
Computational and Applied Mathematics (2020) 39:329
https://doi.org/10.1007/s40314-020-01373-7

Discrete octonion Fourier transform and the analysis
of discrete 3-D data

Łukasz Błaszczyk1

Received: 20 December 2019 / Revised: 4 September 2020 / Accepted: 27 October 2020 /
Published online: 22 November 2020
© The Author(s) 2020

Abstract
The purpose of this article is to further develop the theory of octonion Fourier transformations
(OFT), but from a different perspective than before. It follows the earlier work by Błaszczyk
and Snopek, where they proved a few essential properties of the OFT of real-valued functions
of three continuous variables. The research described in this article applies to discrete trans-
formations, i.e. discrete-space octonion Fourier transform (DSOFT) and discrete octonion
Fourier transform (DOFT). The described results combine the theory of Fourier transform
with the analysis of solutions for difference equations, using for this purpose previous research
on algebra of quadruple-complex numbers. This hypercomplex generalization of the discrete
Fourier transformation provides an excellent tool for the analysis of 3-D discrete linear time-
invariant (LTI) systems and 3-D discrete data.

Keywords Hypercomplex numbers · Octonion Fourier transform · Discrete-time systems ·
Fast Fourier transform

Mathematics Subject Classification 30G35 (primary) · 65T50 · 94A12

1 Introduction

Research in the field of signal and system processing is not only an analysis of the functions of
a continuous variable (interpreted as time or space) and their representations in the frequency
domain, but also in the field of discrete variables, which we naturally obtain as a result of
the process of digitization (i.e. in connection with sampling of signals). As in the case of
classical signal processing, so the discrete counterpart of this theory has so far mainly focused
on signals with real and complex values, as well as their complex spectra. In recent years,

Communicated by Apala Majumdar.

The research was supported by WUT grant No. 504/04239/1120.

B Łukasz Błaszczyk
l.blaszczyk@mini.pw.edu.pl

1 Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75,
00-662 Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-020-01373-7&domain=pdf
http://orcid.org/0000-0002-9827-3562

329 Page 2 of 19 Ł. Błaszczyk

Fig. 1 Multiplication rules in octonion algebra

however, more and more works have started to appear, which authors use in their research
hypercomplex algebras, among others quaternions and octonions (Brackx et al. 2013; Hahn
and Snopek 2016; Lian 2019; Snopek 2015; Wang et al. 2017). The area of applications is
focused so far on the study of neural networks (Popa 2016, 2018), analysis of color and
multispectral images (Ell et a. 2014; Gao and Lam 2014; Gomes et al. 2017; Grigoryan and
Agaian 2018; Lazendić et al. 2018a, b; Sheng et al. 2018), as well as the biomedical signals
processing (Delsuc 1988; Klco et al. 2017).

Octonions are defined as the 8-tuple of real numbers, i.e.

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7 ∈ O, o0, . . . , o7 ∈ R,

where e1, . . . , e7 are seven different octonion imaginary units, each satisfying the property
e2i = ei · ei = −1, i = 1, . . . , 7, and other octonion multiplication rules shown in Fig. 1.
Octonions form a non-associative and a non-commutative algebra (Baez 2002).

In previous studies, we focused on discussing the properties of the octonion Fourier
transform (OFT)of real-valued functions of three variables (and in the case of someproperties,
we extended this to octonion-valued functions) (Błaszczyk 2018, 2019, 2020; Błaszczyk and
Snopek 2017). OFT is given by a formula

UOFT(f1, f2, f3)=
∫
R

∫
R

∫
R

u(x1, x2, x3) · e−2πe1 f1x1 · e−2πe2 f2x2 · e−2πe4 f3x3 dx1dx2dx3,

(1)

where e1, e2 and e4 are three of the seven octonion imaginary units and the octonion expo-
nential function is defined by the power series (Błaszczyk 2020), similarly as for the complex
numbers and quaternions. In previous investigations (Błaszczyk 2020; Błaszczyk and Snopek
2017) it has been shown that (1) is well defined (i.e. the inverse transform theorem is valid)
and some properties of the OFT, analogous to the properties of the complex and quaternion
Fourier transform (e.g. Hermitian symmetry, shift theorem, Plancherel-Parseval theorems
and derivative theorem) were also derived.

123

Discrete octonion Fourier transform... Page 3 of 19 329

Fig. 2 Multiplication rules in F

A major difficulty in these works was the lack of significant properties of octonion multi-
plication, i.e. commutativity and associativity. Non-commutativity is also encountered with
Fourier transforms based on quaternion algebra and (in general) Clifford algebras (Brackx
et al. 2013). In order to deal with these problems, we have defined the algebra of quadruple-
complex numbers (based on the double-complex numbers introduced by Ell (1993); Kurman
(1958)). Like octonions, we define the algebra of order 8 over the field of real numbers and
each element of this algebra will be identified with the 8-tuple of real numbers (Błaszczyk
2019, 2020), i.e.

p = p0 + p1E1 + p2E2 + p3E3 + p4E4 + p5E5 + p6E6 + p7E7 ∈ F, p0, . . . , p7 ∈ R.

Addition in F is defined in a classical way—element-wise, and multiplication (denoted as�)
rules are shown in Fig. 2.We can see that imaginary units inF follow the analogous (although
significantly different) rules as the octonion multiplication, i.e.

E1 � E1 = E2 � E2 = −E3 � E3 = E4 � E4 = −E5 � E5 = −E6 � E6 = E7 � E7 = −1.

It is worth pointing out that, just as in the case of octonions, algebra F is generated by
three imaginary units, i.e. E1, E2 and E4. Each other imaginary unit can be obtained by
multiplying these three units, i.e. E3 = E1 � E2, E5 = E1 � E4, E6 = E2 � E4 and
E7 = E1 �E2 �E4. However, unlike octonions, the three basic imaginary units of algebra F
are commutative. The multiplication in F is commutative and associative, however not every
non-zero element of F has its inverse, which is a property common to Clifford algebras. This
algebra has already appeared in the literature, in particular in Felsberg et al. (2001) (where
it was denoted as hypercomplex algebra H4). By using operations in the quadruple algebra
the notation of formulas for determining many OFT properties could be reduced to simple
equations known from classical theory.We discussed that in detail in Błaszczyk (2019, 2020).

From the point of view of numerical calculations and practical applications, it is also
important to develop discrete equivalents of the transformations under consideration and their
properties. In the case of the classical Fourier transformation, this subject is well known, as in
the case of quaternions (Bahri and Surahman 2013; Ell et a. 2014; Sangwine and Bihan 2005;
Sangwine 1997). In the case of octonions, references to the analysis of 1- and 2-dimensional

123

329 Page 4 of 19 Ł. Błaszczyk

signals appear in the literature (Grigoryan and Agaian 2018), but there is still no definition
of discrete octonion Fourier transform of 3-dimensional signals.

The paper is organized as follows. In Sect. 2 we recall previous results concerning the
octonion Fourier transform and introduce some important properties. In Sect. 3 we focus on
the discrete-time LTI systems, which leads to the definition of the discrete-space octonion
Fourier transform. Its well-posedness and some of its properties are the main part of Sect. 4.
Sections 5 and 6 are devoted to the discrete octonion Fourier transform—its definition,
properties and implementation aspects. The implementation of the DOFT algorithm and the
results of the first tests are also presented there. The paper is concluded in Sect. 7 with a short
discussion of obtained results.

2 Octonion Fourier transform and some properties

As mentioned earlier, the OFT of the real-valued function u : R3 → R is given by the
formula (1). In order for the integral (1) to exist, it is necessary for the function u to be at
least integrable. However, in general, conditions of existence of the OFT are the same as for
the classical (complex) Fourier transform (Błaszczyk 2020). Choice and order of imaginary
units in the exponents is not accidental (see Błaszczyk and Snopek 2017). In our previous
studies (see Błaszczyk and Snopek 2017), we proved the inverse formula (for continuous
functions u : R3 → R such that both u and its OFT are integrable):

u(x) =
∫
R3
U (f) · e2πe4 f3x3 · e2πe2 f2x2 · e2πe1 f1x1 df,

where x = (x1, x2, x3), f = (f1, f2, f3) and multiplication is performed from left to right.
We have also proved some important features, among which there are those that will be
useful in the analysis of discrete-variable signals (Błaszczyk 2020; Błaszczyk and Snopek
2017). Below, we quote their wording, assuming in each of these statements that the OFTs
are well-defined and invertible. Let U be the OFT of the real-valued function u and let uxi
denote the partial derivative of u with respect to xi .

Theorem 1 (Shift Theorem) Let Uα , Uβ and U γ denote the OFTs of u(x1 − α, x2, x3),
u(x1, x2 − β, x3) and u(x1, x2, x3 − γ), respectively. Then

Uα(f1, f2, f3) = cos(2π f1α) U (f1, f2, f3) − sin(2π f1α) U (f1,− f2,− f3) · e1,
Uβ(f1, f2, f3) = cos(2π f2β) U (f1, f2, f3) − sin(2π f2β) U (f1, f2,− f3) · e2,
U γ (f1, f2, f3) = cos(2π f3γ) U (f1, f2, f3) − sin(2π f3γ) U (f1, f2, f3) · e4.

Theorem 2 Let U ∂x1 , U ∂x2 andU ∂x3 denote the OFTs of ux1 , ux2 and ux3 , respectively. Then

U ∂x1(f1, f2, f3) = U (f1,− f2,− f3) · (2π f1e1),

U ∂x2(f1, f2, f3) = U (f1, f2,− f3) · (2π f2e2),

U ∂x3(f1, f2, f3) = U (f1, f2, f3) · (2π f3e4).

It seems that in the above form these statements are of little use. It is worth noting, however,
that on the onehandwehave a theoremonHermitian symmetry (Błaszczyk andSnopek2017),
and on the other hand we can reformulate the given formulas using the operation �. Then
these theorems take the form known from classical theory.

123

Discrete octonion Fourier transform... Page 5 of 19 329

Corollary 1 Let Uα , Uβ and U γ denote the OFTs of u(x1 −α, x2, x3), u(x1, x2 −β, x3) and
u(x1, x2, x3 − γ), respectively. Then

Uα(f) = U (f) � e−E12π f1α, Uβ(f) = U (f) � e−E22π f2β, U γ (f) = U (f) � e−E42π f3γ .

Corollary 2 Let U ∂x1 , U ∂x2 andU ∂x3 denote the OFTs of ux1 , ux2 and ux3 , respectively. Then

U ∂x1(f) = U (f) � (2π f1E1), U ∂x2 (f) = U (f) � (2π f2E2), U ∂x3(f) = U (f) � (2π f3E4).

Remark 1 The claims of the Corollaries 1 and 2 should be understood in a specific way. We
will show it on the example of the last formula in Corollary 2. The OFT of the real-valued
function u can be expressed as

U = U0 +U1e1 +U2e2 +U3e3 +U4e4 +U5e5 +U6e6 +U7e7,

whereU0, . . . ,U7 : R3 → R are real-valued functions (we omit the argument of the function
so as not to lose readability of the formula). Then

U · e4 = −U4 −U5e1 −U6e2 −U7e3 +U1e4 +U2e5 +U3e6 +U4e7.

On the other hand we can treat the octonion-valued function U as the 8-tuple of real-valued
functions, which allows us to write this function as a F-valued function:

U = U0 +U1E1 +U2E2 +U3E3 +U4E4 +U5E5 +U6E6 +U7E7.

Then

U � E4 = −U4 −U5E1 −U6E2 −U7E3 +U1E4 +U2E5 +U3E6 +U4E7,

which, again treating this expression as 8-tuple of real-valued functions, gives the statement
of the Corollary. Other expressions should be understood analogously.

Proofs of these claims are based on direct calculations and we omit the details here. It
should be remembered that the notation related to the operation � serves only to increase
the readability of performed operations and facilitate their interpretation. More importantly,
it allows the direct use of the OFT for the analysis of LTI systems, which are described both
by partial differential equations and difference equations (of three variables).

3 Discrete-time LTI systems

Consider linear time-invariant stationary system of three variables. We know from the clas-
sical signal and system theory that such systems are described by their impulse responses
h : R3 → R (also sometimes called Green functions) and then the input-output relation of
signals u : R3 → R and v : R3 → R, respectively, is given by the formula:

v(x) =
∫
R3

u(y) · h(x − y) dy = (u ∗ h)(x).

The function at the output of the system is therefore a convolution of the function on the
input with the impulse response, which is schematically presented in the block form as in
Fig. 3.

From the convolution-multiplication duality theorem for the classic Fourier transforma-
tion, it immediately follows that the following equality occurs:

FCFT {v} = FCFT {u ∗ h} = FCFT {h} · FCFT {u} ,

123

329 Page 6 of 19 Ł. Błaszczyk

Fig. 3 3-D-LTI system (block representation)

and function H = FCFT {h} is called the frequency response of the system. In Błaszczyk
(2019, 2020) we showed that the similar relation is valid also in case of octonion Fourier
transform:

V (f) = HOFT(f) �U (f),

where HOFT is the octonion Fourier transform of the impuls response h (and therefore called
the octonion frequency response) and we use the multiplication in the algebra of quadruple-
complex numbers (in the sense described in Remark 1).

Thanks to these relations (and also Corollary 2), we can see that every linear partial
differential equation with constant coefficients can be reduced to the algebraic equation (in
the sense of multiplication in F). In Błaszczyk (2019, 2020) we presented a few examples
showing the possibilities of using this notation.

Analogous reasoning can be performed for discrete-time systems. They are described
mostly by difference equations, i.e. equations of the form:

M1−1∑
i1=0

M2−1∑
i2=0

M3−1∑
i3=0

ai u(n − i) =
N1−1∑
j1=0

N2−1∑
j2=0

N3−1∑
j3=0

bj v(n − j), a(0,0,0) �= 0

where u, v : N3 → R are unknown sequences indexed by a 3-D discrete variable, ai, bj ∈ R,
n = (n1, n2, n3), i = (i1, i2, i3) and j = (j1, j2, j3). Using the octonion Fourier transform
and Theorem 1, we can write this equality in a different form. However, only by composing
Corollary 1 (and treating octonions as 8-tuples of real numbers, and therefore as elements of
F) we can reduce this relation to that which we know from classical theory:

U (f) �
⎛
⎝M1−1∑

i1=0

M2−1∑
i2=0

M3−1∑
i3=0

ai e
−E12π f1i1 � e−E22π f2i2 � e−E42π f3i3

⎞
⎠

= V (f) �
⎛
⎝N1−1∑

j1=0

N2−1∑
j2=0

N3−1∑
j3=0

bj e
−E12π f1 j1 � e−E22π f2 j2 � e−E42π f3 j3

⎞
⎠ .

It can be shown with direct calculations that

e−E12π f1i1 � e−E22π f2i2 � e−E42π f3i3 = e−e12π f1i1 · e−e22π f2i2 · e−e42π f3i3 ,

where the multiplication in the octonion algebra is performed from left to right. The above
equality should be understood in the sense described in Remark 1, i.e. as the equality of
8-tuples of real numbers. Therefore we have

U (f) �
⎛
⎝M1−1∑

i1=0

M2−1∑
i2=0

M3−1∑
i3=0

ai e
−E12π f1i1 � e−E22π f2i2 � e−E42π f3i3

⎞
⎠

= V (f) �
⎛
⎝N1−1∑

j1=0

N2−1∑
j2=0

N3−1∑
j3=0

bj e
−E12π f1 j1 � e−E22π f2 j2 � e−E42π f3 j3

⎞
⎠ ,

123

Discrete octonion Fourier transform... Page 7 of 19 329

where expressions in brackets are some octonion counterparts to discrete Fourier transforms
of vectors a = (ai), b = (bj) indexed by 3-D discrete variables.

4 Discrete-space octonion Fourier transform

The above considerations lead to the definition of the octonion counterpart of the discrete
Fourier transform of real-valued sequences.

Definition 1 Let a : N3 → R be a sequence indexed by a 3-D discrete variable and let
a = (ai), i = (i1, i2, i3). Octonion Fourier transform of the sequence a is defined by the
formula

AOFT(f) =
∑
i∈N3

ai · e−e12π f1i1 · e−e22π f2i2 · e−e42π f3i3 , f = (f1, f2, f3) ∈
(

−1

2
,
1

2

)3

,

where multiplication is performed from left to right.

The above definition is a three-dimensional equivalent of the Fourier transformation of
discrete time (discrete-time Fourier transform—DTFT), in relation to which the given for-
mula can be abbreviatied as DSOFT (discrete-space octonion Fourier transform). Like its
classic equivalent, DSOFT is a periodic function with relation to each variable, with a period
of 1. Using the methods presented in the proof of the inverse theorem (Błaszczyk and Snopek
2017), the following formula can be derived for the inverse transform.

Theorem 3 Let a : N3 → R be a sequence indexed by a 3-D discrete variable and let
a = (ai), i = (i1, i2, i3), be square-summable. Then

ai =
∫

(
− 1

2 , 12

)3 AOFT(f) · ee42π f3i3 · ee22π f2i2 · ee12π f1i1 df,

where multiplication is performed from left to right.

This theorem can be generalized to octonion-valued sequences, proving it with the same
methods as in Błaszczyk (2018, 2020). From simple calculations the proof of the following
theorem on the transformation of the rescaled function follows.

Theorem 4 Let a = (ai) : N3 → R and let A denote the DSOFT of a. Let k1, k2, k3 ∈ N+,
define b : N3 → R by the formula:

b(i1,i2,i3) =
{
a(i1/k1,i2/k2,i3/k3) if k1|i1, k2|i2 and k3|i3,
0 otherwise

and let B denote the DSOFT of b. Then

B(f1, f2, f3) = A(k1 f1, k2 f2, k3 f3).

Proof From straightforward calculations we have that

B(f1, f2, f3) =
∑
i∈N3

bi · e−e12π f1i1 · e−e22π f2i2 · e−e42π f3i3

=
∑
j∈N3

aj · e−e12π f1k1 j1 · e−e22π f2k2 j2 · e−e42π f3k3 j3 = A(k1 f1, k2 f2, k3 f3),

which concludes the proof. ��

123

329 Page 8 of 19 Ł. Błaszczyk

It is worth noting that proofs of other properties of the octonion Fourier transformation (of
functions of the continuous variable) proceeded in the same way as proofs of equivalents of
these properties for the classic Fourier transform. Differences in statements of those theorems
resulted only from the properties of multiplication of octonions, and, as a consequence, of
operations on exponential functions in the kernel of transformation. Therefore, the equivalents
of these properties for DSOFT will look the same, and their proofs will be very similar. We
will therefore omit the details and quote only the statements.

Theorem 5 Let a = (ai) : N3 → R and let A denote the DSOFT of a. Moreover, let f0 ∈ R

and denote acos,k = (ai), a
cos,k
i = ai · cos(2π f0ik), and Acos,k as the DSOFT of acos,k ,

k = 1, 2, 3. Then

Acos,1(f1, f2, f3) =
(
A(f1 + f0, f2, f3) + A(f1 − f0, f2, f3)

)
· 1
2
,

Acos,2(f1, f2, f3) =
(
A(f1, f2 + f0, f3) + A(f1, f2 − f0, f3)

)
· 1
2
,

Acos,3(f1, f2, f3) =
(
A(f1, f2, f3 + f0) + A(f1, f2, f3 − f0)

)
· 1
2
.

Theorem 6 Let a = (ai) : N3 → R and let A denote the DSOFT of a. Moreover, let f0 ∈ R

and denote asin,k = (ai), a
sin,k
i = ai · sin(2π f0ik), and Acos,k as the DSOFT of asin,k ,

k = 1, 2, 3. Then

Asin,1(f1, f2, f3) = (
A(f1 + f0,− f2,− f3) − A(f1 − f0,− f2,− f3)

)
· e1
2

,

Asin,2(f1, f2, f3) =
(
A(f1, f2 + f0,− f3) − A(f1, f2 − f0,− f3)

)
· e2
2

,

Asin,3(f1, f2, f3) =
(
A(f1, f2, f3 + f0) − A(f1, f2, f3 − f0)

)
· e4
2

.

From the reasoning in the previous section, the shift theorem also immediately follows.

Theorem 7 Let a = (ai) : N3 → R and let A denote the DSOFT of a. Moreover, let α, β, γ ∈
Z and denote aα = (aα

i), aα
(i1,i2,i3)

= a(i1−α,i2,i3), a
β = (aβ

i), aβ

(i1,i2,i3)
= a(i1,i2−β,i3),

aγ = (aγ

i), aγ

(i1,i2,i3)
= a(i1,i2,i3−γ). Let A� denote the DSOFT of a�, where � = α, β, γ .

Then

Aα(f1, f2, f3) = cos(2π f1α)A(f1, f2, f3) − sin(2π f1α)A(f1,− f2,− f3) · e1
Aβ(f1, f2, f3) = cos(2π f2β)A(f1, f2, f3) − sin(2π f2β)A(f1, f2,− f3) · e2
Aγ (f1, f2, f3) = cos(2π f3γ)A(f1, f2, f3) − sin(2π f3γ)A(f1, f2, f3) · e4.

Aswementioned earlier, deriving the DSOFT definition, it can be used to analyze discrete
systems described by difference equations. It is also easy to see that these methods will be
used in the analysis of finite difference schemes for partial differential equations. The theory
considered so far mainly used classic Fourier transforms (discrete), which were applied
to a variable interpreted as space (one- or two-dimensional), but by defining an octonion
transformation we can try to transform the whole scheme, both for time and space.

123

Discrete octonion Fourier transform... Page 9 of 19 329

5 Discrete octonion Fourier transform

In the previous section we considered signals (sequences) of infinite length. However, in
practice, finite-length signals are usually found, which, as in the classical case, leads to the
definition of discrete octonion Fourier transform. Similarly to the complex and quaternion
case, the following definition has its basis in the discretization of the frequency domain in
discrete-space octonion Fourier transform.

Definition 2 Let a : [N1] × [N2] × [N3] → R, [Ni] = {0, . . . , Ni − 1}, be a finite-length
sequence indexed by a 3-D discrete variable and let a = (an), n = (n1, n2, n3). Discrete
octonion Fourier transform (DOFT) AOFT = (AOFT,k) of a is defined by the formula

AOFT,k =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

a(n1,n2,n3) · e−e12πk1n1/N1 · e−e22πk2n2/N2 · e−e42πk3n3/N3 , (2)

where k = (k1, k2, k3) ∈ [N1] × [N2] × [N3] and multiplication is performed from left to
right.

This is the direct octonion equivalent of the 3-D discrete Fourier transformation. The
formula for inverse transformation is proved analogously to the corresponding formula for
inverse OFT (Błaszczyk 2020). In particular, the following equality is used:

1

N

N−1∑
k=0

e−ei2πkn/N · eei2πkm/N = δm,n =
{
1 if m = n,

0 if m �= n,

valid for every octonion imaginary unit ei , i = 1, . . . , 7. We omit the proof and only quote
the statement of the inverse-transform theorem.

Theorem 8 Let a : [N1] × [N2] × [N3] → R, [Ni] = {0, . . . , Ni − 1}, be a finite-length
sequence indexed by a 3-D discrete variable and let a = (an), n = (n1, n2, n3). If AOFT =
(AOFT,k) is the DOFT of a, then

an = 1

N1N2N3

N1−1∑
k1=0

N2−1∑
k2=0

N3−1∑
k3=0

AOFT,(k1,k2,k3) · ee42πk3n3/N3 · ee22πk2n2/N2 · ee12πk1n1/N1 ,

where multiplication is performed from left to right.

From a computational point of view, consideration should be given to the possibility of
implementing a fast DOFT calculation version. In the quaternion case, various solutions to
this problem have been proposed—direct implementation of the quaternion version of the
Fast Fourier Transform algorithm (FFT) and the use of the complex (original) version of this
algorithm. The latter option turned out to be better and less computationally demanding (Ell
et a. 2014).

In the case of octonions, one can do the same. In Błaszczyk (2020) we proved that the
octonion Fourier transformation of octonion-valued functions can be calculated using the
classical Fourier transformation. This was formulated in the following statement (for proof
see Błaszczyk 2020).

123

329 Page 10 of 19 Ł. Błaszczyk

Theorem 9 Let u : R3 → O and u = v0+v1e2+v2e4+v3e2 ·e4, where v0, . . . , v3 : R3 → C.
If UOFT is the OFT of u, then

UOFT(f1, f2, f3) = V0(f1, f2, f3) + V1(− f1, f2,− f3) · e2
+ V2(− f1,− f2, f3) · e4 + V3(f1,− f2,− f3) · e2 · e4,

where Vi is the OFT of vi , i = 0, . . . , 3, and

Vi (f1, f2, f3) = 1

4

(
v̂i (f1, f2, f3) · (1 − e3) + v̂i (f1,− f2, f3) · (1 + e3)

) · (1 − e5)

+ 1

4

(
v̂i (f1, f2,− f3) · (1 − e3) + v̂i (f1,− f2,− f3) · (1 + e3)

) · (1 + e5),

where v̂i is the classical (complex) Fourier transform of vi , i = 0, . . . , 3.

It is important to notice that the field of complex numbers C used in the abovementioned
theorem is the specific subfield of the octonion algebra, i.e.C = {x0+x1e1 ∈ O : x0, x1 ∈ R}.
Consequently, only the imaginary units e2 and e4 appear in the thesis. Equivalent versions
of the above theorem can be derived which take into account other pairs of imaginary units.

Analogous theorems for calculating the inverse transformation are also known (Błaszczyk
2020, Theorem 5 and Corollary 2). Due to the long formulation of the theorem, we omit it
here. These claims remain true also for discrete transformations. The operation of changing
the sign of a variable should be understood in the sense of modulo operations, as in the classic
case—DOFT, just like DFT, can be treated as a periodic function.

Thanks to this, it is possible to use all the advantages of the FFT algorithm, with a small
additional calculation effort—the octonion FFT algorithm for functions with octonion values
requires the calculation of four transforms of different functions with complex values.

Tools for operations on hypercomplex numbers are available in many programming envi-
ronments, including in MATLAB®. MATLAB® environment is one of the more popular
tools supporting the work of engineers and packages expanding programming capabilities
in this environment appear quite often. The qtfm package developed by the team of S.
Sangwine and N. Le Bihan Sangwine and Bihan (2005) focuses on numerical calculations
in quaternion algebra (not only basic arithmetic operations are available, but also highly
developed tools for calculating quaternion Fourier transforms), but on the other hand, it also
allows simple operations in octonion algebra. However, it lacks more advanced features that
would give users the opportunity to calculate octonion Fourier transforms.

The qtfm package has been extended by, among others, five additional functions

– doft3 and idoft3 (forward and inverse DOFT using the direct formula),
– offt3 and iofft3 (forward and inverse DOFT using the FFT algorithm),
– fftreflection (symmetrical reflection of functions relative to the indicated axes).

The functions have been implemented using the qtfm package syntax. Octonions are entered
in it, among others as

octonion(r0, r1, r2, r3, r4, r5, r6, r7),

where r0, …, r7 are numbers or matrixes of numbers. It is also possible to automatically
project real numbers, complex numbers and quaternions to the appropriate octonions, using
the fact that they are created in the Cayley-Dickson construction (this is done using the
available function cd).

The implementation of the forward and inverse discrete octonion Fourier transformation
was performed in two ways—using the direct formula (2) and using Theorem 9, where first

123

Discrete octonion Fourier transform... Page 11 of 19 329

the classical (complex) Fourier transforms are calculated, and then they are combined in an
appropriate manner. In the case of the direct algorithm, in order to avoid problems with mul-
tiplication of octonions, the matrix representation of multiplication presented in Tian (2000)
was used. One of the important elements of the octonion FFT algorithm is the ability to sym-
metrically reflect functions with relation to the respective axes. This has been implemented
in the fftreflection(X, A) function, where X is a mirrored function (matrix), and A
is a vector that indicates which variables to reflect (e.g. [1,3]means that X is mirrored with
respect to 1st and 3rd variable). It uses the convention that MATLAB® adopts with the FFT
algorithm – zero frequencies always appear on the first coordinates of the matrix (in each
dimension), and the discrete Fourier transform is a periodic function.

Implemented functions can be found in the GitHub repository:
https://github.com/blaszczykl/matlab-octonions and the code is also included inAppendix1

(Listings 1–5). This is the original code developed by the author, however, it requires the
qtfm package to work correctly (it is based on the syntax used in this package).

The correctness of implemented functions can be tested in two ways. First, it was checked
whether applying the reverse transformation to the result of the forward transformation
returned the original matrix. This check was done for both versions of the algorithm by
generating random N × N × N octonion matrices, where N = 4 and each coordinate was
generated from a uniform distribution over the interval [0, 1] (for details see Listing 7). In
both cases, the maximum relative error did not exceed 2.2 · 10−11%, which can be treated as
a numerical approximation error.

It is worth noting the (expected) problem of calculation time for various quantities of N .
In the case of the direct algorithm, the execution time is proportional to N 6, while for the
FFT algorithm the time is proportional to N 3 log N . This is not a surprising feature, it also
applies to the classical DFT, however, due to operations on octonions, the time needed to
perform calculations may be larger than in the case of the classical one. It can be seen that
this issue is important.

To check whether an error was made when implementing the algorithm using Theorem 9
andwhether it actually returns a discrete OFT, it was assumed that the direct algorithm returns
the correct result and then it was compared with the result returned by the octonion FFT. In
this case, the error did not exceed 1.5 · 10−12%, which suggests that the implementation is
correct.

6 Symmetry properties of the DOFT

As in the case of continuous OFT, most discrete classical equivalents of Fourier transform
properties can be proved for discrete OFT. One of the first results for continuous OFT was to
show the equivalent of Hermitian symmetry (Błaszczyk and Snopek 2017, Theorem 4.6). In
the discrete case, the following theorem can be proved by repeating the reasoning presented
in Błaszczyk and Snopek (2017).

Theorem 10 Let a : [N1] × [N2] × [N3] → R, [Ni] = {0, . . . , Ni − 1}, be a finite-
length sequence indexed by a 3-D discrete variable and let a = (an), n = (n1, n2, n3).
If AOFT = (AOFT,n) is the DOFT of a, then

123

https://github.com/blaszczykl/matlab-octonions

329 Page 12 of 19 Ł. Błaszczyk

AOFT,(m1,n2,n3) = −α7,5,3,1(AOFT,(n1,n2,n3)),

AOFT,(n1,m2,n3) = −α7,6,3,2(AOFT,(n1,n2,n3)),

AOFT,(n1,n2,m3) = −α7,6,5,4(AOFT,(n1,n2,n3)),

where mi = (−ni mod Ni), αi1,...,i4 = αi1 ◦ . . . ◦ αi4 and αi (o) = −ei · o · ei .
It should be noted that the function−αi1,...,i4 , introduced in Błaszczyk and Snopek (2017),

changes the sign of four imaginary units of an octonion, i.e. ei1 , . . ., ei4 . The above theorem
should be interpreted so that the individual imaginary parts are even or odd with relation to
the respective variables (in the sense of modulo operations).

The function αi1,...,i4 has also been implemented on the basis of the qtfm package as
a function alpha(o, i1, i2, i3, i4) (see Listing 6), where o is the transformed
octonion (or matrix of octonions) and i1, …, i4 are four (different) indices of imaginary
parts of o whose sign should be changed. The tests that could be performed thanks to this
(presented in Listing 7) illustrate Theorem 10 and show that indeed DOFT of real-value
matrices has the mentioned symmetry properties.

7 Discussion and conclusions

The results presented show that discrete Fourier transforms can be generalized to the case
of higher order algebras (e.g. octonions). What’s more, using the properties of algebra of
quadruple-complex numbers, this generalization can lead to a very similar form.

One could ask the question why it is worth working in two different algebras in parallel
instead of just working in the algebra of quadruple-complex numbers F. While going through
calculations in F facilitates the interpretation of results, there are more and more papers in
the literature devoted to the use of octonion algebra (Gao and Lam 2014; Grigoryan and
Agaian 2018; Hahn and Snopek 2016; Klco et al. 2017; Lazendić et al. 2018a, b; Lian 2019;
Popa 2016, 2018; Sheng et al. 2018; Snopek 2015; Wang et al. 2017). Therefore, it seems
important to develop tools enabling work in this algebra as well.

The properties of discrete octonion Fourier transforms show that they can be used without
difficulty for the analysis of difference equations, aswell as for the analysis of finite difference
schemes for differential equations. Detailed work in this area remains in the plans for further
actions, as well as the further development of this theory.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

MATLAB® files

Listing 1 offt3.m

function Y = offt3(X)
% OFFT3 Discrete octonion Fourier transform calculated with FFT algorithm

123

http://creativecommons.org/licenses/by/4.0/

Discrete octonion Fourier transform... Page 13 of 19 329

%
% This function calculates the discrete octonion Fourier transform of
% 3-dimensional octonion -valued matrix X using classical FFT algorithm. It
% uses the convention that zero frequencies appear on the first coordinates
% of the matrix. In order to shift the zero frequency to the middle of the
% matrix , the fftshift function should be used.
%
% See also: IOFFT3 , FFTSHIFT

narginchk(1, 1), nargoutchk (0, 1)

if ~isreal(X)
error ([’The transformed matrix must have components that are ’, ...

’real octonions.’]);
end

if ndims(X) ~= 3
error(’The transformed matrix must be 3-dimensional.’);

end

e2 = octonion (0,0,1,0,0,0,0,0);
e4 = octonion (0,0,0,0,1,0,0,0);

Y = octonion(zeros(size(X)));
for i = 1:4

Ca = fftn(complex(part(X,2*i-1), part(X,2*i)));
Cb = fftreflection(Ca, 2);
Cc = fftreflection(Ca, 3);
Cd = fftreflection(Cb, 3);

V = octonion(real(Ca) + real(Cb) + real(Cc) + real(Cd),...
imag(Ca) + imag(Cb) + imag(Cc) + imag(Cd),...
imag(Ca) - imag(Cb) + imag(Cc) - imag(Cd),...

-real(Ca) + real(Cb) - real(Cc) + real(Cd),...
imag(Ca) + imag(Cb) - imag(Cc) - imag(Cd),...

-real(Ca) - real(Cb) + real(Cc) + real(Cd),...
-real(Ca) + real(Cb) + real(Cc) - real(Cd),...
-imag(Ca) + imag(Cb) + imag(Cc) - imag(Cd));

switch i
case 1

Y = Y + V;
case 2

Y = Y + fftreflection(V,[1 ,3]) * e2;
case 3

Y = Y + fftreflection(V,[1 ,2]) * e4;
case 4

Y = Y + (fftreflection(V,[2 ,3]) * e2) * e4;
end

end
Y = Y / 4;

Listing 2 iofft3.m

function Y = iofft3(X)
% IOFFT3 Inverse discrete octonion Fourier transform calculated with FFT
% algorithm
%
% This function calculates the inverse discrete octonion Fourier transform
% of 3-dimensional octonion -valued matrix X using classical FFT algorithm.
% It uses the convention that zero frequencies appear on the first
% coordinates of the matrix. In order to shift the zero frequency back to
% the first coordinates , the ifftshift function should be applied.
%
% See also: OFFT3 , IFFTSHIFT

narginchk(1, 1), nargoutchk (0, 1)

123

329 Page 14 of 19 Ł. Błaszczyk

if ~isreal(X)
error ([’The transformed matrix must have components that are ’, ...

’real octonions.’]);
end

if ndims(X) ~= 3
error(’The transformed matrix must be 3-dimensional.’);

end

e1 = octonion (0,1,0,0,0,0,0,0);
e2 = octonion (0,0,1,0,0,0,0,0);

Y = octonion(zeros(size(X)));
for i = 1:4

if i == 1 || i == 4
Ca = ifftn(complex(part(X,i), part(X,i+4)));

else
Ca = ifftn(complex(part(X,i),-part(X,i+4)));

end
Cb = fftreflection(Ca, 2);
Cc = fftreflection(Ca, 1);
Cd = fftreflection(Cb, 1);

V = octonion(real(Ca) + real(Cb) + real(Cc) + real(Cd),...
imag(Ca) + imag(Cb) - imag(Cc) - imag(Cd),...
imag(Ca) - imag(Cb) + imag(Cc) - imag(Cd),...
real(Ca) - real(Cb) - real(Cc) + real(Cd),...
imag(Ca) + imag(Cb) + imag(Cc) + imag(Cd),...
real(Ca) + real(Cb) - real(Cc) - real(Cd),...
real(Ca) - real(Cb) + real(Cc) - real(Cd),...
imag(Ca) - imag(Cb) - imag(Cc) + imag(Cd));

switch i
case 1

Y = Y + V;
case 2

Y = Y + fftreflection(V,[2 ,3]) * e1;
case 3

Y = Y + fftreflection(V,[1 ,3]) * e2;
case 4

Y = Y + (fftreflection(V,[1 ,2]) * e1) * e2;
end

end
Y = Y / 4;

Listing 3 fftreflection.m

function Y = fftreflection(X, A)
% FFTREFLECTION Reflect the OFT spectrum with respect to some variable
%
% This function rearranges an octonion Fourier transform X by reflecting
% the spectrum with respect to variables with indices in vector A. It
% uses the convention that zero frequencies appear on the first coordinates
% of the matrix.
%
% See also: OFFT3 , IOFFT3

narginchk(2, 2), nargoutchk (0, 1)

if ndims(X) ~= 3
error(’The transformed matrix must be 3-dimensional.’);

end

if ~all(mod(A,1) == 0) || ~all(A >= 1) || ~all(A <= 3)
error(’A must be an array containing only 1s, 2s and 3s.’);

end

Y = X;

123

Discrete octonion Fourier transform... Page 15 of 19 329

for dim = A
switch dim

case 1
Y(2:end ,:,:) = flip(Y(2:end ,:,:), 1);

case 2
Y(:,2:end ,:) = flip(Y(:,2:end ,:), 2);

case 3
Y(:,:,2:end) = flip(Y(:,:,2:end), 3);

end
end

Listing 4 doft3.m

function Y = doft3(X)
% DOFT3 Discrete octonion Fourier transform calculated with direct formula
%
% This function calculates the discrete octonion Fourier transform of
% 3-dimensional octonion -valued matrix X using direct formula. It uses the
% convention that zero frequencies appear on the first coordinates of the
% matrix. In order to shift the zero frequency to the middle of the matrix ,
% the fftshift function should be used.
%
% See also: IDOFT3 , FFTSHIFT

narginchk(1, 1), nargoutchk (0, 1)

if ~isreal(X)
error ([’The transformed matrix must have components that are ’, ...

’real octonions.’]);
end

if ndims(X) ~= 3
error(’The transformed matrix must be 3-dimensional.’);

end

[N1, N2, N3] = size(X);

Y = octonion(zeros(N1 ,N2,N3));

for k1 = 0:N1 -1, for k2 = 0:N2 -1, for k3 = 0:N3 -1
y = zeros (8,1);
for n1 = 0:N1 -1, for n2 = 0:N2 -1, for n3 = 0:N3 -1

for i = 1:8, x(i,1) = part(X(n1+1,n2+1,n3+1),i); end
e1c = cos(2*pi*k1*n1/N1); e1s = -sin(2*pi*k1*n1/N1);
e2c = cos(2*pi*k2*n2/N2); e2s = -sin(2*pi*k2*n2/N2);
e4c = cos(2*pi*k3*n3/N3); e4s = -sin(2*pi*k3*n3/N3);
E1 = diag(e1c*ones (8 ,1));
E1(1,2) = -e1s; E1(2,1) = e1s; E1(3,4) = e1s; E1(4,3) = -e1s;
E1(5,6) = e1s; E1(6,5) = -e1s; E1(7,8) = -e1s; E1(8,7) = e1s;
E2 = diag(e2c*ones (8 ,1));
E2(1,3) = -e2s; E2(2,4) = -e2s; E2(3,1) = e2s; E2(4,2) = e2s;
E2(5,7) = e2s; E2(6,8) = e2s; E2(7,5) = -e2s; E2(8,6) = -e2s;
E4 = diag(e4c*ones (8 ,1));
E4(1,5) = -e4s; E4(2,6) = -e4s; E4(3,7) = -e4s; E4(4,8) = -e4s;
E4(5,1) = e4s; E4(6,2) = e4s; E4(7,3) = e4s; E4(8,4) = e4s;
y = y + E4 * (E2 * (E1 * x));

end; end; end
Y(k1+1,k2+1,k3+1) = octonion(y(1),y(2),y(3),y(4),y(5),y(6),y(7),y(8));

end; end; end

Listing 5 idoft3.m

function Y = idoft3(X)
% IDOFT3 Inverse discrete octonion Fourier transform calculated with direct
% formula
%

123

329 Page 16 of 19 Ł. Błaszczyk

% This function calculates the inverse discrete octonion Fourier transform
% of 3-dimensional octonion -valued matrix X using direct formula. It uses
% the convention that zero frequencies appear on the first coordinates of
% the matrix. In order to shift the zero frequency back to the first
% coordinates , the ifftshift function should be applied.
%
% See also: DOFT3 , IFFTSHIFT

narginchk(1, 1), nargoutchk (0, 1)

if ~isreal(X)
error ([’The transformed matrix must have components that are ’, ...

’real octonions.’]);
end

if ndims(X) ~= 3
error(’The transformed matrix must be 3-dimensional.’);

end

[N1, N2, N3] = size(X);

Y = octonion(zeros(N1 ,N2,N3));

for k1 = 0:N1 -1, for k2 = 0:N2 -1, for k3 = 0:N3 -1
y = zeros (8,1);
for n1 = 0:N1 -1, for n2 = 0:N2 -1, for n3 = 0:N3 -1

for i = 1:8, x(i,1) = part(X(n1+1,n2+1,n3+1),i); end
e1c = cos(2*pi*k1*n1/N1); e1s = sin (2*pi*k1*n1/N1);
e2c = cos(2*pi*k2*n2/N2); e2s = sin (2*pi*k2*n2/N2);
e4c = cos(2*pi*k3*n3/N3); e4s = sin (2*pi*k3*n3/N3);
E1 = diag(e1c*ones (8 ,1));
E1(1,2) = -e1s; E1(2,1) = e1s; E1(3,4) = e1s; E1(4,3) = -e1s;
E1(5,6) = e1s; E1(6,5) = -e1s; E1(7,8) = -e1s; E1(8,7) = e1s;
E2 = diag(e2c*ones (8 ,1));
E2(1,3) = -e2s; E2(2,4) = -e2s; E2(3,1) = e2s; E2(4,2) = e2s;
E2(5,7) = e2s; E2(6,8) = e2s; E2(7,5) = -e2s; E2(8,6) = -e2s;
E4 = diag(e4c*ones (8 ,1));
E4(1,5) = -e4s; E4(2,6) = -e4s; E4(3,7) = -e4s; E4(4,8) = -e4s;
E4(5,1) = e4s; E4(6,2) = e4s; E4(7,3) = e4s; E4(8,4) = e4s;
y = y + E1 * (E2 * (E4 * x));

end; end; end
y = y/(N1*N2*N3);
Y(k1+1,k2+1,k3+1) = octonion(y(1),y(2),y(3),y(4),y(5),y(6),y(7),y(8));

end; end; end

Listing 6 alpha.m

function O = alpha(o,i1,i2,i3,i4)
% ALPHA Implements the composition of four functions alpha_i(o) =
% -e_i*(o*e_i), where i are indices given as ALPHA function arguments.
%
% This implementation uses the fact -ALPHA(o,i1,i2 ,i3,i4) changes the sign
% of four (different) imaginary units of an octonion o.

narginchk(5, 5), nargoutchk (0, 1)

if ~isreal(o)
error(’The first argument must be a real octonion.’);

end

in = [i1, i2, i3, i4];
if numel(in)~= numel(unique(in))

error(’Indices i1, i2, i3 and i4 are not unique.’);
end

if ~all(mod(in ,1) == 0) || ~all(in >= 1) || ~all(in <= 7)

123

Discrete octonion Fourier transform... Page 17 of 19 329

error(’Indices i1, i2, i3 and i4 must be values from set {1 ,... ,7}.’);
end

o0 = part(o,1); o4 = part(o,5);
o1 = part(o,2); o5 = part(o,6);
o2 = part(o,3); o6 = part(o,7);
o3 = part(o,4); o7 = part(o,8);

for i = in
switch i

case 1, o1 = -o1;
case 2, o2 = -o2;
case 3, o3 = -o3;
case 4, o4 = -o4;
case 5, o5 = -o5;
case 6, o6 = -o6;
case 7, o7 = -o7;

end
end

O = octonion(-o0,-o1,-o2,-o3,-o4 ,-o5,-o6,-o7);

Listing 7 tutorial.m

%% OCTONION FOURIER TRANSFORM tutorial
%%
% Functions offt3 and iofft3 implement the octonion Fourier transform
% (forward and inverse). The qtfm (http :// qtfm.sourceforge.net) package is
% required in order to use those functions. The argument of offt3 and
% iofft3 must be of an octonion type.

% We create sample 3-dimensional octonion matrix:
N = 4;
u = octonion (...

rand(N,N,N), rand(N,N,N), rand(N,N,N), rand(N,N,N), ...
rand(N,N,N), rand(N,N,N), rand(N,N,N), rand(N,N,N));

% And calculate its OFT with two different algorithms:
U1 = offt3(u); % FFT -based implementation
U2 = doft3(u); % direct formula -based implementation

%%
% We check the correctness of implemented functions by comparing outputs of
% two different algorithms:
dif = zeros (1,8);
for i = 1:8

dif(i) = max(abs(part(U1(:)-U2(:),i)./ part(U2(:),i)));
end
disp(max(dif)*100) % relative error of OFFT3 function

%%
% The other way to check the correctness of FFT -based algorithm (by
% calculating the inverse transform):
v1 = iofft3(U1);
err1 = u-v1;
dif = zeros (1,8);
for i = 1:8

dif(i) = max(abs(part(err1(:),i)./ part(u(:),i)));
end
disp(max(dif)*100) % relative error of reconstruction

%%
% Checking the correctness of direct formula -based algorithm (by
% calculating the inverse transform):
v2 = idoft3(U2);
err = u-v2;

123

329 Page 18 of 19 Ł. Błaszczyk

dif = zeros (1,8);
for i = 1:8

dif(i) = max(abs(part(err(:),i)./ part(u(:),i)));
end
disp(max(dif)*100) % relative error of reconstruction

%%
% We check if the OFFT has the symmetry properties stated in literature.
% We create sample 3-dimensional octonion matrix (with real values):
N = 32;
u = dc(dc(randi(9,N,N,N), zeros(N,N,N)), zeros(N,N,N));

% And calculate its OFT with FFT -based algorithm:
U = offt3(u);

% We check the symmetry with respect to 1st, 2nd and 3rd variable
dif1 = fftreflection(U,1) + alpha(U,1,3,5,7);
dif2 = fftreflection(U,2) + alpha(U,2,3,6,7);
dif3 = fftreflection(U,3) + alpha(U,4,5,6,7);

% absolute difference
disp([max(abs(dif1 (:))), max(abs(dif2 (:))), max(abs(dif3 (:)))])

References

Baez JC (2002) The octonions. Bull Am Math Soc 39:145–205. https://doi.org/10.1090/S0273-0979-01-
00934-X

Bahri M, Surahman (2013) Discrete quaternion fourier transform and properties. Int J Math Anal 7(25):1207–
1215

Błaszczyk Ł (2018) Octonion spectrum of 3d octonion-valued signals—properties and possible applications.
In: Proceedings of 2018 26th European signal processing conference (EUSIPCO), pp 509–513. https://
doi.org/10.23919/EUSIPCO.2018.8553228

BłaszczykŁ (2019)Hypercomplex Fourier transforms in the analysis ofmultidimensional linear time-invariant
systems. In: Progress in industrial mathematics at ECMI 2018, pp 575–581. Springer Nature Switzerland
AG. https://doi.org/10.1007/978-3-030-27550-1_73

Błaszczyk Ł (2020) A generalization of the octonion Fourier transform to 3-d octonion-valued signals—
properties and possible applications to 3-d lti partial differential systems. Multidim Syst Sign Process
31(4):1227–1257. https://doi.org/10.1007/s11045-020-00706-3

Błaszczyk Ł, Snopek KM (2017) Octonion Fourier transform of real-valued functions of three variables—
selected properties and examples. Signal Process 136:29–37. https://doi.org/10.1016/j.sigpro.2016.11.
021

Brackx F, Hitzer E, Sangwine SJ (2013) History of quaternion and clifford Fourier transforms and wavelets.
In: Hitzer E, S. Sangwine (eds.) Quaternion and Clifford Fourier Transforms and Wavelets, Trends in
Mathematics, vol. 27, pp. xi–xxvii. Springer Basel AG. https://doi.org/10.1007/978-3-0348-0603-9

Delsuc MA (1988) Spectral representation of 2d nmr spectra by hypercomplex numbers. J Magn Reson
77:119–124

Ell TA (1993) Quaternion-fourier transforms for analysis of 2-dimensional linear time-invariant partial-
differential systems. In: Proceedings of 32nd IEEE conference on decision and Controll, vol 1–4, pp
1830–1841

Ell TA, Bihan NL, Sangwine SJ (2014) Quaternion Fourier transforms for signal and image processing.
Wiley-ISTE

Felsberg M, Bülow T, Sommer G (2001) Commutative hypercomplex Fourier transforms of multidimensional
signals. In: Sommer G (ed) Geometric computing with clifford algebras. Theoretical foundations and
applications in computer vision and robotics, pp 209–229. Springer, Berlin. https://doi.org/10.1007/978-
3-662-04621-0_8

Gao HY, LamKM (2014) From quaternion to octonion: feature-based image saliency detection. In: 2014 IEEE
International conference on acoustics, speech and signal processing (ICASSP), pp 2808–2812

Gomes N, Hartmann S, Kähler U (2017) Compressed sensing for quaternionic signals. Complex Anal Oper
Theory 11:417–455

Grigoryan AM, Agaian SS (2018) Quaternion and octonion color image processing with MATLAB. SPIE
Hahn SL, Snopek KM (2016) Complex and hypercomplex analytic signals: theory and applications. Artech

House

123

https://doi.org/10.1090/S0273-0979-01-00934-X
https://doi.org/10.1090/S0273-0979-01-00934-X
https://doi.org/10.23919/EUSIPCO.2018.8553228
https://doi.org/10.23919/EUSIPCO.2018.8553228
https://doi.org/10.1007/978-3-030-27550-1_73
https://doi.org/10.1007/s11045-020-00706-3
https://doi.org/10.1016/j.sigpro.2016.11.021
https://doi.org/10.1016/j.sigpro.2016.11.021
https://doi.org/10.1007/978-3-0348-0603-9
https://doi.org/10.1007/978-3-662-04621-0_8
https://doi.org/10.1007/978-3-662-04621-0_8

Discrete octonion Fourier transform... Page 19 of 19 329

Klco P, Smetana M, Kollarik M, Tatar M (2017) Application of octonions in the cough sounds classification.
Adv Appl Sci Res 8(2):30–37

Kurman K (1958) Liczby podwójne zespolone i możliwość ich zastosowania. Tech. rep, Politechnika Warsza-
wska, Katedra Automatyki i Telemechaniki

Lazendić S, Bie HD, Pižurica A (2018a) Octonion sparse representation for color and multispectral image
processing. In: Proceeding 2018 26th European signal processing conference (EUSIPCO), pp 608–612

Lazendić S, Pižurica A, Bie HD (2018b) Hypercomplex algebras for dictionary learning. In: Proceedings the
7th conference on applied geometric algebras in computer science and engineering–AGACSE 2018, pp
57–64

Lian P (2019) The octonionic fourier transform: Uncertainty relations and convolution. Sig Process 164:295–
300. https://doi.org/10.1016/j.sigpro.2019.06.015

Popa CA (2016) Octonion-valued neural networks. Artif Neural Netw Mach Learn ICANN 2016:435–443
PopaCA (2018)Global exponential stability of octonion-valued neural networkswith leakage delay andmixed

delays. Neural Netw 105:277–293
Sangwine S, Bihan NL (2005–2019) Quaternion and octonion toolbox for matlab. http://qtfm.sourceforge.net/
Sangwine SJ (1997) The discrete quaternion Fourier transform. In: 1997 6th International conference on image

processing and its applications, pp 790–793. https://doi.org/10.1049/cp:19971004
Sheng H, Shen X, Lyu Y, Shi Z (2018) Image splicing detection based onMarkov features in discrete octonion

cosine transform domain. IET Image Proc 12(10):1815–1823
Snopek KM (2015) Quaternions and octonions in signal processing—fundamentals and some new results.

Telecommunication review + telecommunication news, tele-radio-electronic, Information Technology
6:618–622

Tian Y (2000) Matrix representations of octonions and their applications. Adv Appl Clifford Algebras
10(1):61–90. https://doi.org/10.1007/BF03042010

Wang R, Xiang G, Zhang F (2017) L1-norm minimization for octonion signals. In: 2016 International confer-
ence on audio, language and image processing (ICALIP), pp 552–556

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.sigpro.2019.06.015
http://qtfm.sourceforge.net/
https://doi.org/10.1049/cp:19971004
https://doi.org/10.1007/BF03042010

	Discrete octonion Fourier transform and the analysis of discrete 3-D data
	Abstract
	1 Introduction
	2 Octonion Fourier transform and some properties
	3 Discrete-time LTI systems
	4 Discrete-space octonion Fourier transform
	5 Discrete octonion Fourier transform
	6 Symmetry properties of the DOFT
	7 Discussion and conclusions
	MATLAB® files
	References

