
Computational and Applied Mathematics (2021) 40:123
https://doi.org/10.1007/s40314-021-01426-5

A posteriori error estimates for a multi-scale finite-element
method

Khallih Ahmed Blal1 · Brahim Allam2 · Zoubida Mghazli2

Received: 13 February 2020 / Revised: 20 November 2020 / Accepted: 11 January 2021 /
Published online: 25 April 2021
© The Author(s) 2021

Abstract
We are interested in the discretization of a diffusion problem with highly oscillating coef-
ficient, by a multi-scale finite-element method (MsFEM). The objective of this method is
to capture the multi-scale structure of the solution via local basis functions which contain
the essential information on small scales. In this paper, we perform an a posteriori analysis
of this discretization. The main result consists of building error indicators with respect to
both small and large meshes used in this method. We present a numerical test in which the
experiments are in good coherency with the results of analysis.

Keywords Finite element · Multi-scale finite-element method · A posteriori error
estimates · Error indicators

Mathematics Subject Classification 65N30 · 65N50

1 Introduction

The a posteriori error analysis is a powerful tool to improve the quality of approximated
solutions of a model of partial differential equations. The estimates obtained in this context
allow us to perform a self-adaptation of the mesh and to reach a desired accuracy, via a
fixed tolerance. The norm of the error is bounded by estimators which depend only on the
mesh size, the data, the approximated solution, and which are explicitly computable. The
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pioneering work of the a posteriori error estimates, in the context of finite-element method,
was done by Babuška and Rheinbolt in 1978 (see Babuška et and Rheinboldt 1978a, b).

In this work, we are interested in the methods of multi-scale finite element (MsFEM)
treated in Carballal Perdiz (2010), Efendiev and Hou (2009), Hou and Wu (1997), Lozinski
et al. (2013), andAhmedBlal (2014).Generally, thismethod is based on twomain ingredients:
building multi-scale local basis functions on a coarse mesh TH , and coupling them with a
global variational formulation on a fine mesh Th , providing an accurate approximation of
the solution. Multi-scale basis functions are designed to capture the characteristics of the
multi-scale solution and contain information on small scales. They are built from those of
standard finite element in the coarse mesh, such that they have the same support and satisfy
the equation Lφ = 0 on each element of TH , where L is the principal operator in the model.
There are also variants of MsFEM: MsFVM (“multi-scale finite volume method”, see Lee
et al. 2002),MsMFEM(“multi-scalemixed finite-elementmethod”, seeChen andHou 2003),
MsFVEM (“multi-scale finite volume element method”, see Hou 2009), and DG-MsFEM
(“discontinuous Galerkin multi-scale finite-element method”, see Efendiev and Hou 2009).

In this work, we develop a posteriori error estimates for finite-element multi-scale method
for a diffusion problemwith a mesh adaptation. For this, as in the construction of the method,
we will develop estimates for the overall solution related to the coarse mesh and couple these
estimates with those related to the finemesh. In Aarnes and Efendiev (2006), we find adaptive
techniques for a Finite Volume Multi-scale method based on indicators on some physical
criteria. In Abdulle and Nonnenmacher (2011), the authors give residual type indicators
for homogenization problems. In Henning et al. (2014), we find a residual error estimate
for another type of MsFEM, that is a Petrov–Galerkin MsFEM with over-sampling. In this
method, the finite-dimensional “coarse-scale” subspace and the continuous fine-scale space
are defined through a projection operator from H1

0 (Ω), and the authors use a reconstruction
operator and a corrector operator to define the discrete problem. The a posteriori estimates are
on the error between the exact solution and the reconstructed discrete one, and the indicators
are expressed with these operators. There are three types of indicators. The first one is related
to the coarse mesh and is similar to one of ours. The second is based on the jump of the fluxes
through the inter-element of the fine mesh and the last one is retard the over-sampling.

2 Formulations

LetΩ ⊂ R
2 be a bounded polygonal domainwith aLipschitz-continuous boundaryΓ = ∂Ω .

We use the standard space L
2(Ω) equipped with the usual norm ‖ · ‖0, together with the

Sobolev space H1(Ω) of functions in L2(Ω), such that their first derivatives (in distribution

sense) belong to L
2(Ω), equipped with the norm ‖v‖1 := (‖v‖20 + ‖∇v‖0

)1/2
. As usual,

H
1
0(Ω) = {v ∈ H1(Ω) / v = 0 on Γ } is equipped with the norm |v|1 := ‖∇v‖0.

We consider the diffusion problem associated with the operator Lv := −div (ν∇v) defined
by:

{
find u ∈ V,

a(u, v) = F(v), ∀ v ∈ V,
(1)

where V = H
1
0(Ω), a(u, v) =

∫

Ω

ν∇u · ∇vdx and F(v) =
∫

Ω

f vdx , for all u and v in V.

We assume that f ∈ L
2(Ω), ν ∈ C

0,1(Ω), the space of Lipschitz-continuous functions, and
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there exist two positive constants νm and νM satisfying:

∀x ∈ Ω, 0 < νm ≤ ν(x) ≤ νM .

Let us note that ν ∈ L
∞(Ω) is sufficient to have the existence and uniqueness of the solution

in H1
0 (Ω), but for the need of the a posteriori error analysis, we assume more regularity for

ν.
We denote by |·|ν the energy norm defined by:

|v|2ν :=
∫

Ω

ν|∇u|2dx .

If D is a subset of Ω , we use the notation:

|v|2ν,D :=
∫

D
ν|∇u|2dx,

and also the following notations:

νD = inf
x∈D ν(x), νD = sup

x∈D
ν(x). (2)

We remark that:

|v|1,D ≤ 1

ν
1/2
D

|v|ν,D . (3)

The existence and uniqueness of the solution of (1) are obtained using the Lax–Milgram
theorem.
In many applications, the coefficient ν may present a highly oscillatory character. To obtain
the large-scale solutions accurately and efficiently without resolving the small-scale details,
we will use a Multi-scale Finite-Element Method (MsFEM) (see Babuška and Osborn 1983;
Carballal Perdiz 2010; Efendiev and Hou 2009; Hou and Wu 1997; Lozinski et al. 2013;
Ahmed Blal 2014), an approach that captures the multi-scale structure of the solution. Let
TH a regular mesh of Ω:

Ω =
⋃

K∈TH

K ,

where H = maxK HK and HK is the diameter of the element K . We denote byNH and EH ,
respectively, the set of all internal nodes xi for i = 1, 2, . . . , NH , and the set of all edges
Ei for i = 1, 2, . . . , NE of TH , excluding the edges on the boundary ∂Ω . The first-order
standard finite-element space based on TH and approximating V is denoted by P1(TH ) and
defined by:

P1(TH ) := {vH ∈ C0(Ω̄) / vH |K ∈ P1(K ),∀K ∈ TH , (vH )|Γ = 0} ⊂ V,

where P1(K ) and P1(E)) are the spaces of polynomial functions with degree ≤ 1 in K
and E , respectively. As usual, the basis functions {ψ i

H }Ni=1 associated with P1(TH ) satisfy
{ψ i

H }(x j ) = δi j , and the support of {ψ i
H }, denoted by ωi , is the union of the βi elements

Ki,d , such that xi is one of their vertices:

ωi =
βi⋃

d=1

Ki,d .
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The multi-scale basis functions are defined (see Efendiev and Hou 2009; Hou andWu 1997),
for i = 1, . . . , NH , as the function Φ i

H ∈ H
1(ωi ) satisfying the following problems, for

d = 1, . . . , βi :
{
LKi,dΦ

i
H = 0 in Ki,d ,

Φ i
H = ψ i

H on ∂Ki,d ,
(4)

with the notation LK := L|K . The Multi-scale Finite-Element (MsFEM) space adapted to
the operator L is then defined by:

VH = Span
{
Φ i

H , i = 1, ...,NH

}

= {
vH ∈ C

0(Ω) ∩ H
1
0(Ω), such that LK vH = 0

in K , ∀ K ∈ TH , and vH |E ∈ P1(E), ∀E ∈ EH } .

The MsFEM approximation of the problem (1) is now given by:
{
find uH ∈ VH ,

a(uH , vH ) = F(vH ), ∀ vH ∈ VH .
(5)

To determine the multi-scale basis functions, we have now to solve the problems (4). To do
so, we consider a new finer mesh. For each K ∈ TH , we consider a regular conforming mesh
Th(K ) all independently, and define Th as the overall fine mesh:

K =
⋃

T∈Th(K )

T and Th =
⋃

K∈TH

Th(K ). (6)

Let us note that each Th(K ) is a conforming mesh, but the global mesh can be non-
conforming one.

We denote by Eh(K ) the set of all edges of Th(K ) and by Eh the set of all edges of Th
excluding the edges on the boundary ∂Ω . The edges from Eh can be divided into two groups:
those forming the boundary of coarse triangles and thus constituting the coarse mesh edges
(denoted by EH ) and those internal for some triangles K ∈ TH forming the set E0

h (K ). In
the sequel, we need also the following notations. For any E ∈ EH , we denote by K1(E) and
K2(E), the two coarse adjacent triangles, such that E = K1(E) ∩ K2(E). Let, moreover,
T b
h (E) be the set of the triangles of both fine meshes Th(K1) and Th(K2) that touch E .

We define also Eb
h (E) as the set of internal edges of both fine meshes Th(K1) and Th(K2)

that touch E and are not in E . For i = 1, . . . , NH , the sets ωi are also the supports of the
multi-scale basis functions Φ i

H and we put:

P
1
H (ωi ) := {vh ∈ C0(ω̄i ) / vh |E ∈ P1(E), ∀E ∈ EH ∩ ωi ,

vh |T ∈ P1(T ), and vh|∂T∩Γ = 0, ∀T ∈ Th ∩ ωi }.
The approximated multi-scale function is Φ i

h,H ∈ P
1
H (ωi ), such that the restriction on

Kid , Φ
i,d
h,H := Φ i

h,H |Kid , for d = 1, . . . , βi , is the solution in P1(Th(Ki,d)), of the problem:
⎧
⎨

⎩

aK (Φ
i,d
h,H , vhH ) = 0,∀ vhH ∈ V

h
0(Ki,d),

Φ
i,d
h,H

∣∣∣
∂Ki,d

= ψ i
H

∣∣
∂Ki,d

,
(7)

with the notations aK (u, v) =
∫

K
ν∇u · ∇v, and for K ∈ TH :

V
h
0(K ) := P1(Th(K )) ∩ H

1
0(K ). (8)
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We define the MsFEM discrete space by:

V
h
H = Span

{
Φ i

h,H , i = 1, ...,NH

}

=
{
vh ∈ C0(Ω), such that aK (vh, wh) = 0, ∀ wh ∈ V

h
0(K ),

∀ K ∈ TH , vh
∣
∣
∣
E

∈ P1(E), ∀E ∈ EH
}

∩ H
1
0(Ω), (9)

and the discrete MsFEM approximation of the problem (1) is defined by:
{
find uhH ∈ V

h
H ,

a(uhH , vhH ) = F(vhH ), ∀ vhH ∈ V
h
H .

(10)

Themulti-scale solution uhH of the global discrete problem (10) is therefore written as a linear
combination of multi-scale basis functions:

uhH =
NH∑

i=1

αiΦ
i
h,H .

As in Carballal Perdiz (2010) and Lozinski (2010), we can prove the following a priori error
estimate.

Proposition 1 Let u be the solution of (1) and uhH be the solution of (10).
We have the following error estimate:

|u − uhH |ν ≤ inf
ϕH∈VL

|u − ϕH |ν + inf
wh

H∈Vh
H

|uH − wh
H |ν + C0√

νm
H‖ f ‖0. (11)

where VL := {
v ∈ H1

0 (Ω) such that ∀E ∈ EH v |E is linear
}
, and C0 be a constant which

depends only on the geometry of K .

Proof SinceVh
H ⊂ H1

0 (Ω), u−uhH satisfies the orthogonality condition a(u−uhH , wh
H ) = 0

for all wh
H ∈ V

h
H . Hence, we have:

|u − uhH |ν ≤ |u − wh
H |ν

≤ |u − uH |ν + |uH − wh
H |ν, ∀wh

H ∈ V
h
H .

In the other hand, since VH is also a subspace of H1
0 (Ω), by Cea’s Lemma, we have:

|u − uH |ν ≤ |u − vH |ν, ∀vH ∈ VH .

Let ϕu
H ∈ VL be the energy norm-projection of u in VL , and vH ∈ VH such as

vH
∣∣EH = ϕu

H

∣∣
EH

, and then, for all K ∈ TH , the local error eK = ϕu
H |K − vH |K , which

is in H
1
0(K ), satisfies the problem:

{
LK eK = f |K , on K ,

eK = 0 on ∂K ,
(12)

and by applying the Poincaré’s inequality and (3):

‖eK ‖0,K ≤ C(K )
1√
ν K

|eK |ν,K , (13)

where C(K ) is the Poincaré’s constant in K which can be written as C(K ) = C0HK , where
C0 depends only on the geometry of K and is independent of HK , its diameter.
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By the problem (12), we deduce:

|eK |2ν,K ≤ ‖ f |K ‖0,K ‖eK ‖0,K ≤ ‖ f |K ‖0,K C0√
ν K

HK |eK |ν,K ,

and so:

|e|ν ≤ C0√
νm

H‖ f ‖0,

where H = maxK HK .

We obtain finally:

|u − uhH |ν ≤ |u − uH |ν + inf
wh

H∈Vh
H

|uH − wh
H |ν,

≤ |u − ϕu
H |ν + |ϕu

H − vH |ν + inf
wh

H∈Vh
H

|uH − wh
H |ν, ∀vH ∈ VH ,

≤ inf
vH∈VL

|u − vH |ν + C0√
νm

H‖ f ‖0 + inf
wh

H∈Vh
H

|uH − wh
H |ν,

which gives (11) ��

3 Interpolation operators and basic inequalities

In this section, we recall some basic inequalities and give interpolation operators which are
essential tools to derive a posteriori error estimates .

Basic inequalities

Lemma 1 (Local trace inequality, see Verfürth (2013), Adams (1995)) For every E ∈ ∂K
and all w ∈ H(div;Ω), such that w · n ∈ L

2(E), we have:

‖w · n‖L2(E) 
(
h−1/2
E ‖w‖L2(K ) + h1/2E ‖divw‖L2(K )

)
,

where H(div;Ω) := {w ∈ (
L
2(Ω)

)2
/ divw ∈ L

2(Ω)}, n the vector normal to ∂K and
where we use the shorthand notation:

x  y, (14)

for x ≤ Cy with positive constant independent of x , y, and meshes.
To derive the lower bound of the error, we need special functions introduced by Verfürth

(1996) and called bubble functions. Using the barycentric coordinates, λK
i , for i = 1, 2, 3,

associated with an element K ∈ TH , these bubble functions are defined by:

bK :=
{
27λK

1 λK
2 λK

3 on K ,

0 everywhere else .
(15)

bE :=
{
4λKi

1 λ
Ki
2 on Ki , for i = 1, 2

0 everywhere else ,
(16)

where E = K1 ∩ K2. We have the following lemma (see Verfürth 1996, lemma 3.3, page
66):
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Lemma 2 Let K ∈ TH , E ∈ Eh , v be a polynomial function in K , and σ be a polynomial
function on E. We have:

‖v‖0,K 
∥
∥
∥b1/2K v

∥
∥
∥
0,K

and ‖σ‖0,E 
∥
∥
∥b1/2E σ

∥
∥
∥
0,E

, (17)

|bK v|1,K  h−1
K ‖v‖0,K and |P(bEσ)|1,K  h−1/2

E ‖σ‖0,E , (18)

‖P(bEσ)‖0,K  h1/2E ‖σ‖0,E , (19)

where P(·) is a continuation operator from L
∞(E) to L

∞(K ) .

Interpolation operators
We consider here operators of Clément type, related, respectively, to the spaces VH and

V
h
H . Let A

h
H : V → V

h
H and AH : V → VH defined, for all v ∈ V by:

Ah
H (v) =

NH∑

i=1

(
1

|ωi |
∫

ωi

vdx

)
Φ i

h,H , (20)

AH (v) =
NH∑

i=1

(
1

|ωi |
∫

ωi

vdx

)
Φ i

H , (21)

where Φ i
H and Φ i

h,H , i = 1, . . .NH are the multi-scale basis functions defined, respectively,
by (4) and (7). These operators satisfy the following properties.

Proposition 2 Let K ∈ TH , E ∈ EH and v ∈ V. Then, for B = AH or B = Ah
H , we have:

‖Bv‖0,K  ‖v‖0,ωK
, (22)

‖v − Bv‖0,K  HK |v|1,ωK , (23)

‖v − Bv‖0,E  HE
1/2|v|1,ωE , (24)

where ωK (resp. ωE ) is the union of all the triangles of TH that share at least one node with
K (resp. E).

The proof is given in the Annex.
We shall also need a Clément interpolation operator Πh : H1(K ) → P1(Th(K )), defined

relatively to the P1 finite elements on the fine mesh Th(K ) for any coarse triangle K . We
take a version of such an operator constructed by (see Scott and Zhang (1990)), such that
Πhvh = vh for all vh ∈ P1(Th(K )), with the following properties for all v ∈ H1(K ):

‖v − Πhv‖0,T  hT |v|1,ωT ,

‖v − Πhv‖0,e  h1/2e |v|1,ωe ,

‖Πhv‖0,ẽ  ||v||0,γẽ ,

⎫
⎬

⎭
(25)

where T is any triangle from Th(K ), e any internal edge from E0
h (K ), ẽ any boundary edge

from the mesh Th(K ), ωT (resp. ωe) is the union of all the triangles of Th(K ) that share at
least one node with T (resp. e) and γẽ is the union of all the boundary edges that share at
least one node with ẽ.
We define now another operator. For v ∈ H1(K ), let Π̃hv, such that:

Π̃hv ∈ P1(Th(K )),

Π̃hv(a) = Πhv(a), for all internal node (a /∈ ∂K ),

Π̃hv(a) arbitrary, for all boundary node (a ∈ ∂K ).

⎫
⎬

⎭
(26)
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Proposition 3 Let v ∈ H1(K ), T ∈ Th(K ) and e ∈ Eh(K ). Then, Π̃hv defined by (26)
satisfies the following estimates:

‖v − vh‖0,T  hT |v|1,ωT + αT h
1/2
T ‖v − vh‖0,∂ωT ∩∂K , (27)

‖v − vh‖0,e  h1/2e |v|1,ωe + αe ‖v − vh‖0,∂ωe∩∂K , (28)

where αT and αe are boundary switches, i.e., αT = 1 (resp. αe = 1) if T (resp. e) touches
∂K; otherwise, αT = αe = 0, and where ωT (resp. ωe) is the union of all the triangles of
Th(K ) that share at least one node with T (resp. e).

The proof is in the Annex.

4 A posteriori error estimates

In this section, we will give different a posteriori error estimates. The first ones are related to
the approximation of the problem (1) in the space VH spanned by the multi-scale functions,
and given by the problem (5). Obviously, the function uH will not be computed directly, but
over the approximation of the multi-scale functions. Here and below, we use the notation (14)
and the notation (2) for D equal K , E , T , e, etc. . .. For E ∈ Eh , we denote by nE the unit,
normal, outward-pointing vector field and by

[
ν∇nE uH

]
E the jump of ν∇uH ·nE across the

element E.
In the following, the notation x  ymeans that x ≤ Cywith positive constant independent

of x , y, ν, and meshes.

4.1 Estimates related tomulti-scale basis functions

Theorem 1 Let f ∈ L
2(Ω), u be the solution of (1), and uH be the solution of (5), and let

ηK , for K ∈ TH defined by:

η2K := H2
K

ν ωK

‖ fK ‖20,K + 1

2

∑

E∈EK

HE

ν ωE

∥∥[ν∇nE uH
]
E

∥∥2
0,E

, (29)

where fK := 1

|K |
∫

K
f dx.

Then, we have:

|u − uH |ν 
⎧
⎨

⎩

∑

K∈TH

η2K + H2
K

ν ωK

‖ f − fK ‖20,K

⎫
⎬

⎭

1/2

, (30)

ηK 
{

H2
K

ν ωK

|| f − fK ||20,ωK
+ νK

ν ωK

|u − uH |2ν,ωK

}1/2

, (31)

where fK is an approximation of f .

Proof 1. We begin by proving the upper bound of the error (30). By taking w = u − uH

and for any wH ∈ VH , the Galerkin orthogonality and an integration by parts in each
K ∈ TH give:

|u − uH |2ν =
∑

K∈TH

{∫

K
( f + div(ν∇uH ))(w − wH )dx

123
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+1

2

∑

E∈EK

∫

E

[
ν∇nE uH

]
E (w − wH )ds

}
.

By Cauchy–Schwarz inequality and since div(ν∇uH ) = 0 in K , we obtain:

|u − uH |2ν ≤
∑

K∈TH

{
[‖ fK ‖0,K + ‖ f − fK ‖0,K

] ∥∥w − wH

∥
∥
0,K

+1

2

∑

E∈EK

∥
∥[ν∇nE uH

]
E

∥
∥
0,E

∥
∥w − wH

∥
∥
0,E

}
.

Now, we take wH = AHw, where AH is defined in (21) and use the estimates of
Proposition 2 and (3) to obtain:

|u − uH |2ν 
∑

K∈TH

HK

ν
1/2
ωK

{
‖ fK ‖0,K + ‖ f − fK ‖0,K

}
|w|ν,ωK

+
∑

E∈EK

H1/2
E

ν
1/2
ωE

∥
∥ [

ν∇nE uH

]
E

∥
∥
0,E

|w|ν,ωE ,

which gives (30) since w = u − uH .
2. To prove (31), the upper bound of the indicator, we use the technique of bubble functions

which is now standard. Let wK = bK fK , where bK is the bubble function in K defined
by (15). By (17), we have:

‖ fK ‖2
L2(K )


∫

K
bK f 2K dx .

Since LK uH = 0 in K , and
∫

K
wK f dx −

∫

K
ν∇u · ∇wK dx = 0, and then, using

Green’s formula, we have:

‖ fK ‖2
L2(K )


∫

K
wK ( fK + div(ν∇uH ))dx,


[∫

K
wK ( fK − f ) +

∫

K
wK div(ν∇uH )dx

]
+

∫

K
ν∇u · ∇wK dx,


[∫

K
wK ( fK − f )dx +

∫

K
ν∇(u − uH ) · ∇wK dx

]
.

The Cauchy–Schwarz and inverse inequalities, the definition of wK , and (3) give:

‖ fK ‖
L2(K )


(
‖ fK − f ‖2

L2(K )
+ H−2

K νK |u − uH |2ν,K

)1/2
,

and then:

H2
K

ν ωK

‖ fK ‖2
L2(K )

 H2
K

ν ωK

‖ fK − f ‖2
L2(K )

+ νK

ν ωK

|u − uH |2ν,K . (32)

Let now w = ν∇(uH − u). First of all, we remark that for all element K ∈ TH and
all E ∈ ∂K , we have divw = f in K and

[
ν∇nE u

]
E = 0. In the other hand, since

LK uH = 0 in K , uH |∂K is regular and K is convex, we deduce by regularity theorem
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(Cf. Grisvard 1985) that uH |K ∈ H2(K ), and so, w · n is in L2(E). By Lemma 1, we
therefore have:

∥
∥[ν∇nE uH

]
E

∥
∥
L2(E)

 H1/2
E || f ||0,K + H−1/2

E ||ν∇(u − uH )||0,K ,

 H1/2
E || fK ||0,K + H1/2

E || f − fK ||0,K

+ ν
1/2
K

H1/2
E

|u − uH |ν,K .

Multiplying the previous inequality by H1/2
E /ν

1/2
E and using the fact that HE ≤ HK and

ν E ≥ ν K , and the inequality (32), we find:

H1/2
E

ν
1/2
ωE

∥
∥[ν∇nE uH

]
E

∥
∥
L(E)

 HK

ν
1/2
ωK

|| f − fK ||0,K + ν
1/2
K

ν
1/2
ωK

|u − uH |ν,K ,

or

HE

ν ωE

∥
∥[ν∇nE uH

]
E

∥
∥2
L2(E)

 H2
K

ν ωK

|| f − fK ||20,ωK
+ νK

ν ωK

|u − uH |2ν,ωK
,

and therefore:
∑

E∈EK

HE

ν ωE

∥∥[ν∇nE uH
]
E

∥∥2
L2(E)

 H2
K

ν ωK

|| f − fK ||20,ωK
+ νK

ν ωK

|u − uH |2ν,ωK
.

��

4.2 Estimates for the fully approximated problem

In this section, we give a posteriori error estimates for the discrete MsFEM approximation
problem given by (10).

The a posteriori indicators are defined, for all K ∈ TH , all T ∈ Th(K ), and all E ∈ EH ,
by:

η2K ,h := H2
K

ν ωK

‖ fK ‖20,K +
∑

E∈EK

HE

ν ωE

∥∥∥
[
ν∇nE u

h
H

]

E

∥∥∥
2

0,E
. (33)

δ2K ,h := 1

ν K

∑

T∈Th(K )

h2T ‖div(ν∇uhH )‖20,T +
∑

e∈E0
h (K )

he‖
[
ν∇ne u

h
H

]

E
‖20,e. (34)

ξ2E,h := HE

ν ωE

⎛

⎜
⎝

∑

T∈T b
h (E)

hT ||div(ν∇uhH )||20,T +
∑

e∈Eb
h (E)

‖
[
ν∇ne u

h
H

]

e
‖20,e

⎞

⎟
⎠ . (35)

We will prove the upper and lower bounds of the error by these indicators.

4.2.1 An upper bound for the error

Theorem 2 Let f ∈ L
2(Ω) and uhH be the solution of (10). We have:

|u − uhH |ν 
⎧
⎨

⎩

∑

K∈TH

(

η2K ,h + H2
K

ν ωK

‖ f − fK ‖20,K
)

+
∑

K∈TH

δ2K +
∑

E∈EH

ξ2E

⎫
⎬

⎭

1/2

; (36)
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Remark 1 the first sum in (36) is the indicator related to the error due to the coarse mesh TH .
The others sums should be interpreted as the indicators of the error due to the fine meshes
Th(K ).

Proof of Theorem 2 Let uhH be the solution of (10) and w = u − uhH . Then, by the Galerkin
orthogonality, we have for any wh

H ∈ V
h
H :

|u − uhH |2ν =
∫

Ω

ν∇(u − uhH ) · ∇(w − wh
H )dx,

=
∑

K∈TH

⎡

⎣
∑

T∈Th(K )

∫

T
ν∇(u − uhH ) · ∇(w − wh

H )dx

⎤

⎦ .

Using (1) and an integration by parts over all the triangles T ∈ Th(K ), for all K ∈ TH ,
yields:

|u − uhH |2ν =
∑

K∈TH

⎧
⎨

⎩

∑

T∈Th(K )

∫

T
( f + div(ν∇uhH ))(w − wh

H )dx

+
∑

e∈Eh (K )

∫

e

[
ν∇ne u

h
H

]

e
(w − wh

H )ds

⎫
⎬

⎭
.

Since the edges from Eh is divided into two groups: EH , the set of the boundary of coarse
triangles, and E0

h (K ), the set of internal edges from Eh(K ) for some triangle K ∈ TH , the
last sum can be rewritten as:

|u − uhH |2ν =
⎧
⎨

⎩

∑

K∈TH

∫

K
f (w − wh

H )dx

+
∑

E∈EH

∫

E

[
ν∇nE u

h
H

]

E
(w − wh

H )ds

⎫
⎬

⎭

+
⎧
⎨

⎩

∑

K∈TH

[ ∑

T∈Th(K )

∫

T
div(ν∇uhH )(w − wh

H )dx

+
∑

e∈E0
h (K )

∫

e

[
ν∇ne u

h
H

]

e
(w − wh

H )ds

]
⎫
⎪⎬

⎪⎭
,

:= T1 + T2.

We now take wh
H = Ah

Hw where Ah
H is defined in (20), and use Proposition 2 and the

inequality (3) to estimate the terms in T1:

T1 
∑

K∈TH

HK

ν
1/2
ωK

‖ fK ‖0,T |w|ν,ωK +
∑

E∈EH

H1/2
E

ν
1/2
ωE

||
[
ν∇nE u

h
H

]
||0,E |w|ν,ωE

+
∑

K∈TH

HK

ν
1/2
ωK

‖ f − fK ‖0,K |w|ν,ωK ,
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{ ∑

K∈TH

(
η2K ,h + HK

ν
1/2
ωK

‖ f − fK ‖20,K
)}1/2

|w|ν .

To estimate the terms in T2, we shall use the definition of the space V
h
H . Since uhH is an

element of Vh
H , it satisfies on any K ∈ TH [see (7), (8), and (9)]:

∫

K
ν∇uhH · ∇vhdx = 0, ∀vh ∈ V

0
h(K ). (37)

An integration by parts over all the triangles T ∈ Th(K ) yields for all vh ∈ V
0
h(K ):

∑

e∈E0
h (K )

∫

e

[
ν∇ne u

h
H

]

e
vhds +

∑

T∈Th(K )

∫

T
div(ν∇uhH )vhdx = 0.

Thus, one can write for any vh ∈ C(Ω), such that vh |K ∈ V
0
h(K ), for all K ∈ TH :

T2 =
∑

K∈TH

⎡

⎣
∑

T∈Th(K )

∫

T
div(ν∇uhH )

(
(w − wh

H ) − vh
)
dx

+
∑

e∈E0
h (K )

∫

e

[
ν∇neu

h
H

]

e

(
(w − wh

H ) − vh
)
ds

⎤

⎥
⎦ .

Let us now choose Π̃h(w) = vh + wh
H , such that vh |∂K = 0, where Π̃h is the interpolation

operator defined in (26). With the help of Proposition 3, one gets:

T2≤
∑

K∈TH

⎡

⎣
∑

T∈Th(K )

||div(ν∇uhH )||0,T
∥∥w − Π̃h(w)

∥∥
0,T

+
∑

e∈Eh(K )

||
[
νne · ∇uhH

]

e
||0,e

∥∥w − Π̃h(w)
∥∥
0,e

]
.

We have vh ∈ V
0
h(K ) and wH

h |K∈ Vh(K ), and then, vh + wh
H |K∈ Vh(K ).

Let Π̃h : V → Vh(K ), such as Π̃h(w) = vh + wh
H |K . We make the estimates taking

into account that vh |∂K = 0 and Π̃h(w) = vh + wh
H , and using Proposition 3, we obtain:

∥∥w − Π̃h(w)
∥∥
0,T  hT |w|1,ωT + αT h

1/2
T

∥∥w − Π̃h(w)
∥∥
0,∂ωT ∩∂K ,

∥∥w − Π̃h(w)
∥∥
0,e  h1/2e |w|1,ωe + αe

∥∥w − Π̃h(w)
∥∥
0,∂ωe∩∂K ,

which give:

‖w − Πhw‖0,T  hT |w|1,ωT + αT h
1/2
T

∥∥∥w − (vh + wh
H )

∥∥∥
0,∂ωT ∩∂K

,

∥∥w − Π̃h(w)
∥∥
0,e  h1/2e |w|1,ωe + αe

∥∥∥w − (vh + wh
H )

∥∥∥
0,∂ωe∩∂K

,

and since vh |∂K = 0, we obtain:
∥∥w − Π̃h(w)

∥∥
0,T  hT |w|1,ωT + αT h

1/2
T

∥∥∥w − wh
H

∥∥∥
0,∂ωT ∩∂K

,

∥∥w − Π̃h(w)
∥∥
0,e  h1/2e |w|1,ωe + αe

∥∥∥w − wh
H

∥∥∥
0,∂ωe∩∂K

.
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T2
∑

K∈TH

⎡

⎣
∑

T∈Th(K )

||div(ν∇uhH )||0,T
(
hT |w|1,ωT +αT h

1/2
T

∥
∥
∥w − wh

H

∥
∥
∥
0,γT K

)

+
∑

e∈Eh(K )

||
[
ν∇ne u

h
H

]

e
||0,e

(
h1/2e |w|1,ωe + αe

∥
∥
∥w − wh

H

∥
∥
∥
0,γeK

)]
,

where γT K = ∂ωT ∩ ∂K , γeK = ∂ωe ∩ ∂K , αT , and αe are defined in Proposition 3. We
now gather the terms in the sums above and use Cauchy–Schwarz, and then, (24) to get:

T2
∑

K∈TH

⎛

⎜
⎝

∑

T∈Th(K )

h2T ||div(ν∇uhH )||20,T +
∑

e∈E0
h (K )

he||
[
νne · ∇uhH

]

e
||20,e

⎞

⎟
⎠

1/2

|w|1,K

+
∑

E∈EH

⎛

⎜
⎝

∑

T∈T b
h (E)

hT ||div(ν∇uhH )||20,T +
∑

e∈Eb
h (E)

||
[
νne · ∇uhH

]

e
||20,e

⎞

⎟
⎠

1/2

H1/2
E |w|1,ωE .

Using again the inequality (3), we obtain:

T2 
⎛

⎝
∑

K∈TH

δ2K +
∑

E∈EH

ξ2E

⎞

⎠

1/2

|w|ν .

Combining together the bounds for T1 and T2 and recalling that w = u − uhH , this leads
to (36) ��

4.2.2 A lower bound for the error

To have an optimal a posteriori error estimate of the error, we have to prove that the indicators
ηK ,h , δK , and ξE defined in (33), (34), and (34), respectively, are locally lower bounds of the
error.

Theorem 3 Let f ∈ L
2(Ω), uhH the solution of (10) and ηK ,h, δK , and ξE defined by (33),

(34), and (34), respectively. The following estimates hold for all K ∈ TH and all E ∈ EH :

ηK ,h 
{(

νK

ν ωK

)
|u − uhH |2ν,K + H2

K

ν ωK

‖ f − fK ‖20,K

+
∑

E∈EH (K )

∑

T∈T b
h (E)

{(
νT

ν ωK

)(
HK

hT

)
|u − uhH |2ν,T

}

+ 1

ν ωK

⎛

⎝
∑

T∈Th(K )

h2T ‖ f ‖20,T
⎞

⎠

⎫
⎬

⎭

1/2

,

δK 
{(

νK

ν K

)
|u − uhH |2ν,K + H2

K

ν K
‖ f − fK ‖20,K + 1

ν K

⎛

⎝
∑

T∈Th(K )

h2T ‖ f ‖20,T
⎞

⎠

⎫
⎬

⎭

1/2

,

ξE 
{ ∑

T∈T b
h (E)

(
νT

ν ωE

)(
HE

hT

)
|u − uhH |2ν,T +

∑

K⊂ωK

H2
K

ν ωE

‖ f − fK ‖20,K
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∑

K∈ωK

⎛

⎝
(

νK

ν ωE

)
|u − uhH |2ν,K + 1

ν ωE

∑

T∈Th(K )

h2T ‖ f ‖20,T
⎞

⎠
}1/2

.

Proof We will successively give upper bounds of ‖div(ν∇uhH )‖0,T , ‖ [ν∇uhH · ne
]
e ‖0,e,

‖ [ν∇uhH · nE
]
E ‖0,E , and ‖ fK ‖0,K , for arbitrary T ∈ Th(K ), e ∈ Eh(K ), E ∈ EH , and

K ∈ TH .

1. As in a standard way, we take wT = bT div(ν∇uhH ). By (17), we have:

‖div(ν∇uhH )‖20,T 
∫

T
wT div(ν∇uhH )dx .

The continuous problem (1) with v = wT and an integration by parts give the following
relation:

∫

T
wT div(ν∇uhH ) =

∫

T
wT div(ν∇uhH ) +

∫

T
ν∇u · ∇wT −

∫

T
f wT

=
∫

T
ν∇(u − uhH ) · ∇wT +

∫

T
fKwT +

∫

T
( fK − f )wT ,

and by (18), we deduce the following estimate:

‖div(ν∇uhH )‖0,T  ν
1/2
T h−1

T |u − uhH |ν,T + ‖ f − fK ‖0,T + ‖ fK ‖0,T . (38)

2. With an analogous argument as before, we consider we = be[ν∇uhH · ne]e. We have:

‖[ν∇uhH · ne]e‖20,e 
∫

e
we[ν∇uhH · ne]e,

and
∫

e
we[ν∇uhH · ne]e =

∑

T⊂ωe

(∫

T
div(ν∇uhH )we −

∫

T
ν∇uhH · ∇we

)

=
∑

T⊂ωe

∫

T
div(ν∇uhH )we +

∫

ωe

ν∇(u − uhH ) · ∇we

+
∫

ωe

fKwe −
∫

ωe

( f − fK )we,

and finally, by (38), (18), (19), and the fact that there exist two positive constants c1 and
c2 with c1he ≤ hT ≤ c2he, we obtain:

‖[ν∇uhH · ne]e‖0,e  h−1/2
e ν1/2ωe

|u − uhH |ν,ωe + h1/2e
(‖ fK ‖0,ωe + ‖ f − fK ‖0,ωe

)
.

(39)

3. Since E =
⋃

e∈Eb
h (E)

e, the bound of | [ν∇uhH · nE
]
E ‖0,E is given using the estimate (39):

HE

ν ωE

‖[ν∇uhH · nE ]E‖20,E = HE

ν ωE

∑

e⊂E

‖[ν∇uhH · ne]e‖20,e,


∑

e⊂E

{(
HE

he

)(
νωe

ν ωE

)
|u − uhH |2ν,ωe

,
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+ HE

ν ωE

he

(
‖ fK ‖20,ωe

+ ‖ f − fK ‖20,ωe

)}
,


∑

T∈T b
h (E)

{(
HE

hT

)(
νT

ν ωE

)
|u − uhH |2ν,T

+ HE

ν ωE

hT

(
‖ fK ‖20,T + ‖ f − fK ‖20,T

)}
. (40)

4. A bound of HK

ν
1/2
K

‖ fK ‖0,K will be obtained by analogous arguments as the proof of The-

orem 1 using uhH which, here, satisfies Eq. (37), a weak form of LK uH = 0 in K . We
consider wK = bK fK and we denote by wh

K its L2−projection in Vh
0(K ). By definition

of the functionwK andwh
K and using a scaling argument, we prove the following lemma:

��

Lemma 3

‖wK ‖0,K ≤ ‖ fK ‖0,K . (41)

‖wK − wh
K ‖0,T  hT

HK
‖ fK ‖0,K , ∀T ∈ Th(K ). (42)

|wh
K |ν,K  ν

1/2
K

HK
‖ fK ‖0,K . (43)

Proof of the lemma Thefirst inequality is obvious since |bK | ≤ 1 in K . The second is obtained
using the error interpolation estimate in each T ∈ Th(K ): ‖wK − wh

K ‖0,T  hT |wK |1,ωT =
| fK |hT |bK |1,ωT . Now, by scaling argument, we know that |bK |1,T  |b̂K |1,T̂ = Ĉ . Further-

more, Since | fK | = ‖ fK ‖0,K |K |−1/2, and |K |−1/2  HK
−1, we obtain (42). The estimate

(43) is obtained by scaling argument as previously. ��

We return to the proof of the theorem. By (17), we have ‖ fK ‖20,K 
∫

K
bK f 2K dx . Since

supp(wh
K ) = K , we have aK (u − uhH , wh

K ) =
∫

K
f wh

H . We deduce:

∫

K
bK f 2K dx =

∫

K
wh

K f +
∫

K
(wK − wh

K ) f +
∫

K
wK ( fK − f )

=
∫

K
ν∇(u − uhH ) · ∇wh

K +
∫

K
(wK − wh

K ) f +
∫

K
wK ( fK − f ),

=: R1 + R2 + R3.

R1  |u − uhH |ν,K |wh
K |ν,K  ν

1/2
K

HK
|u − uhH |ν,K ‖ fK ‖0,K by (43).

R3  ‖wK ‖0,K ‖ f − fK ‖0,K  ‖ f − fK ‖0,K ‖ fK ‖0,K by (41).

R2 =
∑

T∈Th(K )

∫

T
(wK − wh

K ) f ≤
∑

T∈Th(K )

‖(wK − wh
K )‖0,T ‖ f ‖0,T ,

 1

HK
‖ fK ‖0,K

∑

T∈Th(K )

hT ‖ f ‖0,T by (42).
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We obtain finally:

HK

ν
1/2
ωK

‖ fK ‖0,K 
(

νK

ν ωK

)1/2

|u − uhH |ν,K + 1

ν
1/2
ωK

⎛

⎝
∑

T∈Th(K )

hT ‖ f ‖0,T
⎞

⎠

+
(

HK

ν
1/2
ωK

)

‖ f − fK ‖0,K . (44)

The lower bounds are now obtained by gathering all the terms.
By (44) and (40), we have:

ηK ,h 
{(

νK

ν ωK

)
|u − uhH |2ν,K + H2

K

ν ωK

‖ f − fK ‖20,K

+
∑

E∈EH (K )

∑

T∈T b
h (E)

{(
νT

ν ωK

)(
HK

hT

)
|u − uhH |2ν,T

}

+ 1

ν ωK

⎛

⎝
∑

T∈Th(K )

h2T ‖ f ‖20,T
⎞

⎠

⎫
⎬

⎭

1/2

.

By (38), (39), (44), and using the inequalities he ≤ HK and hT ≤ HK , we obtain the
estimation:

δK 
{(

νK

ν K

)
|u − uhH |2ν,K + H2

K

ν K
‖ f − fK ‖20,K

+ 1

ν K

⎛

⎝
∑

T∈Th(K )

h2T ‖ f ‖20,T
⎞

⎠

⎫
⎬

⎭

1/2

.

By (38)and (39), since hT ≤ HK , and then by (44), we have:

ξE 
{ ∑

T∈T b
h (E)

(
νT

ν ωE

)(
HE

hT

)
|u − uhH |2ν,T +

∑

K⊂ωK

H2
K

ν ωE

‖ f − fK ‖20,K

+
∑

K∈ωK

⎛

⎝
(

νK

ν ωE

)
|u − uhH |2ν,K + 1

ν ωE

∑

T∈Th(K )

h2T ‖ f ‖20,T
⎞

⎠
}1/2

.

Remark 2 In Theorem 3, the error indicators are increased by a quantity related to the H/h
ratio; this means that we do not need to refine the fine mesh, so that this ratio is not big
enough.

5 Implementation

In this section, wewill show a numerical test which confirm the reliability and effectiveness of
the a posteriori error estimates for theMsFEMmethod developed in the previous section. All
the calculations presented are done with the software FreeFem++ (Cf. Hecht and Pironneau
2021).
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We consider the following problem:
{−div (ν∇u) = f in Ω,

u = g on Γ ,
(45)

with Ω =]0, 1[×]0, 1[, f (x, y) = xy, g(x, y) = xy, ε = 10−2, and:

ν(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + 10 cos2
((

2

3ε
+ 2)πx

))
sin2

(
4π y

3ε

)
if x ≥ 3

4 and y ≥ 3
4 ,

1 if x ≤ 3
4 or y ≤ 3

4 .

which present large oscillations in the part of the domain defined by [ 34 , 1[×[ 34 , 1[.
The reference solution (URef ) we consider is the solution obtained by the standard finite-

element method of degree 1, using a fine mesh Th0 with h0 = 1/200 (see Fig. 1 (a)).
To establish ourMsFEMmethod,we need to build twomeshes ofΩ ,TH the coarse one and

Th the fine one. We first build the conforming coarse mesh TH =
⋃

K with H = maxK HK

and HK is the diameter of K . The fine mesh is then constructed in the following manner.
Each element K of TH will be meshed with a step equal to HK /nK , where nK is an integer
fixed in advance, by eventually taking into account the a priori information on the problem.
We thus obtain a conforming mesh Th(K ) =

⋃

T⊂K

T . We denote the diameter of the element

T by hT and h = maxT hT . The global fine mesh of the domain is obtained by catering these
last meshes and will not be necessary conforming:

Th =
⋃

K∈TH

Th(K ).

In the first subsection, we present the resolution algorithm for theMsFEM scheme developed
in this work and then the mesh adaptation algorithm. In the second subsection, we present
the numerical calculations for the problem (45).

5.1 Algorithms

The resolution algorithm has the following structure:

Algorithm 1 (TH , n, f ) (Resolution algorithm)

– a coarse mesh TH = ⋃
K, representing as well as possible the geometry of the problem;

– {Si , i = 1, . . . , N } the set of vertices of TH ;
– n a non-negative integer;
– the data f ;

1. for each K ∈ TH , build the meshes Th(K ) with hT ≈ HK /n;
2. for each i , 1 ≤ i ≤ N, calculate the basis function Φi in each K (a part of the support

of this function) as the solution of (7);
3. solve the discrete problem (10) (which is a N × N system), to calculate the solution uhH .

The indicators developed in Theorem 1 and Theorem 2 are robust tools to find the elements
K and T , where the error between the exact solution and the approximated solution is too
large, and then must be refined to improve the quality of the numerical solution. Let ηK ,
δK ,h , and ξE,h defined respectively by (29), (34), and (34). First, we refine TH , using only
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the indicators ηK , and ξE,h . Indeed, δK ,h is much smaller than the others and can be used to
adapt the meshes related to the basis functions (fine mesh).

The mesh adaptation process has the following general structure.

Algorithm 2 (Algorithm of adaptation) Given

TH , the coarse mesh;
n ∈ N

∗;
the date f ;
T olH desired thresholds of error;
θ , such that 0 < θ < 1;
m the maximum number of iterations;

Initialisation

1. put k = 0;
2. build Th, and calculate uhH by Algorithm 1(TH , n, f).
3. take TH ,k ← TH and Th,k ← Th.
The indicators and refinement while k ≤ m do

1. for each K ∈ TH ,k , calculate the error estimators ηK and ξE,h given by (33) and (34),
respectively;

2. If max
K∈TH ,E∈EH

{ηK , ξE,h} ≤ TolH , then STOP.

3. else

(a) refine the elements K , such that:

(
max

K∈TH ,E∈EH
{ηK , ξE,h}

)
θ ≥ TolH ,

(b) keep conformity with neighboring triangles to obtain the new coarse mesh T ∗
H ;

(c) k ← k + 1;
(d) TH ,k ← T ∗

H ;
(e) calculate uhH by Algorithm 1(TH ,k , n, f)

end while

We take θ = 4/7, TolH = 0, 014, and proceed to mesh adaptivity via the a posteriori
estimators, using Algorithm 2. The first iteration of this algorithm gives the estimators for
the solution based on the initial meshes. The isovalues of these estimators are given in Fig.
2 (a)–(b). Based on the criteria in the algorithm, we scored by *, in Fig. 2 (c), the elements
K ∈ TH to be refined .

To compare the MsFEM adaptation with standard FEM adaptation, we use the standard
estimators given, for each K in TH by:

I 2K := h2K
ν ωK

‖div(ν∇uFEM )‖20,K + 1

2

∑

E∈∂K

hE

ν ωE

‖ [ν∇uFEM · n] ‖0,E ,

where hK is the diameter of K and hE is the diameter of E , and we put
ERMsFEM := URef − uhH , the error between the reference solution and the MsFEM

solution, and ERFEM := URef − uEFM
H , the error between the reference solution and the

solution obtained by the standard Finite-Element Method with the coarse mesh. We will
consider different norms and put:

e1MsFEM := ‖ERMsFEM‖L2(Ω) and e
1
FEM := ‖ERFEM‖L2(Ω),

e2MsFEM := |ERMsFEM |H1(Ω) and e
2
FEM := |ERFEM |H1(Ω),

e3MsFEM := |ERMsFEM |ν and e3FEM := |ERFEM |ν ,
e4MsFEM := ‖ERMsFEM‖∞ and e4FEM := ‖ERFEM‖∞.
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5.2 Numerical test

We consider the initial coarse mesh TH given in Fig. 1(c) and the corresponding fine mesh
given in Fig. 1(d), where we have chosen n = 4. By Algorithm 1(TH , n, f ), we obtain the
solution represented by its isovalues in Fig. 1(b). We note that with this initial meshes, the
MsFEM solution is less regular than the reference one.

The first adaptation of the coarse mesh TH is made by cutting by 4 the elements K to
obtain a finer conformingmesh given in Fig. 3a and the corresponding finemesh given in Fig.
3b. The solution related to the new meshes is given in Fig. 3f. We note that the modifications
are made near the two refined elements. Figure 3 (c), (d), and (e) shows that the isovalues of
indicators are smaller near the refined elements.

This procedure ofAlgorithm 2 is continued, until the estimators reach TolH . This is done
at the 6th iteration for the MsFEM solution. In Fig.4, we find all the information about the
solution MsFEM at this iteration. The solution FEM presented in this figure is obtained by
starting with the initial coarse mesh and using adaptivity via the estimators IK , until these
estimators reach TolH . This is done at the 8th iteration and the results are also presented in
Fig. 4.

We notice that MsFEM captures the oscillations much better than the FEM, with a lower
cost, since the size of the MsFEM system is smaller than the FEM system (see Table 1). We
see in Fig. 4 that the error given by FEM is large in the oscillation zone, while MsFEM gives
a better approximation in this zone.

Fig. 1 Standard FE and MsFEM solutions and initial meshes
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Fig. 2 Isovalues of the indicators related to initial mesh

In Table 1, we give a summary of the numerical results for this test. The notation I T E
means “iteration”. The suffix “max” or “min” means the maximum value or the minimum
value, respectively.

At first sight, we note that the error decreases with the iterations of the mesh adaptation as
well as the indicators and their gaps between the maximum and the minimum values. These
indicators detect the location where the MsFEM solution is not accurate enough. One of the
gaps can sometimes increase, but globally, it decreases. For the same tolerance of the error,
MsFEM needs less iterations than FEM, and the solution is better in the different norms, as
shown in Table 1. Furthermore, this strategy leads to an equidistributivity of the error, since
the gap between the indicators ηK ,h and ξE,h decreases from the first iteration to the last one
as well as the others gaps (see Table 1).

In Fig. 5a, we plotted the log of the maximum of the indicator ηK as a function of the
number of degree of freedom, and in Fig. 5b, we find a comparison between the errorMsFEM
and the error FEM as functions of the number of iterations.

We tested the robustness of our MsFEM adaptive algorithm when the parameter ε goes to
0. In Fig. 5c, we see that the error decreases in a similar way for the three values ε = 10−2,
ε = 10−3 or ε = 10−4. Furthermore, we do not need the have the finemesh very fine. Indeed,
in Fig. 5c, we can see that before adaptation procedure, the error is the same for the three
fine meshes related to h = H/4, h = H/8, and h = H/16, and it is not recommended to
take the mesh Th very fine when we adapt TH .
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Fig. 3 Refined meshes, the indicators, and the new solution at the first iteration of adaptation

6 Conclusion

In this work, we have presented an a posteriori analysis of amulti-scale finite-elementmethod
(MsFEM), for a diffusion problem with highly oscillating coefficients. We derived upper and
lower bounds for the approximation error and presented a numerical test confirming their
performance in regard to their efficiency and reliability. The indicators obtained are of residual
type. Those related to the fine mesh are, in some how, standard and represent the residual
equation and the jump of the normal derivative of the solution through the interfaces of the
fine mesh. The others are also of residual type and take into account the linearity constraint
on the interfaces of the coarse mesh.

It was noticed in the work Lozinski et al. (2013) that the error decreases with the step H
of the coarse mesh and a good precision is reached for a relatively small number of basis
functions, whereas the difference between the errors associated with the different steps h of
the fine mesh is minimal. As a consequence, in the numerical test, we opted to refine only the
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Fig. 4 The last mesh adaptation
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Table 1 Summary of numerical results

I T E0 I T E1 I T E2 I T E3 last I T E

MsFEM I T E6
ηmax
K 0.545515 0.316229 0.149957 0.116572 0.02119805

ηmin
K 0.115237 0.017704 0.024604 0.00566127 0.00123631

Gap 0.430278 0.298525 0.125336 0.1109107 0.0199617

ξmax
E,h 0.367281 0.20126 0.136833 0.092551 0.0377464

ξmin
E,h 0.00992652 0.005439 0.0036982 0.00250138 0.00102017

Gap 0.3573545 0.195821 0.1331348 0.0900496 0.0367262

δmax
K ,h 0.215127 0.054444 0.0461517 0.0270767 0.0487454

δmin
K ,h 0.00581424 0.00147147 0.00124734 0.000731804 0.00131744

Gap 0.2093128 0.0529729 0.0449044 0.0263449 0.0474280

e1MsFEM 0.0255982 0.00791987 0.00591898 0.0024664 0.000608505

e2MsFEM 0.276851 0.152242 0.136405 0.0862585 0.0499367

e3MsFEM 0.322717 0.182145 0.158629 0.102155 0.0679383

e4MsFEM 0.082402 0.0326742 0.0286513 0.0144839 0.00498414

Number vertices 12 28 38 101 396

FEM I T E8
Imax 0.546074 0.22284 0.129121 0.0697954 0.0164632

Imin 0.0114615 0.0442334 0.0221407 0.0115651 0.000614228

Gap 0.431459 0.1786066 0.1069803 0.0582303 0.0158521

e1FEM 0.0328344 0.00978498 0.00575679 0.00458183 0.00282314

e2FEM 0.314588 0.206161 0.158455 0.140437 0.101871

e3FEM 0.382601 0.241343 0.185971 0.169446 0.125633

e4FEM 0.128995 0.0556675 0.0228517 0.0188082 0.0179714

Number vertices 12 26 62 92 644

coarse mesh. In comparison with the standard Finite-Element Method, MsFEM gives better
approximation with lower cost.
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(a) log(ηmax
K ) (b) Error

(c) Error (d) Error

Fig. 5 log(ηmax
K ) and error
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