10.619

100 105 1 8 20 10.348479 11.3

105 105 1 6 25 12.942346 12.622

110 112 1 5 20 12.101289 12.834

115 115 1 10 30 17.889895 14.402

120 125 1 10 25 16.888351 15.508

125 125 1 8 20 16.451980 16.834

130 130 1 8 20 19.299579 17.94

135 140 1 8 20 20.418300 19.047

140 140 1 10 25 20.596177 19.935

145 150 1 1 20 11.339080 11.993

150 150 1 1 20 21.837156 23.099

155 160 1 4 20 23.664673 23.889

160 160 1 4 20 24.550466 25.005

Table 16 Example 1: Case 1—results of the pairwise mean difference for the B–S solutions using the t test
(mean difference is not statistically significant at p < 0.05 level)

Various methods v(x, t) Mean difference 0.95 confidence interval

FGHAM and exact 0.1126 [−0.3417, 0.5670]

FGHAM and RPS 0 [−0.4543, 0.4543]

FGHAM and CFADM 0 [−0.4543, 0.4543]

Exact and RPS −0.1126 [−0.5670, 0.3417]

Exact and CFADM −0.1126 [−0.5670, 0.3417]

RPS and CFADM 0 [−0.4543, 0.4543]

α=1 is investigated. The t test (two-tailed) analysis at the 0.05 level of significance is used
for the various settings of the B–S equation discussed earlier. The results of the presented
numerical examples are shown in Tables 16, 17 and 18, respectively. The comparative results
of FGHAM, exact solution, RPS, and CFADM are depicted in Figures 19, 20 and 21, respec-
tively. The null hypothesis, i.e., the mean difference of the solutions obtained for the B–S
equation using FGHAM, exact solution, RPS, and CFADM, is accepted at the 0.05 level of
significance (Morachan et al. 2017).

8 Conclusions and future work

The FGHAM approach has been successfully applied to solve the fractional non-linear B–S
equation governing European option pricing. Using various plots of h-curves, convergence
region of the solution is identified and closed form series solutions are obtained using
Mittag–Leffler function, which clearly reveals the financial process. The suitable conver-
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Table 17 Example 1: Case 2—results of the pairwise mean difference for the B–S solutions using the ttest
(mean difference is not statistically significant at p < 0.05 level)

Various methods v(x, t) Mean difference 0.95 confidence interval

FGHAM and exact 3.0843 [−1.3509, 7.5194]

FGHAM and RPS 0 [−4.4352, 4.4352]

FGHAM and CFADM 0 [−4.4352, 4.4352]

Exact and RPS −3.0843 [−7.5194, 1.3509]

Exact and CFADM −3.0843 [−7.5194, 1.3509]

RPS and CFADM 0 [-4.4352,4.4352]

Table 18 Example 2: results of the pairwisemean difference for B–S solutions using the t test (mean difference
is statistically significant at p < 0.05 level)

Various methods v(x, t) Mean difference 0.95 confidence interval

FGHAM and exact 0 [−0.0243, 0.0243]

FGHAM and RPS 0 [−0.0243, 0.0243]

FGHAM and CFADM 0 [−0.0243, 0.0243]

Exact and RPS 0 [−0.0243, 0.0243]

Exact and CFADM 0 [−0.0243, 0.0243]

RPS and CFADM 0 [−0.0243, 0.0243]

Fig. 19 Example 1: Case 1—comparison among the results of FGHAM, exact solution, RPS, and CFADM
for the B–S equation

gence criterion is developed and convergence of the series solution is well established using
graphical illustration. The closed form series solution of the B–S model is analyzed for var-
ious values of the fractional parameters and the results are graphically depicted. In addition,
the results are validated against the various methods such as HAM, HPM, MFDTM, RPS,
and CFADM, and the accuracy of the proposed FGHAM is verified. The comparative study
has been carried out between FGHAM and Monte Carlo simulation and computational effi-
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Fig. 20 Example 1: Case 2—comparison among the results of FGHAM, exact solution, RPS, and CFADM
for the B–S equation

Fig. 21 Example 2: comparison among the results of FGHAM, exact solution, RPS, and CFADM for the B–S
equation

ciency of the proposed method is verified. The analytical expression for the implied volatility
is derived and the non-local behavior is studied for the various values of the fractional param-
eter. The statistical analysis has been carried out using the solutions obtained from the various
methods to ascertain the effectiveness of the FGHAM approach and to tackle the B–S pricing
model in financial studies. From the experimental analysis, it is evident that the proposed
method accurately predicts the solution of the B–S model.

The application of FGHAMcan be extended to solve the B–Smodel with the time variable
coefficients to analyze the financial process in future. Moreover, FGHAM can be applied to
solve different problems, such as the Navier–Stokes equation, epidemic models, and Pan-
demic model like COVID-19. The application of FGHAM can also be extended to analyze
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complicated non-linear differential equations and fractional differential equations that arise
in different fields of science and engineering.
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