
This version of the article has been accepted for publication, after a peer-review
process, and is subject to Springer Nature’s AM terms of use, but is not the Version
of Record and does not reflect post-acceptance improvements, or any corrections.
The Version of Record is available online at:
https://doi.org/10.1007/s40314-020-01356-8

ar
X

iv
:2

40
2.

01
47

3v
1

 [
m

at
h.

N
A

]
 2

 F
eb

 2
02

4

https://doi.org/10.1007/s40314-020-01356-8

Noname manuscript No.
(will be inserted by the editor)

On approximate implicit Taylor methods for ordinary
differential equations

Antonio Baeza · Raimund Bürger · Maria

del Carmen Mart́ı · Pep Mulet · David Zoŕıo

the date of receipt and acceptance should be inserted later

Abstract An efficient approximate version of implicit Taylor methods for initial-
value problems of systems of ordinary differential equations (ODEs) is introduced.
The approach, based on an approximate formulation of Taylor methods, produces
a method that requires less evaluations of the function that defines the ODE and
its derivatives than the usual version. On the other hand, an efficient numerical
solution of the equation that arises from the discretization by means of Newton’s
method is introduced for an implicit scheme of any order. Numerical experiments
illustrate that the resulting algorithm is simpler to implement and has better
performance than its exact counterpart.

Keywords Taylor methods, implicit schemes, explicit schemes, ODE integrators,
approximate formulation.

A. Baeza · M.C. Mart́ı · P. Mulet
Departament de Matemàtiques
Universitat de València
E-46100 Burjassot, Spain
E-mail: antonio.baeza@uv.es, Maria.C.Marti@uv.es, pep.mulet@uv.es

R. Bürger
CI2MA & Departamento de Ingenieŕıa Matemática
Universidad de Concepción
Casilla 160-C, Concepción, Chile
E-mail: rburger@ing-mat.udec.cl

D. Zoŕıo
CI2MA, Universidad de Concepción
Casilla 160-C, Concepción, Chile
E-mail: dzorio@ci2ma.udec.cl

2 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

1 Introduction

1.1 Scope

This work is related to numerical methods for the solution of the autonomous
system of ordinary differential equations (ODEs)

u′(t) = f
(
u(t)

)
, t ∈ (t0, T],

u(t) =
(
u1(t), . . . , uM (t)

)T
, f(u) =

(
f1(u), . . . , fM (u)

)T
,

(1.1)

where derivatives of a vector of univariate scalar functions are understood compo-
nent-wise, posed along with initial data u(t0) = u0.

Taylor series methods for the numerical solution of initial value problems of
ODEs compute approximations to the solution of the ODE for the next time
instant using a Taylor polynomial of the unknown. The resulting methods are
simple, since the expressions required for the iteration are exactly computable
(i.e., with no error) from the equation, and the truncation error is governed by the
error term of the Taylor formula, so that the order of accuracy of the global error
of the method corresponds to the degree of the Taylor polynomial used. However,
their implementation depends on the terms involved in the Taylor series, i.e.,
derivatives of the right-hand side whose computation requires intensive symbolic
calculus and are specific to each individual problem. Moreover, the need for solving
auxiliary nonlinear equations, especially within the implicit versions, makes them
computationally expensive, especially as the order of accuracy required increases.

In this work we focus on implicit Taylor methods, obtained by computing the
Taylor polynomials centered on a future time instant, and often used to solve
problems where explicit methods have strong stability restrictions, in particular
stiff systems of ODEs (Haier and Wanner, 1996). First of all we apply a strategy,
based on the work by Baeza et al. (2017) for the explicit Taylor method, to effi-
ciently approximate the derivatives of f . This approximation inherits the ease of
implementation and performance of the explicit version.

The implicit character of the method requires the solution of an auxiliary
system of equations, usually by Newton’s method, which requires the computation
of the Jacobian matrix. This may be an easy task for low-order methods, but the
resulting iteration can become complicated as the order of the scheme increases. We
propose a new formulation to obtain high-order implicit Taylor schemes that are
simpler to implement and more efficient than the exact implicit Taylor methods,
which compute derivatives symbolically. This is the main novelty of this work.

That said, we remark that it is not our purpose to present a numerical scheme
that can compete with any implicit scheme in any situation, but to introduce a
methodology to obtain R-th order implicit Taylor schemes for systems of M scalar
ODEs, with arbitrarily high M ∈ N, that can be easily implemented and efficiently
solved, independently of the complexity of the function f , thus removing the lead-
ing difficulty of exact implicit Taylor methods. Very-high-order implicit methods
are a must in some problems: for instance, in dynamical systems and mechanics,
there is a need of high-order (at least, greater than 12) ODE solvers, especially
Taylor integrators, as exposed for instance by Jorba and Zou (2005), Barrio et al.
(2011), and Abad et al. (2012).

On approximate implicit Taylor methods for ordinary differential equations 3

1.2 Related work

Miletics and Molnárka (2004) propose an alternative based on a numerical approx-
imation of the derivatives of f in ODEs of the form u′ = f(u) for the explicit Taylor
method up to fourth order and in Miletics and Molnárka (2005) for the implicit
version up to fifth order. Later on, in Baeza et al. (2017), a procedure to obtain a
numerical approximation of f(u) = f ◦u was presented to generate arbitrarily high
order Taylor schemes, inspired by an approximate Cauchy-Kovalevskaya procedure
developed for systems of conservation laws by Zoŕıo et al. (2017), which simpli-
fies the exact version presented by Qiu and Shu (2003). The method presented
by Baeza et al. (2017) relies on the approximate computation of the terms that
appear in the Taylor polynomials, in terms of function evaluations only, avoiding
the explicit computation of the derivatives, leading to a method which is simple
to implement and outperforms its exact counterpart for complex systems.

Further references to implicit Taylor methods addressing combinations of im-
plicit and explicit steps to improve stability or accuracy include Kirlinger and
Corliss (1991) and Scott (2000).

1.3 Outline of the paper

The work is organized as follows: In Section 2 the basic facts about the exact
Taylor methods are reviewed. A general procedure to generate Taylor schemes of
arbitrarily high accuracy order through Faà di Bruno’s formula (Faà di Bruno,
1855) is described, as well as its corresponding approximate version presented by
Baeza et al. (2017). Section 3 is devoted to the description of the novel formulation
of implicit Taylor methods, following an idea akin to Baeza et al. (2017). Section 4
describes an efficient implementation of the Newton iteration required to update
the solution of implicit Taylor methods. Section 5 stands for several numerical
experiments in which the approximate version of the implicit Taylor methods is
compared against its exact counterpart, as well as against the approximate explicit
version. Finally, in Section 6 some conclusions are drawn.

2 Taylor methods

2.1 Preliminaries

The (explicit) R-th order Taylor methods are based on the expansion of the un-
known function

u(t+ h) = u(t) + hu′(t) +
h2

2
u′′(t) + · · ·+ hR

R!
u(R)(t) +

hR+1

(R+ 1)!
u(R+1)(ξ) (2.1)

with ξ belonging to the open interval I(t, t+h) defined by t and t+h. This expansion
is valid provided u1, . . . , uM ∈ CR(Ī(t, t+ h)) and u

(R+1)
1 , . . . , u

(R+1)
M are bounded

in I(t, t+h), where Ī(t, t+h) denotes the closure of I(t, t+h). Consider an equally
spaced set of N + 1 points tn = t0 + nh, 0 ≤ n ≤ N , h = T/N . Dropping the last
term in (2.1) and taking t = tn one obtains the approximation

u(tn + h) = u(tn+1) ≈ u(tn) + hu′(tn) +
h2

2
u′′(tn) + · · ·+ hR

R!
u(R)(tn). (2.2)

4 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

Then (1.1) can be used to write

u(k)(tn) =
(
f(u)

)(k−1)
(tn) =

dk−1

dtk−1

(
f(u(t))

)∣∣∣∣
t=tn

, 1 ≤ k ≤ R. (2.3)

Consequently, the first step to apply Taylor methods is to compute these deriva-
tives up to an appropriate order.

2.2 Faà di Bruno’s formula

The evaluation of high-order derivatives of the function t 7→ (f ◦u)(t), which arise
in (2.2), is greatly simplified by Faà di Bruno’s formula, as stated by Baeza et al.
(2017). To this end, we recall that for a multi-index s = (s1, . . . , sr) ∈ Nr

0, one
defines |s| := s1 + · · ·+ sr and(

r

s

)
:=

r!

s1!s2! · · · sr!
.

Moreover, for r ∈ N we define an index set

Pr :=

{
s ∈ Nr

0

∣∣∣∣∣
r∑

ν=1

νsν = r

}
,

and (Dsu)(t) to be a matrix of size M × |s| whose (s1 + · · ·+ sj−1 + i)-th column
is given by

(
(Dsu)(t)

)
s1+···+sj−1+i

=
1

j!

dj

dtj
u(t), i = 1, . . . , sj , j = 1, . . . , r. (2.4)

Finally, we denote by f (k) •A the action of the k-th order derivative tensor of f
on an M × k matrix A = (Aij):

f (k) •A :=
M∑

i1,...,ik=1

∂kf

∂ui1 · · · ∂uik
(u)Ai1,1 · · ·Aik,k.

Proposition 1 (Faà di Bruno’s formula (Faà di Bruno, 1855)) Assume that

the functions f : RM → R and u : R → RM are r times continuously differentiable.

Then

dr

dtr
f
(
u(t)

)
≡
(
f(u)

)(r)
(t) =

∑
s∈Pr

(
r

s

)((
f(u)

)(|s|) • (Dsu)
)
(t). (2.5)

Proposition 1 applies to just one scalar function f , so to obtain all components
of, say, (f(u))(k)(tn) in (2.3), we must apply (2.5) to each of the components of
f = (f1, . . . , fM)T. Clearly, the matrix Dsu is the same for all these components.

On approximate implicit Taylor methods for ordinary differential equations 5

2.3 Explicit Taylor methods

The derivatives (f(u))(k−1) can be evaluated by using Faà di Bruno’s formula (2.5)
(see Baeza et al. (2017) for more details), leading to an expression of u(k)(tn) in
terms of u(tn) and derivatives of f , namely

u(k)(tn) = Gk

(
u(tn),

(
f(u)

)
(tn),

(
f(u)

)′
(tn), . . . ,

(
f(u)

)(k−1)
(tn)

)
= G̃k

(
u(tn)

)
.

(2.6)

Replacing the derivatives u(k)(tn) in (2.2) by (2.6), we obtain the expression

u(tn+1) ≈ TR
(
u(tn), h

)
= u(tn) +

R∑
k=1

hk

k!
G̃k

(
u(tn)

)
. (2.7)

The R-th order Taylor method

un+1 = TR(un, h) (2.8)

is then obtained by replacing the exact values of the solution u(tn) and u(tn+1) by
their corresponding approximations in (2.7), denoted by un and un+1, respectively.
This means that the following expression is used in (2.8):

TR(un, h) = un +
R∑

k=1

hk

k!
u
(k)
n , u

(k)
n := G̃k(un). (2.9)

From (2.1) and (2.9) we infer that the local truncation error is given by

EL =
hR+1

(R+ 1)!
u(R+1)(ξ),

so that EL = O(hR+1) as long as u(R+1) is bounded in [t0, T]. One then obtains
that the method (2.8) has an O(hR) global error .

3 Implicit Taylor methods

3.1 Exact implicit Taylor methods

Implicit Taylor methods are based on approximating u(tn) by means of the Taylor
polynomial of u centered at tn+1:

u(tn) ≈ TR
(
u(tn+1),−h

)
, (3.1)

so that the value of un+1 ≈ u(tn+1) is determined as solution of the nonlinear
system of algebraic equations

un = TR(un+1,−h). (3.2)

In the easiest case, with R = 1, one gets the implicit Euler method. As in the case
of explicit Taylor methods, the expressions of u(k)(tn+1) that appear in (3.1) can

6 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

be expressed as functions of u(tn+1) and the derivatives of f . As an example, the
second-order implicit Taylor method is given by

un = un+1 − hf(un+1) +
h2

2

(
∂f

∂u
(un+1)f(un+1)

)
, (3.3)

where ∂f/∂u = (∂fi/∂uj)1≤i,j≤M is the Jacobian matrix of f(u). In what follows,
the family of methods based on (3.2) will be referred to as exact implicit Taylor
methods since they are based on exact expressions of the derivatives of f .

3.2 Approximate implicit Taylor methods

Let us briefly review approximate explicit Taylor methods as described by Baeza
et al. (2017), whose formulation will be used to motivate and introduce our novel
approximate implicit Taylor (henceforth, AIT) methods. These methods are based
on computing approximations of the derivatives in (2.2) by means of finite differ-
ences, so that u(k)(tn) is replaced by an approximation

v
(k)
h,n = u(k)(tn) +O(hR−k+1), k = 2, . . . , R,

resulting in an R-th order accurate method

vh,n+1 = vh,n +
R∑

k=1

hk

k!
v
(k)
h,n,

where the approximations v
(k)
h,n are computed as follows:

v
(0)
h,n = un,

v
(1)
h,n = f(un),

v
(k+1)
h,n = ∆

k,⌈R−k
2

⌉
h f

(
P k

n(h)
)
, k = 1, . . . , R− 1.

Here we recall that ⌈·⌉ denotes the so-called ceiling operator defined by ⌈x⌉ =
min{n ∈ Z | x ≤ n}. Moreover, P k(ρ) is the M-component vector given by

P k
n (ρ) =

k∑
l=0

v
(l)
h,n

l!
ρl, n = 1, . . . ,M,

and ∆p,q
h is the centered finite-difference operator that approximates p-th order

derivatives to order 2q on a grid with spacing h, i.e., the one that satisfies

∆p,q
h (y) = y(p) +O(h2q)

for a sufficiently differentiable function y. (The operator ∆p,q
h is understood as

acting on each component of f(P k
n(h)) separately.)

There exist constants βk,R
j so that for some integers γk,R, we can write (see

Zoŕıo et al., 2017)

v
(k+1)
h,n = h−k

γk,R∑
j=−γk,R

βk,R
j f

(
k∑

l=0

(jh)l

l!
v
(l)
h,n

)
. (3.4)

On approximate implicit Taylor methods for ordinary differential equations 7

Using these approximations of the derivatives, and with the notation of the pre-
vious sections, one obtains the approximate explicit Taylor method

un+1 = T̃R(un, h). (3.5)

For instance, the second-order approximate Taylor method is based on the ap-
proximation

u(2)(tn) =
(
f(u)

)′
(tn) ≈

1

2h

(
f
(
u(tn) + hf(u(tn))

)
− f

(
u(tn)− hf(u(tn))

))
,

hence the method can be written as

un+1 = un + hf(un) +
h

4

(
f(un + hf(un)

)
− f

(
un − hf(un)

))
,

i.e.,

T̃2(un, h) = un + hf(un) +
h

4

(
f(un + hf(un)

)
− f

(
un − hf(un)

))
.

The new methods advanced in this contribution, namely approximate implicit Tay-
lor methods, are obtained by replacing h by −h and interchanging un and un+1

in (3.5):

un = T̃R(un+1,−h).

For the case of second order (R = 2), the implicit second-order approximate Taylor
method is

un = T̃2(un+1,−h) (3.6)

= un+1 − hf(un+1)−
h

4

(
f
(
un+1 − hf(un+1)

)
− f

(
un+1 + hf(un+1)

))
.

3.3 Linear stability

The linear stability of a numerical scheme for initial value problems of ordinary
differential equations is usually examined by applying it to the scalar linear equa-
tion

u′ = λu, λ ∈ C, Reλ < 0. (3.7)

For the sake of completeness, we consider the non-homogeneous linear ODE

u′ = λu+ g(t), λ ∈ C,

with g sufficiently smooth. For the solution u of the ODE, we can establish by
induction on k that

u(k) = λku+
k−1∑
j=0

λk−j−1g(j)(t),

so the explicit Taylor method reads in this case as

un+1 =
R∑

k=0

hk

k!

(
λkun +

k−1∑
j=0

λk−j−1g(j)(tn)

)

8 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

= un

R∑
k=0

(hλ)k

k!
+

R−1∑
j=0

g(j)(tn)

λj+1

R∑
k=j+1

(hλ)k

k!

= QR(hλ)un +
R−1∑
j=0

g(j)(tn)

λj+1

(
QR(hλ)−Qj(hλ)

)
,

where

Qj(x) =

j∑
k=0

xk

k!
.

The implicit Taylor method is obtained by interchanging the roles of n and
n+ 1 and reads as

un = QR(−hλ)un+1 +
R−1∑
j=0

g(j)(tn+1)

λj+1

(
QR(−hλ)−Qj(−hλ)

)
,

un+1 =
1

QR(−hλ)
un −

R−1∑
j=0

g(j)(tn+1)

λj+1

(
1−

Qj(−hλ)

QR(−hλ)

)
. (3.8)

In particular, for g = 0, the explicit and implicit Taylor methods of order R are
given by the respective expressions

un+1 = QR(hλ)un (3.9)

and

un+1 =
1

QR(−hλ)
un.

The exact Taylor method of order R is stable provided that |QR(hλ)| < 1. Since
Reλ < 0, this condition is usually satisfied on a bounded domain only (as can be
inferred from R = 1, in which case (3.9) is the explicit Euler method). On the
other hand, the exact implicit Taylor method is stable for those values of z = hλ

that satisfy

z ∈ S :=
{
z ∈ C | Re z < 0, |QR(−z)|−1 < 1

}
=
{
z ∈ C | Re z < 0, |QR(−z)| > 1

}
.

As for its exact counterpart, in Baeza et al. (2020) it is shown that the approx-
imate explicit Taylor method applied to (3.7) is T̃R(un, h) = QR(hλ)un, thus the
implicit version is T̃R(un,−h) = QR(−hλ)−1un, and therefore both methods have
the same stability region as their corresponding exact versions, in particular the
approximate implicit Taylor method is absolutely stable whenever λ < 0.

4 Newton iteration

The computation of un+1 for given un using an implicit method requires the
solution of an auxiliary equation F (un+1) = 0, which is often approximated by
Newton’s method. In this section, we address the computation of the elements
required for Newton’s method for both the exact and approximate implicit Taylor
methods, which will lead to a new, more efficient formulation for the approximate
scheme. Although line-search strategies (Dennis and Schnabel, 1996) for damping
Newton iteration can be used to enhance global convergence we have not used
them in our experiments.

On approximate implicit Taylor methods for ordinary differential equations 9

4.1 Exact implicit Taylor method

As an example, let us consider the scalar nonlinear problem

u′ = u+ u2 ⇒ u′′ = (1 + 2u)u′ = (1 + 2u)(u+ u2).

The second-order exact implicit Taylor method can be written as

un = un+1 − h(un+1 + u2
n+1) +

h2

2
(1 + 2un+1)(un+1 + u2

n+1),

which requires the solution of the following cubic equation:

F (un+1) := un+1−h(un+1+u2
n+1)+

h2

2
(1+2un+1)(un+1+u2

n+1)−un = 0. (4.1)

In the general case, the solution of F (un+1) = 0 by means of Newton’s method
requires the computation of the derivative F ′(un+1). In the case of (4.1) this is an
easy task, but in general the resulting iteration can become complicated.

To simplify the computation of the Jacobian matrix, we introduce

zk ≈ u
(k)
n+1, k = 0, . . . , R,

and use Faà di Bruno’s formula (2.5) to get the system

un = z0 − hz1 + · · ·+ (−1)R
hR

R!
zR,

z1 = f(z0),

zn+1 =
∑
s∈Pr

(
r

s

)
f
(|s|)
1 (z0) • D̃

s
z

...

f
(|s|)
M (z0) • D̃

s
z

 , r = 1, . . . , R− 1,

where the definition of D̃
s
z mimics that of Dsz in (2.4), by taking into account

that zk ≈ u(k)(t), namely

(
D̃

s
z
)
s1+···+sj−1+i

=
1

j!
zj , i = 1, . . . , sj , j = 1, . . . , r.

These equations can be differentiated systematically. For instance, for the case of
one scalar equation, M = 1, one gets

∂z0

(∑
s∈Pr

(
r

s

)
f (|s|)(z0)D

sz

)
=
∑
s∈Pr

(
r

s

)
f (|s|+1)(z0)

(
z1
1!

)s1
· · ·
(
zr
r!

)sr
,

∂zj

(∑
s∈Pr

(
r

s

)
f (|s|)(z0)D

sz

)

=
∑
s∈Pr

sj
j!

(
r

s

)
f (|s|+1)(z0)

(
z1
1!

)s1
· · ·
(zj
j!

)sj−1

· · ·
(
zr
r!

)sr
.

10 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

For this scalar case and the second-order implicit Taylor method (3.3) the system
to be solved is

0 = z0 − hz1 +
h2

2
z2 − un,

0 = f(z0)− z1,

0 = f ′(z0)z1 − z2.

(4.2)

If we rewrite system (4.2) as F (z0, z1, z2) = 0, with the function F defined by

F (z0, z1, z2) =

F1(z0, z1, z2)
F2(z0, z1, z2)
F3(z0, z1, z2)

 =

z0 − hz1 +
h2

2
z2 − un,

f(z0)− z1,

f ′(z0)z1 − z2

 ,

then the corresponding Jacobian matrix is

JF (z0, z1, z2) =


∂F1

∂z0

∂F1

∂z1

∂F1

∂z2
∂F2

∂z0

∂F2

∂z1

∂F2

∂z2
∂F3

∂z0

∂F3

∂z1

∂F3

∂z2

 =

 1 −h h2/2
f ′(z0) −1 0

f ′′(z0)z1 f ′(z0) −1

 . (4.3)

Depending on the expression of f the Jacobian matrix may become highly
complicate, even for low values of R. It is clear that for higher order methods, the
system to be solved will be more complicated. For instance, for R = 4 it reads as

0 = z0 − hz1 +
h2

2
z2 − h3

6
z3 +

h4

24
z4 − un,

0 = f(z0)− z1,

0 = f ′(z0)z1 − z2,

0 = f ′′(z0)z
2
1 + f ′(z0)z2 − z3,

0 = f ′′′(z0)z
3
1 + 3f ′′(z0)z1z2 + z3f

′(z0)− z4,

which results in the expression

JF (z0, . . . , z4)

=



1 −h
h2

2
−h3

6

h4

24

f ′(z0) −1 0 0 0

f ′′(z0)z1 f ′(z0) −1 0 0

f ′′′(z0)z
2
1 + f ′′(z0)z2 2f ′′(z0)z1 f ′(z0) −1 0

f (4)(z0)z
3
1 + 3f ′′′(z0)z1z2 3f ′′′(z0)z

2
1 + 3f ′′(z0)z2 3f ′′(z0)z1 f ′(z0) −1

+f ′′(z0)z3


.

(4.4)

Note that the submatrix composed by the first three rows and columns of (4.4) is
exactly (4.3). It is easy to check that the Jacobian matrix corresponding to R = 3
is the submatrix of (4.4) composed by its first four rows and columns.

On approximate implicit Taylor methods for ordinary differential equations 11

4.2 Approximate implicit Taylor method

For simplicity, let us start with the second-order approximate implicit Taylor
method (3.6) for the scalar case M = 1. Similarly to the exact case, we intro-
duce the unknowns z0 = un+1, z1 = f(un+1) and

z2 =
1

2

(
f
(
un+1 − hf(un+1)

)
− f
(
un+1 + hf(un+1)

))
,

and one gets the system of equations

0 = z0 − hz1 − h

2
z2 − un,

0 = f(z0)− z1,

0 =
1

2
f(z0 − hz1)−

1

2
f(z0 + hz1)− z2,

so that its solution gives the terms that appear in (3.6).
If we rewrite this system as F (z0, z1, z2) = 0 with the function F defined by

F (z0, z1, z2) =

F1(z0, z1, z2)
F2(z0, z1, z2)
F3(z0, z1, z2)

 =

 z0 − hz1 − h

2
z2 − un

f(z0)− z1
1
2f(z0 − hz1)− 1

2f(z0 + hz1)− z2

 ,

then the corresponding Jacobian matrix (which is required so that Newton’s
method can be applied to this system) is now given by

JF (z0, z1, z2) =


∂F1

∂z0

∂F1

∂z1

∂F1

∂z2
∂F2

∂z0

∂F2

∂z1

∂F2

∂z2
∂F3

∂z0

∂F3

∂z1

∂F3

∂z2



=


1 −h −h

2

f ′(z0) −1 0

1

2

(
f ′(z0 − hz1)− f ′(z0 + hz1)

)
−h

2

(
f ′(z0 − hz1) + f ′(z0 + hz1)

)
−1

 .

4.3 General number of scalar equations

Let us now consider the general case of a system of M scalar ordinary differential
equations. From (3.4), the approximate implicit R-th order Taylor method can be
written as

un = T̃R(un+1,−h) =
R∑

k=0

(−h)k

k!
v
(k)
−h,n, (4.5)

v
(k+1)
−h,n = (−h)−k

γk,R∑
j=−γk,R

βk,R
j f

(
k∑

l=0

jl(−h)l

l!
v
(l)
−h,n

)
. (4.6)

12 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

Let us denote zk = (−h)k−1vk
−h,n, so that (4.6) for k − 1 reads as

zk =

γk−1,R∑
j=−γk−1,R

βk−1,R
j f

(
z0 − h

k−1∑
l=1

jl

l!
zl

)

and (4.5) as

un = z0 − h

R∑
k=1

1

k!
zk.

We define the function F = (F 0,F 1, . . . ,FM)T : R(R+1)M → R(R+1)M by

F 0 := z0 − h

R∑
k=1

1

k!
zk − un,

F k :=

γk−1,R∑
j=−γk−1,R

βk−1,R
j f

(
z0 − h

k−1∑
l=1

jl

l!
zl

)
− zk, k = 1, . . . , R.

To solve F (z) = 0 by Newton’s method, we compute the Jacobian matrix of F as
the block matrix

JF (z) =
(
F i,j(z)

)
0≤i,j≤R

, where F i,j(z) =
∂F i

∂zj
(z) ∈ RM×M .

If IM denotes the M ×M identity matrix, we get

F 0,0 = IM ,

F 0,l = −h

l!
IM , l = 1, . . . , R,

F k,0 =

γk−1,R∑
j=−γk−1,R

βk−1,R
j f ′

(
z0 − h

k−1∑
l=1

jl

l!
zl

)
, k = 1, . . . , R,

F k,l = −h

γk−1,R∑
j=−γk−1,R

βk−1,R
j f ′

(
z0 − h

k−1∑
m=1

jm

m!
zm

)
jl

l!
,

{
l = 1, . . . , k − 1,

k = 1, . . . , R,

F k,k = −IM , k = 1, . . . , R,

F k,l = 0, l = k + 1 . . . , R, k = 1, . . . , R.

Setting δ(ν) = z(ν+1) − z(ν), we may write an iteration of Newton’s method as

JF (z(ν))δ(ν) = −F (z(ν)).

In block form and dropping ν, we get
F 0,0 F 0,1 · · · F 0,R

F 1,0 F 1,1 · · · F 1,R

...
...

...
FR,0 FR,1 · · · FR,R




δ0
δ1
...

δR

 = −


F 0

F 1

...
FR

 ,

On approximate implicit Taylor methods for ordinary differential equations 13

which we write in compact form as[
F 0,0 F 0,1:R

F 1:R,0 F 1:R,1:R

](
δ0
δ1:R

)
= −

(
F 0

F 1:R

)
. (4.7)

Since F 1:R,1:R is blockwise lower triangular with the diagonal blocks given by −IM ,
this matrix is invertible and we deduce that

δ1:R = −F−1
1:R,1:R(F 1:R + F 1:R,0δ0),

which, when inserted into the first equation of (4.7), yields

δ0 = −
(
F 0,0 − F 0,1:RF−1

1:R,1:RF 1:R,0

)−1(
F 0 − F 0,1:RF−1

1:R,1:RF 1:R

)
.

If we denote

A := F−1
1:R,1:RF 1:R, B := F−1

1:R,1:RF 1:R,0,

then we can write

δ0 = −
(
F 0,0 − F 0,1:RB

)−1(
F 0 − F 0,1:RA

)
, δ1:R = −

(
A+Bδ0

)
.

Therefore, the system can be solved efficiently as long as F 0,0 − F 0,1:RB is in-
vertible. Recall that the Newton iteration only requires the computation of f and
f ′, in contrast with the exact version, which requires the computation of all the
derivatives of f up to order R.

4.3.1 Computational cost of AIT methods

From Section 4.3 we know that for each iteration of Newton’s method, we need to
compute the vectors

δ0 = −
(
F 0,0 − F 0,1:RB

)−1(
F 0 − F 0,1:RA

)
, δ1:R = −

(
A+Bδ0

)
,

where A and B are the matrices

A := F−1
1:R,1:RF 1:R, B := F−1

1:R,1:RF 1:R,0.

For the computation of A and B, we can exploit that F 1:R,1:R is a blockwise
lower triangular matrix with diagonal blocks given by −IM . Hence, we can obtain
for example B, by a block forward substitution process, given by

Bk = −F k,0 +
k−1∑
i=1

F k,iBi, k = 1, . . . , R.

This algorithm requires (R2 −R)/2 products of M ×M matrices.
With respect to δ0, the computation of F 0,1:RB requires R products of M×M

matrices, and its LU decomposition requires O(23M
3) scalar operations. Neglecting

operations with lower order cost in M , then, we obtain that the computation of δ
requires

Cδ :=

(
R2 +R

2
+

2

3

)
M3

14 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

Fig. 1: Example 1 (nonlinear scalar problem (5.2)): performance of the IT and the
AIT methods.

scalar operations. Moreover, the formation of the blocks F i,j requires R2 Jacobian
matrices of f , which yields, assuming a mean cost per entry of β scalar operations,
R2M2β scalar operations. In consequence, the (approximate) computational cost
of each Newton iteration for AIT methods is

CAIT = Cδ +R2βM2 =

(
R2 +R

2
+

2

3

)
M3 +R2βM2.

5 Numerical experiments

5.1 Preliminaries

In this section, the performance of the AIT methods is analyzed. We first compare
the AIT methods with their exact counterparts, IT methods, of the same order.
We have only compared the AIT with the IT methods for scalar equations since
the implementation for systems of the IT methods is extremely involved. For linear
scalar equations the implementation for any order is performed using (3.8). These
methods are compared in terms of error, numerical order and computational time,
using some scalar problems.

We then raise two initial-value problems for systems of equations. For those
problems, the AIT methods are compared with approximate explicit Taylor (AET)
methods of the same order (Baeza et al. 2017), so as to stress the superior stability
of the implicit method. In all the numerical examples we show the numerical errors,
computed with L1-norm, and the order of the numerical method, computed by

o(N) = log2 (|e(N)/e(N/2)|) ,

with e(N) standing for the numerical error for N time steps.

5.2 Examples 1 and 2: scalar equations

In Example 1 we consider the linear equation

u′ = −5u+ 5 sin(2t) + 2 cos(2t), u(0) = 0, (5.1)

with exact solution u(t) = sin(2t). The results for IT and AIT methods for T = 5
and orders R ∈ {2, 3, 4, 5, 6} are collected in Table 1, where it can be seen that
with both methods, the expected orders of convergence are recovered in all cases.
Comparing with the IT methods, we see that the approximate version attains the
expected order faster than the exact version, but produces a slightly bigger error
for coarse resolutions. This fact is possibly due to the simplicity of the equation
under consideration, which produces a local truncation error smaller than the error
corresponding to the approximation of derivatives performed in the AIT method

On approximate implicit Taylor methods for ordinary differential equations 15

R = 2
IT AIT

N e(N) o(N) CPU time e(N) o(N) CPU time
10 2.62e-02 — 8.5e-02 1.38e-02 — 2.1e-02
20 9.15e-03 1.52 3.5e-02 3.63e-03 1.93 2.6e-02
40 2.86e-03 1.68 3.8e-02 9.29e-04 1.97 5.4e-02
80 8.15e-04 1.81 4.4e-02 2.35e-04 1.98 1.0e-01

160 2.19e-04 1.89 5.1e-02 5.90e-05 1.99 2.0e-01
320 5.70e-05 1.94 4.4e-02 1.48e-05 2.00 4.0e-01
640 1.45e-05 1.97 3.8e-02 3.70e-06 2.00 7.3e-01

R = 3
10 1.30e-03 — 8.8e-02 6.21e-03 — 2.9e-02
20 2.88e-04 2.17 4.3e-02 9.52e-04 2.71 3.7e-02
40 4.43e-05 2.70 5.9e-02 1.31e-04 2.86 8.0e-02
80 5.84e-06 2.92 4.5e-02 1.71e-05 2.94 1.6e-01

160 7.37e-07 2.99 5.7e-02 2.18e-06 2.97 3.0e-01
320 9.19e-08 3.00 5.1e-02 2.76e-07 2.99 5.9e-01
640 1.15e-08 3.00 4.7e-02 3.45e-08 3.00 1.13

R = 4
10 7.55e-04 — 9.9e-02 4.81e-04 — 5.4e-02
20 9.43e-05 3.00 5.9e-02 2.58e-05 4.22 7.8e-02
40 8.42e-06 3.48 5.3e-02 1.39e-06 4.22 1.4e-01
80 6.27e-07 3.75 6.1e-02 7.84e-08 4.15 2.8e-01

160 4.26e-08 3.88 4.6e-02 4.61e-09 4.09 5.4e-01
320 2.78e-09 3.94 5.2e-02 2.79e-10 4.05 1.03
640 1.77e-10 3.97 5.2e-02 1.71e-11 4.02 2.05

R = 5
10 4.32e-05 — 1.4e-01 1.50e-04 — 8.9e-02
20 2.59e-06 4.06 6.6e-02 4.87e-06 4.94 1.3e-01
40 9.73e-08 4.73 7.3e-02 1.54e-07 4.98 2.2e-01
80 3.14e-09 4.95 5.5e-02 4.86e-09 4.99 4.3e-01

160 9.75e-11 5.01 5.8e-02 1.53e-10 4.99 8.6e-01
320 3.02e-12 5.01 5.6e-02 4.78e-12 5.00 1.66
640 9.41e-14 5.00 6.9e-02 1.50e-13 5.00 3.29

R = 6
10 1.59e-05 — 1.2e-01 1.35e-05 — 1.2e-01
20 5.51e-07 4.85 1.2e-01 1.56e-07 6.43 1.7e-01
40 1.25e-08 5.46 5.7e-02 1.88e-09 6.38 3.3e-01
80 2.33e-10 5.75 6.9e-02 2.45e-11 6.26 6.4e-01

160 3.96e-12 5.88 5.9e-02 3.43e-13 6.16 1.30
320 6.47e-14 5.94 7.1e-02 5.11e-15 6.07 2.52
640 9.99e-16 6.02 7.1e-02 1.11e-16 5.52 5.04

Table 1: Example 1 (linear scalar problem (5.1)): numerical errors and orders for
IT and AIT methods.

and hinders the correct order of accuracy for the exact method whenever the step
size is not small enough.

In Example 2 we consider the more involved problem

u′ = log

(
u+ u3 + u5

1 + u2 + u4 + u6

)
, u(0) = 1, (5.2)

and compute its solution up to T = 1 for orders R ∈ {2, 3, 4, 5, 6}. The solution
computed by the AIT method with R = 6 and a resolution of 20000 points is taken

16 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

as reference solution. We can see in Table 2 that the errors for both methods are
similar and the numerical order converges to the expected values in each case. In
Figure 2 we compare the errors obtained by each method with respect to the CPU
time required to run the algorithm (left) and with respect the discretization step
considered h (right). It can be seen that the performance is increasingly favorable
to the approximate method as the order increases, as expected. Note that, for
cases R = 5, 6, although the errors are affected by Matlab’s computational error,
it still can be seen that the AIT method overpowers the IT method in terms of
the computational time needed to obtain an approximate solution.

5.3 Examples 3 and 4: systems of ODEs

We consider now two problems modelled by systems of ODEs, used by Akinfenwa
et al. (2013) to test stability properties and accuracy. Example 3 is a stiff nonlinear
problem given by {

y′ = −1002y + 1000z2,

z′ = y − z(1 + z), t > 0;

y(0) =1,

z(0) =1,
(5.3)

known as Kaps problem, with exact solution given by

y(t) = e−2t, z(t) = e−t,

which is independent of the stiffness parameter, k = −1000 in this case. We com-
pare the solution at T = 5 for the approximate implicit (AIT) and approximate
explicit (AET) methods of the same order. Both schemes recover the expected
order, the implicit one achieving it at early stages, see Table 3. Note that the
explicit scheme does not attain good results in terms of accuracy, unless meshes
with more than 2000 points are used. The implicit scheme achieves the same error
level as the explicit one with meshes with approximately 4 times less nodes.

Finally, in Example 4 we consider the system of ODEs
x′ = −21x+ 19y − 20z,

y′ = 19x− 21y + 20z,

z′ = 40x− 40y − 40z, t > 0;

x(0) = 1,

y(0) = 0,

z(0) = −1,

(5.4)

also taken from Akinfenwa et al. (2013) and whose exact solution is given by
x(t) =

1

2

(
e−2t + e−40t(cos(40t) + sin(40t))

)
,

y(t) =
1

2

(
e−2t − e−40t(cos(40t) + sin(40t))

)
,

z(t) =− e−40t(cos(40t)− sin(40t)).

As in the previous example, the explicit scheme needs more nodes to achieve the
same error level as the implicit scheme. For instance, the explicit scheme needs
about 64 times more nodes, N = 320, to obtain the same errors that the implicit
scheme attains with N = 5, see results in Table 4 and Figure 3, proving that the
use of the implicit scheme is more appropriate when dealing with stiff problems.

On approximate implicit Taylor methods for ordinary differential equations 17

6 Conclusions

This article is part of ongoing work to develop high-order efficient approximate
Taylor ODE solvers. We have reviewed the exact implicit Taylor methods for ODEs
and introduced a novel strategy that allows to implement them systematically,
although at the cost of differentiating the function in the ODE up to the order of
the method.

On the other hand, using the same strategy that led to approximate explicit
Taylor methods for ODEs, we define approximate implicit Taylor methods, whose
only requirement is the knowledge of function derivatives to build the Jacobian ma-
trix of auxiliary systems of nonlinear equations, to be solved by Newton’s method.

While the numerical results essentially confirm that the novel approach intro-
duced in this work outperforms the exact version in terms of performance, this is
not true for low order accuracy, as it was expected. The AIT methods are therefore
expected to be useful in the context of ODEs that require to be solved through a
very-high-order implicit scheme.

Finally, it is worth pointing out that it is our purpose to further extend this
analysis in the context of PDEs, where implicit methods are needed in some un-
derlying problems related with them. High-order methods are being increasingly
more demanded to accurately solve some of these problems, and therefore the AIT
methods may become useful in that context.

Acknowledgements

A.B., M.C.M. and P.M. are supported by Spanish MINECO grant MTM2017-
83942-P. P.M. is also supported by Conicyt/ANID (Chile), project PAI-MEC, fo-
lio 80150006 R.B. is supported by Fondecyt project 1170473; CRHIAM, Proyecto
ANID/Fondap/15130015; Basal project CONICYT/PIA/AFB170001; and by the
INRIA Associated Team “Efficient numerical schemes for non-local transport phe-
nomena” (NOLOCO; 2018–2020), and D.Z. is supported by Conicyt/ANID Fon-
decyt/Postdoctorado/3170077.

References

Abad A, Barrio R, Blesa F, Rodŕıguez M (2012) Algorithm 924: TIDES, a Taylor
series integrator for differential equation. ACM Trans Math Softw 39:article 5.

Akinfenwa OA, Jator SN, Yao NM (2013) Continuous block backward differen-
tiation formula for solving stiff ordinary differential equations. Comput Math
Appl 65:996–1005

Baeza A, Boscarino S, Mulet P, Russo G, Zoŕıo D (2017) Approximate Taylor
methods for ODEs. Comput Fluids 159:156–166

Baeza A, Boscarino S, Mulet P, Russo G, Zoŕıo D (2020) On the stability of
approximate Taylor methods for ODE and the relationship with Runge-Kutta
schemes. Preprint, arXiv:1804.03627v1

Barrio R, Rodŕıguez M, Abad A, Blesa F (2011) Breaking the limits: The Taylor
series method. Appl Math Comput 217:7940–7954

18 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

Dennis Jr. JE, Schnabel RB (1996) Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Classics in Applied Mathematics vol. 16,
SIAM, Philadelphia

Faà di Bruno F (1855) Sullo sviluppo delle funzioni. Annali di Scienze Matematiche
e Fisiche 6:479–480

Hairer E, Wanner G (1996) ,Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. 2nd edition. Springer Series in Comput Math
vol. 14.

Jorba À, Zou M (2005) A software package for the numerical integration of ODEs
by means of high-order Taylor methods. Exp Math 14:99–117

Kirlinger G, Corliss GF (1991) On implicit Taylor series methods for stiff ODEs,
Argonne National Laboratory technical report ANL/CP-74795

Miletics E, Molnárka G (2004) Taylor series method with numerical derivatives
for numerical solution of ODE initial value problems. J Comput Methods Sci
Eng. 4:105–114

Miletics E, Molnárka G (2005) Implicit extension of Taylor series method with
numerical derivatives for initial value problems. Comput Math Appl 50:1167–
1177

Qiu J, Shu CW (2003) Finite difference WENO schemes with Lax-Wendroff-type
time discretizations. SIAM J Sci Comput 24:2185–2198

Scott JR (2000) Solving ODE initial value problems with implicit Taylor series
methods, NASA technical memorandum TM-2000-209400

Zoŕıo D, Baeza A, Mulet P (2017) An approximate Lax-Wendroff-type procedure
for high order accurate schemes for hyperbolic conservation laws. J Sci Comput
71:246–273

On approximate implicit Taylor methods for ordinary differential equations 19

R = 2
IT AIT

N e(N) o(N) CPU time e(N) o(N) CPU time
10 1.21e-03 — 3.0e-02 1.23e-03 — 4.0e-02
20 2.90e-04 2.06 6.0e-02 2.93e-04 2.07 4.0e-02
40 7.09e-05 2.03 6.0e-02 7.12e-05 2.04 4.0e-02
80 1.75e-05 2.02 6.0e-02 1.76e-05 2.02 5.0e-02

160 4.36e-06 2.01 0.11 4.36e-06 2.01 6.0e-02
320 1.09e-06 2.00 0.10 1.09e-06 2.00 0.11
640 2.71e-07 2.00 0.16 2.71e-07 2.00 0.21

1280 6.77e-08 2.00 0.26 6.78e-08 2.00 0.37
2560 1.69e-08 2.00 0.48 1.69e-08 2.00 0.75

R = 3
10 7.52e-05 — 4.0e-02 5.35e-05 — 4.0e-02
20 8.75e-06 3.10 6.0e-02 5.95e-06 3.17 4.0e-02
40 1.05e-06 3.05 8.0e-02 7.00e-07 3.09 4.0e-02
80 1.29e-07 3.03 9.0e-02 8.49e-08 3.04 5.0e-02

160 1.60e-08 3.01 0.12 1.04e-08 3.02 9.0e-02
320 1.99e-09 3.01 0.18 1.30e-09 3.01 0.13
640 2.49e-10 3.00 0.32 1.61e-10 3.01 0.25

1280 3.11e-11 3.00 0.51 2.01e-11 3.00 0.46
2560 3.88e-12 3.00 0.81 2.51e-12 3.00 0.9

R = 4
10 5.78e-06 — 6.0e-02 4.93e-06 — 3.0e-02
20 3.30e-07 4.13 0.11 2.44e-07 4.34 4.0e-02
40 1.97e-08 4.07 9.0e-02 1.36e-08 4.17 7.0e-02
80 1.20e-09 4.03 0.14 8.00e-10 4.08 7.0e-02

160 7.43e-11 4.02 0.23 4.86e-11 4.04 0.19
320 4.62e-12 4.01 0.76 3.00e-12 4.02 0.19
640 2.87e-13 4.01 0.66 1.88e-13 4.00 0.33

1280 2.33e-14 3.62 1.28 1.47e-14 3.68 0.63
2560 5.66e-15 2.04 2.17 3.77e-15 1.96 1.27

R = 5
10 4.52e-07 — 0.13 8.25e-07 — 3.0e-02
20 1.26e-08 5.17 0.18 2.31e-08 5.16 6.0e-02
40 3.71e-10 5.09 0.20 6.87e-10 5.07 6.0e-02
80 1.12e-11 5.04 0.30 2.10e-11 5.03 9.0e-02

160 3.42e-13 5.04 0.48 6.53e-13 5.01 0.13
320 4.55e-15 6.23 0.87 2.23e-14 4.87 0.23
640 8.88e-16 2.36 1.59 1.55e-15 3.84 0.46

1280 2.33e-14 -4.71 3.11 2.00e-15 -0.36 0.87
2560 4.22e-15 2.47 6.09 2.44e-15 -0.29 1.69

R = 6
10 3.89e-08 — 2.04 1.52e-07 — 4.0e-02
20 5.26e-10 6.21 1.26 1.35e-09 6.81 6.0e-02
40 7.62e-12 6.11 1.34 1.67e-11 6.33 8.0e-02
80 1.17e-13 6.03 1.50 2.19e-13 6.26 0.11

160 4.44e-15 4.72 1.97 1.11e-16 10.94 0.20
320 2.11e-15 1.07 2.94 2.22e-15 -4.32 0.34
640 8.88e-16 1.25 4.92 6.66e-16 1.74 0.64

1280 2.33e-14 -4.71 8.87 2.00e-15 -1.58 1.27
2560 3.55e-15 2.71 16.6 2.44e-15 -0.29 2.47

Table 2: Example 2 (nonlinear scalar problem (5.2)): numerical errors, orders and
computational time (in seconds) for IT and AIT methods.

20 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

10
-2

10
-1

10
0

10
1

CPU time [s]

10
-10

10
-8

10
-6

10
-4

10
-2

|e
rr

or
|

IT, R=2

AIT, R=2

10
-4

10
-3

10
-2

10
-1

h

10
-10

10
-8

10
-6

10
-4

10
-2

|e
rr

or
|

IT, R=2

AIT, R=2

10
-2

10
-1

10
0

10
1

CPU time [s]

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

|e
rr

or
|

IT, R=3

AIT, R=3

10
-4

10
-3

10
-2

10
-1

h

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

|e
rr

or
|

IT, R=3

AIT, R=3

10
-2

10
-1

10
0

10
1

CPU time [s]

10
-15

10
-10

10
-5

|e
rr

or
|

IT, R=4

AIT, R=4

10
-4

10
-3

10
-2

10
-1

h

10
-15

10
-10

10
-5

|e
rr

or
|

IT, R=4

AIT, R=4

10
-2

10
-1

10
0

10
1

10
2

CPU time [s]

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

|e
rr

or
|

IT, R=5

AIT, R=5

10
-4

10
-3

10
-2

10
-1

h

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

|e
rr

or
|

IT, R=5

AIT, R=5

10
-2

10
-1

10
0

10
1

10
2

CPU time [s]

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

|e
rr

or
|

IT, R=6

AIT, R=6

10
-4

10
-3

10
-2

10
-1

h

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

|e
rr

or
|

IT, R=6

AIT, R=6

Fig. 2: Example 2 (nonlinear scalar problem (5.2)): performance of the IT and the
AIT methods.

On approximate implicit Taylor methods for ordinary differential equations 21

R = 2 R = 3
AIT AET AIT AET

N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)
80 2.12e-05 1.93 NaN — 3.31e-07 2.92 NaN —

160 5.43e-06 1.96 NaN — 4.24e-08 2.96 NaN —
320 1.37e-06 1.98 NaN — 5.37e-09 2.98 NaN —
640 3.45e-07 1.99 NaN — 6.76e-10 2.99 NaN —

1280 8.66e-08 1.99 NaN — 8.47e-11 2.99 NaN —
2560 2.17e-08 1.99 1.03e-07 NaN 1.06e-11 2.99 4.60e-11 NaN
5120 5.42e-09 1.99 2.34e-08 2.13 1.32e-12 2.99 5.75e-12 3.00

10240 1.35e-09 1.99 5.84e-09 2.00 1.66e-13 2.99 7.18e-13 3.00

R = 4
80 4.13e-09 3.92 NaN —

160 2.65e-10 3.96 NaN —
320 1.68e-11 3.98 NaN —
640 1.05e-12 3.98 NaN —

1280 6.65e-14 3.99 NaN —
2560 4.17e-15 3.99 1.07e-13 NaN
5120 2.70e-16 3.94 5.65e-15 4.24

10240 1.95e-17 3.79 3.33e-16 4.09

Table 3: Example 3 (stiff nonlinear problem (5.3)): numerical errors and orders for
AIT and AET methods.

R = 2 R = 3
AIT AET AIT AET

N e(N) o(N) e(N) o(N) e(N) o(N) e(N) o(N)
10 5.94e-05 2.20 3.39e24 — 9.59e-06 2.45 1.24e34 —
20 1.52e-05 1.96 3.93e37 -43.40 1.62e-06 2.56 4.38e50 -54.97
40 4.10e-06 1.89 4.11e50 -43.25 2.42e-07 2.73 4.96e63 -43.37
80 1.08e-06 1.91 2.99e46 13.75 3.34e-08 2.86 1.16e46 58.57

160 2.82e-07 1.94 3.37e-03 162.6 4.39e-09 2.92 3.41e-03 161.2
320 7.22e-08 1.96 7.07e-04 2.25 5.63e-10 2.96 2.03e-04 4.07
640 1.82e-08 1.98 1.67e-04 2.08 7.12e-11 2.98 1.95e-05 3.38

R = 4 R = 5
10 1.69e-06 3.05 3.29e42 — 2.70e-07 3.86 9.71e49 —
20 1.56e-07 3.43 1.43e61 -61.91 1.28e-08 4.39 5.80e69 -65.69
40 1.20e-08 3.70 1.01e72 -36.05 4.97e-10 4.69 3.26e76 -22.42
80 8.32e-10 3.85 9.17e37 113.1 1.72e-11 4.84 4.03e19 189.0

160 5.48e-11 3.92 7.99e-04 136.4 5.69e-13 4.92 2.66e-04 77.01
320 3.51e-12 3.96 3.46e-05 4.53 1.82e-14 4.96 5.26e-06 5.66
640 2.22e-13 3.98 1.73e-06 4.32 5.79e-16 4.98 1.29e-07 5.35

Table 4: Example 4 (stiff linear problem (5.4)): numerical errors and orders for
AIT and AET methods.

22 A. Baeza, R. Bürger, M.C. Mart́ı, P. Mulet and D. Zoŕıo

10
-3

10
-2

10
-1

h

10
-20

10
0

10
20

10
40

10
60

|e
rr

or
|

AET, R=2

AIT, R=2

10
-3

10
-2

10
-1

h

10
-20

10
0

10
20

10
40

10
60

10
80

|e
rr

or
|

AET, R=3

AIT, R=3

10
-3

10
-2

10
-1

h

10
-20

10
0

10
20

10
40

10
60

10
80

|e
rr

or
|

AET, R=4

AIT, R=4

10
-3

10
-2

10
-1

h

10
-20

10
0

10
20

10
40

10
60

10
80

|e
rr

or
|

AET, R=5

AIT, R=5

Fig. 3: Example 4 (stiff linear problem (5.4)): performance of the AET and the
AIT methods.

	Introduction
	Taylor methods
	Implicit Taylor methods
	Newton iteration
	Numerical experiments
	Conclusions

