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Abstract

We consider an inverse source two-parameter sub-diffusion model subject to a nonlocal
initial condition. The problem models several physical processes, among them are
the microwave heating and light propagation in photoelectric cells. A bi-orthogonal
pair of bases is employed to construct a series representation of the solution and a
Volterra integral equation for the source term. We develop a numerical algorithm for
approximating the unknown time-dependent source term. Due to the singularity of the
solution near t = 0, a graded mesh is used to improve the convergence rate. Numerical
experiments are provided to illustrate the expected analytical order of convergence.

Keywords: Microwave heating; inverse source problem; anomalous diffusion; Volterra
integral equation; collocation method; graded meshes.

1. Introduction

The main focus in this paper is to solve numerically the two-parameter time frac-
tional diffusion inverse source problem:

Dα,γu(x, t)− uxx(x, t) = w(t)h(x, t), 0 < x < 1, 0 < t ≤ T,

I1−γu(x, t)|t=0 = g(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t), ux(1, t) = 0, 0 < t ≤ T,

(1)

with fractional exponents 0 < α ≤ γ ≤ 1. The functions h and g are given, while
the solution u and the inverse source term w need to be determined. Thus, and for
well-posedness, we have to impose an over-determination condition, defined by

∫ 1

0

u(x, t)dx = q(t), t ∈ [0, T ]. (2)

In the above model problem, the two-parameter fractional derivative operator Dα,γ is
defined by

Dα,γy(t) = Dα

(

y(t)−
I1−γy(0)

Γ(γ)
tγ−1

)

,
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where Iµ and Dµ are the Riemann-Liouville fractional integral and derivative, respec-
tively. That is, for t > 0 and 0 < µ < 1, with ωµ(t) := tµ−1/Γ(µ),

Iµy(t) =

∫ t

0

ωµ(t− τ)y(τ) dτ and Dµy(t) =
d

dt
I1−µy(t).

When I1−γy is absolutely continuous, then Dα,γy = Iγ−αDγy = Iγ−αDI1−γy.
Hence, when γ = β(1 − α) + α, 0 < β ≤ 1, Dα,γ reduces to the derivative intro-
duced by Hilfer in [19]. Moreover,Dα,α = Dα andDα,1 = cDα := I1−αD. Thus,Dα,γ

for α ≤ γ ≤ 1 is considered as an interpolant between the Riemann-Liouville fractional
derivative Dα and the Caputo fractional derivative cDα.

Fractional PDEs open up new possibilities for robust mathematical modeling of
physical processes that exhibit non-classical (non-Gaussian Lévy and non-Markovian
processes; and non-Brownian transport phenomena) diffusion-dispersion. More pre-
cisely, fractional calculus provides a powerful tool for modeling a variety of nonlocal
and memory-dependent phenomena. Such phenomena are recognized in many areas
such as nanotechnology [4], control theory of dynamical systems [9, 30], viscoelasticity
[27, 39], anomalous transport and diffusion [24], random walk dynamics [29], elec-
trophysiology [11], image processing [25], and flow in porous media [3]. Some other
physical and engineering processes are given in [33, 35] and more applications can be
found in the surveys in [17, 23, 36]. In particular, fractional models are increasingly
adopted for processes with anomalous diffusion [1, 28, 42]. The featured role of the
fractional derivatives is mainly due to their non-locality nature which is an intrinsic
property of many complex systems [18].

The problem (1) models several physical processes, among them is the microwave
heating. When a material is irradiated with microwaves, the absorption of electromag-
netic energy within the material increases its temperature. This effect can be modeled
by replacing the electromagnetic power dissipation term in the nonlinear diffusion equa-
tion by an unknown equivalent internal heat source of the form w(t)h(x, t) [10]. The
quantity q(t) in (2) represents the total absorbed energy due to the externally applied
energy or it represents the total mass in the diffusion process of a chemical [7, 16, 20].
Knowing the local conversion rate of microwave energy h(x, t), determining the source
term w(t) gives an idea of how to control the external energy.

Inverse problems associated with models for anomalous diffusion processes arise in
many applications. These problems include determining the initial conditions, bound-
ary conditions, diffusion, fluxes and potential coefficients, fractional orders, and source
terms. Such problems are in general ill-posed and some additional requirement or
measurement are provided to make them well-posed. More details are given in [22].

When γ < 1, the non-local initial condition I1−γu(x, t)|t=0 = g(x) may lead to
unbounded solution u of the model problem (1) near t = 0, this will definitely increase
the level of complexity. However, when γ = 1, (one parameter Caputo derivative),
I1−γu(x, t)|t=0 reduces to the standard (local) initial condition u(x, t)|t=0. In this case,
the inverse time-dependent source problems for fractional diffusion equation have been
investigated under various initial, boundary and over determination conditions.

For unbounded spatial domains, Özkum et al. [34] used Adomian decomposition
method to determine w(t) assuming that h(x, t) = 1 (spatial variable diffusivity was
allowed). Later, with h(x) in place of h(x, t), Yang et al. [41] used the Fourier regular-
ization method to obtain an a priori error estimate between the exact solution and its
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regularized approximation.
For bounded domains and for h = h(x), Sakamoto and Yamamoto [38] used eigen-

function expansions to prove a stability result for the inverse source problem of deter-
mining w(t), with Lu in place of −uxx where L is a linear symmetric elliptic operator.
Wei and Zhang [40] solved numerically a Volterra integral equation (VIE) for w using
boundary element method combined with a generalized Tikhonov regularization. For
a different given data, Aleroev et al. [2], the Banach fixed-point theorem was used to
prove the existence and uniqueness of w. For different given data and with h = h(x, t),
a similar framework was considered by Ismailov and Çiçek [21]. Furthermore, Demir
et al. [12] recovered w by introducing input-output mappings and proved that their
distinguishability holds under additional measurement data at a boundary point.

In all aforementioned cited works above, the problems considered involve the Ca-
puto derivative together with the classical initial conditions. However, in problem (1),
we consider a two parameter fractional derivative, of which, the Caputo and Riemann-
Liouville derivatives are special cases, subject to nonlocal non-self adjoint boundary
conditions and a nonlocal initial condition. Unlike the space-dependent source prob-
lems considered in [14, 15], this model gives rise to a VIE of the second kind for the
source term w. This equation cannot be solved analytically due to the presence of
a complicated weakly singular kernel as well as a right-hand side that involves a two
parameter fractional derivative plus an infinite series, see (16). So, a numerical scheme
based on the discontinuous collocation method is developed to approximate w by w̃.

Although we focused on finding a piecewise linear polynomial solution w̃, our ap-
proach can be extended to high-order polynomial solutions. For a smooth solution w,
(that is, for smooth kernel E, smooth source G, and smooth coefficient H in (16)),
the proposed scheme is second-order accurate globally. However, the solution w has
singularity near t = 0 due to the weak singularity in E and because the source term G
is generally not bounded near t = 0. Thus, to achieve an optimal global O((∆t)2) error
(∆t is the maximum time step-size mesh element), we employ a non-uniform graded
time meshes that based on concentrating the mesh elements near t = 0 to compensate
for the singular behavior of w, [6, 8, 31, 32]. The existence and uniqueness of the
collocation solution w̃ and the error bounds over graded time meshes are discussed.
The numerical source w̃ is used to approximate the solution u of (1).

The rest of the paper is organized as follows. In section 2, we introduce the bi-
orthogonal basis and state some preliminary results. Section 3 focuses on deriving
the integral equation for the source term w and on proposing a numerical algorithm
for the numerical approximation of w̃. Existence, uniqueness and error analysis are
investigated. Section 4 is devoted to seek an approximate solution of u using the
approximate source term w̃. We ended the paper with some simulations in section 5.

2. Series Representations

As in [2], the non-self adjoint boundary conditions lead to the bi-orthogonal pair of
bases {φ1,0, φ1,i, φ2,i}

∞
i=1 and {ψ1,0, ψ1,i, ψ2,i}

∞
i=1 for the space L2(0, 1): with λi = 2πi,

φ10(x) = 2, φ1i(x) = 4(1− x) sin λix, φ2i(x) = 4 cosλix, (3)

ψ10(x) = x, ψ1i(x) = sin λix, ψ2i(x) = x cosλix. (4)
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We consider a series solution of the form

u(x, t) = u10(t)φ10(x) +
∞
∑

i=1
k=1,2

uki(t)φki(x), (5)

where
u10(t) = 〈u, ψ10〉, uki(t) = 〈u, ψki〉, k = 1, 2, i = 1, 2, . . . . (6)

Here, 〈·, ·〉 denotes the L2(0, 1) inner product. Similarly, we let gki and hki(t) denote the
series coefficients of g(x) and h(x, t) with respect to the basis functions in (3). Following
[15], we assume that the functions g and h are sufficiently regular to guarantee the
convergence of the series solution.

Substituting the series expansions of u and h in (1), we have

Dα,γu1i(t) + λ2iu1i(t) = w(t)h1i(t), i ≥ 0, (7)

Dα,γu2i(t) + λ2iu2i(t) + 2λiu1i(t) = w(t)h2i(t), i ≥ 1, (8)

with λ0 := 0. Moreover, from the initial condition in (1), we obtain the initial conditions

I1−γu10(0) = g10, I1−γuki(0) = gki, k = 1, 2, i ≥ 1. (9)

Using Laplace transform and its inverse, the solution of these initial value problems
are

u1i(t) = (w h1i) (t) ∗Θ
α
i (t) + g1iΘ

γ
i (t), i ≥ 0, (10)

and

u2i(t) = (w h2i) (t) ∗Θ
α
i (t) + g2iΘ

γ
i (t)

− 2λi

[

(w h1i) (t) ∗ (t
2α−1E2

α,2α(−λ
2
i t

α)) + g1it
σE2

α,α+γ(−λ
2
i t

α)
]

, i ≥ 1,
(11)

where the convolution

f(t) ∗ g(t) :=

∫ t

0

f(τ) g(t− τ) dτ and Θγ
i (t) := tγ−1Eα,γ(−λ

2
i t

α).

Here, the generalized Mittag-Leffler function [37] is defined by

Eρ
α,β(t) =

∞
∑

k=0

Γ(ρ+ k)

Γ(ρ) Γ(αk + β)

tk

k!
. (12)

Therefore, once the source term w(t) is determined, the series coefficients of the
solution u(x, t) can be computed. In the next section, we discuss the determination
and approximation of w(t).

3. Determination and approximation of w.

This section is devoted to discuss the process of approximating the source term w(t)
in (1). It turns out that w satisfies a VIE of the second kind with variable coefficients.
Due to the complexity in solving this integral equation analytically, the numerical
solution of w via a discontinuous collocation method is investigated.
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3.1. Integral equation

Integrating the first equation in (1) over the spatial domain [0, 1] and using the
given boundary conditions, we obtain for 0 < t < T that

H(t)w(t) =

∫ 1

0

Dα,γu(x, t)dx+ ux(0, t), where H(t) =

∫ 1

0

h(x, t)dx. (13)

From condition (2),

∫ 1

0

Dα,γu(x, t)dx = Dα,γ

∫ 1

0

u(x, t)dx = Dα,γq(t), (14)

and thus,
H(t)w(t) = Dα,γq(t) + ux(0, t), 0 < t < T. (15)

For the second term on the right hand side of (13), the series representation of u(x, t)
in (5) and the associated coefficients (10) yield

ux(0, t) = 4

∞
∑

n=1

λiu1i(t) = 4

∞
∑

i=1

λi

{

g1i Θ
γ
i (t) + (w h1i) (t) ∗Θ

α
i (t)

}

= 4

∞
∑

i=1

λig1i Θ
γ
i (t) +

∫ t

0

w(τ)

∞
∑

i=1

4λi h1i(τ) Θ
α
i (t− τ) dτ.

Inserting this in (15) amounts to the following VIE of the second kind:

H(t)w(t)−

∫ t

0

E(t, τ)w(τ) dτ = G(t), (16)

where

E(t, τ) = 4

∞
∑

i=1

λi h1i(τ) Θ
α
i (t− τ), (17)

and

G(t) = Dα,γq(t) + 4

∞
∑

i=1

λi g1iΘ
γ
i (t). (18)

Note that the kernel E can be written in the form

E(t, τ) = (t− τ)α−1 Ẽ(t, τ), Ẽ(t, τ) = 4
∞
∑

i=1

λi h1i(τ)Eα,α

(

−λ2i (t− τ)α
)

. (19)

Since |Eα,α (−λ
2
i s

α) | ≤
C

1 + λ2i s
α
,

|Ẽ(t, τ)| ≤ C

∞
∑

i=1

λ−1
i h1i(τ) ≤ C, (20)

where the second inequality is valid provided that h(x, t) has a finite number of Fourier-
modes or is sufficiently regular (for instance, h1i(τ) ≤ Cλ−2−ǫ

i for some positive ǫ), see
[15] for more details. As a consequence, Ẽ(·, ·) is continuous on [0, T ]× [0, T ]. Also, for
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sufficiently regular functions g and q, one can check that the function G is continuous
on [ǫ, T ] for 0 < ǫ < T. This guarantees the existence and uniqueness of the continuous
solution wǫ of (16) on the interval [ǫ, T ], for more details, we refer the reader to [5,
Chapter 6] or [26, Section 3.4]. In the limiting case, ǫ approaches 0, the existence and
uniqueness of the continuous solution w of (16) on (0, T ] follows.

The numerical solution of (16) via a discontinuous collocation method will be in-
vestigated in the next subsection. The upper bound in (20) is used below to derive the
error estimates for our discretization.

3.2. Approximation of w(t)

We intend to approximate the solution w of (16) by piecewise linear polynomials via
a robust discontinuous collocation method. To do so, we introduce a time partition of
the interval [0, T ] given by the graded nodes tn = (n/N)δT (with δ ≥ 1) for 0 ≤ n ≤ N .
Let In = (tn−1, tn] and ∆tn = tn − tn−1, 1 ≤ n ≤ N , with ∆t := max1≤n≤N ∆tn.

Let S be the finite dimensional space of linear polynomials on each time mesh
element In, 1 ≤ n ≤ N . The set of collocation (grid) points is

X =
{

tn,j := tn−1 + ξj∆tn, 1 ≤ j ≤ 2, n = 1, . . . , N
}

, 0 < ξ1 < ξ2 < 1.

One option is to choose ξ1 and ξ2 to be the Gauss quadrature points.
The discontinuous collocation solution w̃ ∈ S is now defined by

H(t) w̃(t)−

∫ t

0

E(t, τ) w̃(τ) dτ = G(t), t ∈ X. (21)

Alternatively, this scheme can be rewritten as: for j = 1, 2, and n = 1, . . . , N,

H(tn,j) w̃(tn,j)−

∫ tn,j

0

E(tn,j, τ) w̃(τ) dτ = G(tn,j) . (22)

On each subinterval In, we will base the computational form of w̃ on the Lagrange
basis functions with respect to the collocation parameters {ξ1, ξ2}. That is,

w̃(t) = w̃(tn,1)Ln,1(t) + w̃(tn,2)Ln,2(t), t ∈ In, (23)

where for each fixed n, {Ln,j}j=1,2 are the local Lagrange basis functions associated
with the collocation points {tn,j}j=1,2 corresponding to the interval In defined by

Ln,1(t) =
tn,2 − t

ζn
and Ln,2(t) =

t− tn,1
ζn

, ζn = tn,2 − tn,1. (24)

To handle the integral term in (22), we use the definition w̃ given in (23) and obtain,

∫ tn,j

0

E(tn,j, τ) w̃(τ) dτ =
2

∑

s=1

n
∑

m=1

w̃(tm,s)

∫ min{tn,j ,tm}

tm−1

E(tn,j , τ)Lm,s(τ) dτ

=
2

∑

s=1

n
∑

m=1

am,s(tn,j) w̃(tm,s),
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where, for 1 ≤ m ≤ n,

am,s(tn,j) =

∫ min{tn,j ,tm}

tm−1

E(tn,j, τ)Lm,s(τ) dτ.

Thus the numerical scheme in (22) can be written as

H(tn,j) w̃(tn,j)−
2

∑

s=1

an,s(tn,j) w̃
n,s = F n,j, j = 1, 2, n = 1, . . . , N, (25)

with

F n,j = G(tn,j) +
2

∑

s=1

n−1
∑

m=1

am,s(tn,j) w̃(tm,s).

Therefore, for each n, we have to solve the 2× 2 linear system

(Hn −Bn)

[

w̃(tn,1)
w̃(tn,2)

]

= Fn :=

[

F n,1

F n,2

]

, (26)

with

Hn =

[

H(tn,1) 0
0 H(tn,2)

]

, Bn =

[

an,1(tn,1) an,2(tn,1)
an,1(tn,2) an,2(tn,2)

]

.

Since our discontinuous collocation scheme (21) amounts to a 2-by-2 linear system on
each time mesh element In, the existence of the solution w̃ follows from its uniqueness.
To guarantee the uniqueness of w̃, it is clear from (26) that we need the matrix Hn−Bn

to be non-singular. However, the kernel is weakly singular of order α− 1, then for any
0 < α ≤ 1, there exists kα > 0 such that the non-singularity of the matrix Hn − Bn

can be assured whenever ∆t < kα, provided the matrix H is non-singular.
The collocation scheme (22) is yet fully discrete due to the integrals in the entries of

the matrixBn and the vector Fn. To compute these entries, we approximate the Fourier
coefficient h1i(t), i = 1, 2, . . . by its midpoint average value on each time subinterval In
and the remaining part of the integral can be computed exactly. This approximation
preserves the second order of accuracy (over nonuniform meshes) of the collocation
scheme in the presence of the weakly singular kernel E. Explicitly, for 1 ≤ n,m ≤ N ,
and for j, s ∈ {1, 2},

am,s(tn,j) = 4

∫ min{tn,j ,tm}

tm−1

∞
∑

i=1

λi h1i(τ) Θ
α
i (tn,j − τ)Lm,s(τ) dτ

≈ 4

∞
∑

i=1

λi h
m−1/2
1i

∫ min{tn,j ,tm}

tm−1

Θα
i (tn,j − τ)Lm,s(τ) dτ

= 4
∞
∑

i=1

λi h
m−1/2
1i

∫ min{tn,j ,tm}

tm−1

(tn,j − τ)α−1 Eα,α(−λ
2
i (tn,j − τ)Lm,s(τ) dτ

= 4

∞
∑

i=1

1

λi
h
m−1/2
1i Ψα(tn,j, τ, λ

2
i , Lm,s)

∣

∣

∣

min{tn,j ,tm}

tm−1

,

where the integral formula in the lemma below is used in the last equality.
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Lemma 3.1. For any linear polynomial L(t) = νt+ c, we have

λ

∫ b

a

(t− τ)α−1Eα,α(−λ(t− τ)α)L(τ) dτ = Ψα(t, τ, λ, L)
∣

∣

∣

τ=b

τ=a
, (27)

where

Ψα(t, τ, λ, L) = Eα(−λ(t− τ)α)L(τ) + ν (t− τ)Eα,2(−λ(t− τ)α).

Proof. Recall the following formulas: if α, β, λ ∈ C such that Re(α) > 0 then

λtα Eα,α+β(−λt
α) =

1

Γ(β)
− Eα,β(−λt

α),

∫

(t− τ)β−1Eρ
α,β(−λ(t− τ)α) dτ = −(t− τ)βEρ

α,β+1(−λ(t− τ)α) + C.

Integrating by parts, and then using the second formula followed by the first one, we
notice that

λ

∫

(t− τ)α−1 Eα,α(−λ(t− τ)α)L(τ) dτ

= −λ(t− τ)αEα,α+1(−λ(t− τ)α)L(τ) + λν

∫

(t− τ)αEα,α+1(−λ(t− τ)α) dτ

= −λ(t− τ)αEα,α+1(−λ(t− τ)α)L(τ)− λν (t− τ)α+1Eα,α+2(−λ(t− τ)α)

= [Eα(−λ(t− τ)α)− 1]L(τ) + ν (t− τ) [Eα,2(−λ(t− τ)α)− 1] .

Since L(τ) + ν(t− τ)
∣

∣

∣

τ=b

τ=a
= 0, the desired result follows.

3.3. Error analysis

As mentioned earlier, for VIEs with a smooth kernel and source term, the collocation
scheme is O((∆t)2) accurate. However, due to the lack of regularity of the continuous
solution w (has singularity near t = 0) caused by the presence of the weakly singular
kernel E and the nonsmooth source term G, such order of accuracy is not feasible over
uniform meshes. For this reason and to improve the convergence rates, a graded mesh
with time nodes tn = (n/N)δT (δ ≥ 1) is employed [31, 32] to compensate for the
singular behavior of w near t = 0.

Next, a concise proof of the error estimates from the discontinuous collocation
discretization over the graded mesh tn = (n/N)δT (with δ ≥ 1) is given. We impose
the following typical assumption on the derivative of the continuous solution w; for
some 0 < σ < 1 and for t > 0,

|w(t)| ≤ a(1 + tα) + btγ−1 and |w′(t)|+ t|w′′(t)| ≤ C tσ−1, (28)

for some constants a, b.

Remark. Under reasonable assumptions on the given data, the above regularity con-
ditions can be verified, where typically σ = α + γ − 1 and so, we require α + γ > 1.
Another note, in the presence of the two-parameter fractional derivative Dα,γ (γ < 1),
the solution w has a strong singularity near t = 0. More precisely, w is not bounded
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near t = 0 and w′ is not integrable on [0, T ] (unless σ > 0). Therefore, efficient approx-
imations of w on the first sub-interval I1 require more effort. One way, is to inherit
the order of singularity (that is due to γ) in the approximate solution, for instance,
approximate w by the function a1+ a2t

γ−1 on I1. Investigating this is beyond the scope
of this paper and it will be a topic of future research. On the other hand, it is worth
to mention that for the case of Caputo derivative, γ = 1, w is uniformly bounded on
[0, T ] and w′ is integrable on [0, T ].

Decomposing the error w − w̃ as

w − w̃ = (w − Pw) + (Pw − w̃) =: η1 + η2,

where the comparison function Pw ∈ S interpolates w at the composite Gauss-
quadrature nodes, that is,

Pw(t) = w(tn,1)Ln,1(t) + w(tn,2)Ln,2(t), t ∈ In, 1 ≤ n ≤ N. (29)

It is known that

‖η1‖L∞(In) ≤ C(∆tn)
j−1

∫

In

|w(j)(t)| dt, j = 1, 2.

Hence, by the regularity assumption (28) on w we have

‖η1‖L∞(I1) ≤ C

∫

I1

tσ−1 dt < Ckσ1 ≤ C(∆t)σδ.

Furthermore, for n ≥ 2, using the mesh properties; tn ≤ Ctn−1 and ∆tn ≤ k t
1−1/δ
n , we

notice that

‖η1‖L∞(In) ≤ C(∆tn)
2tα+γ−3

n = C(∆tn/tn)
σδ(∆tn/tn)

2−σδtσn ≤ C(∆t)σδ,

for 0 < σδ ≤ 2. Therefore, for 1 ≤ n ≤ N ,

‖η1‖L∞(In) ≤ C(∆t)σδ, for 1 ≤ δ ≤ 2/σ.

To estimate the second term η2, we notice from (16), (21) and the definition of Pw
that

H(t)η2(t)−

∫ t

0

E(t, τ) η2(τ) dτ =

∫ t

0

E(t, τ) η1(τ) dτ, t ∈ X. (30)

Using |E(t, τ)| ≤ C(t− τ)α−1 for t < τ (see (19)–(20)), after some manipulations and
for a sufficiently small step size k, the above equation amounts to

|η2(tn,j)| ≤ C max
1≤j≤n

‖η1‖L∞(Ij)

∫ tn,j

0

E(tn,j, τ) dτ+C

n−1
∑

i=1

∫ ti

ti−1

(tn,j−τ)
α−1 dτ

2
∑

ℓ=1

|η2(ti,ℓ)|,

for 1 ≤ n ≤ N and for j = 1, 2. Thus, an application of the weakly singular discrete
Gronwall inequality [13, Theorem 6.1] gives

|η2(tn,j)| ≤ C max
1≤j≤n

‖η1‖L∞(Ij)

∫ tn,j

0

E(tn,j, τ) dτ ≤ C max
1≤j≤n

‖η1‖L∞(Ij).

9



Next, the expansion of w̃ given in (23) and the achieved estimate of η1 yield

‖η2‖L∞(In) ≤ C(∆t)σδ, for 1 ≤ δ ≤ 2/σ, for 1 ≤ n ≤ N,

and consequently, we attain the following error bound, for α + γ > 1,

‖w − w̃‖L∞(In) ≤ C(∆t)σδ, for 1 ≤ δ ≤ 2/σ, for 1 ≤ n ≤ N.

The above error bound shows that a global optimal O((∆t)2) convergence rates can be
recovered by choosing the graded mesh exponent δ to be 2/σ.

4. Approximation of u

This section is devoted to discuss the numerical approximation of the solution u of
the fractional model problem (1), denoted by ũ. More precisely, we approximate the
Fourier coefficients uki for k = 1, 2 in equations (10) and (11) by ũki using the (source
term) collocation solution w̃. Thus,

ũ1i(t) ≈ (w̃ h1i) (t) ∗Θ
α
i (t) + g1iΘ

γ
i (t), i ≥ 0,

ũ2i(t) ≈ (w̃ h2i) (t) ∗Θ
α
i (t) + g2iΘ

γ
i (t)

− 2λi
[

(w̃ h1i) (t) ∗ (t
2α−1E2

α,2α(−λ
2
i t

α)) + g1it
σE2

α,α+γ(−λ
2
i t

α)
]

, i ≥ 1.

Following the convention in the previous subsection, we approximate the convolu-
tions as follows:

(w̃ h1i) (tn) ∗Θ
α
i (tn) ≈

n
∑

m=1

h
m−1/2
1i

∫ tm

tm−1

Θα
i (tn − τ)

2
∑

s=1

w̃(tm,s)Lm,s(τ) dτ

=
n

∑

m=1

h
m−1/2
1i

2
∑

s=1

w̃(tm,s)

∫ tm

tm−1

Θα
i (tn − τ)Lm,s(τ) dτ.

Hence, for i > 0

ũ1i(tn) ≈

n
∑

m=1

h
m−1/2
1i

λ2i

2
∑

s=1

w̃(tm,s)Ψ
α(tn, τ, λ

2
i , Lm,s)

∣

∣

∣

tm

tm−1

+ g1iΘ
γ
i (tn).

In a similar fashion, the first two terms in ũ2i can be computed (just replace h1i and
g1i with h2i and g2i, respectively, in the above equation).

It remains to compute ũ10 and the second convolution term in ũ2i. For i = 0,

(w̃h10 ∗ ωα)(tn) ≈
n

∑

m=1

h
m−1/2
10

∫ tm

tm−1

w̃(τ)ωα(tn − τ) dτ

≈
n

∑

m=1

h
m−1/2
10

2
∑

s=1

w̃(tm,s)

∫ tm

tm−1

Lm,s(τ)ωα(tn − τ) dτ,

and thus,

ũ10(tn) = (wh10 ∗ ωα)(tn) + g10ωγ(tn) ≈

n
∑

m=1

h
m−1/2
10

2
∑

s=1

w̃(tm,s)×

(

Lm,s(τ)ωα+1(tn − τ) +
(−1)s

ζm
ωα+2(tn − τ)

)
∣

∣

∣

tm−1

tm
+ g10ωγ(tn).
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Similarly, we compute the second convolution term in ũ2i, and get

[

(w̃ h1i)(tn) ∗
(

t2α−1
n E2

α,2α(−λ
2
i t

α
n)
)]

≈

n
∑

m=1

h
m−1/2
1i

2
∑

s=1

w̃(tm,s) T
m
α,n

with

T α,n
m,s :=

∫ tm

tm−1

Lm,s(τ)(tn − τ)2α−1E2
α,2α(−λ

2
i (tn − τ)α)dτ

= −Lm,s(τ)(tn − τ)2αE2
α,2α+1(−λ

2
i (tn − τ)α)

∣

∣

∣

tm

tm−1

−
(−1)s

ζm
(tn − τ)2α+1E2

α,2α+2(−λ
2
i (tn − τ)α)

∣

∣

∣

tm

tm−1

.

In the second equality, we integrated by parts and used the second formula in the proof
of Lemma 3.1. By Combining the above contributions, we complete the computation
of ũ2i.

5. Numerical results

This section is devoted to illustrate numerically the convergence of the proposed
discontinuous collocation scheme for the VIE of the form (16) and to compare between
the analytical solution u of (1) and its approximation ũ. For this purpose and to be
able to compute w and u exactly, we consider problem (1) with T = 1 and

g(x) = 4 cos(4πx),

q(t) = ω1+α(t),

h(x, t) =
λ21 − 1

λ21
+

(1− x) sin(2πx)

λ1
+ 4t cos(2πx) + 8 cos(4πx).

The only nonzero series coefficients of h(x, t) and g(x) are

h10 =
λ21 − 1

2λ21
, h11 =

1

4λ1
, h21(t) = t, h22(t) = 2, g22 = 1. (31)

Furthermore, for this choice of h(x, t) and q(t), we have

H(t) =

∫ 1

0

h(x, t) dx = 2
λ21 − 1

2λ21
+

1

λ21
= 1 and Dα,γq(t) = Dαq(t) = 1. (32)

Inserting these terms in (17) and (18), we reach

E(t, τ) = Θα
1 (t− τ) and G(t) = Dα,γq(t) +

∞
∑

i=1

4λi g1i Θ
γ
i (t) = 1.

Therefore, the VIE (16) reduces to w(t)− (w ∗Θα
1 )(t) = 1. To find w, we take Laplace

transform of both sides and use the formula

L{tβ−1Eα,β (at
α)}(s) =

sα−β

sα − a
, α, β > 0. (33)
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Let W denotes Laplace transform of w, then

W (s) =
1

s

sα + λ21
sα + λ21 − 1

=
1

λ21 − 1

[

λ21
s

−
sα−1

sα + λ21 − 1

]

. (34)

By taking the inverse Laplace transform, the exact source term is given by

w(t) =
1

λ21 − 1

[

λ21 − Eα((1− λ21)t
α)
]

. (35)

Next, we find the series coefficients for the solution u(x, t). By (10), (11) and (31),

u1i(t) = h1i (w ∗Θα
i )(t) for i = 0, 1, and u1i = 0 for i ≥ 2, (36)

and

u2i(t) =











(tw(t)) ∗Θα
1 (t)−

1
2
w(t) ∗

(

t2α−1E2
α,2α(−λ

2
1t

α)
)

, i = 1,

2(w ∗Θα
2 )(t) + Θγ

2(t), i = 2,

0, i ≥ 3.

(37)

Therefore, the exact solution is given by

u(x, t) = 2u10(t) + 4(1− x) sin(λ1x) u11(t) + 4 cos(λ1x) u21(t) + 4 cos(λ2x) u22(t). (38)

We compute the convolutions in (36) and (37) through the Laplace transform. For
i ≥ 0, using the formula in (33) and the achieved contribution in (34) yield

(L(w ∗Θα
i ))(s) = W (s) (LΘα

i )(s) =
sα−1 + λ21s

−1

sα + λ21 − 1

1

sα + λ2i

=
1

λ2i − λ21 + 1

[

sα−1

sα + λ21 − 1
+

λ21s
−1

sα + λ21 − 1
−

sα−1

sα + λ2i
−

λ21s
−1

sα + λ2i

]

.

By taking inverse Laplace transform, we have, for i ≥ 0,

(w ∗Θα
i )(t) =

1

λ2i − λ21 + 1
×

[

Eα((1− λ21)t
α) + λ21t

αEα,α+1((1− λ21)t
α)− Eα(−λ

2
i )t

α)− λ21t
αEα,α+1((−λ

2
i )t

α)
]

.

Noting that, for i ≥ 1, using the shifting identity of the Mittag-Leffler function,

(w ∗Θα
i )(t) =

1

λ2i − λ21 + 1

[

Eα((1− λ21)t
α)

1− λ21
+
λ21 − λ2i
λ2i

Eα(−λ
2
i )t

α) + k2 −
λ21
λ2i

]

.

It remains to compute the convolution terms in u21. For convenience, putting
k1 = 1/(λ21 − 1) and k2 = λ21k1. Using L{tw(t)}(s) = −W ′(s), then from (34), we have

L{tw(t)}(s) =
k2
s2

+
(α− 1) sα−2

(sα + (λ21 − 1))2
−

k1 s
2α−2

(sα + (λ21 − 1))2
.

Accordingly,

L{(tw(t)) ∗Θα
1 (t)}(s) =

[

k2
s2

+
(α− 1) sα−2

(sα + (λ21 − 1))2
−

k1 s
2α−2

(sα + (λ21 − 1))2

]

1

sα + λ21

=
k2 s

−2

sα + λ21
+ [(α− 1)sα−2 − k1s

2α−2]
[ 1

sα + λ21
−

1

sα + (λ21 − 1)
+

1

(sα + (λ21 − 1))2

]

.
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Thus,

(tw(t)) ∗Θα
1 (t) = k2 t

1+αEα,2+α(−λ
2
1t

α)

+ (α− 1)
[

t Eα,2(−λ
2
1t

α)− t Eα,2((1− λ21)t
α) + tα+1 E2

α,2+α((1− λ21)t
α)
]

− k1
[

t1−αEα,2−α(−λ
2
1t

α)− t1−αEα,2−α((1− λ21)t
α) + t E2

α,2((1− λ21)t
α)
]

.

For the second convolution term in u21, since

L
{

w(t) ∗
(

t2α−1E2
α,2α(−λ

2
1t

α)
)

}

(s) = k1

[

λ21
s

−
sα−1

sα + λ21 − 1

]

1

(sα + λ21)
2

= k1

[

λ21
s(sα + λ21)

2
+

sα−1

(sα + λ21)
+

sα−1

(sα + λ21)
2
−

sα−1

sα + (λ21 − 1)

]

,

w(t) ∗
(

t2α−1E2
α,2α(−λ

2
1t

α)
)

=

k1
[

λ21 t
2αE2

α,2α+1(−λ
2
1t

α) + Eα(−λ
2
1t

α) + tαE2
α,1+α(−λ

2
1t

α)−Eα((1− λ21)t
α)
]

.

After the above tedious work, we are ready to compare between w and u, and their
approximations w̃ and ũ, respectively. To evaluate the errors, we introduce the finer
grid

GN = X ∪ { (tn + tn−1)/2 : 1 ≤ n ≤ N} ∪ { tn : 1 ≤ n ≤ N}. (39)

(N is the number of time mesh subintervals). Thus, for large values of N , the error
measure |||v|||GN := maxt∈GN ‖v(t)‖ approximates the norm ‖v‖L∞

on the time interval
(0, 1].

The source term w satisfies the regularity assumption in (28) for σ = α. Thus, the
theoretical error results in subsection 3.3 suggest that ‖w−w̃‖L∞(0,T ) = O((∆t)min{2,αδ}).
The numerical numbers in Tables 1 and 2 confirm these results for different choices
of the fractional exponent α and of the graded mesh exponent δ. For some graphical
illustrations of the errors and the positive influence of the graded mesh, see Figures 1
and 2.

We focus next on the graphical comparison between the exact solution u and its
approximation ũ. As mentioned earlier, when the parameter γ < 1, the non-local initial
condition I1−γu(x, t)|t=0 = g(x) = 4 cos(4πx) leads to unbounded solution u as t → 0,
which is the case here, see (38). If we choose α = γ = 0.5, then the two-parameter
derivativeDα,γ reduces to the Riemann-Liouville derivative Dα = D0.5. Figure 3 shows
surface plots of both the exact and numerical solutions over graded time meshes with
mesh exponent δ = 2. We cut off the initial part of the plots since the solution blows
up near t = 0. The surface plots for small t are shown separately in Figure 4. Surface
plots for α = 0.5 and γ = 0.7 are shown in Figures 5 and 6.

When γ = 1, I1−γu(x, t)|t=0 = u(x, t)|t=0 = g(x) = 4 cos(4πx). In this case,Dα,γ

reduces to the Caputo fractional derivative cDα, and the solution is uniformly bounded
over the time-space domain. Figure 7 shows the surface plots of u and ũ over graded
time meshes with δ = 2.

6. Concluding Remarks

A numerical scheme for approximating the time-dependent source term is devel-
oped. The scheme solves the VIE for the source term and approximates the convolu-
tions needed to calculate the series coefficients for the solution. Due to the singularity

13



of the solution near t = 0, a graded mesh is used to improve the convergence rate. We
proved analytically and demonstrated numerically that the rate of convergence is of
order σδ, where σ is the order of regularity of w and δ is the graded mesh exponent.
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[21] M. I. Ismailov and M. Çiçek. Inverse source problem for a time-fractional diffusion
equation with nonlocal boundary conditions. Applied Mathematical Modelling,
40:4891–4899, 2016.

[22] B. Jin and W. Rundell. A tutorial on inverse problems for anomalous diffusion
processes. Inverse Problems, 31(3):035003, 2015.

[23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and Applications of
Fractional Differential Equations, volume 204 of Mathematics Studies. Elsevier,
Amsterdam, 2006.

[24] R. Klages, G. Radons, and I. Sokolov, editors. Anomalous Transport: Foundations
and Applications. Wiley, 2008.

[25] A. Kleefeld, S. Vorderwülbecke, and B. Burgeth. Anomalous diffusion, dilation,
and erosion in image processing. International Journal of Computer Mathematics,
95(6–7):1375–1393, 2018.

[26] P. Linz. Analytical and numerical methods for Volterra equations. SIAM Studies
in Applied Mathematics, SIAM, Philadelphia., 1985.

15



[27] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity. Imperial
College Press, 2010.

[28] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a
fractional dynamics approach. Physics Reports, 339(1):1–77, 2000.

[29] T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C.
G. A. Nicolleau. Fractional random walk lattice dynamics. Journal of Physics A:
Mathematical and Theoretical, 50(5):055003, 2017.

[30] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu. Fractional-order
Systems and Controls. Advances in Industrial Control. Springer, 2010.

[31] K. Mustapha. A superconvergent discontinuous Galerkin method for Volterra
integro-differential equations, smooth and non-smooth kernels. Mathematics of
Computation, 82, 2013.

[32] K. Mustapha and J. K. Ryan. Post-processing discontinuous Galerkin solutions
to Volterra integro-differential equations: Analysis and simulations. Journal of
Computational and Applied Mathematics, 253:89 – 103, 2013.

[33] M. D. Ortigueira. Fractional Calculus for Scientists and Engineers, volume 84 of
Lecture Notes in Electrical Engineering. Springer, 2011.
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N δ = 1 δ = 2 δ = 3 δ = 4 δ = 5
10 2.37e-02 2.06e-02 1.52e-02 8.72e-03 4.10e-03
20 2.30e-02 0.04 1.76e-02 0.23 9.30e-03 0.70 3.46e-03 1.34 1.11e-03 1.89
40 2.21e-02 0.06 1.38e-02 0.35 4.80e-03 0.96 1.21e-03 1.52 2.81e-04 1.98
80 2.10e-02 0.07 9.89e-03 0.48 2.24e-03 1.10 4.04e-04 1.58 7.05e-05 1.99
160 1.97e-02 0.09 6.53e-03 0.60 1.00e-03 1.16 1.34e-04 1.59 1.76e-05 1.99
320 1.81e-02 0.12 4.06e-03 0.68 4.42e-04 1.18 4.43e-05 1.59 4.72e-06 1.94

Table 1: Errors and convergence rates for α = 0.4 and different values of δ.

N δ = 1 δ = 2 δ = 3 δ = 4
10 2.1240e-02 9.4174e-03 2.0410e-03 6.5174e-04
20 1.8368e-02 0.210 3.8912e-03 1.275 4.7314e-04 2.109 2.3750e-04 1.456
40 1.4620e-02 0.329 1.4617e-03 1.413 1.1443e-04 2.048 6.9103e-05 1.781
80 1.0625e-02 0.460 5.5222e-04 1.404 3.0410e-05 1.912 1.8453e-05 1.905
160 7.1333e-03 0.575 2.1308e-04 1.374 7.9822e-06 1.930 4.7688e-06 1.952
320 4.5350e-03 0.654 8.3305e-05 1.355 2.0444e-06 1.965 1.2111e-06 1.977

Table 2: Errors and convergence rates for α = 0.67 and different values of δ.

0.0 0.2 0.4 0.6 0.8 1.0
time

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

er
ro

rs

N = 40
N = 80
N = 160
N = 320

Figure 1: Pointwise errors over a uniform mesh for α = 0.67.
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Figure 2: Pointwise errors over a nonuniform mesh of δ = 3 for α = 0.67.
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Figure 3: Surface plot of the exact solution (left) and the approximate solution (right) for 0.26 < t <

1.0, α = γ = 0.5 and δ = 2.
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Figure 4: Surface plot of the exact solution (left) and the approximate solution (right) for 0.1×10−3 <

t < 1.6× 10−3, α = γ = 0.5 and δ = 2.
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Figure 5: Surface plot of the exact solution (left) and the approximate solution (right) for 0.26 < t < 1,
α = 0.5 and γ = 0.7.

x

0.0
0.5

1.0

t

−40
−30
−20
−10
0
10
20
30
40

x

0.0
0.5

1.0

t

−40
−30
−20
−10
0
10
20
30
40

Figure 6: Surface plot of the exact solution (left) and the approximate solution (right) for 0.1×10−3 <

t < 1.6× 10−3, α = 0.5 and γ = 0.7.
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Figure 7: Surface plot of the exact solution (left) and the approximate solution (right) for α = 0.5,
γ = 1 and δ = 2.

21


	1 Introduction
	2 Series Representations
	3 Determination and approximation of w.
	3.1 Integral equation
	3.2 Approximation of w(t)
	3.3 Error analysis

	4 Approximation of u
	5 Numerical results
	6 Concluding Remarks

