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Abstract. For continuous maps from a topological graph into it-
self we provide new relationships between their topological entropy,
their homology and their periods.

1. Introduction and statement of the main results

A topological graph or simpliy a graph G is a compact connected
space having a finite set of points V such that G \V consists of finitely
many connected components each of them homeomorphic to an open
interval. Some graphs are homotopic to particular cases of wedge sums
of circles, which we shall define later on. However not all graphs can
be obtained in this way, e.g. the interval, in general any tree, the
topological space with the shape of the capital letter sigma. We say
that a graph is trivial if it is homotopic to a circle or to a point, e.g.
intervals and trees are trivial graphs.

Given topological spaces X and Y with chosen points x0 ∈ X and
y0 ∈ Y , then the wedge sum X ∨Y is the quotient of the disjoint union
X and Y obtained by identifying x0 and y0 to a single point (for details,
see [9, pp. 10]). The wedge sum is also known as “one point union”.
For example, S1 ∨ S1 is homeomorphic to the figure of shpe “8”, two
circles touching at a point. Some graphs can be obtained as particular
cases of wedge sums of S1, and a compact connected graph X such
that dim(H1(X,Q)) = s is homotopic to S1∨ s−times· · · ∨ S1, as usual here
H1(X,Q) denotes the first homology group of the topological space X
with coefficients in Q. These spaces are also called bouquet of circles,
we denote by Gs := S1∨ s−times· · · ∨ S1.

Since our techniques rely on homology, we shall mainly consider bou-
quet of circles, i.e. graphs of the type Gs, for some integer s > 1.
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We have that the homology spaces for Gs are: H0(Gs,Q) = Q,
since Gs is connected; and H1(Gs,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸

s

, by elementary

properties of the wedge sum of spaces ([9, pp. 126]). For trivial graphs
their H1(Gs,Q) is trivial (when there are homotopic to a point) or Q
(when there are homotopic to a circle).

The spectral radius sp(T) of a linear transformation T : U → U on
a finite dimensional vector space U is defined as the maximun of the
norm of its eigenvalues, i.e.

sp(T ) := max {| λ| : λ is an eigenvalue of T} .

A continuous map from a graph into itself is called a graph map.

In the present article we explore some relationships between the topo-
logical entropy of a graph map, the induced map on homology and
its periodic structure. In particular we give sufficient conditions on a
graph map in order to have positive topological entropy (Theorem 4).
In Proposition 5, we show that these conditions are not necessary con-
ditions. Theorems 8 and 10 and Corollaries 9 and 11 show how the first
s Lefschetz numbers of a graph map on Gs determine its periodic struc-
ture. In section 3 we extend the construction given in Proposition 5,
so that we can have maps on Gs with positive topological entropy, all
possible periods and the characteristic polynomial of the induced map
on homology consists of products of cyclotomic polynomials of total
degree s. Furthermore we present some open questions related to these
matters.

1.1. Topological entropy of graph maps. For a definition of topo-
logical entropy of a continuous map of a topological space into itself
see for instance [1, 2, 14].

A well known result that relates the topological entropy h(f) of a
continuous map f : X → X with the homology of X is the following
one due to Manning ([18]).

Theorem 1 (Manning). Let f be a C0 self-map on a compact manifold.
Then h(f) ≥ log(sp(f∗1)).

However for working on graphs-maps we cannot use Theorem 1 since
it is valid for compact manifolds. There are particular results that deals
the entropy for maps on graphs and the spectra of the induced maps
on homology.
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The Lefschetz number of a graph map f is defined as

(1) L(f) := 1− trace(f∗1).

We note that f∗1 : H1(Gs,Q) → H1(Gs,Q) is a linear transformation
that can be represented by an s× s matrix with integer entries.

The Lefschetz Fixed Point Theorem states that if L(f) �= 0 then f
has a fixed point (cf. [4] or [13]).

From (1) we get

L(fm) = 1− trace(fm
∗1) = 1− (λm

1 + · · ·+ λm
s ),

where λ1, . . . , λs are the eigenvalues of f∗1.

The asymptotic Lefschetz number L∞(f) is defined to be the growth
rate of the Lefschetz number of the iterates of f , i.e.

L∞(f) := max{1, lim sup
n→∞

|L(fm)|1/m}.

The asymptotic Lefschetz number allows to obtain a lower bound for
the topological entropy of a continuous graph map.

Theorem 2. Let f : G → G be a graph map.

(a) L∞(f) = max{1, sp(f∗1)}.
(b) The topological entropy of f satisfies h(f) ≥ logL∞(f).

Statement (a) of Theorem 2 is proved in [8], and statement (b) is
due to Jiang [10, 11].

The following result is well known, but since its proof is easy we shall
provide it in section 2.

Corollary 3. If the topological entropy of a graph map f is zero, then
all the roots of the characteristic polynomial of f∗1 are zero or roots of
unity. Moreover sp(f∗1) is either 0, or 1.

Related with Theorem 2 and Corollary 3 we have the following ques-
tion.

Open question 1. Are there some conditions on f∗1 with sp(f∗1) = 1,
which force that h(f) > 0?

The Lefschetz zeta function of f is defined as

ζf(t) := exp

(∑

m≥1

L(fm)

m
tm

)
.
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Since ζf(t) is the generating function of all the Lefschetz numbers,
L(fm), it keeps the information of the Lefschetz number for all the
iterates of f . There is an alternative way to compute the Lefschetz
zeta function of a graph map

(2) ζf(t) =
det(Id− tf∗k1)

1− t
,

where Id is the identity map on H1(G,Q) (cf. [5]).

Our first main result is the following one.

Theorem 4. Let G be a graph, homotopic to Gs, for some s > 1, and
f : G → G be a continuous map.

(a) Let p(t) = ts−a1t
s−1+· · ·+(−1)sas be the characteristic polyno-

mial of f∗1. If |ak| >
(
s
k

)
for some 1 ≤ k ≤ s, then the entropy

of the map f is positive.
(b) If L(fm) > 1 + s for some m ≥ 1, then h(f) > 0.
(c) Let ζf(t) be the Lefschetz zeta function of f . Then ζf(t) =

q(t)(1 − t)−1, where q(t) = b0t
s−r + · · · + bs−r, where r is the

multiplicity of 0 as eigenvalue of f∗1. If |bk| >
(

s−r
s−r−k

)
for some

0 ≤ k ≤ s− r, then h(f) > 0.

Theorem 4 is proved in section 2.

The next result shows that there are continuous maps of Gs with
positive entropy, spectral radius equal to 1, and having all periods

Proposition 5. Let G be a graph homotopic to Gs being s an arbitrary
positive integer. Then there are continuous maps f : G → G such
that h(f) > 0, sp(f∗1) = 1, L(fk) = 0 for all positive integer k and
Per(f) = N, being N the set of all positive integers.

Proposition 5 is proved in section 2.

In [7] was proved the following result, however stated in a different
manner:

Theorem 6 ([7]). Let G be a graph, homotopic to Gs and f : G → G
be a continuous map with f∗1 the induced map on homology and p(t)
the characteristic polynomial of f∗1.

(a) If s is odd and the number of roots of p(t) equal to 0 or ±1,
considering their multiplicity is even, then h(f) > 0.

(b) If s is even and the number of roots of p(t) equal to 0 or ±1,
considering their multiplicity is odd, then h(f) > 0.
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The proof of this theorem is based in the fact the cyclotomic poly-
nomials have even degree (with the exception of the first two), so the
hypotheses force that the characteristic polynomial of f∗1 has odd de-
gree, so it has an eigenvalue of norm greater than 1.

Proposition 5 shows that the conditions given in Theorems 4 and 6
are not necessary conditions in order that a map has positive topolog-
ical entropy.

1.2. Periods of graphs maps. In this subsection we provide some
results which relate the periodic structure of a graph map with its
homology and its topological entropy.

If f : G → G is a graph map. A point x ∈ G is periodic of period k
if fk(x) = x and f j(x) �= x for j = 1, . . . , k − 1. We denote by Per(f)
the set of periods of all periodic points of f .

First we recall a well-known result that relates the topological en-
tropy and the periods of the map. This theorem was in proved [3]
and [15].

Theorem 7. Let f : G → G be a graph map. Then the entropy of f
is positive if and only if there is an m ∈ N such that {km | k ∈ N} ⊂
Per(f).

From its proof it is not clear how the number m is related with
the homology of the graph G, more precisely we have the following
question.

Open question 2. Let f : Gs → Gs be a graph map with positive
entropy. We wonder if there is a relationship between the values h(f),
m, s (as in the statement of Theorem 7) and f∗1.

In [17] it was shown the following relation between the periods of f
and its homology on the graph G.

Theorem 8 ([17]). Let G be a graph, homotopic to Gs and f : G → G
be a continuous map such that it does not have periodic points of period
k for 1 ≤ k ≤ n, with n ≥ 2. Assume that the induced map in the first
homology space f∗1 is invertible. Then n < s.

A map f is Lefschetz periodic point free if L(fk) = 0 for all positive
integers k. From Theorem 8 it follows the next result.

Corollary 9. Let G be a graph, homotopic to Gs and f : G → G be
a continuous map. If f∗1 is invertible, then f is not Lefschetz periodic
point free.
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Corollary 9 is proved in section 2.

The following result is a refinement of Theorem 8, and it is proved
in section 2 using the same tool: Newton’s formulae for symmetric
polynomials.

Theorem 10. Let G be a graph, homotopic to Gs and f : G → G
be a continuous map such that the characteristic polynomial of f∗1 is
ts − a1t

s−1 + · · ·+ (−1)sas. Then L(f) = · · · = L(f j) = 0 if and only
if aj = 0 with j ∈ {2, . . . , s}.
Corollary 11. Let G be a graph homotopic to Gs and f : G → G be
a continuous map. If L(f) = · · · = L(f s) = 0 then L(fk) = 0 for all
positive integer k.

Corollary 11 is proved in section 2.

Some other results on the periods of graph maps can be found in
[2, 6, 16].

In section 3 we show how to get graph maps of Gs with positive
entropy, an infinite set Per(f), spectral radius equal to 1 and with a
characteristic polynomial p(t) of f∗1 formed by an arbitrary product of
cyclotonic polynomials and the factor tr, where r is any non-negative
integer. Without loss of generality we shall take s = 2, the arguments
extend to any positive integer s.

2. Proofs of the results

Proof of Corollary 3. If all the eigenvalues of f∗1 are zero, then sp(f∗1) =
0, and the corollary is proved.

Let λ1, . . . , λr with 1 ≤ r ≤ s be the non-zero eigenvalues of f∗1. By
Theorem 2 we get that |λj| ≤ 1 for j = 1, . . . , r. Then the characteristic
polynomial of f∗1 is of the form

ts−r
r∏

j=1

(t− λj) = ts−r(tr − a1t
r−1 + · · ·+ (−1)rar).

Since ar =
∏r

j=1 λj is a non-zero integer and |λj| ≤ 1 for j = 1, . . . , r,
we have that |ar| =

∏r
j=1 |λj | = 1. Hence |λj| = 1 for j = 1, . . . , r.

It is known that if a polynomial has integer coefficients, constant
term equal to one and all its roots have modulus one, then all its roots
are roots of unity, see for instance [20]. Therefore, clearly sp(f∗1) = 1
and the corollary is proved. �
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Proof of Theorem 4. Let λ1, · · · , λs be the eigenvalues of f∗1, i.e.

p(t) =
s∏

i=1

(t− λi) = ts − a1t
s−1 + · · ·+ (−1)sas.

We recall the Vieta’s formulae:

(3)

as = λ1 · · ·λs,

as−1 =
∑

i1<···<is−1

λi1 · · ·λis−1 ,

...
a2 =

∑

i<j

λiλj,

a1 = λ1 + · · ·+ λs.

If we suppose that h(f) = 0, by statement (a) of Theorem 2 we have
that |λi| ≤ 1 for all 1 ≤ i ≤ s. From (3) it follows

|a1| ≤
s∑

i=1

|λi| ≤ s.

For the general term:

|ak| ≤
∑

1≤i1<···<ik≤s

|λi1 · · ·λik | ≤
∑

1≤i1<···<ik≤s

1 =

(
s

k

)
.

This proves statement (a).

The Lefschetz numbers are L(fm) = 1−trace(fm
∗1). If h(f) = 0, then

|λi| ≤ 1 for all 1 ≤ i ≤ s. Therefore |trace(fm
∗1)| ≤ s for all m ≥ 1.

This proves statement (b).

The Lefschetz zeta function can be written as a rational function,
the expression (2) in our context is

ζf(t) =
det(Id1 − tf∗1)

det(Id0 − tf∗0)
,

where Idi is the identity map on Hi(G,Q) for i = 0, 1. Therefore
ζf(t) = q(t)(1− t)−1, where q(t) = det(Id1 − tf∗1).

If p(t) is the characteristic polynomial of f∗1, i.e. p(t) = det(f∗1 −
tId1), then q(t) = (−1)stsp(t−1). If r is the multiplicity of 0 as eigen-
value of f∗1, we set r = 0 if 0 is not an eigenvalue of f∗1, then

(−1)sp(t) = ts − a1t
s−1 + · · ·+ (−1)ras−rt

r

= tr(ts−r − a1t
s−r−1 + · · ·+ (−1)ras−r).

So, if q(t) = b0t
s−r+ · · ·+bs−r then bk = (−1)kas−r−k for 0 ≤ k ≤ s−r.
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If we suppose that h(f) = 0, then all the roots of p(t) have modulus
smaller than or equal to one. We apply the argument based on the
Vieta’s formulae used in statement (a), to the polynomial u(t) = ts−r−
a1t

s−r−1+· · ·+(−1)ras−r, if all its roots have norm smaller than or equal
to 1, then |bk| ≤

(
s−r
k

)
, because the degree of u(t) is s − r. Therefore

statement (c) follows from statement (a). �

Proof of Proposition 5. We shall prove the proposition for s = 2, but
this proof can be extended immediately to arbitrary s.

Let g : S1 → S1 be a continuous circle map of degree 1 with positive
topological entropy, infinite Per(g) and a fixed point p, see [2] for the
existence of this kind of circle maps, and in particular, the map shown
in Figure 1. Let G2 = S1 ∨ S1 the wedge sum of two circles, by identi-
fying a point, we choose p for a such point. We denote the two circles
of G2 by S1 and S2. Let f : G2 → G2 be the map defined as follows:
f(p) = p , f(x) = g(x) if x ∈ S1 in such way that f(S1) = S1 and
f(S2) = p for x ∈ S2, see Figure 1. Then clearly

f∗1 =

(
1 0
0 0

)
,

Consequently L(fk) = 0 for all k ∈ N because trace(fk
∗1) = 1, and

Per(f) = N because it is easy to prove that such map restricted to the
interval when we separate the circle S1 by the point p has a periodic
orbit of period 3 and by the Sharkovskii’s theorem (see [2]) it follows
that Per(f) = N. �

p

pp p p

p

p

p

S2

S2S1

S1

Figure 1. On the right the graphic of the circle-map g,
and on the left the graphic of the G2–map f .
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Proof of Corollary 9. According to Theorem 8, if L(fk) = 0 for 0 ≤
k ≤ n and f∗1 invertible then n < s. Therefore if L(fk) = 0 for all k
then f∗1 is not invertible. �

Proof of Theorem 10. Let αk := trace(fk
∗1) =

∑s
i=1 λ

k
i . Then the New-

ton’s formulae for symmetric polynomials (cf. [19]) state

α1 − a1 = 0,(4)
α2 − a1α1 + 2a2 = 0,(5)

...

αs +

s−1∑

i=1

(−1)iaiαs−i + (−1)ssas = 0.

If L(f) = 0 then, from (1), (3) and (4) we have a1 = α1 = 1. From
equation (5) we get that a2 = 0 if and only if L(f 2) = 0, provided
that L(f) = 0. By induction we get a2 = · · · = aj = 0 if and only if
L(f) = · · · = L(f j) = 0 with j ∈ {2, . . . , s}. �

Proof of Corollary 11. By Theorem 10 and its proof, if L(f) = · · · =
L(f s) = 0 then as = · · · = a2 = 0 and a1 = 1, i.e. the characteristic
polynomial of f∗1 is ts−1(t − 1). So all the eigenvalues of f∗1 are zero
except one eigenvalue which is equal to 1. Hence trace(fm

∗1) = 1, i.e.
L(fm) = 0 for all m. �

3. Some graph maps on G2

Using the notation introduced in the proof of Proposition 5 let f :
G2 → G2 be the map defined as follows: f(p) = p , f(x) = g(x) if
x ∈ S1 or x ∈ S2 in such way that f(S1) = S2 preserving orientation
and f(S2) = S1 in reversing orientation, see Figure 2. The map defined
in this way, has positive topological entropy, infinite Per(f), moreover

(6) f∗1 =

(
0 −1
1 0

)
,

and consequently its characteristic polynomial is Φ4(t) = t2 + 1, the
4-th cyclotomic polynomial, see [12, 20].

Similarly we can get a map f : G2 → G2 with positive topological
entropy, infinite Per(f) with the characteristic polynomial of f∗1 equal
to the 3-th cyclotonic polynomial Φ3(t) = t2 + t + 1 (see Figure 2)
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because

(7) f∗1 =

(
0 −1
1 −1

)
.

Using this method we can get f : Gs → Gs with positive topological
entropy, infinite Per(f) and the characteristic polynomial of f∗1 being
any product of cyclotomic polynomials of total degree s.

p

p

p p pS1

S2

S2

S1

p p

p

p

p

S1

S2S1

S2

Figure 2. Maps f : G2 → G2 such that f∗1 is given by
matrix (6) and (7) on the right and left respectively.
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